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ABSTRACT
Many scientific studies collect data where the response and predictor variables are both functions of time,
location, or some other covariate. Understanding the relationship between these functional variables is a
common goal in these studies. Motivated from two real-life examples, we present in this article a function-
on-function regression model that can be used to analyze such kind of functional data. Our estimator of
the 2D coefficient function is the optimizer of a form of penalized least squares where the penalty enforces
a certain level of smoothness on the estimator. Our first result is the Representer Theoremwhich states that
the exact optimizer of the penalized least squares actually resides in a data-adaptive finite-dimensional
subspace although the optimization problem is defined on a function space of infinite dimensions. This
theorem then allows us an easy incorporation of the Gaussian quadrature into the optimization of the
penalized least squares, which can be carried out through standard numerical procedures. We also show
that our estimator achieves the minimax convergence rate in mean prediction under the framework of
function-on-function regression. Extensive simulation studies demonstrate the numerical advantages
of our method over the existing ones, where a sparse functional data extension is also introduced. The
proposed method is then applied to our motivating examples of the benchmark Canadian weather data
and a histone regulation study. Supplementary materials for this article are available online.

1. Introduction

Functional data have attracted much attention in the past
decades (Ramsay and Silverman 2005). Most of the existing
literature has only considered the regression models of a scalar
response against one or more functional predictors, possibly5
with some scalar predictors as well. Some of them considered
a reproducing kernel Hilbert space framework. For example,
Yuan and Cai (2010) provided a thorough theoretical analysis of
the penalized functional linear regression model with a scalar
response. The article laid the foundation for several theoretical10
developments including the representer theorem and minimax
convergence rates for prediction and estimation for penalized
functional linear regression models. In a follow-up, Cai and
Yuan (2012) showed that the minimax rate of convergence for
the excess prediction risk is determined by both the covariance15
kernel and the reproducing kernel. Then they designed a data-
driven roughness regularization predictor that can achieve the
optimal convergence rate adaptively without the knowledge
of the covariance kernel. Du and Wang (2014) extended the
work of Yuan and Cai (2010) to the setting of a generalized20
functional linear model, where the scalar response comes from
an exponential family distribution.

In contrast to these functional linear regressionmodelswith a
scalar response, the model with a functional responseY (t ) over
a functional predictor X (s) has only been scarcely investigated25
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(Ramsay and Silverman 2005; Yao, Müller, and Wang 2005b).
Such data with functional responses and predictors are abun-
dant in practice.We shall now present twomotivating examples.

Example 1. Canadian Weather Data. Daily temperature and
precipitation at 35 different locations in Canada averaged over 30
1960 to 1994 were collected (Figure 1 ). The main interest
is to use the daily temperature profile to predict the daily
precipitation profile for a location in Canada.

Example 2. Histone Regulation Data. Extensive researches have
been shown that histone variants, that is, histones with struc- 35
tural changes compared to their primary sequence, play an
important role in the regulation of chromatin metabolism
and gene activity (Ausió 2006). An ultra-high throughput
time course experiment was conducted to study the regula-
tion mechanism during heat stress in Arabidopsis thaliana. The 40
genome-wide histone variant distribution was measured by
ChIP sequencing (ChIP-seq; Johnson et al. 2007) experiments.
We computed histone levels over 350 base pairs (bp) on genomes
from the ChIP-seq data, see left panel in Figure 2 . The RNA
sequencing (RNA-seq;Wang, Gerstein, and Snyder 2009) exper- 45
iments measured the expression levels over seven time points
within 24 hr, see right panel in Figure 2. Of primary interest is to
study the regulation mechanism between gene expression levels
over time domain and histone levels over spatial domain.
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Figure . Smoothed trajectories of temperature (celsius) in left panel and the log (base ) of daily precipitation (millimeter) in right panel. The x-axis labels in both panels
represent  days.

Motivated by the examples, we now present the statistical50
model. Let

{
(X (s),Y (t )) : s ∈ Ix, t ∈ Iy

}
be two random pro-

cesses defined, respectively, on Ix, Iy ⊆ R. Suppose n indepen-
dent copies of

(
X,Y

)
are observed:

(
Xi(s),Yi(t )

)
, i = 1, . . . , n.

The functional linear regression model of interest is

Yi(t ) = α(t )+
∫
Ix
β
(
t, s

)
Xi(s)ds + εi(t ), t ∈ Iy, (1)

where α(·) : Iy → R is the intercept function, β(·, ·) :55
Iy × Ix → R is a bivariate coefficient function, and εi(t ),
independent of Xi(s), are iid random error functions with
Eεi(t ) = 0 and E‖εi(t )‖22 < ∞. Here ‖ · ‖2 denotes the
L2-norm. In Example 1, Yi(t ) and Xi(t ) represent the daily
precipitation and temperature at station i. In Example 2, the60
expression levels of gene i over seven time points, Yi(t ), from
RNA-seq is used as the functional response. The histone levels
of gene i over 350 base pairs (bp), Xi(s), from ChIP-seq is used
as the functional predictor.

At a first look, model (1) might give the (wrong) impres-65
sion of being an easy extension from the model with a scalar
response, with the latter obtained from (1) by removing all
the t notation. However, the coefficient function in the scalar
response case is univariate and thus can be easily estimated
by most off-the-shelf smoothing methods. When extended to70
estimating a bivariate coefficient function β(t, s) in (1), many
of these smoothing methods may encounter major numerical
and/or theoretical difficulties. This partly explains themuch less
abundance of research in this direction.

Some exceptions though are reviewed below. Cuevas, 75
Febrero, and Fraiman (2002) considered a fixed design case,
a different setting from (1) with Yi(t ) and Xi(s) represented
and analyzed as sequences. Nonetheless they provided many
motivating applications in neuroscience, signal transmission,
pharmacology, and chemometrics, where (1) can apply. The 80
historical functional linear model in Malfait and Ramsay (2003)
was among the first to study regression of a response functional
variable over a predictor functional variable, or more precisely,
the history of the predictor function. Ferraty et al. (2011)
proposed a simple extension of the classical Nadaraya–Watson 85
estimator to the functional case and derived its convergence
rates. They provided no numerical results on the empirical
performance of their kernel estimator. Benatia, Carrasco, and
Florens (2015) extended ridge regression to the functional set-
ting. However, their estimation relied on an empirical estimate 90
of the covariance process of predictor functions. Theoretically
sound as it is, this covariance process estimate is generally not
reliable in practice. Consequently, their coefficient surface esti-
mates suffered as shown in their simulation plots. Meyer et al.
(2015) proposed a Bayesian function-on-function regression 95
model for multi-level functional data, where the basis expan-
sions of functional parameters were regularized by basis-space
prior distributions and a random effect function was introduced
to incorporate the with-subject correlation between functional
observations. 100

A popular approach has been the functional principal com-
ponent analysis (FPCA) as in Yao, Müller, and Wang (2005b)
and Crambes and Mas (2013). The approach starts with a
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Figure . Smoothed trajectories of normalized histone levels in ChIP-seq experiments in left panel and the normalized expression levels in RNA-seq experiments in right
panel. The x-axis label in the left panel stands for the region of  bp. The x-axis label in the right panel represents seven time points within  hr.
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basis representation of β(t, s) in terms of the eigenfunctions
in the Karhunen–Loève expansions of Y (t ) and X (s). Since105
this representation has infinitely many terms, it is truncated
at certain point to obtain an estimable basis expansion of
β(t, s). Yao, Müller, and Wang (2005b) studied a general data
setting whereY (t ) and X (s) are only sparsely observed at some
random points. They derived the consistency and proposed110
asymptotic point-wise confidence bands for predicting response
trajectories. Crambes and Mas (2013) furthered the theoretical
investigation of the FPCA approach by providing a minimax
optimal rates in terms of the mean square prediction error.
However, the FPCA approach has a couple of critical draw-115
backs. First, β(t, s) is a statistical quantity unrelated to Y (t )
or X (s). Hence, the leading eigenfunctions in the truncated
Karhunen–Loève expansions of Y (t ) and X (s) may not be an
effective basis for representing β(t, s). See, for example, Cai and
Yuan (2012) and Du andWang (2014) for some scalar-response120
examples where the FPCA approach breaks down when the
aforementioned situation happens. Second, the truncation
point is integer-valued and thus only has a discrete control
on the model complexity. This puts it at disadvantage against
the roughness penalty regularization approach, which offers a125
continuous control via a positive and real-valued smoothing
parameter (Ramsay and Silverman 2005, chap. 5).

In this article, we consider a penalized function-on-function
regression approach to estimating the bivariate coefficient
function β(t, s). There have been a few recent developments130
in the direction of penalized function-on-function regression.
Lian (2015) studied the convergence rates of the function-on-
function regression model under a reproducing kernel Hilbert
space framework. Although his model resembled model (1),
he developed everything with the variable t fixed and did not135
enforce any regularization on the t direction. First, this lack of
t-regularization can be problematic since this leaves the noisy
errors on the t direction completely uncontrolled and can result
in aβ(s, t ) estimate that is very rough on the t direction. Second,
this simplification of fixing t essentially reduces the problem to140
a functional linear model with a scalar response and thus makes
all the results in Yuan and Cai (2010) directly transferrable
even without calling on any new proofs. In the R package fda,
Ramsay and his collaborators have implemented a version of
penalized B-spline estimation of β(t, s) with a fixed smooth-145
ing parameter. Ivanescu et al. (2015) considered a penalized
function-on-function regression model where the coefficient
functions were represented by expansions into some basis
system such as tensor cubic B-splines. Quadratic penalties on
the expansion coefficients were used to control the smoothness150
of the estimates. This work provided a nice multiple-predictor-
function extension to the function-on-function regression
model in the fda package. Scheipl and Greven (2016) studied
the identifiability issue in these penalized function-on-function
regression models. However, this penalized B-spline approach155
has several well-known drawbacks. First, it is difficult to show
any theoretical optimality such as the minimax risk of mean
prediction in Cai and Yuan (2012). So its theoretical soundness
is hard to justify. Moreover, the B-spline expansion is only
an approximate solution to the optimization of the penalized160
least-square score. Hence, the penalized B-spline estimate is

not numerically optimal from the beginning either. These
drawbacks can have negative impacts on the numerical perfor-
mance as we shall see from the simulation results in Section 4.

The penalized function-on-function regression method 165
proposed in this article obtains its estimator of β(t, s) through
the minimization of penalized least squares on a reproducing
kernel Hilbert space that is naturally associated with the rough-
ness penalty. Such a natural formulation through a reproducing
kernel Hilbert space offers several advantages comparing with 170
the existing penalized function-on-function regression meth-
ods. First, it allows us to establish a Representer Theoremwhich
states that, although the optimization of the penalized least
squares is defined on an infinite-dimensional function space, its
solution actually resides in a data-adaptive finite-dimensional 175
subspace. This result guarantees an exact solution when the
optimization is carried out on this finite-dimensional subspace.
This result itself is a nontrivial generalization of the Repre-
senter Theorems in the scenarios of nonparametric smooth
regression model (Wahba 1990) and the penalized functional 180
regression model with a scalar response (Yuan and Cai 2010).
Based on the Representer Theorem, we propose an estima-
tion algorithm which uses penalized least squares and Gaussian
quadrature with the Gauss–Legendre rule to estimate the bivari-
ate coefficient function. The smoothing parameter is selected 185
by the generalized cross-validation (GCV) method. Second,
the reproducing kernel Hilbert space framework allows us to
show that our estimator has the optimal rate of mean prediction
since it achieves the minimax convergence rate in terms of
the excess risk. This generalizes the results in Cai and Yuan 190
(2012) and Du andWang (2014) for functional linear regression
with a scalar response to the functional response scenario.
In the numerical study, we have also considered the problem
with sparsely sampled data. Particularly, we introduce an extra
presmoothing step before applying the proposed penalized 195
functional regression model. The presmoothing step imple-
ments the principal-component-analysis-through-expectation
(PACE) method in Yao, Müller, and Wang (2005a). Our exten-
sive simulation studies demonstrate the numerical advantages
of our method over the existing ones. In summary, our method 200
has the following distinguishing features: (i) it makes no struc-
tural dependence assumptions of β(t, s) over the predictor and
response processes; (ii) the Representer Theorem guarantees an
exact solution instead of an approximation to the optimization
of the penalized score; (iii) benefited from the Representer 205
Theorem, we develop a numerically reliable algorithm that has
sound performance in simulations; (iv) we show theoretically
the estimator achieves the optimal minimax convergence rate
in mean prediction.

The rest of the article is organized as follows. In Section 210
2, we first derive the Representer Theorem showing that the
solution of the minimization of penalized least squares can be
found in a finite-dimension subspace. In addition, an easily
implementable estimation algorithm is considered in Section
2. In Section 3, we prove that our method has the optimal rate 215
of mean prediction. Numerical experiments are reported in
Section 4, where we compare our method with the functional
linear regression models in Ramsay and Silverman (2005) and
Yao, Müller, and Wang (2005b) in terms of prediction accuracy.
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Two real data examples, the Canadian weather data, and the220
histone regulation data are analyzed in Section 5. Discussion
in Section 6 concludes the article. Proofs of the theorems are
collected in supplementary material.

2. Penalized Functional Linear RegressionMethod

We first introduce a simplification to model (1). Since model (1)225
implies that

Yi(t )− EYi(t ) =
∫
Ix
β(t, s){Xi(s)− EXi(s)}ds + εi(t ), t ∈ Iy,

wemay, for simplicity, only considerX andY to be centered, that
is, EX = EY = 0. Thus, the functional linear regression model
takes the form of

Yi(t ) =
∫
Ix
β(t, s)Xi(s)ds + εi(t ), t ∈ Iy. (2)

2.1. The Representer Theorem230

Assume that the unknown β resides in a reproducing kernel
Hilbert spaceH(K)with the reproducing kernelK : I × I → R,
where I = Iy × Ix. The estimate β̂n can be obtained by minimiz-
ing the following penalized least-square functional

1
n

n∑
i=1

∫
Iy

{
Yi(t )−

∫
Ix
β(t, s)Xi(s)ds

}2
dt + λJ(β) (3)

with respect to β ∈ H(K), where the sum of integrated squared235
errors represents the goodness of fit, J is a roughness penalty on
β , and λ > 0 is the smoothing parameter balancing the trade-
off. When β is a univariate function, a common example for J is
J(β) = ∫ {β ′′(t )}2dt , the integral of the squared curvature of β .
This integral takes a large value when β is rough and has high240
curvatures. When β is a bivariate function as considered in this
article, J is often a combination of multiple integrals, each rep-
resenting the roughness of a certain part of β ; see Example 3.
We now establish the Representer Theorem stating that β̂n actu-
ally resides in a finite-dimensional subspace ofH(K). This result245
generalizes Theorem 1 in Yuan andCai (2010) and facilitates the
computation by reducing an infinite-dimensional optimization
problem to a finite-dimensional one.

Note that the penalty functional J is a squared seminorm
on H(K). Its null space H0 = {β ∈ H(K) : J(β) = 0} is a250
finite-dimensional linear subspace of H(K). Denote by H1 its
orthogonal complement in H(K) such that H(K) = H0 ⊕ H1,
the tensor sum or direct sum of H0 and H1. That is, for any
β ∈ H(K), there exists a unique decomposition β = β0 + β1
where β0 ∈ H0 and β1 ∈ H1. LetK0(·, ·) andK1(·, ·) be the cor-255
responding reproducing kernels ofH0 andH1. Then K0 and K1
are both nonnegative definite operators onL2, andK = K0 + K1.
In fact, the penalty term J(β) = ‖β‖2K1

= ‖β1‖2K1
. By the theory

of reproducing kernelHilbert spaces,H(K) has a tensor product
decomposition H(K) = Hy(Ky)⊗ Hx(Kx). That is, given the260
respective bases { f1, f2, . . . , } and {g1, g2, . . . , } of Hy(Ky) and
Hx(Kx) any function β(t, s) ∈ H(K) can be uniquely written as
β(t, s) = ∑

j c j f j(t )g j(s) for some coefficients c j. HereHy(Ky)

is the reproducing kernel Hilbert space with a reproducing
kernel Ky : Iy × Iy → R, and Hx(Kx) is the reproducing kernel265

Hilbert space with a reproducing kernel Kx : Ix × Ix → R.
For the reproducing kernels, we have K(t, s) = Ky(t )Kx(s).
Note that the functions in Hy(Ky) and Hx(Kx) are univari-
ate and defined, respectively, on Iy and Ix. Similar to the
decomposition of H and K, we have the tensor sum decom- 270
positions of the marginal subspaces Hy(Ky) = H0y ⊕ H1y
and Hx(Kx) = H0x ⊕ H1x, and the orthogonal decomposi-
tions of the marginal reproducing kernels Ky = K0y + K1y and
Kx = K0x + K1x. Here K∗ is a reproducing kernel on H∗ with ∗
running through the index set {0y, 1y, 0x, 1x}. 275

Upon piecing the marginal decomposition parts back
to the tensor product space, we obtain H0 = H0y ⊗ H0x
and H1 = (H0y ⊗ H1x)⊕ (H1y ⊗ H0x)⊕ (H1y ⊗ H1x). Cor-
respondingly, the reproducing kernels satisfy that

K0((t1, s1), (t2, s2)) = K0y(t1, t2)K0x(s1, s2),
K1((t1, s1), (t2, s2)) = K0y(t1, t2)K1x(s1, s2)+ K1y(t1, t2)K0x

× (s1, s2)+ K1y(t1, t2)K1x(s1, s2).

Let Ny = dim(H0y) and Nx = dim(H0x). Denote by {ψk,y : 280
k = 1, . . . ,Ny} and {ψl,x : l = 1, . . . ,Nx}, respectively, the
basis functions of H0y and H0x. With some abuse of nota-
tion, define (K1yg)(·) = ∫

Iy K1y(·, t )g(t )dt and (K1x f )(·) =∫
Ix K1x(·, s) f (s)ds. Now we can state the Representer Theorem
as followswith its proof collected in the supplementarymaterial. 285

Theorem 1. Let β̂n be the minimizer of (3) in H(K). Then β̂n
resides in the subspace of functions of the form

β(t, s) =
⎧⎨
⎩

Ny∑
k=1

dk,βyψk,y(t )+
n∑

i=1

ci,βy (K1yYi)(t )

⎫⎬
⎭

×
⎧⎨
⎩

Nx∑
l=1

dl,βxψl,x(s)+
n∑
j=1

c j,βx (K1xXj)(s)

⎫⎬
⎭

=
{
d�
βy
ψy(t )+ c�βy (K1yY )(t )

}{
d�
βx
ψx(s)+ c�βx (K1xX )(s)

}
,

(4)

where dβy = (d1,βy , . . . , dNy,βy )
�, cβy = (c1,βy , . . . , cn,βy )�,

dβx = (d1,βx , . . . , dNx,βx )
�, and cβx = (c1,βx , . . . , cn,βx )� are

some coefficient vectors, andψx, ψy,K1yY and K1xX are vectors 290
of functions.

For the purpose of illustration, we give a detailed example
below.

Example 3. Consider the case of tensor product cubic splines
with Iy = Ix = [0, 1]. Themarginal spacesHy(Ky) = Hx(Kx) = 295
{g : ∫ 1

0 (g
′′)2 < ∞} with the inner product

〈 f , g〉Hy =
(∫ 1

0
f
∫ 1

0
g +

∫ 1

0
f ′

∫ 1

0
g′
)

+
∫ 1

0
f ′′g′′dt.

Themarginal spaceHy(Ky) can be further decomposed into the
tensor sumofH0y = {g : g′′ = 0} andH1y = {g : ∫ 1

0 g = ∫ 1
0 g′ =

0,
∫ 1
0 (g

′′)2 < ∞}. The reproducing kernel Ky is the orthog-
onal sum of K0y(t1, t2) = 1 + r1(t1)r1(t2) and K1y(t1, t2) = 300
r2(t1)r2(t2)− r4(|t1 − t2|), where rν (t ) = Bν (t )/ν! is a scaled
version of the Bernoulli polynomial Bν . The space H0y has a
dimension of Ny = 2 and a set of basis functions {1, r1(t )}.
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The function spaceH(K) is defined asH(K) = {β : J(β) <
∞} with the reproducing kernel K(t, s) = Ky(t )Kx(s) and the305
penalty functional

J(β) =
∫ 1

0

[{ ∫ 1

0

∂2

∂s2
β(t, s)dt

}2
+

{ ∫ 1

0

∂3

∂t∂s2
β(t, s)dt

}2]
ds

+
∫ 1

0

[{ ∫ 1

0

∂2

∂t2
β(t, s)ds

}2
+

{ ∫ 1

0

∂3

∂t2∂s
β(t, s)ds

}2]
dt

+
∫ 1

0

∫ 1

0

{ ∂4

∂t2∂s2
β(t, s)

}2
dtds.

Intuitively, these five integrals represent, respectively, the devia-
tions of the function β from being linear in s, being linear in s
and constant in t , being linear in t , being constant in s, and lin-
ear in t , and being linear in both s and t . And we haveH(K) =310
Hy(Ky)⊗ Hx(Kx) and K = KyKx; see, for example, chap. 2 of
Gu (2013).

2.2. Estimation Algorithm

To introduce the computational algorithm, we first need
some simplification of notation. Let N = NyNx and315
L = n(Ny + Nx + n). We rewrite the functions spanning
the subspace in Theorem 1 as ψ1(t, s) = ψ1,y(t )ψ1,x(s), . . . ,
ψN (t, s) = ψNy,y(t )ψNx,x(s) and ξ1(t, s) = ψ1,y(t )(K1xX1)(s)
, . . . , ξL(t, s) = (K1yYn)(t )(K1xXn)(s). Thus, a function in this
subspace has the form β(t, s) = dTψ(t, s)+ cTξ (t, s) for some320
coefficient vectors d, c and vectors of functions ψ(t, s), ξ (t, s).
To solve (3), we choose Gaussian quadrature with the Gauss–
Legendre rule to calculate the integrals. Consider the Gaussian
quadrature evaluation of an integral on Iy with knots {t1, . . . , tT }
and weights {α1, . . . , αT } such that

∫
Iy f (t )dt = ∑T

j=1 α j f (t j).325
LetW be the diagonal matrix with α1, . . . , αT repeating n times
on the diagonal. Then the estimation of β in (3) reduces to the
minimization of

(Yw − Swd − Rwc)T (Yw − Swd − Rwc)+ nλcTQc (5)

with respect to d and c, where Yw = W 1/2Y with
Y = (Y1(t1), . . . ,Y1(tT ), . . . ,Yn(t1), . . . ,Yn(tT ))�, Sw =330
W 1/2S with S being an nT × N matrix with the ((i −
1)T + j, ν)th entry

∫
Ix ψν(t j, s)Xi(s)ds, Rw = W 1/2R with

R being an nT × L matrix with the ((i − 1)T + j, k)th entry∫
Ix ξk(t j, s)Xi(s)ds, and Q is a L × L matrix with the (i, j)th
entry 〈ξi, ξ j〉H1 . Let Qx = [

∫ 1
0

∫ 1
0 Xi(u)K(u, v )Xj(v )dudv]ni, j=1,335

Qy = [
∫ 1
0

∫ 1
0 Yi(u)K(u, v )Yj(v )dudv]ni, j=1, and Qxy =

Qx
⊗

Qy, where
⊗

denotes the Kronecker product of two
matrices. Then we have Q = diag(Qx,Qx,Qy,Qy,Qxy).

We then use standard numerical linear algebra procedures,
such as the Cholesky decomposition with pivoting and forward340
and back substitutions, to calculate c and d in (5) (Gu 2013,
sec. 3.5). To choose the smoothing parameterλ in (5), amodified
generalized cross-validation (GCV) score (Wahba and Craven
1979),

V (λ) = (nT )−1YT
w (I − A(λ))2Yw

{(nT )−1tr(I − αA(λ))}2 (6)

is implemented, where α > 1 is a fudge factor curbing under-345
smoothing (Kim and Gu 2004) and A(λ) is the smoothing

matrix bridging the prediction Ŷw and the observation Yw as
Ŷw = A(λ)Yw , similar to the hat matrix in a general linear
model.

3. Optimal Mean Prediction Risk 350

We are interested in the estimation of coefficient function
β and mean prediction, that is, to recover the functional
ηβ (X, ·) = ∫

Ix β(·, s)X (s)ds based on the training sample
(Xi,Yi), i = 1, . . . , n. Let β̂n(t, s) be an estimate of β(t, s).
Suppose (Xn+1,Yn+1) is a new observation that has the same 355
distribution as and is also independent of (Xi,Yi), i = 1, . . . , n.
Then the prediction accuracy can be naturally measured by the
excess risk

Rn(β̂n) =∫
Iy

[
E

∗
{
Yn+1(t )−

∫
Ix
β̂n(t, s)Xn+1(s)ds

}2

−E
∗
{
Yn+1(t )−

∫
Ix
β(t, s)Xn+1(s)ds

}2
]
dt

=
∫
Iy
E

∗
{
η
β̂n
(Xn+1, t )− ηβ(Xn+1, t )

}2
dt,

where E
∗ represents the expectation taken over (Xn+1,Yn+1)

only. We shall study the convergence rate of Rn as the sample 360
size n increases.

This section collects two theorems whose combination
indicates that our estimator achieves the optimal minimax
convergence rate in mean prediction. We first establish the
minimax lower bound for the convergence rate of the excess 365
risk Rn. There is a one-to-one relationship between K and
H(K) which is a linear functional space endowed with an inner
product 〈·, ·〉H(K) such that

β(t, s) = 〈K((t, s), ·), β〉H(K), for any β ∈ H(K).
The kernel K can also be treated as an integral operator such
that 370

K(β)(·) = 〈K ((t, s), ·) , β〉L2 =
∫ ∫

I
K((t, s), ·)β(t, s)dtds.

It follows from the spectral theorem that there exist a set of
orthonormal eigenfunctions {ζk : k ≥ 1} and a sequence of
eigenvalues κ1 ≥ κ2 ≥ · · · > 0 such that

K((t1, s1), (t2, s2)) =
∞∑
k=1

κkζk(t1, s1)ζk(t2, s2),

K(ζk) = κkζk, k = 1, 2, . . . .

Denote K1/2((t1, s1), (t2, s2))) = ∑∞
k=1 κ

1/2
k ζk(t1, s1)ζk(t2, s2).

Let C(t, s) = cov
(
X (t ),X (s)

)
be the covariance kernel of X . 375

Define a new kernel
 such that


((t1, s1), (t2, s2)) =
∫ ∫ ∫

Ix×Ix×Iy
K1/2((t1, s1), (z, u))

×C(u, v )K1/2((t2, s2), (z, v ))dudvdz.
(7)
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Let ρ1 ≥ ρ2 ≥ · · · > 0 be the eigenvalues of
 and {φ j : j ≥ 1}
be the corresponding eigenfunctions. Therefore,



(
(t1, s1), (t2, s2)

) =
∞∑
k=1

ρkφk(t1, s1)φk(t2, s2),

∀ (t1, s1), (t2, s2) ∈ Iy × Ix.

Theorem 2. Assume that for any β ∈ L2([0, 1]2)∫
E

( ∫
β(t, s)X (s)dt

)4
dt ≤ c

∫ (
E

( ∫
β(t, s)X (s)ds

)2)2
dt

(8)
for a positive constant c. Suppose that the eigenvalues380
{ρk : k ≥ 1} of the kernel 
 in (7) satisfy ρk � k−2r for some
constant 0 < r < ∞. Then,

lim
A→∞

lim
n→∞ sup

β∈H(K)
P{Rn ≥ An− 2r

2r+1 } = 0, (9)

when λ is of order n−2r/(2r+1).

Theorem 2 indicates that the convergence rate is determined
by the decay rate of the eigenvalues of this new operator 
,385
which is jointly determined by both reproducing kernel K and
the covariance kernelC as well as the alignment between K and
C in a complicated way. This result has not been reported in the
literature before. A closely related result is from Yuan and Cai
(2010) who studied an optimal prediction risk for functional lin-390
ear models, where the optimal rate depends on the decay rate of
the eigenvalues ofK1/2CK1/2. It is interesting to see, on the other
hand, whether the convergence rate of β̂n in Theorem 2 is opti-
mal. In the following, we derive a minimax lower bound for the
risk.395

Theorem 3. Let r be as in Theorem 2. Then the excess prediction
risk satisfies

lim
c→0

lim
n→∞ inf

η̃
sup

β∈H(K)
P(Rn ≥ cn− 2r

2r+1 ) = 1, (10)

where the infimum is taken over all possible predictors η̃ based
on {(Xi,Yi) : i = 1, . . . , n}.

Theorem 3 shows that the minimax lower bound of the con-400
vergence rate for the prediction risk is n−2r/2r+1, which is deter-
mined by r and the decay rate of the eigenvalues of
. We have
shown that this rate is achieved by our penalized estimator, and
therefore our estimator is rate-optimal.

4. Numerical Experiments405

We compared the proposed optimal penalized function-on-
function regression (OPFFR) method with existing function-
on-function linear regression models under two different
designs. In a dense design, each curve was densely sampled
at regularly spaced common time points. We compared the410
OPFFR with two existing models. In a sparse design, each curve
was irregularly and sparsely sampled at possibly different time
points. We extended the OPFFR to this design by adding an
extra presmoothing step and compared it with the FPCAmodel.
In the firstmodel (Ramsay and Silverman 2005) for comparison,415
the coefficient function is estimated by penalizing its B-spline
basis function expansion. This approach does not have the

optimal mean prediction property and partially implemented
in the fda package of R (linmod function) for the case of a
fixed smoothing parameter. We shall add a search on the grid 420
10(−2 : 0.4 : 2) for smoothing parameter selection to their imple-
mentation and denote this augmented approach by FDA. The
coefficient function is represented in terms of 10 basis functions
each for the t and s directions. The second model for compar-
ison was the functional principal component analysis (hence 425
denoted by FPCA) approach proposed byYao,Müller, andWang
(2005b). The coefficient function is represented in terms of the
leading functional principal components. This is implemented
in the MatLab package PACE (FPCreg function) maintained
by the UC-Davis research group. The Akaike information cri- 430
terion (AIC) and fraction of variance explained (FVE) criterion
were used to select the number of principal components for
predictor and response, respectively. The cutoff value for FVE
was 0.9. The “regular” parameter was set to 2 for the dense
design and 0 for the sparse design. No binning was performed. 435

4.1. Simulation Study

... Dense Design
We simulated data according to model (2) with three scenarios.

� Scenario 1: The predictor functions are Xi(s) =∑50
k=1(−1)(k+1)k−1Zikϑ1(s, k), where Zik is from the 440

uniform distribution U (−√
3,

√
3), and ϑ1(s, k) = 1 if

k = 1 and
√
2 cos((k − 1)πs) otherwise. The coefficient

function β(t, s) = e−(t+s) is the exponential function of t
and s.

� Scenario 2: The predictor functions Xi(s) are the same as 445
those in Scenario 1 and the coefficient function β(t, s) =
4
∑50

k=1(−1)(k+1)k−2ϑ1(t, k)ϑ1(s, k).
� Scenario 3: The predictor functions Xi(s) are generated as
Xi(s) = ∑3

k=1(−1)(k+1)k−1Zikϑ2(s, k), where ϑ2(s, k) =
1 if k = 3 and

√
2 cos(kπs) otherwise. The coefficient 450

function β(t, s) = 4
∑3

k=1(−1)(k+1)k−2ϑ2(t, k)ϑ2(s, k).
For each simulation scenario, we generated n = 30 samples,

each with 20 time points on the interval (0, 1). The random
errors ε(t )were from a normal distributionwith a constant vari-
ance σ 2. The value of σ was adjusted to deliver three levels of 455
signal-to-noise ratio (SNR= 0.5, 5, and 10) in each scenario. To
assess themean prediction accuracy, we generated an additional
n∗ = 30 predictor curves X̃ and computed the mean integrated
squared errorMISE = 1/n∗ ∑n∗

i=1
∫ 1
0 (ηβ̂ (X̃i, t )− ηβ(X̃i, t ))2dt ,

where β̂ was the estimator obtained from the training data. We 460
had 100 runs for each combination of scenario and SNR.

We applied the OPFFR, FDA, and FPCAmethods to the sim-
ulated datasets. Figure 3 displayed the perspective plots of the
true coefficient functions in the three scenarios as well as their
respective estimates for a single run with SNR= 10. In the first 465
two scenarios, both OPFFR and FDA did a decent job in recov-
ering the true coefficient function although the FDA estimates
were slightly oversmoothed. In both scenarios the FPCA esti-
mates clearly suffered since the true coefficient function could
not be effectively represented by the eigen-functions of the pre- 470
dictor processes.

Figure 4 gave the summary reports of performances in terms
of MISEs based on 100 runs. When the signal-to-noise ratio is
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Figure . Perspective plots of the true β(t, s) in three scenarios, and their respective estimates by the OPFFR, FDA, and FPCA methods when SNR= 10.

low, the OPFFR and FDA approaches had comparable perfor-
mances. But when the signal-to-noise ratio increases, OPFFR475
showed clear advantage against FDA. The FPCA method failed
to deliver competitive performance against the other two meth-
ods in all the settings due to its restrictive requirement of the
effective representation of the coefficient function.

... Sparse Design480
In this section, we compared the performance of the proposed
OPFFR method and the FPCA method regarding prediction
error on sparsely, irregularly, and noisily observed func-
tional data. To extend our method to sparsely and noisily
observed data, we first applied the principal-component-485
analysis-through-conditional-expectation (PACE) method in
Yao, Müller, and Wang (2005a) to the sparse functional data.
Then we obtained a dense version of functional data by com-
puting the PACE-fitted response and predictor functions at 50
selected time points for each curve. We applied the OPFFR490
method to these densely generated data and called this sparse
extension to the OPFFR by the OPFFR-S method. The original
OPFFR method, FPCA and OPFFR-S methods were all applied
to the simulated data for comparison.

We first generated n = 200 samples for both response and495
predictor functions in Scenario 3, each with 50 time points on
interval (0, 1). To obtain different sparsity levels, we then ran-
domly chose 5, 10, and 15 time points from the 50 ones for each
curve independently. Normally distributed random errors were
added to functional response and predictor with the SNR set to500
10 in generating each pair of noisy response and predictor. The

mean integrated squared error (MISE) was calculated based on
additional n∗ = 50 predictor curves without random noises.

Figure 5 displayed the perspective plots of the true coefficient
functions in the sparse scenario as well as their respective esti- 505
mates for a single run with 10 sampled time points per curve.
The OPFFR-S method and FPCA performed well in estimating
the coefficient function. The estimate recovered by the original
OPFFR method was a little oversmoothed. In Figure 6, the per-
formance in terms of MISEs based on 100 runs was compared. 510
The OPFFR-S method always had the best prediction perfor-
mances at all the three sparsity levels. When the sparsity level
was high (5 time points per curve), the original OPFFR method
had a worse prediction performance than the FPCA. However,
its prediction performance quickly picked up as the data became 515
denser. When the sparsity level was 15 time points per curve,
it actually delivered a better prediction performance than the
FPCA. Such an interesting phenomenon was referred to as the
“phase transition” (Cai and Yuan 2011; Wang, Chiou, and Mller
2016). 520

5. Real Data Examples

We analyzed two real example in this section. We showed that
ourmethod had the numerical advantage over other approaches
in terms of prediction accuracy in the analysis of the Canadian
weather and histone regulation data. The results in theCanadian 525
weather data, a dense design case, and the histone regulation
data, a sparse design case, echoed with our findings in the simu-
lation study. The smoothing parameters used in FDA for Cana-
dianweather datawere taken from the example codes inRamsay,
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Figure . Boxplots of log2(MISE) for three scenarios under three signal-to-noise ratios (SNR= 0.5, , ), based on  simulation runs. OPFFR is the proposed approach.

Hooker, and Graves (2009) and seven basis functions were used530
for the t and s directions, respectively. In the histone regulation
data, we selected the smoothing parameter for FDA by a grid
search on 10(−5 : 1 : 5) and used six basis functions each for the t
and s directions. For the FPCAmethod, the “regular” parameter
was set to 2 for the Canadian weather data and 0 for the his-535
tone regulation data. The other parameters for FDA and FPCA
approaches were the same as those used in the simulation study.

5.1. CanadianWeather Data

We first look at the Canadian weather data (Ramsay and Sil-
verman 2005), a benchmark dataset in functional data analysis. 540
The main goal is to predict the log daily precipitation profile
based on the daily temperature profile for a geographic loca-
tion in Canada. The daily temperature and precipitation data
averaged over 1960 to 1994 were recorded at 35 locations in
Canada. We compared OPFFR with FDA and FPCA in terms 545

Figure . Perspective plots of the true β(t, s) in the sparse scenario, and their respective estimates by the OPFFR-S, FPCA, and OPFFR methods when the number of
randomly selected time points is .



UASA_A_1356320 TFJATS_ComSerif-800.cls(800C) May 7, 2018 21:56 Trim Info: 8.25in× 11in

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 9

B/w in print, colour online

Figure . Boxplots of MISEs for the sparse scenario under three different sparsity
levels, based on  simulation runs. The boxplots with different grayscale shades
from left to right, respectively, represent the sparsity levels of , , and  timepoints
per curve.

of prediction performance defined by integrated squared error
(ISE)

∫ 365
0 (Yi(t )− η

β̂−i
(Xi, t ))2dt , where i = 1, . . . , 35 and β̂−i

was estimated by the dataset without the ith observation. For the
convenience of calculation, we computed ‖Yi(t )− η

β̂−i
(Xi, t )‖22

at a grid of values t as the surrogate of ISE. Since the findings550
through the coefficient function estimates were similar to those
in Ramsay and Silverman (2005), we only focused on the com-
parison of prediction performance. The summary in Table 1
clearly showed the numerical advantage of the proposedOPFFR
method over the FDA and FPCA methods.555

5.2. Histone Regulation Data

Nucleosomes, the basic units of DNA packaging in eukaryotic
cells, consist of eight histone protein cores including two copies
of H2A, H2B, H3, and H4. Besides the role as DNA scaffold,
histones provide a complex regulatory platform for regulating560
gene activity (Wollmann et al. 2012). Focused study of the inter-
action between histones and gene activity may reveal how the
organisms respond to the environmental changes. There are
multiple sequence variants of histone proteins, which have some
amino acid changes compared to their primary sequence, coex-565
ist in the same nucleus. For instance, in both plants and ani-
mals, there exist three variants of H3, the H3.1, the H3.3, and
the centromere-specific CENP-A (CENH3) (Deal and Henikoff
2011). Each variant shows distinct regulatory mechanisms over
gene expression.570

In this article, an ultra-high throughput time course study
was conducted to explore the interaction mechanism between
the gene activity and histone variant, H3.3, during heat stress in
Arabidopsis thaliana. In this study, the 12-day-old Arabidopsis
seedlings that had been grown at 22◦C were subject to heat575
stress of 38◦C, and plants were harvested at 7 different time
points within 24 hr for RNA sequencing (RNA-seq; Wang,

Table . The mean, standard deviation, and three quartiles of ISEs for the three
approaches. The best result on each metric is in boldface.

Method Median Mean Standard deviation st Qu. rd Qu.

OPFFR 21.6400 40.2800 45.7631 13.8000 36.1700
FDA . . . . .
FPCA . . . . .

Table . The mean, standard deviation, and three quartiles of ISEs for the four
approaches. The best result on each metric is in boldface.

Method Median Mean Standard deviation st Qu. rd Qu.

OPFFR . 7.7120 . 0.5077 5.1900
OPFFR-S 1.4070 . . . .
FDA . . . . .
FPCA . . 18.3978 . .

Gerstein, and Snyder 2009) and ChIP sequencing (ChIP-seq;
Johnson et al. 2007) experiments. We were interested in the
genes responding to the heat shock, therefore 160 genes in 580
response to heat (GO:0006951) pathway (Ashburner et al. 2000)
were chosen. We selected 55 genes with the fold change above
0.5 at at least two consecutive time points in RNA-seq data. In
ChIP-seq experiments, we calculated the mean of normalized
read counts by taking the average of normalized read counts 585
over seven time points for the region of 350 base pairs (bp) in
the downstream of transcription start sites (TSS) of selected 55
genes. The normalized read counts over 350 bp from ChIP-seq
and the normalized fragments per kilobase of transcript per
million mapped reads (FPKM; Trapnell et al. 2010) over seven 590
time points from RNA-seq were used to measure the histone
levels and gene expression levels, respectively.

We applied the OPFFR, FDA, and FPCAmethods to histone
regulation data in example 2. Since the gene expression levels
were sparsely observed, we also applied the OPFFR-S method 595
to the data. The comparison of the four methods is shown in
Table 2. In the table, the standard deviation of ISEs was the
only measure that neither the OPFFR nor the OPFFR-S was the
most optimal. This was caused by a few observations where all
the methods failed to make a good prediction and the OPFFR 600
methods happened to have larger ISEs. In terms of all the other
measures, the proposed OPFFR and OPFFR-S methods clearly
showed the advantage in prediction accuracy again. Since the
results from the OPFFR and OPFFR-S were comparable to each
other, we chose to present all the following results based on the 605
OPFFR analysis.

Figure 7 is the plot of the fitted coefficient function gener-
ated from our OPFFR method. For region between 300 bp and
350 bp, there was a strong negative influence of H3.3 on genes

B/w in print, colour online

Figure . The estimated coefficient function β(t, s) for the histone regulation
study. The y-axis label represents the positions on genomes and x-axis label rep-
resents seven time points.
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Figure . The fitted response functions for six genes in the histone regulation study. The y-axis stands for the normalized expression levels and x-axis label represents seven
time points. The curve fitted using OPFFR is in the solid line, with the data in circles.

activity from half hour to 8 hr. It indicted that the loss of H3.3610
might have the biological influence on the up-regulation of heat-
induced genes. This negative correlation phenomenon was also
observed after 30min on the region of 250 bp to 300 bp between
H3.3 and gene activity. In addition, the region from 50 bp to
150 bp had a positive effect on genes activity over time domain615
from 0 hr to half hour and 4 hr to 8 hr. Therefore, we provided
a numerical evidence that heat-shock-induced transcription of
genes in response to heat stress might be regulated via the epi-
genetic changes of H3.3, especially on the downstream region of
TSS. The sample plots in Figure 8 showed a nice match of the620
predicted gene expression curves with the observed values.

6. Conclusion

In this article, we have presented a new analysis tool for
modeling the relationship of a functional response against a
functional predictor. The proposed method is more flexible625
and generally delivers a better numerical performance than the
FPCA approach since it does not have the restrictive structural
dependence assumption on the coefficient function. When
compared with the penalized B-splines method, the proposed
method has the theoretical advantage of possessing the optimal630
rate for mean prediction as well as some numerical advantage
as shown in the numerical studies. Moreover, the Represen-
ter Theorem guarantees an exact solution to the penalized
least squares, a property that is not shared by the existing
penalized function-on-function regression models. The appli-635
cation of our method to a histone regulation study provided
numerical evidence that the changes in H3.3 might regulate
some genes through transcription regulations. Although such
a finding sheds light on the relationship between histone
variant H3.3 and gene activity, the details of the regulation640
process are still unknown and merit further investigations. For

instance, we may investigate how the H3.3 organizes the chro-
matins to up-regulate those active genes. Such investigations
would call for more collaborations between statisticians and
biologists. 645

When the regression model has a scalar response against one
or more functional predictors, methods other than the rough-
ness penalty approach are available to overcome the inefficient
basis representation drawback in the FPCA method. For exam-
ple, Delaigle et al. (2012) considered a partial least-square (PLS) 650
based approach. Ferré and Yao (2003) and Yao, Lei, and Wu
(2015) translated the idea of sufficient dimension reduction
(SDR) into the setting of functional regression models. Intu-
itively, these methods might be more efficient in their selection
of the principal component basis functions since they incorpo- 655
rate the response information into consideration. However, our
experimentswith a functional response version of the functional
PLS (Preda and Saporta 2005), not shown here due to space
limit, did not look so promising. Therefore, further investiga-
tion in this direction is surely needed. 660

In some applications, the response functions may show a
different level of smoothness from the predictor functions.
Then it is reasonable to require different levels of smoothness
for the coefficient function β(t, s) in the directions of t and
s. This can be effectively implemented through introducing 665
five new smoothing parameters θk, k = 1, . . . , 5 in Example 3
such that θ−1

k precedes the kth integral in the penalty J. Then
one essentially selects λ/θk, k = 1, . . . , 5 to determine the
appropriate level of smoothness for each component. Note that
this would also require the incorporation of θk into the RKs. 670
Numerically, these parameters can be tuned by first fixing all
θk to some constant and selecting an optimal λ to pin down
the overall smoothness level, and then fix λ and fine tune θk to
determine the component-wise smoothness levels.

Supplementary Materials
Q1
675
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