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ABSTRACT

Many scientific studies collect data where the response and predictor variables are both functions of time,
location, or some other covariate. Understanding the relationship between these functional variables is a
common goal in these studies. Motivated from two real-life examples, we present in this article a function-
on-function regression model that can be used to analyze such kind of functional data. Our estimator of
the 2D coefficient function is the optimizer of a form of penalized least squares where the penalty enforces
a certain level of smoothness on the estimator. Our first result is the Representer Theorem which states that
the exact optimizer of the penalized least squares actually resides in a data-adaptive finite-dimensional
subspace although the optimization problem is defined on a function space of infinite dimensions. This
theorem then allows us an easy incorporation of the Gaussian quadrature into the optimization of the
penalized least squares, which can be carried out through standard numerical procedures. We also show
that our estimator achieves the minimax convergence rate in mean prediction under the framework of
function-on-function regression. Extensive simulation studies demonstrate the numerical advantages
of our method over the existing ones, where a sparse functional data extension is also introduced. The
proposed method is then applied to our motivating examples of the benchmark Canadian weather data
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and a histone regulation study. Supplementary materials for this article are available online.

1. Introduction

Functional data have attracted much attention in the past
decades (Ramsay and Silverman 2005). Most of the existing
literature has only considered the regression models of a scalar
response against one or more functional predictors, possibly
with some scalar predictors as well. Some of them considered
a reproducing kernel Hilbert space framework. For example,
Yuan and Cai (2010) provided a thorough theoretical analysis of
the penalized functional linear regression model with a scalar
response. The article laid the foundation for several theoretical
developments including the representer theorem and minimax
convergence rates for prediction and estimation for penalized
functional linear regression models. In a follow-up, Cai and
Yuan (2012) showed that the minimax rate of convergence for
the excess prediction risk is determined by both the covariance
kernel and the reproducing kernel. Then they designed a data-
driven roughness regularization predictor that can achieve the
optimal convergence rate adaptively without the knowledge
of the covariance kernel. Du and Wang (2014) extended the
work of Yuan and Cai (2010) to the setting of a generalized
functional linear model, where the scalar response comes from
an exponential family distribution.

In contrast to these functional linear regression models with a
scalar response, the model with a functional response Y (¢) over
a functional predictor X (s) has only been scarcely investigated

(Ramsay and Silverman 2005; Yao, Miiller, and Wang 2005b).
Such data with functional responses and predictors are abun-
dant in practice. We shall now present two motivating examples.

Example 1. Canadian Weather Data. Daily temperature and
precipitation at 35 different locations in Canada averaged over
1960 to 1994 were collected (Figure 1 ). The main interest
is to use the daily temperature profile to predict the daily
precipitation profile for a location in Canada.

Example 2. Histone Regulation Data. Extensive researches have
been shown that histone variants, that is, histones with struc-
tural changes compared to their primary sequence, play an
important role in the regulation of chromatin metabolism
and gene activity (Ausié 2006). An ultra-high throughput
time course experiment was conducted to study the regula-
tion mechanism during heat stress in Arabidopsis thaliana. The
genome-wide histone variant distribution was measured by
ChIP sequencing (ChIP-seq; Johnson et al. 2007) experiments.
We computed histone levels over 350 base pairs (bp) on genomes
from the ChIP-seq data, see left panel in Figure 2 . The RNA
sequencing (RNA-seq; Wang, Gerstein, and Snyder 2009) exper-
iments measured the expression levels over seven time points
within 24 hr, see right panel in Figure 2. Of primary interest is to
study the regulation mechanism between gene expression levels
over time domain and histone levels over spatial domain.
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Figure 1. Smoothed trajectories of temperature (celsius) in left panel and the log (base 10) of daily precipitation (millimeter) in right panel. The x-axis labels in both panels

represent 365 days.

Motivated by the examples, we now present the statistical
model. Let {(X(s), Y(#)):sel,te Iy} be two random pro-
cesses defined, respectively, on I, I, € R. Suppose # indepen-
dent copies of (X, Y) are observed: (Xi(s), Yl-(t)), i=1,...,n
The functional linear regression model of interest is

Yi(t) = a(t) +f ,B(t, s)Xi(s)ds +e(t), tel, (1)
L

where «(-):I, — R is the intercept function, B(:, -):
I, x I, - R is a bivariate coefficient function, and ¢;(t),
independent of X;(s), are iid random error functions with
Ee;(t) =0 and E|€(t)||3 < oo. Here | - |, denotes the
L,-norm. In Example 1, Y;(¢) and X;(¢) represent the daily
precipitation and temperature at station i. In Example 2, the
expression levels of gene i over seven time points, Y;(¢), from
RNA-seq is used as the functional response. The histone levels
of gene i over 350 base pairs (bp), X;(s), from ChIP-seq is used
as the functional predictor.

At a first look, model (1) might give the (wrong) impres-
sion of being an easy extension from the model with a scalar
response, with the latter obtained from (1) by removing all
the ¢ notation. However, the coefficient function in the scalar
response case is univariate and thus can be easily estimated
by most oft-the-shelf smoothing methods. When extended to
estimating a bivariate coeflicient function B(¢, s) in (1), many
of these smoothing methods may encounter major numerical
and/or theoretical difficulties. This partly explains the much less
abundance of research in this direction.

Histone Level

obp 50bp  100bp  150bp  200bp  250bp  300bp  350bp

Position

Some exceptions though are reviewed below. Cuevas,
Febrero, and Fraiman (2002) considered a fixed design case,
a different setting from (1) with Y;(¢) and X;(s) represented
and analyzed as sequences. Nonetheless they provided many
motivating applications in neuroscience, signal transmission,
pharmacology, and chemometrics, where (1) can apply. The
historical functional linear model in Malfait and Ramsay (2003)
was among the first to study regression of a response functional
variable over a predictor functional variable, or more precisely,
the history of the predictor function. Ferraty et al. (2011)
proposed a simple extension of the classical Nadaraya-Watson
estimator to the functional case and derived its convergence
rates. They provided no numerical results on the empirical
performance of their kernel estimator. Benatia, Carrasco, and
Florens (2015) extended ridge regression to the functional set-
ting. However, their estimation relied on an empirical estimate
of the covariance process of predictor functions. Theoretically
sound as it is, this covariance process estimate is generally not
reliable in practice. Consequently, their coefficient surface esti-
mates suffered as shown in their simulation plots. Meyer et al.
(2015) proposed a Bayesian function-on-function regression
model for multi-level functional data, where the basis expan-
sions of functional parameters were regularized by basis-space
prior distributions and a random effect function was introduced
to incorporate the with-subject correlation between functional
observations.

A popular approach has been the functional principal com-
ponent analysis (FPCA) as in Yao, Miiller, and Wang (2005b)
and Crambes and Mas (2013). The approach starts with a
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Figure 2. Smoothed trajectories of normalized histone levels in ChIP-seq experiments in left panel and the normalized expression levels in RNA-seq experiments in right
panel. The x-axis label in the left panel stands for the region of 350 bp. The x-axis label in the right panel represents seven time points within 24 hr.
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basis representation of S(t,s) in terms of the eigenfunctions
in the Karhunen-Loéve expansions of Y (t) and X(s). Since
this representation has infinitely many terms, it is truncated
at certain point to obtain an estimable basis expansion of
B(t,s). Yao, Miiller, and Wang (2005b) studied a general data
setting where Y (t) and X (s) are only sparsely observed at some
random points. They derived the consistency and proposed
asymptotic point-wise confidence bands for predicting response
trajectories. Crambes and Mas (2013) furthered the theoretical
investigation of the FPCA approach by providing a minimax
optimal rates in terms of the mean square prediction error.
However, the FPCA approach has a couple of critical draw-
backs. First, B(t,s) is a statistical quantity unrelated to Y (t)
or X (s). Hence, the leading eigenfunctions in the truncated
Karhunen-Loe¢ve expansions of Y (¢) and X (s) may not be an
effective basis for representing B (%, s). See, for example, Cai and
Yuan (2012) and Du and Wang (2014) for some scalar-response
examples where the FPCA approach breaks down when the
aforementioned situation happens. Second, the truncation
point is integer-valued and thus only has a discrete control
on the model complexity. This puts it at disadvantage against
the roughness penalty regularization approach, which offers a
continuous control via a positive and real-valued smoothing
parameter (Ramsay and Silverman 2005, chap. 5).

In this article, we consider a penalized function-on-function
regression approach to estimating the bivariate coefficient
function B(t, s). There have been a few recent developments
in the direction of penalized function-on-function regression.
Lian (2015) studied the convergence rates of the function-on-
function regression model under a reproducing kernel Hilbert
space framework. Although his model resembled model (1),
he developed everything with the variable ¢ fixed and did not
enforce any regularization on the ¢t direction. First, this lack of
t-regularization can be problematic since this leaves the noisy
errors on the ¢ direction completely uncontrolled and can result
ina B (s, t) estimate that is very rough on the t direction. Second,
this simplification of fixing t essentially reduces the problem to
a functional linear model with a scalar response and thus makes
all the results in Yuan and Cai (2010) directly transferrable
even without calling on any new proofs. In the R package £da,
Ramsay and his collaborators have implemented a version of
penalized B-spline estimation of B(t, s) with a fixed smooth-
ing parameter. Ivanescu et al. (2015) considered a penalized
function-on-function regression model where the coefficient
functions were represented by expansions into some basis
system such as tensor cubic B-splines. Quadratic penalties on
the expansion coeflicients were used to control the smoothness
of the estimates. This work provided a nice multiple-predictor-
function extension to the function-on-function regression
model in the £da package. Scheipl and Greven (2016) studied
the identifiability issue in these penalized function-on-function
regression models. However, this penalized B-spline approach
has several well-known drawbacks. First, it is difficult to show
any theoretical optimality such as the minimax risk of mean
prediction in Cai and Yuan (2012). So its theoretical soundness
is hard to justify. Moreover, the B-spline expansion is only
an approximate solution to the optimization of the penalized
least-square score. Hence, the penalized B-spline estimate is
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not numerically optimal from the beginning either. These
drawbacks can have negative impacts on the numerical perfor-
mance as we shall see from the simulation results in Section 4.

The penalized function-on-function regression method
proposed in this article obtains its estimator of 8(t, s) through
the minimization of penalized least squares on a reproducing
kernel Hilbert space that is naturally associated with the rough-
ness penalty. Such a natural formulation through a reproducing
kernel Hilbert space offers several advantages comparing with
the existing penalized function-on-function regression meth-
ods. First, it allows us to establish a Representer Theorem which
states that, although the optimization of the penalized least
squares is defined on an infinite-dimensional function space, its
solution actually resides in a data-adaptive finite-dimensional
subspace. This result guarantees an exact solution when the
optimization is carried out on this finite-dimensional subspace.
This result itself is a nontrivial generalization of the Repre-
senter Theorems in the scenarios of nonparametric smooth
regression model (Wahba 1990) and the penalized functional
regression model with a scalar response (Yuan and Cai 2010).
Based on the Representer Theorem, we propose an estima-
tion algorithm which uses penalized least squares and Gaussian
quadrature with the Gauss-Legendre rule to estimate the bivari-
ate coefficient function. The smoothing parameter is selected
by the generalized cross-validation (GCV) method. Second,
the reproducing kernel Hilbert space framework allows us to
show that our estimator has the optimal rate of mean prediction
since it achieves the minimax convergence rate in terms of
the excess risk. This generalizes the results in Cai and Yuan
(2012) and Du and Wang (2014) for functional linear regression
with a scalar response to the functional response scenario.
In the numerical study, we have also considered the problem
with sparsely sampled data. Particularly, we introduce an extra
presmoothing step before applying the proposed penalized
functional regression model. The presmoothing step imple-
ments the principal-component-analysis-through-expectation
(PACE) method in Yao, Miiller, and Wang (2005a). Our exten-
sive simulation studies demonstrate the numerical advantages
of our method over the existing ones. In summary, our method
has the following distinguishing features: (i) it makes no struc-
tural dependence assumptions of (¢, s) over the predictor and
response processes; (ii) the Representer Theorem guarantees an
exact solution instead of an approximation to the optimization
of the penalized score; (iii) benefited from the Representer
Theorem, we develop a numerically reliable algorithm that has
sound performance in simulations; (iv) we show theoretically
the estimator achieves the optimal minimax convergence rate
in mean prediction.

The rest of the article is organized as follows. In Section
2, we first derive the Representer Theorem showing that the
solution of the minimization of penalized least squares can be
found in a finite-dimension subspace. In addition, an easily
implementable estimation algorithm is considered in Section
2. In Section 3, we prove that our method has the optimal rate
of mean prediction. Numerical experiments are reported in
Section 4, where we compare our method with the functional
linear regression models in Ramsay and Silverman (2005) and
Yao, Miiller, and Wang (2005b) in terms of prediction accuracy.
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Two real data examples, the Canadian weather data, and the
histone regulation data are analyzed in Section 5. Discussion
in Section 6 concludes the article. Proofs of the theorems are
collected in supplementary material.

2. Penalized Functional Linear Regression Method

We first introduce a simplification to model (1). Since model (1)
implies that

Yi(t) — EYi(t) =/,B(tas){Xi(S)_EXi(S)}d5+Ei(t)a tel,
I

we may, for simplicity, only consider X and Y to be centered, that
is, EX = EY = 0. Thus, the functional linear regression model
takes the form of

Yi(t) = / B(t,)Xi(s)ds +€(t), tel,. (2)
I

2.1. The Representer Theorem

Assume that the unknown B resides in a reproducing kernel
Hilbert space H (K) with the reproducing kernel K : I x I — R,
where I = I, x I,. The estimate B, can be obtained by minimiz-
ing the following penalized least-square functional

1 n
-3 / [rie) - / B(t, s)X,-<s)ds}2dt+M<ﬂ> (3)
s L

with respect to 8 € H(K), where the sum of integrated squared
errors represents the goodness of fit, J is a roughness penalty on
B, and A > 0 is the smoothing parameter balancing the trade-
oft. When 8 is a univariate function, a common example for J is
J(B) = [{B”(t)}*dt, the integral of the squared curvature of .
This integral takes a large value when f is rough and has high
curvatures. When S is a bivariate function as considered in this
article, J is often a combination of multiple integrals, each rep-
resenting the roughness of a certain part of 8; see Example 3.
We now establish the Representer Theorem stating that B, actu-
ally resides in a finite-dimensional subspace of 7{ (K). This result
generalizes Theorem 1 in Yuan and Cai (2010) and facilitates the
computation by reducing an infinite-dimensional optimization
problem to a finite-dimensional one.

Note that the penalty functional J is a squared seminorm
on H(K). Its null space Ho={B € H(K):]J(B) =0} is a
finite-dimensional linear subspace of #(K). Denote by H; its
orthogonal complement in H (K) such that H(K) = Ho & H,,
the tensor sum or direct sum of H, and H,. That is, for any
B € H(K), there exists a unique decomposition 8 = By + B4
where 8y € Hoand 8; € H;.Let Ky(+, -) and K; (-, -) be the cor-
responding reproducing kernels of #, and 7{;. Then K; and K;
are both nonnegative definite operatorson L,,and K = K; + K;.
In fact, the penalty term J(8) = [|Bll%, = I|B1%,- By the theory
of reproducing kernel Hilbert spaces, 7 (K) has a tensor product
decomposition H(K) = H,(K,) ® H.(K,). That is, given the
respective bases { fi, fo,...,}and {g1, &, ..., } of H,(K}) and
‘H,(K,) any function B(t, s) € H(K) can be uniquely written as
B(t,s) = Zj cjfj(t)g;(s) for some coefficients c;. Here H, (K,)
is the reproducing kernel Hilbert space with a reproducing
kernel K, : I, x I, — R, and H,(K,) is the reproducing kernel

Trim Info: 8.25inx 11lin

Hilbert space with a reproducing kernel K, :I, x I, = R.
For the reproducing kernels, we have K(t,s) = K, (t)K,(s).
Note that the functions in H,(K,) and H,(K,) are univari-
ate and defined, respectively, on I, and I,. Similar to the
decomposition of H and K, we have the tensor sum decom-
positions of the marginal subspaces H,(K,) = Ho, @ H,,
and H,(Ky) = Hox @ Hix, and the orthogonal decomposi-
tions of the marginal reproducing kernels K, = Ky, + K, and
K, = Kox + Kix. Here K, is a reproducing kernel on H,. with
running through the index set {0y, 1y, 0x, 1x}.

Upon piecing the marginal decomposition parts back
to the tensor product space, we obtain Ho = Ho, ® Hox
and Hl = (HO)/ &® Hlx) ® (Hly ® HOx) ® (Hly ® Hlx)' Cor-
respondingly, the reproducing kernels satisfy that

Ko ((t1, 51), (t2, 52)) = Koy (t1, £2)Kox (51, 52),
Ky ((t1, 51), (t2, 52)) = Koy (t1, £2)Kix(s1, 52) + Kiy(f1, £2)Kox
X (81, 82) + Kiy (f1, 22) Kix (51, $2)-

Let N, = dim(Hoy) and N, = dim(Ho,). Denote by {v, :
k=1,...,N,} and {¥y,:1=1,..., Ny}, respectively, the
basis functions of Ho, and Ho,. With some abuse of nota-
tion, define (Ky,g)(-) = fIy Kiy(-,)g(t)dt and (Kif)(-) =
flx Kix(-, s) f(s)ds. Now we can state the Representer Theorem
as follows with its proof collected in the supplementary material.

Theorem 1. Let ﬁn be the minimizer of (3) in H(K). Then ,3”
resides in the subspace of functions of the form

k=1 i=1

N}, n
B(t.s) = [Z dip, Viy(®) + D cip, (Klym(r)]

N, n
x [Z dip V() + Y cjop (KieX;))(s) l

I=1 j=1

=@ vo + g @O a v+ g ool

(4)

where dg = (d ..., d Y, g = (c e Cnp)T
ﬂ), l,ﬁ),a ) Ny,ﬂ), > ﬂ), 1,ﬁy7 ) n,ﬁy 5

dg, = (dvp,....dn.p) > and cg = (cLp,-..,Cnp)  are

some coefficient vectors, and vy, ¥, Ki,Y and KX are vectors
of functions.

For the purpose of illustration, we give a detailed example
below.

Example 3. Consider the case of tensor product cubic splines
with I, = I, = [0, 1]. The marginal spaces H,(K,) = H.(K,) =
{g: [y (¢)? < oo} with the inner product

(f.8n, = (/Olf'/:g+/01f'/01g/>+/:f”g”dt.

The marginal space H, (K,) can be further decomposed into the
tensor sum of Hoy = {g: ¢’ = 0}and H,, = {g: [ g= [, ¢ =
0, fol (g")* < oo}. The reproducing kernel K, is the orthog-
onal sum of Ky, (t,t) =14 r(t)r(t;) and Ki,(t, ) =
ry(t1)r2 () — r4(|t; — t2]), where r,(t) = B, (t)/v! is a scaled
version of the Bernoulli polynomial B,. The space H,, has a
dimension of N, = 2 and a set of basis functions {1, r; (¢)}.
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The function space H (K) is defined as H(K) = {8 : J(B) <
oo} with the reproducing kernel K(t, s) = K, (t)K,(s) and the
penalty functional

1 1 32 2 1 83 2
JB) = fo i /0 SBodt] +| /O S5 B s)dt| |ds
1 1 82 2 1 83 2
+/0 | /O 5B 9ds) + /O B sds| |
1 pl 94 2
+ A /(; {mﬂ(t,s)] dtds.
Intuitively, these five integrals represent, respectively, the devia-
tions of the function B from being linear in s, being linear in s
and constant in ¢, being linear in ¢, being constant in s, and lin-
ear in ¢, and being linear in both s and ¢. And we have H(K) =

Hy(K) ® Hi(K,) and K = K/ K,; see, for example, chap. 2 of
Gu (2013).

2.2. Estimation Algorithm

To introduce the computational algorithm, we first need
some simplification of notation. Let N = N,N, and
L =n(N, + Ny +n). We rewrite the functions spanning
the subspace in Theorem 1 as ¥y (t,s) = V1, () Y1x(5), ...,
Un(t,$) = Yy (DVnn(s) and &(2,5) = 1, () (KiX)) (5)
v &t s) = (K, Yy) (8) (K1 X,,) (s). Thus, a function in this
subspace has the form B(t, s) = d7 v (t, s) + c'& (¢, s) for some
coefficient vectors d, ¢ and vectors of functions v (¢, s), & (¢, s).
To solve (3), we choose Gaussian quadrature with the Gauss—
Legendre rule to calculate the integrals. Consider the Gaussian
quadrature evaluation of an integral on I, with knots {t,, . .., tr}

and weights {a, ..., ar} such that fzy ft)dt = Zle o f(t)).
Let W be the diagonal matrix with oy, . . . , o repeating n times

on the diagonal. Then the estimation of 8 in (3) reduces to the
minimization of

(Y, — Spd — R,©) " (Y, — Spd — Rye) + nac™ Qe (5)

with respect to d and ¢, where Y, =WY2Y with
Y =i(t),...,Yi(tr), ..., Y, (t), ..., Y. (tr) T, Sw =
WY2S with S being an nT x N matrix with the ((i—
)T + j,v)th entry Lx Yy (t, $)Xi(s)ds, R, =W'?R with
R being an nT x L matrix with the ((i — 1)T + j, k)th entry
flx & (tj, 5)Xi(s)ds, and Q is a L x L matrix with the (i, j)th
entry (&, &), Let Q= [fy fy Xi(w)K (u, 0)X;(0)dudv]? _,,
Q =1[fy Jo YiK(u,0)Y;()dudo]f,_;,,  and Q=
Q: @ Q,, where (X denotes the Kronecker product of two
matrices. Then we have Q = diag(Qx, Q., Q), Q), Qyy).

We then use standard numerical linear algebra procedures,
such as the Cholesky decomposition with pivoting and forward
and back substitutions, to calculate ¢ and d in (5) (Gu 2013,
sec. 3.5). To choose the smoothing parameter A in (5), a modified
generalized cross-validation (GCV) score (Wahba and Craven
1979),

(nT)~'Y, (I = A(W)*Y,,
{(nT)~1tr(I — aA(R)))?

VL) = 6

~

is implemented, where o > 1 is a fudge factor curbing under-
smoothing (Kim and Gu 2004) and A(A) is the smoothing

Trim Info: 8.25inx 11lin
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matrix bridging the prediction Y,, and the observation Y,, as
Y, = A(A)Y,, similar to the hat matrix in a general linear
model.

3. Optimal Mean Prediction Risk

We are interested in the estimation of coefficient function
B and mean prediction, that is, to recover the functional
ngX,-) = flx B(,$)X(s)ds based on the training sample
(X, Y),i=1,...,n Let Bn(t, s) be an estimate of B(t,s).
Suppose (X 41, Yny1) is @ new observation that has the same
distribution as and is also independent of (X}, Y;),i=1,...,n.
Then the prediction accuracy can be naturally measured by the
excess risk

R, (By) =

[~ [ heoxumon]
I I,

y

2
_]E*{YnJrl(t) - / ﬂ(tvs)xn+1(5)d5} i|dt
L
2
= / E*[ﬂgn (Xnt1, 1) — np (X1, t)] dt,
I)’

where E* represents the expectation taken over (X,41, Y,41)
only. We shall study the convergence rate of R, as the sample
size n increases.

This section collects two theorems whose combination
indicates that our estimator achieves the optimal minimax
convergence rate in mean prediction. We first establish the
minimax lower bound for the convergence rate of the excess
risk R,,. There is a one-to-one relationship between K and
H(K) which is a linear functional space endowed with an inner
product (-, -)7(x) such that

B(t,s) = (K((t,5), ), Blnw), foranyp € H(K).

The kernel K can also be treated as an integral operator such
that

K(IB)() = (K((ts S)’ ) ) ﬂ)Lz = /lK((tv S)» )ﬁ(tv S)dtdS

It follows from the spectral theorem that there exist a set of
orthonormal eigenfunctions {¢;:k > 1} and a sequence of
eigenvalues k7 > k, > - -+ > 0 such that

K((t1, 81), (t2, 52)) = ZKka(tl, s1)8k(t2, 52),
k=1
K(&k) = kxlr k=1,2,....

Denote Kl/z((tl, s1), (f2, 52))) =20 K;/zgk(tl, sk (t2, $2)-
Let C(t,s) = cov(X(t), X(s)) be the covariance kernel of X.
Define a new kernel IT such that

n((tl,sl),(tz,sz>>=/// KY2((t, 1), (2 )
LxI x1I,
x C(u, V)K" ((t2, 52), (2, v))dudvdz.

7)
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Let p; > p; > - -+ > 0 be the eigenvalues of IT and {pj:j=1

be the corresponding eigenfunctions. Therefore,

((f, 50, (B2, 52)) = Zpkfi)k(tlysl)fﬁk(tz, $2),
k=1
V(tl, 51), (tz, 52) (S Iy X Ix~

Theorem 2. Assume that for any B € L, ([0, 1]%)

4 2\2
/E(fﬂ(t, s)X(s)dt) dt < c/ (E(fﬂ(t, s)X(s)ds) ) dt
(8)
for a positive constant c¢. Suppose that the eigenvalues
{0k : k > 1} of the kernel IT in (7) satisfy px =< k™" for some
constant 0 < r < oo. Then,

lim lim sup P{R, > An~ w7} = 0,
A=00100 geqy(K)

)

when A is of order n=2/Cr+D),

Theorem 2 indicates that the convergence rate is determined
by the decay rate of the eigenvalues of this new operator IT,
which is jointly determined by both reproducing kernel K and
the covariance kernel C as well as the alignment between K and
C in a complicated way. This result has not been reported in the
literature before. A closely related result is from Yuan and Cai
(2010) who studied an optimal prediction risk for functional lin-
ear models, where the optimal rate depends on the decay rate of
the eigenvalues of K!/>CK'/2. It is interesting to see, on the other
hand, whether the convergence rate of B, in Theorem 2 is opti-
mal. In the following, we derive a minimax lower bound for the
risk.

Theorem 3. Let r be as in Theorem 2. Then the excess prediction
risk satisfies

lim lim inf sup P(R, > cn_%l) =1, (10)

1 BeH(K)

c—>0n—>00 7

where the infimum is taken over all possible predictors 7 based
on{(X;,Y;):i=1,...,n}

Theorem 3 shows that the minimax lower bound of the con-
vergence rate for the prediction risk is n=/2"+1, which is deter-
mined by r and the decay rate of the eigenvalues of I1. We have
shown that this rate is achieved by our penalized estimator, and
therefore our estimator is rate-optimal.

4. Numerical Experiments

We compared the proposed optimal penalized function-on-
function regression (OPFFR) method with existing function-
on-function linear regression models under two different
designs. In a dense design, each curve was densely sampled
at regularly spaced common time points. We compared the
OPFER with two existing models. In a sparse design, each curve
was irregularly and sparsely sampled at possibly different time
points. We extended the OPFFR to this design by adding an
extra presmoothing step and compared it with the FPCA model.
In the first model (Ramsay and Silverman 2005) for comparison,
the coeflicient function is estimated by penalizing its B-spline
basis function expansion. This approach does not have the

Trim Info: 8.25inx 11lin

optimal mean prediction property and partially implemented
in the £da package of R (1inmod function) for the case of a
fixed smoothing parameter. We shall add a search on the grid
10-2:94:2) for smoothing parameter selection to their imple-
mentation and denote this augmented approach by FDA. The
coefficient function is represented in terms of 10 basis functions
each for the t and s directions. The second model for compar-
ison was the functional principal component analysis (hence
denoted by FPCA) approach proposed by Yao, Miiller, and Wang
(2005b). The coefficient function is represented in terms of the
leading functional principal components. This is implemented
in the MatLab package PACE (FPCreg function) maintained
by the UC-Davis research group. The Akaike information cri-
terion (AIC) and fraction of variance explained (FVE) criterion
were used to select the number of principal components for
predictor and response, respectively. The cutoff value for FVE
was 0.9. The “regular” parameter was set to 2 for the dense
design and 0 for the sparse design. No binning was performed.

4.1. Simulation Study

4.1.1. Dense Design
We simulated data according to model (2) with three scenarios.
® Scenario 1: The predictor functions are X;(s)=
0 (—D®DE1 709, (s, k), where Zy is from the
uniform distribution U(—+/3, +/3), and (s, k) = 1 if
k=1 and +/2cos((k — 1)7s) otherwise. The coefficient
function B(t, s) = e~“*9 is the exponential function of ¢
and s.
® Scenario 2: The predictor functions X;(s) are the same as
those in Scenario 1 and the coefficient function B (¢, s) =
430 (=) ®DE29, (¢, k) (s, k).
® Scenario 3: The predictor functions X;(s) are generated as
Xi(s) = Soa_, (=) FDE1 249, (s, k), where 95(s, k) =
1 if k=3 and +/2cos(krs) otherwise. The coefficient
function B(t, s) = 4 Y p_, (—=1)*+VE29,(¢, k)9, (s, k).
For each simulation scenario, we generated n = 30 samples,
each with 20 time points on the interval (0, 1). The random
errors € (t) were from a normal distribution with a constant vari-
ance o2. The value of o was adjusted to deliver three levels of
signal-to-noise ratio (SNR = 0.5, 5, and 10) in each scenario. To
assess the mean prediction accuracy, we generated an additional
n* = 30 predictor curves X and computed the mean integrated
squared error MISE = 1/n* Zl”; fol (ng (Xi, t) — np(X;, t))2dt,

where 8 was the estimator obtained from the training data. We
had 100 runs for each combination of scenario and SNR.

We applied the OPFFR, FDA, and FPCA methods to the sim-
ulated datasets. Figure 3 displayed the perspective plots of the
true coefficient functions in the three scenarios as well as their
respective estimates for a single run with SNR= 10. In the first
two scenarios, both OPFFR and FDA did a decent job in recov-
ering the true coefficient function although the FDA estimates
were slightly oversmoothed. In both scenarios the FPCA esti-
mates clearly suffered since the true coefficient function could
not be effectively represented by the eigen-functions of the pre-
dictor processes.

Figure 4 gave the summary reports of performances in terms
of MISEs based on 100 runs. When the signal-to-noise ratio is
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Figure 3. Perspective plots of the true B(t, s) in three scenarios, and their respective estimates by the OPFFR, FDA, and FPCA methods when SNR = 10.

low, the OPFFR and FDA approaches had comparable perfor-
mances. But when the signal-to-noise ratio increases, OPFFR
showed clear advantage against FDA. The FPCA method failed
to deliver competitive performance against the other two meth-
ods in all the settings due to its restrictive requirement of the
effective representation of the coeflicient function.

4.1.2. Sparse Design

In this section, we compared the performance of the proposed
OPFFR method and the FPCA method regarding prediction
error on sparsely, irregularly, and noisily observed func-
tional data. To extend our method to sparsely and noisily
observed data, we first applied the principal-component-
analysis-through-conditional-expectation (PACE) method in
Yao, Miiller, and Wang (2005a) to the sparse functional data.
Then we obtained a dense version of functional data by com-
puting the PACE-fitted response and predictor functions at 50
selected time points for each curve. We applied the OPFFR
method to these densely generated data and called this sparse
extension to the OPFFR by the OPFFR-S method. The original
OPFFR method, FPCA and OPFFR-S methods were all applied
to the simulated data for comparison.

We first generated n = 200 samples for both response and
predictor functions in Scenario 3, each with 50 time points on
interval (0, 1). To obtain different sparsity levels, we then ran-
domly chose 5, 10, and 15 time points from the 50 ones for each
curve independently. Normally distributed random errors were
added to functional response and predictor with the SNR set to
10 in generating each pair of noisy response and predictor. The

mean integrated squared error (MISE) was calculated based on
additional #n* = 50 predictor curves without random noises.

Figure 5 displayed the perspective plots of the true coefficient
functions in the sparse scenario as well as their respective esti-
mates for a single run with 10 sampled time points per curve.
The OPFFR-S method and FPCA performed well in estimating
the coefficient function. The estimate recovered by the original
OPFFR method was a little oversmoothed. In Figure 6, the per-
formance in terms of MISEs based on 100 runs was compared.
The OPFFR-S method always had the best prediction perfor-
mances at all the three sparsity levels. When the sparsity level
was high (5 time points per curve), the original OPFFR method
had a worse prediction performance than the FPCA. However,
its prediction performance quickly picked up as the data became
denser. When the sparsity level was 15 time points per curve,
it actually delivered a better prediction performance than the
FPCA. Such an interesting phenomenon was referred to as the
“phase transition” (Cai and Yuan 2011; Wang, Chiou, and Mller
2016).

5. Real Data Examples

We analyzed two real example in this section. We showed that
our method had the numerical advantage over other approaches
in terms of prediction accuracy in the analysis of the Canadian
weather and histone regulation data. The results in the Canadian
weather data, a dense design case, and the histone regulation
data, a sparse design case, echoed with our findings in the simu-
lation study. The smoothing parameters used in FDA for Cana-
dian weather data were taken from the example codes in Ramsay,
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Figure 5. Perspective plots of the true B(t, s) in the sparse scenario, and their respective estimates by the OPFFR-S, FPCA, and OPFFR methods when the number of
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randomly selected time points is 10.

Hooker, and Graves (2009) and seven basis functions were used
for the t and s directions, respectively. In the histone regulation
data, we selected the smoothing parameter for FDA by a grid
search on 10=°:1*%) and used six basis functions each for the ¢
and s directions. For the FPCA method, the “regular” parameter
was set to 2 for the Canadian weather data and 0 for the his-
tone regulation data. The other parameters for FDA and FPCA
approaches were the same as those used in the simulation study.

OPFFR-S

5.1. Canadian Weather Data

We first look at the Canadian weather data (Ramsay and Sil-
verman 2005), a benchmark dataset in functional data analysis.
The main goal is to predict the log daily precipitation profile
based on the daily temperature profile for a geographic loca-
tion in Canada. The daily temperature and precipitation data
averaged over 1960 to 1994 were recorded at 35 locations in
Canada. We compared OPFFR with FDA and FPCA in terms
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Figure 6. Boxplots of MISEs for the sparse scenario under three different sparsity
levels, based on 100 simulation runs. The boxplots with different grayscale shades
from left toright, respectively, represent the sparsity levels of 5,10, and 15 time points
per curve.

of prediction performance defined by integrated squared error
(ISE) [, (Yi(t) — ny (Xi, £))dt, wherei=1,...,35and f_;
was estimated by the dataset without the ith observation. For the
convenience of calculation, we computed || Y;(t) — n; (X;, t)||3
at a grid of values t as the surrogate of ISE. Since tﬁ_ex findings
through the coefficient function estimates were similar to those
in Ramsay and Silverman (2005), we only focused on the com-
parison of prediction performance. The summary in Table 1
clearly showed the numerical advantage of the proposed OPFFR
method over the FDA and FPCA methods.

5.2. Histone Regulation Data

Nucleosomes, the basic units of DNA packaging in eukaryotic
cells, consist of eight histone protein cores including two copies
of H2A, H2B, H3, and H4. Besides the role as DNA scaffold,
histones provide a complex regulatory platform for regulating
gene activity (Wollmann et al. 2012). Focused study of the inter-
action between histones and gene activity may reveal how the
organisms respond to the environmental changes. There are
multiple sequence variants of histone proteins, which have some
amino acid changes compared to their primary sequence, coex-
ist in the same nucleus. For instance, in both plants and ani-
mals, there exist three variants of H3, the H3.1, the H3.3, and
the centromere-specific CENP-A (CENH3) (Deal and Henikoff
2011). Each variant shows distinct regulatory mechanisms over
gene expression.

In this article, an ultra-high throughput time course study
was conducted to explore the interaction mechanism between
the gene activity and histone variant, H3.3, during heat stress in
Arabidopsis thaliana. In this study, the 12-day-old Arabidopsis
seedlings that had been grown at 22°C were subject to heat
stress of 38°C, and plants were harvested at 7 different time
points within 24 hr for RNA sequencing (RNA-seq; Wang,

Table 1. The mean, standard deviation, and three quartiles of ISEs for the three
approaches. The best result on each metric is in boldface.

Method  Median Mean Standard deviation  1st Qu. 3rd Qu.
OPFFR 21.6400 40.2800 45.7631 13.8000 36.1700
FDA 25.9000 441600 56.9544 18.7400 40.6100
FPCA 30.7752 45.5065 457763 20.5031 52.1827
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Table 2. The mean, standard deviation, and three quartiles of ISEs for the four
approaches. The best result on each metric is in boldface.

Method Median Mean Standard deviation 1st Qu. 3rd Qu.
OPFFR 1.5700 7.7120 18.9180 0.5077 5.1900
OPFFR-S 1.4070 7.7150 18.6037 0.6972 5.5820
FDA 2.2060 7.9770 18.7004 0.5461 6.2750
FPCA 2.0170 8.4720 18.3978 0.9126 6.1790

Gerstein, and Snyder 2009) and ChIP sequencing (ChIP-seg;
Johnson et al. 2007) experiments. We were interested in the
genes responding to the heat shock, therefore 160 genes in
response to heat (GO:0006951) pathway (Ashburner et al. 2000)
were chosen. We selected 55 genes with the fold change above
0.5 at at least two consecutive time points in RNA-seq data. In
ChIP-seq experiments, we calculated the mean of normalized
read counts by taking the average of normalized read counts
over seven time points for the region of 350 base pairs (bp) in
the downstream of transcription start sites (TSS) of selected 55
genes. The normalized read counts over 350 bp from ChIP-seq
and the normalized fragments per kilobase of transcript per
million mapped reads (FPKM; Trapnell et al. 2010) over seven
time points from RNA-seq were used to measure the histone
levels and gene expression levels, respectively.

We applied the OPFFR, FDA, and FPCA methods to histone
regulation data in example 2. Since the gene expression levels
were sparsely observed, we also applied the OPFFR-S method
to the data. The comparison of the four methods is shown in
Table 2. In the table, the standard deviation of ISEs was the
only measure that neither the OPFFR nor the OPFFR-S was the
most optimal. This was caused by a few observations where all
the methods failed to make a good prediction and the OPFFR
methods happened to have larger ISEs. In terms of all the other
measures, the proposed OPFFR and OPFFR-S methods clearly
showed the advantage in prediction accuracy again. Since the
results from the OPFFR and OPFFR-S were comparable to each
other, we chose to present all the following results based on the
OPFER analysis.

Figure 7 is the plot of the fitted coefficient function gener-
ated from our OPFFR method. For region between 300 bp and
350 bp, there was a strong negative influence of H3.3 on genes

300 0.0
250 —
-05
200 ]
s ]
150 | 10
100 |
15
50

T T T T T
1/4h 1/2h 1h 2h 4h

t

Figure 7. The estimated coefficient function B(t, s) for the histone regulation
study. The y-axis label represents the positions on genomes and x-axis label rep-
resents seven time points.
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Figure 8. The fitted response functions for six genes in the histone regulation study. The y-axis stands for the normalized expression levels and x-axis label represents seven

time points. The curve fitted using OPFFR is in the solid line, with the data in circles.

activity from half hour to 8 hr. It indicted that the loss of H3.3
might have the biological influence on the up-regulation of heat-
induced genes. This negative correlation phenomenon was also
observed after 30 min on the region of 250 bp to 300 bp between
H3.3 and gene activity. In addition, the region from 50 bp to
150 bp had a positive effect on genes activity over time domain
from 0 hr to half hour and 4 hr to 8 hr. Therefore, we provided
a numerical evidence that heat-shock-induced transcription of
genes in response to heat stress might be regulated via the epi-
genetic changes of H3.3, especially on the downstream region of
TSS. The sample plots in Figure 8 showed a nice match of the
predicted gene expression curves with the observed values.

6. Conclusion

In this article, we have presented a new analysis tool for
modeling the relationship of a functional response against a
functional predictor. The proposed method is more flexible
and generally delivers a better numerical performance than the
FPCA approach since it does not have the restrictive structural
dependence assumption on the coefficient function. When
compared with the penalized B-splines method, the proposed
method has the theoretical advantage of possessing the optimal
rate for mean prediction as well as some numerical advantage
as shown in the numerical studies. Moreover, the Represen-
ter Theorem guarantees an exact solution to the penalized
least squares, a property that is not shared by the existing
penalized function-on-function regression models. The appli-
cation of our method to a histone regulation study provided
numerical evidence that the changes in H3.3 might regulate
some genes through transcription regulations. Although such
a finding sheds light on the relationship between histone
variant H3.3 and gene activity, the details of the regulation
process are still unknown and merit further investigations. For

instance, we may investigate how the H3.3 organizes the chro-
matins to up-regulate those active genes. Such investigations
would call for more collaborations between statisticians and
biologists.

When the regression model has a scalar response against one
or more functional predictors, methods other than the rough-
ness penalty approach are available to overcome the inefficient
basis representation drawback in the FPCA method. For exam-
ple, Delaigle et al. (2012) considered a partial least-square (PLS)
based approach. Ferré and Yao (2003) and Yao, Lei, and Wu
(2015) translated the idea of sufficient dimension reduction
(SDR) into the setting of functional regression models. Intu-
itively, these methods might be more efficient in their selection
of the principal component basis functions since they incorpo-
rate the response information into consideration. However, our
experiments with a functional response version of the functional
PLS (Preda and Saporta 2005), not shown here due to space
limit, did not look so promising. Therefore, further investiga-
tion in this direction is surely needed.

In some applications, the response functions may show a
different level of smoothness from the predictor functions.
Then it is reasonable to require different levels of smoothness
for the coefficient function S(t, s) in the directions of t and
s. This can be effectively implemented through introducing

five new smoothing parameters 0, k =1, ..., 5 in Example 3
such that 6, ' precedes the kth integral in the penalty J. Then
one essentially selects 1/6k,k=1,...,5 to determine the

appropriate level of smoothness for each component. Note that
this would also require the incorporation of 6y into the RKs.
Numerically, these parameters can be tuned by first fixing all
O to some constant and selecting an optimal A to pin down
the overall smoothness level, and then fix A and fine tune 6; to
determine the component-wise smoothness levels.
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