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1. Introduction

Manifold learning has as its prime goal the local characterization and reconstruction
of manifold geometry from the study of the underlying point set, usually embedded as
a submanifold in an ambient space, typically Euclidean. To obtain theoretical results
that can serve as tools for this endeavor, it is assumed that the complete continuous
point set is known so that local statistical invariants on given domains can be shown
to be related to the relevant local geometry, whereas in practice only a finite cloud of
points, probably with noise, is available. In geometry processing, the development of
these methods provides us with descriptors that serve as geometry estimators, guide a
possible reconstruction, or provide feature detectors. The integral invariant point of view
attempts to overcome some of the difficulties of computational geometry when facing the
task of extracting information that is classically defined as a differential invariant, like
curvature, since its discrete version reduces to, e.g., sums instead of finite differences.
The multi-scale behavior and averaging nature of these invariants is also of importance
in applications and their possible stability and robustness with respect to noise.

Series expansion of the volume of small geodesic balls within a manifold [1], and vol-
umes cut out by a hypersurface inside a ball of the ambient space [2], have been shown
to be given in terms of the manifold curvature scalar invariants. In order to obtain
local adaptive Galerkin bases for large-dimensional dynamical systems, the eigenvalue
decomposition of covariance matrices of spherical intersection domains on the invariant
manifold was introduced in [3], [4,5] to provide estimates of the dimension of the man-
ifold and a suitable decomposition of phase space at every point. In the case of curves,
the Frenet-Serret apparatus is recovered with explicit formulas at scale to obtain descrip-
tors of the generalized curvatures in terms of the eigenvalues of the covariance matrix
[6]. Integral invariants were already introduced and employed in geometry processing
applications by [7], [8,9], [10,11], [12,13]. Local principal component analysis of this type
has been studied primarily for the case of curves and surface in 2D and 3D in [10,11],
[13], [14], [15], [16], [17], as a means to determine relevant local geometric information
while maintaining stability with respect to noise [18], [19,20], e.g., for feature and shape
detection using point clouds or meshes in computer graphics. Voronoi-based feature esti-
mation [21,22] has also taken advantage of the PCA covariance matrix approach. Those
methods study embedded manifolds whereas intrinsic probability and statistical analysis
using geometric measurements inside a Riemannian manifold have also been developed
[23,24] and could be used to do covariance analysis of submanifolds embedded in curved
ambient spaces.

The complementary side of this framework is the study of finite point clouds and how
their discrete PCA covariance matrices converge with the number of points to the exact
analytical result of the smooth case, as studied in our work. Methods using geometric
measure theory and harmonic analysis have been developed [25,26], [27,28] in order to
study noisy samples from probability distributions supported on submanifolds of a high-
dimensional Euclidean space [29]. In these works, ranges of scales are determined, taking
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into account curvature, for the covariance matrices to be most informative and close to
the noisy empirical matrices. The approach of [29] is complemented by ours in the sense
that we obtain explicitly the next to leading order terms of the eigenvalue expansion for
the complete smooth data set providing the direct theoretical link between curvature and
covariance. Since [29] develops an explicit algorithm for the estimation of the dimension
of the manifold, a natural next step would be to expand these multiscale methods in
order to apply them to our main theorems and thus to estimate curvature from noisy
point clouds. Our descriptor algorithm to estimate the Riemann curvature provides the
theoretical result to fulfill this task in practice.

In this paper we follow and generalize the major theoretical results of [20] for surfaces
in space to hypersurfaces in any dimension, which in turn allows for the extension of
their approach to obtain descriptors of the extrinsic and intrinsic curvature at a given
scale for any Riemannian submanifold of general codimension in Euclidean space. Future
work will show how the analysis for the ball intersection patch case further extends to
general codimension, [30,31], establishing the connection between the generalized third
fundamental form and the integral invariants, i.e. between local Riemannian geometry
and local covariance integrals.

The structure of the paper is as follows: In section 2, PCA integral invariants and
geometric descriptors are introduced to show how the study of hypersurfaces is sufficient
to study the curvature of Riemannian submanifolds of any dimension by applying the
analysis to k hypersurface projections (where k is the codimension of the submanifold).
In section 3, an explicit toy example of the correspondence between the differential-
geometric curvature and the integral invariant covariance is detailed. In section 4, these
integral invariants are analytically computed for a volume region delimited by a hyper-
surface inside a ball; the asymptotic expansions of the invariants with respect to the scale
of the ball are shown to be given in terms of the principal curvatures and the dimension,
and the eigenvectors of the covariance matrix are shown to converge in the limit to the
principal directions. In section 5, the analogous analysis is carried out for the integral
invariants of the hypersurface patch cut out by the ball. In section 6, we see how these
asymptotic formulas can be inverted to yield geometric descriptors at scale of the prin-
cipal curvatures and principal directions for hypersurfaces, thus establishing concrete
formulas to use in our final algorithm for curvature descriptors of Riemannian submani-
folds. The notation and technical results needed for all computations are summarized in
appendix A.

2. Integral invariants and descriptors

Our approach generalizes the theoretical part of the seminal work [20] with a focus
on the analytical expansion of integral invariants to get descriptors of manifold curva-
ture in any dimension. The local integral invariants considered are integrals over small
kernel domains determined by balls and the hypersurface. In particular, we will focus
on the Principal Component Analysis of a (n + 1)-dimensional region delimited by the
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hypersurface inside a ball centered at a point on the hypersurface, and the n-dimensional
patch on the submanifold cut out by such a ball. In general, one can define invariants for
a measurable domain by computing the moments of the coordinates of the points inside,
which leads us to

Definition 2.1. Let D be a measurable domain in R", the integral invariants associated
to the moments of order 0, 1 and 2 of the coordinate functions of the points of D are:

the volume
V(D) =E[1 -xp(X)] = / 1 dVol, (1)
D
the barycenter
s(D) = E[X - xp(X)] = ﬁ / X dvol, 2)
D

and the eigenvalue decomposition of the covariance matrix

C(D) = E[(X —s(D))®(X —s(D))" xp(X)] = /(X—S(D))®(X—S(D))T dVol. (3)
D

Here dVol is the measure on D induced by restriction of the Euclidean measure, and the
tensor product is to be understood as the outer product of the components in a chosen
basis. [E represents taking the expectation value over all possible X in their domain, i.e.
R™, and xp is the characteristic function of the set D (i.e., 1 if and only if X € D, zero
otherwise).

An integral invariant descriptor F(D) of some feature F' of a measurable domain
D is any expression for F' completely given in terms of V(D), s(D), the eigenvalue
decomposition of C'(D) or other integral invariants. If the domain D is determined by a
region of a hypersurface S, the main geometric descriptors are any principal curvature
estimators (D) of k,(p), and principal and normal direction estimators e, (D), IN(D)
of e, (p), N (p), for some known point p € S. If the domain D is determined by a region of
an embedded manifold M, the main geometric descriptor is any second fundamental form
estimator, II(D) of IL,, for some known point p € M. Since our domain D of interest
will possess a natural scale ¢ determined by the size of the ball that shall define it, we
shall talk about descriptors at scale. Moreover, throughout all the paper we consider
to be small enough so that we can approximate the hypersurface S by the local graph
representation of its osculating quadric at p, which is sufficient to obtain the leading
terms of the asymptotic expansions with scale of the integral invariants.

These descriptors become valuable tools to perform manifold learning, feature detec-
tion and shape estimation when only partial knowledge of the complete set of points is
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known or when noise is present. In this regard, [19,20,17] carried out experimental and
theoretical analysis of the stability of these and other descriptors in the case of curves
and surfaces in R3, reporting for example that the invariants of the spherical component
domain are more robust with respect to noise than the patch region ones. It is to be
expected that the same stability behavior holds in the hypersurface case due to the sen-
sitivity to small changes of an n-dimensional patch compared to an (n + 1)-dimensional
volume of which the perturbed patch is only part of its boundary.

When the asymptotic expansions with respect to scale of hypersurface integral in-
variants are available to high enough order, curvature information can be extracted by
truncating the series and inverting the relations in order to obtain a computable multi-
scale estimator of the actual curvatures. In particular, the eigenvalues of the covariance
matrix will provide such a descriptor for the principal curvatures of a smooth hyper-
surface, k,(D), and its eigenvectors {e, (D)}

pu=1
the normal direction. In order to produce analogous descriptors for an embedded Rie-

and e,+1(D), will do the same for

mannian manifold of higher codimension, we just need to apply the procedure to the
k hypersurfaces created by projecting the manifold down to (n 4+ 1) linear subspaces
determined by its tangent space and each of the normal directions.

Lemma 2.2. Let M C R"* be an n-dimensional embedded Riemannian manifold, and
fix an orthonormal basis {eu}ﬁzl of the tangent space T, M, and an orthonormal basis

{N;}s_, of the normal space NyM at p € M. Consider a ball Bf(,n-‘_k)(a) for small

enough € > 0, such that the projections of M ﬂB(nJrk)( ) onto the linear subspaces Ty Mo
(N;), for alli=1,...,k, are smooth hypersurfaces S;. Then, if /if; (D), {e ( ) i=1
are descriptors of the principal curvatures and principal directions at p for each of the
hypersurfaces S;, then the second fundamental form of M at p has a descriptor:

k
II,(D)(ey, e,) = Z[Vi(D)Ki(D)V(D)iT}W N, wrv=1...,n, (4)

i=1

where [V;(D)] are the matrices whose columns are the components of {e,(f)(D)}Z:1 in

the chosen basis {e.}}_;,

estimators. In turn, the Riemann curvature tensor of M at p acquires a descriptor:

and [K;(D)] is the diagonal matriz of principal curvature

k
(R(D)(e ev)ea, eg) = Y (ViliVi lusViKiVi lva — ViKiViT ol ViK Vi g ) - (5)
i=1

In fact, the matrices [V;(D)K;(D)V;'(D)] are a descriptor of the local Hessian of S; at p.

Proof. By the implicit function theorem, there is a neighborhood of U, C T}, M such that
the manifold can be locally given by a graph = — (x, fi(x), ..., fx(x)), where € U,,
p corresponds to 0, and V f;(0) = 0. From this, the projection hypersurfaces S; are just
(z, fi(x)) within the linear subspace T, M & (N;), for i = 1,... k. It can be shown
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[32, vol. IT ex. 3.3.] that the second fundamental form of M at p is precisely the linear
combination of the second fundamental forms of each of the hypersurface projections
weighed by the corresponding normal vector, i.e.,

k 02,
(e =Y | 5T )] N,

~

Analyzing each of those hypersurfaces in T, M & (IN;) = R""1  to obtain descriptors
nff) (D), {eff) (D)}i=1 for every i, we obtain precisely a descriptor of the eigenvalue
decomposition of each Hessian, i.e., Hess f;|,(D) = [Vi(D)K;(D)V(D)T] is an estimator
of the second fundamental form of S; at p in the original basis. Applying Gaufl equation

<R(e#,ey)ea, eﬁ> = <II(€M,63), Il(e,, eq)) — <II(euvea)7 II(el,,eg)> (6)
yields a corresponding descriptor for the Riemann tensor. 0O

A concrete application of this result in a toy computation is presented in the next sec-
tion. We summarize the steps for the applicability of these ideas for arbitrary embedded
Riemannian manifolds in the following algorithm.

Algorithm 1 Curvature descriptors from ball intersections.

Input: Point-set M C R"** point p € M, radius € > 0
Output: 2nd fundamental form descriptor II,(e), Riemann tensor descriptor R, ,qz(g) at p

if current basis is not known to split T, M @& N, M into a tangent and normal basis then
- Find the eigenvectors {e,}],_; U {N}_ | of E(X —p)® (X —p)T - XB,(e)nm (X))
{Dimension n and split basis are determined by different scaling of eigenvalues, cf. [5]}
- Update the basis to the normalized eigenvector basis

end if

for i =1 to n do
- Project M to a hypersurface S; in the linear subspace ({e,};_;, N;) & R™tt c R*HF
- Determine region D; := Vp+ () (cf. Lemma 4.2) or Dy(e) (cf. section 5) of this S;
- Compute the induced volume V(D;) = E[1 - xp, (X)]
- Compute the barycenter s(D;) = E[X - xp,(X)]/V(D;)
- Compute the eigenvectors {efp (e)}7_{UN,(¢), and eigenvalues {/\ff) (E)}Zii of the covariance matrix
C(D;) =E[(X — s(Di)) ® (X = s(D:))T - xp,(X)]
- Obtain the principal curvatures Iifj)(&‘) from Afj’)(s) using Corollary 6.1 or Corollary 6.2
- Set V; to the matrix whose columns are {eL,i)(E)}?:1
- Set K; to the diagonal matrix of {ny)(s)};:":l
- Determine the Hessian matrix descriptor at p of S; by Hz(f)(a) =[Vi K;- VT

end for

- Obtain the 2nd fundamental form estimator: II,(¢)(e,,e,) = ,’le[lléi)(s)]m, N;(e)

- Obtain the Riemann curvature tensor estimator: ) ) )

Byivas(e) = (R() (e e0)eas €5) = 2oy (IO (@)]us I ()lve — IS ()] ()]us )

3. Example of the covariance-curvature correspondence

Let us study a simple analytic toy example to understand the integral invariant ap-
proach to differential geometry. The classical approach follows [33]. Let M C R* be an
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embedded smooth surface such that around a point p € M it has a local graph expres-
sion in a neighborhood U, given to second order by its osculating quadric /\/l;(f) (indeed,
note that curvature is fully determined by this second order truncation, but our general
analysis will take into account the errors from the full series):

M ={(x,y, /1, f2) €RY| fr(z,y) = *%xt%y*%y?,fz(%y) = ZI2+§W+£92}-
This can always be done for arbitrary dimension and we can think of f;(x) as the leading
order truncation of the Taylor expansions of the local graph functions of M over T, M,
with  as coordinates of this tangent space. Given an orthonormal tangent basis {e, }};_;
and normal basis {IN i}le, the extrinsic curvature of M at p is encoded by the second
fundamental form, determined by the Hessians Hzgi) of f;(x) as seen in the previous
section. Thus, for this example it can be written as the following quadratic form with

~b> No.

(7)
The mean curvature vector is then H, = trII, = H;N{ + HyNg = —2N; +8N3, so
we can consider ||H,|| = 2v/17 ~ 8.2462112512 a scalar characterization of the extrinsic
curvature at p. The (intrinsic) Riemann curvature tensor for a surface, even embedded in

values in the normal space N, M, for any a,b € T, M:

2

I1,(a,b) = > I (a,b)N, = <aT. {‘% _ﬂ .b) N, + (aT. l

i=1

9 V3
2 2
V3 7
2

2

W

higher dimension, has only 1 independent component, the Gauflian curvature Ris01 = 7.
We can see this by computing the curvature operators at p in our orthonormal tangent
basis using eq. (7) in eq. (6):

0 -7 00

Ry(e1,e2) = —Ry(es,€1) = {7 0 ] , Rylerer) = Ry(er,e2) = {0 0] - (8)
I s 70 . .

The Ricci operator is Ric, = | - |, so the scalar curvature is R, = tr'Ric, = 14,

again the only independent intrinsic invariant (same as Ris21 upon normalization by
dim M, a convention which we do not follow here). These computations yield the classical
geometric invariants determined by the differential structure of M around p.

From the integral invariant point of view, the aim is to obtain the same information
by completely different means: using the eigenvalue decomposition of the covariance
matrix of domains determined by the underlying point-set of M around p, i.e. instead
of employing (covariant) derivatives on M, the same information is hidden within the
asymptotics of integrals over local domains. Conceptually this signifies that we need only
know the measure function over a domain within M, i.e. a means to evaluate expectation
values E[- - - xp(X)], which is equivalent to knowing only one volume element function,
e.g. v/det g(x)d™x in local coordinates, instead of the (n+k) embedding functions X (x),

0X 0X

<W’ @> Therefore the

or the n(n + 1)/2 components of the metric tensor g,, =
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integral invariant approach furnishes in principle a dictionary between covariance and
curvature that requires less actual knowledge about the parametrization focusing on the
underlying point-set, thus providing a more adequate methodology when only a discrete
point cloud sample is available.

In our toy example we can analytically show this correspondence to high precision
since the embedding functions are known and the integral invariants of eq. (1), eq. (2)
and eq. (3) can be expressed explicitly and computed numerically. Since there are two
normal directions there are no canonical principal directions and principal curvatures for
a surface in R%, but one such set for each normal direction. Choosing IN; and N, the
principal directions and curvatures are just the eigenvalue decomposition of the Hessian
matrices in eq. (7). Therefore, we can consider the projected local (hyper)surfaces S;
given by the graphs (z, f;(z)) in the linear subspaces T, M & (IN;), with corresponding
principal directions {e,t)( )}i=1 and principal curvatures {/-@,t)( Vi, fori = 1.k,
here k& = 2. This yields two local surfaces in two R? subspaces of R*, with princi-
Tal directions and principal curvatures given by the eigenvalue decomposition of each

225 (.
W(O)}'

1
V2

-1 \/3
w7 (0) =3, e (0) = (5 5

k) =2, el () =—=(-1. 1,007 and k5 (p) = 4, 5 (p) =—=(1, 1,0)T, (9)

mw~

07 and kP () =5, e (p) = ( ,0)T. (10)

1
2

v \

Determining these for each S; from integral invariants makes it possible to recover the
Hessian matrices and hence the full second fundamental form II, of M, and the Riemann
tensor thereafter. As domain D; for our descriptors we shall use the intersection regions
B,(,nH)(s) N S;, which cuts out a patch domain in S; around p using the ambient space
ball of radius € > 0, see Fig. 1a and section 5. The moments of inertia of the shaded
region in the figure yield approximations at scale € to the principal and normal directions
and the principal curvatures at p. In our example D; = {(z,y,2) € T,M & (N,;) | z =
filz,y), 22 +y? + fi(z,y)? < €2}. These regions are well-defined for ¢ small enough
which is sufficient to establish the asymptotic behavior of the integral invariants with
the scale of the domain, as developed in the sections below, so that the covariance-
curvature correspondence is well-defined in the limit to provide curvature estimators in
the general case when the local graph expression of the manifold is of course unknown
and the domain may be bigger. In that case the D; are known only as point-sets and
the expectation values can only be computed numerically. According to our results in
section 5, the volumes and barycenters to leading order are:

1
Vol(Dy) = me?(1 + 262 +...), Vol(Ds) = me?(1 + §52 +...),

2

s(Dl):(O,O,%—l—...)T, s(Dy) = (0,0,2 +...)7.
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0.1 e 0.01
(a) Principal direction descriptors at scale & (b) Curvature descriptors at scale &

Fig. 1. (a) The covariance EVD of domains determined by ball intersections at scale provide descriptors that
approximate the principal and normal directions and principal curvatures of a hypersurface at a generic
point. (b) In general codimension, this covariance analysis for projection hypersurfaces of the embedded
manifold can be used to estimate the 2nd fundamental form and Riemann tensor. The simple example of
the text shows the asymptotic convergence to the exact value of extrinsic and intrinsic curvature (||H|| and
Ry212 resp.)

More importantly, the covariance matrices in this example have the following analytical
form:

x? Ty (

x(fi —
yx y o ulfie
eyrrprce | 2(fi - E5) y(fi - E5) (i — 8

Hl
H

)
gj )| Vdet gi(z,y) dedy,
)2

o)

where the induced volume elements on S; are:

dVol, = \/det gy (z,y) dedy = /1 + 1022 + 122y + 10y2 dady,

dVoly = /det go(x,y) dedy = \/1 + 2122 4 8V/3xy + 13y? dady.

For instance, for ¢ = 0.01 numerical integration yields:

[ 7.8544392039 107  —3.9289733304 - 10~  —1.6500538629 - 10~*
C(Dy) = | —3.9280733304- 10713 7.8544392039 - 10~°  —3.2345707458 - 1049 | |
| —1.6500538629 - 107 —3.2345707458 - 1074 1.2431757559 - 1012

[ 7.8516006374-10°  —4.5347390337 - 10~  9.9391924526 - 10~
O(Dg) = | —4.5347390337 - 1013 7.8522142640- 1077  5.3725545096 - 10~
| 9.9391924526 - 107  5.3725545096 - 104 1.1769570544 - 10712

From Theorem 5.4 below their respective eigenvectors approximate the principal and
normal directions of S; at this scale, and the corresponding eigenvalues serve as input
for the formulas of Corollary 6.2 to estimate the principal curvatures as well:
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D(e) =1.9947,  elV(e) = (—0.7071067812, 0.7071067812, —3.238 - 10~*1)7
kW (e) = —3.99306, e (e) = (0.7071067812, 0.7071067812, 2.750 - 10~*1)T
k() = 299845, e'?(e) = (—0.5000000000, —0.8660254038, 5.097 - 10~35)T
k3 (e) = 4.9982, %) () = (0.8660254038, 0.5000000000, 3.696 - 10~3%)7

Compare these descriptive values at scale ¢ = 0.01 with the exact analytical values
of eq. (9) and eq. (10). Now, since these are supposed to be as well the eigenvalue
decomposition of the Hessian matrices of f;, we have essentially achieved an integral
reconstruction of the second fundamental form of M at p, at scale ¢ = 0.01:

1L, (c) —0.9991798599 —2.9938785021} Ny + {4.4982644881 0.8659210756

= 1 —2.9938785021 —0.9991798599 0.8659210756 3.4983849558} Na,

so ||[Hp(g)|| = 8.2425629448. Therefore the procedure yields an estimation of the Rie-
mann curvature tensor:

0 ~7.02189341
Ry(e)(er, e2) = —Ry(e)(e, 1) = {7.02189341 0 } )

to be compared with the exact tensors of eq. (7) and eq. (8).

By repeating this procedure at different scales € one can clearly see the convergence of
the covariance-curvature correspondence in this example, cf. Fig. 1b. The steps followed
here generalize to any dimension and are summarized in Algorithm 1. In the rest of the
paper we develop the technical machinery needed to establish the validity, formulae and
algorithm of this asymptotic correspondence, providing the theoretical foundation of this
methodology for practical applications in manifold learning.

4. Hypersurface spherical component integral invariants

The following domain is introduced in [2] to study the relation between the mean
curvature of hypersurfaces and the volume of sections of balls (we reserve their notation

B () for the half-ball).

Definition 4.1. Let S be a smooth hypersurface in R with a locally chosen normal
vector field N : & — R, Let B,(;"H)(E) be a ball of radius € > 0 centered at a point
p € S, for small enough ¢ the hypersurface always separates this ball into two connected
components. Define the region Vp+ (€) to be that component such that N (p) is oriented
towards its interior.

All the methods and results of [20] for surfaces using this domain generalize because to
approximate integrals of functions over this type of region in R3, the formula developed
in their work makes use of the hypersurface approximations of [2], valid in any dimension.
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Note we start to use the notation from the appendix. Also, in the rest of the paper we
shall say that a smooth function f(z) has order O(z™) if its local power series around
x = 0 begins at order n, i.e., the nth-order derivative at £ = 0 is nonzero whereas all
the lower order derivatives are zero at that point; this generalizes to functions of several
variables by referring to its first nonzero higher-order partial derivative at the center of
the expansion.

Lemma 4.2. Let f: R"*1 — R be a function of order O(p*2!) in cylindrical coordinates
X = (x,2) = (px,2), T € S"71, let S be a graph hypersurface given by the function
z(x) whose normal at the origin points in the positive z-axis, and V,t(¢) the spherical
component delimited by this S, then

_1x\n 2
z=3 2;4,:1 Kuzp,

/f )dVol = /f )dVol — / / Fz,2)dz| da + O(eF+2+n+3)
Vit (e) Bj (e) B (e) 2=0
(11)

where the half-ball B (€) consists of the points of Byt!(e) such that z > 0.

Proof. We approximate z(x) by its osculating quadric at the origin, % ZZ:l k2, and

remove from the complete half-ball integral of f(X) its contribution from bel(;vv the
paraboloid. The exact integration domain is determined by the sphere intersection with
the hypersurface, {||z||?>+ 2z(x)? < €2}, and what can be computed exactly is the integral
over the cylinder {p < €}, so that for every = € B](D") () C T,S, we can remove the

contribution of [; f(«, z)dz. Then:

z(x)

/f dVOIN/f dVol—/ /fa:z ) dz| d'x

Vit (o) By(e) [2=0

We need to find the order of the error in this approximation. The volume in the second
integral extends outside the ball that defines V;f(s), which is inscribed in the cylinder,
and thus the integral below the hypersurface is subtracting an extra contribution from
the region 2, that lies outside the sphere but inside the cylinder and is bounded by the
hypersurface. Thus

/ FX)AVoL < max | F(X)] - Vol(©).
Q

Since z(pZE) ~ O(p?), then maxxcq |f(X)| ~ O(p*(p?)"). To bound the volume of €,
notice p is bounded by e from the cylinder and by approximately ¢ — Ce® from the
intersection of the sphere with the hypersurface, for some constant C' (cf. Lemma 5.1
below or the estimation in [2]). This maximum thickness O(g?) is added up for every
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point of the base sphere, whose area is ~ O(¢"~!). Now, the maximum height in the 2
direction of Q is of order O(e?) because it is given by the intersection of the cylinder
with the hypersurface. Therefore, Vol(Q2) ~ O(e%e"1e3) ~ O(e"**). The total error
of this approximation is then O(e¥+2+7+4)  Finally, the graph function z(x) is to be
approximated as a quadric, truncating the terms O(p?) from its Taylor series. This makes
a new error in the second integral of our formula, given by the integral over the region in
between the quadric and the actual hypersurface, which has height given by the O(p?)
Therefore, the integral we are neglecting by this truncation makes an error

p=¢
O(pk(pQ)l)O(pS)pnildpdS ~ O(€k+2l+n+3)

Sn—1 p:O

which is the leading order of the two errors studied for the original integral. O
This type of approximations were used by [2] to obtain the first integral invariant.

Proposition 4.3 (Hulin and Troyanov). The volume of the spherical component cut by
a hypersurface has the asymptotic expansion, with the mean curvature H, appearing to
second order:

Ve = 28 - E BBy o) (12

Proposition 4.4. The barycenter of the spherical component is of the form:

s(V,H(e) =10,...,0, 2 Vngz) ng” (1 + V‘:ﬁz) nisz) T +0(®).  (13)

Proof. Notice that fv+(€)a} dVol = O(e"**) because applying Lemma 4.2, fB+(E)m d"x dz
is zero, and the second integral is of monomials of odd degree. Then the normal compo-
nent

[V(V,F(€)s(V, (e))]: = / zd@dz — / % [Z%xi] &'z + O™+

Bj (o) Bpe)

= D"+ 0"

where we have discarded the second integral since its order is O(D{™) = O(DSY) ~
O(e"*t4), which leaves the same order O(g3) as the error after dividing by the volume.
The final expression follows from inverting the volume formula and using Dg"H) from
the appendix. O
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Theorem 4.5. The covariance matrix C(Vp+(5)) has eigenvalues with the following series
expansion, for allp=1,... n:

_e V(e )L
2(n+3) 2(n+2)(n+4)

g2 5 Vi ()2 & Vo(e) &2
As1(VH(E) =V, = 14— H
050 = Ve O =2 e (U T e o)
+ O(e"9). (15)

AV (€)) = Vi (€) (26u(p) + Hy) + O(™?), (14)

Moreover, in the limit € — 07, when the principal curvatures are different, the corre-
sponding eigenvectors e, (V" (€)) converge linearly to the principal directions of S at p,
and en1(V,' (€)) converges quadratically to the hypersurface normal vector N at p.

Proof. Working in the basis formed by the principal directions and the normal vector
of the hypersurface at the fixed point p, we shall compute the entries of the covariance
matrix and see that it is diagonal to all orders smaller than O(e"*5), precisely the error
we get in the diagonal elements, therefore the eigenvalues coincide with those diagonal
terms up to that error since differences between eigenvalues of symmetric matrices are

bounded by the matrix norm metric. The covariance matrix splits into the first two terms
of

C(V, () /X®XT dVol — / X ®s’ dVol - / s X T dvol+ / s@sT dVvol,
Vp+(5) Vp+(€) Vp () Vp+(5)

because the last three terms become the same upon integration. To compute the term
left we can use the expression for Vs from the proof of the barycenter formula to get:

/ s®s’ dVol =V (V,\(e))s®s" =

O ) xn | O™ ) 1
O(E™)1xn ‘V(V;(‘f))SQ

z

Vp+(5)
[D(’n+1)]
where V/(V,* (6))s? = —1 T + O(£"®). The other contribution to the last matrix
, V(Vy'(e))
entry 1s
3
/ 2% dVol / 2 d”mdz—— / [Zmux] x4+ O™
Vi (e) B (e) B"(E
D(n+1)
_ 5 + O( n+6)

in which we have neglected the second integral for being of higher order than the barycen-
ter matrix error, whose subtraction yields the stated result for the normal eigenvalue. No-
tice that the other elements in the last column and row of the complete covariance matrix
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are O(e"®) since the remaining contributions come from pr+(5) z,z dVol ~ O(e" 1),
and its approximation formula has all monomials with odd powers in x.

Now, we compute the tangent coordinates block. This can be done at once for any
w,v =1,...,n, noticing that when p # v, the integrals of Lemma 4.2 are of monomials
of odd degree in tangent coordinates so the off-diagonal elements are O(e"*%), (we use
that Dy = 3Dags):

1 n
/ xi dVol = / :ci d"xzdz — / xi (5 Z Haxi> d"x + O(e")
a=1

Vit (o) B (o) B (o)
pytY  p DYy nts
= T e Ty X R+ O™

aFtp

D(”‘H) D(")
— QT - ;2 (26, + Hp) + O(e"*).

The perturbation theory of Hermitian matrices [34], [35] shows the convergence of
the eigenvectors to the principal directions in the case of no multiplicity: truncating
C(V,f(e)) to order lower than O(e"*?), that is precisely the order of the perturbation
with respect to the exact diagonalized matrix. Fixing an eigenvalue \,(V,"(e)) with
p # n+ 1, the minimum difference to the other eigenvalues is of order ~ "™ (k,, — k,),
whereas for the last eigenvalue its distance to all the others is already at lead-
ing order ~ &"*3. Therefore, from the sin theorem [34], the perturbation O(g"*?)
changes the eigenvectors {e,(V,"(¢))}:i—; with respect to the principal directions as
O(e"2) /O™ (K — k) ~ 7=, and changes the eigenvector e,,11(V, (¢)) with re-
spect to the normal as O(e"*5)/O(e"+3) ~ €2, i.e., in the limit ¢ — 0" the eigenvectors
of C (Vp+(5)) get a vanishing correction with respect to the principal directions. O

Therefore, we may write the covariance matrix as:

Vii1(e) €2 Vo(e)et S+41d,| 0O
CWV,H(e) = 5 Idnp1 — ——5"———= > NI
P 2(n+3) * (n+2)(n+4) O1xn ‘Q—V:Jrg()s()(;i)z)
+0(E"?),

where the Weingarten operator S at p is diag(s1(p), .. ., n(p)) in our basis.
5. Hypersurface patch integral invariants

Now, we shall compute the asymptotic expansions of the integral invariants of the
hypersurface patch cut out by a ball centered at p and radius € > 0, i.e. over the domain
Dy(e) = SN BJt!(e). Since a parametrization of the region is needed to perform the
integrals locally, we need to find local parametric equations of the boundary 9(S N
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B;}“‘l(a)) to high enough order in € so that we can expand asymptotically the integral
invariants in terms of the geometric information of the hypersurface at the point. The
strategy of [20], hinted in [2], obtaining a cylindrical coordinate approximation for the
boundary radius of the patch, works in general dimension as follows.

Lemma 5.1. In cylindrical coordinates (p, ¢1,...,¢n—1,%) over the tangent space T,S,
fizing the basis to the principal directions and the normal vector of S at p, the parametric
equations of a point X = (pZ1,...,pTn,2)T in OD,(e) =S N S, (€), are

1 1
r(Z) = p(T1,...,Tp) = € — 552(5)53 +0EY,  2(F1,...,Tn) = 552@)52 +O(e%),
(16)
where Ty, ..., T, are the coordinates of points on S~ C T,S, and K(T) =K (T1,...,Tn)=

Zzzl ’iufi is the normal curvature of S at p cut by a normal plane in the direction of

xT.

Proof. In this coordinate system the expansion of the function that locally defines S is

Z(w) = 530 wuxp + O(2®) = §R(E)p® + O(p?) since x,, = pT,,, and because II, is
diagonal in our basis with @ a unit vector, the curve curvature cut by a normal plane is
by Euler’s formula x(Z) = II,(Z, %) = 22:1 “ufi- Now, a point X = (pZ1, ..., pTn, 2)T

inSN Sg(e) satisfies the equation of the sphere p? 4 22 = 2. Substituting the expansion
of z(x) above, we obtain 1x(T)2p* + p? — &2 + O(p®) = 0, which up to order 4 is
a biquadratic equation in p whose positive solution is the following and leads to the

mentioned approximation:

7 = s (-1 VITREPE) = 2 = gn(@)e! + O,

K (

then by extracting a common factor e? and taking the square root, the approximation
expression follows. O

The volume or mass of the domain can be expressed as a correction to the volume of
the n-ball in terms of the extrinsic mean curvature H, and intrinsic curvature R, of S
at the point, as it depends on the embedding. This compares to the case of the volume of
a geodesic ball domain inside a manifold [1], which exhibits a correction only dependent
on the intrinsic scalar curvature R,.

Proposition 5.2. The n-dimensional area of the hypersurface patch expands as

= e 9R,) + O] . (17)

V(Dp(e)) = Vale) |1 + m( »

Proof. Computing the induced metric tensor using Lemma 5.1, the volume around p
becomes
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dVol|p, ) = v/ det g(x) dxy - - -

1+- ZK2$2+O %)

,ul

dxy---dxy,

since ||[Vz(x)||? can be considered small for small enough € > 0, because in our coor-
dinates Vz(0) = 0. With this and the cylindrical measure, eq. (A.1), the integration
becomes

r(z)

V(Dy(e)) = / dVol — / dS/

SnBpt(e) Sn=t

pn—l dp

1 n B
L+ 5 D>k 07T+ 0(0%)
p=1

[}

+O(eh)" 2 + O(E"+4)]

after integrating over p up to the boundary radius. Expanding the binomial series and
the square of the normal curvature, all the remaining integrals are in Theorem A.4,
leading to

n+2 n s 02 €n+2 n )
V(Dp(e)) = Viul(e) — Z K + 22 KukuT,T, | + T2 Ky,
§n—1 H<v p=1
+ O(€n+3)
gn+2 Cy n+2 2 n+2 «
=Valet (7_ 8 04)Z“i_022 2> ki
p=1 pn<v
4 O(En+3),

where the final expression is obtained upon recognizing the mean and scalar curvature
in terms of the principal curvatures, and using the relations among the coefficients from
the appendix. O

The center of mass in this case turns out to deviate, to leading order in €, only in the
normal direction with respect to the center of the ball.

Proposition 5.3. The barycenter of the patch region has coordinates in the principal basis
with respect to p given by

2 o) +0(e)]". (18)
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Proof. When integrating any tangent component x, of X, only factors with an odd
power in some components are produced because the computable terms (see previous
proof) now contain products fafi, Eafﬁ and faxi e
factor regardless of the subindices combination. Therefore the first n components of
V(Dy(e))s(D,y(€)) are of order O(e"**), coming from the error inside r(z)"! after

integrating radially the first term x,p" ~*dp. The normal component of X integrates as

which always have an odd power

r(z)

1 -
/ z dVol = /dS/ [2 (@)p? + O(p } 1+ = Zﬁﬂpr—l—(’) S " tdp
SNBEH(e) Sn-1 0 /t 1
(E> _ K(E)z 3 4\\n+2 n+3 _ En+2 n+3
/dS{Q(n_I_Z)( S O 4 O = Cog i + O,

Sn—1

Then normalizing by the volume to lowest order cancels the coeflicient Coc™. O

Finally, the study of the covariance matrix of the patch domain shows a behavior
similar to the spherical component, but where the next-to-leading order contribution to
the eigenvalues includes only products of principal curvatures and no linear terms on
them.

n+2

Theorem 5.4. The covariance matriz C(Dy(g)) has n eigenvalues that scale like € as

g? gt

n—|—2+8(n—|—2)(n—|—4)

Au(Dp(e)) = Val(e) (Hp = 2R, — 4Hpm(p))} +0(e"*?), (19)

forall p=1,...,n, and one eigenvalue scaling as e"t* with leading term
Ans1 (Dy(€)) = V() o gz R)roEt). o)
AR I o+ 2)(n+ 4) \n+ 2P Ry '

Moreover, in the limit ¢ — 0T, if the principal curvatures at p are all different, the
eigenvectors e, (Dy(e)) corresponding to the first n eigenvalues converge to the principal
directions of S at p, and the last eigenvector e,+1(Dy(e)) converges to the hypersurface
normal vector N (p).

Proof. We need to evaluate po(E) X(z)® X(z)T /detgd™x and V(D,(c))s(D,(e)) ®
8(Dp())T. The latter can be obtained from the previous proof:

(O, ... O+, %Hp—i-(’)(s””)]T
R[O(ED), ..., 0, e H, + O(e%)],

2(n+2)
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resulting in all entries of the n x n block being O(e"*®), the first n elements of the last
column and last row being O(e"*6), and the last element of the matrix becoming

Vo(e)et

[V(Dy(e))8(Dy(e)) ® 8(Dp() Int1),(n+1) = mHﬁ + 0",

(we already disregarded the term of O(¢"*°) that can be computed for this matrix entry
because, as shown below, the other contributing term in that position has error O(s"*?)).

Now, the rest of the covariance matrix requires the longest computations so far. The
entries of X (z) ® X (x)T are of three types: z,2,, z,z(x) and z(x)?. The first n entries
of the last column and last row, z,z(x), contribute at order O(e"™). This implies that
the matrix may not decompose at order O(¢"**) as direct sum of a “tangent” n x n block,
the integrals of [z,z,], and a “normal” 1 x 1 block, the integral of z(x)?. Hence, the
argument in the proof of Theorem 4.5 to equate the diagonal elements of this expansion
with that of the actual eigenvalues cannot be made here, since there are off-diagonal
error elements at the same order as the diagonal approximation. Nevertheless, one can
show, cf. [30], how these do not affect the eigenvalues at the order we are interested
in by writing the eigenvalue-eigenvector equation as a series expansion order-by-order,
which is always possible and converges for Hermitian matrices of converging power series
elements [36], such as our C'(Dy(¢)):

Id,, Apxn | B
[ag? (o 0"()“) +bet <B a ’(LJ“) +0E VO +vWe v =
1xn Ixn

= (AWl p AP 2 L NO3 L ZWet 1 VO v p v@e2 ),

Therefore, expanding the components of C'(D,(¢)) shall yield exactly the actual eigen-
values to order O(e"*4). The last matrix element expands the integrals into the following

terms
22 dVol:1 inQ / f4dS+2§n:/i K3 / 7275 dS e +O(e")
4 « o o a”p n+ 4
SOB;’)L+1(E) a=1 §n—1 a<p gn—1
gnte 2 n+5
= m [C4(Hp — Rp) + CQQRP] + 0(6 ),

whereof subtracting the barycenter matrix contribution, the last eigenvalue becomes

CQ E"+4
4(n+2)(n+4)

02 8n+4

2 _ 2 n+5
[3H) — 2R, 4(n+2)2Hp+O(a ).

>‘n+1 (p7 E) =

The “tangent” block entries can be computed simultaneously for any u,v =1,...,n:
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r(x)

z,x, dVol = /dS/p2EHE,,p

SnBpt(e) Sn—t 0

1+ = Zn 72+ 0(p )]dp

n+2 2 2 n n
- % 8, Co — % / AST,T, | > KATh +2>  KakpTody || +
" §n—1 a=1 a<p

et b 2 4 22 5
+n+4% K2 / T dS+Zn / 7275dS | + 0™,
S§n—1 aFp S§n—1

where the 6, appears because the monomials get an odd power if u # v. Now, the

different integrals inside the indexed sums result in different constants depending on the

=2 =2 2

different monomials that the terms xux and T, as 5 can combine into, and after some

algebraic manipulations the above integral is equal to

gn+2 gntd C, n+4 Cos n+4
Sy Sy [(2 - 2 4 (22 3 k2
Co2 o+ % |5 g Colmt (5 5 C2) 2 ko

n—+ 4 i n+5
— 3 (2024 Z T Ca99 Z Klal*ig) + 0(8 + )
aFp a#pB
a,BF#u

Notice that the summations in the last equation are all over indices that must be different
from p, so we can add and subtract the corresponding missing terms to those sums as long
as we subtract them in the correct place. Doing this, and using the crucial relationships
between the constants from the appendix, each of the different terms under the big braces

simplify to:

(% . ";406 - % ”;4024)%:,% = —2(nci ) 2 (p)
G-t Y = Ry
_n+t 4((2024 —2C492) i Kuka + 2C222 i Kakp)
oyl a<B
— 5 ) + 5 R

recalling that the diagonal components of the Ricci tensor for hypersurfaces are R,,,,(p) =
>ty Fa(P)Ru(p), and the scalar curvature is Ry, = 2377, #,(p)#.(p). Finally, these
add up into the expression
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g2 gt

w2 T 8m o)t d)

/x#xudVol = 0, Va(e)

Dy (e)

(H} = 2R, — 4k, —4R,,.)

+0(e"*?),

and since 2 (p) + Ryu(p) = ku(p)H, the stated formula for the tangent eigenvalues
follows from the diagonal of this block. Therefore, we can write C(D;f (¢)) =

V() e (1dn [Onxr) . Valo)e? Hzmldn—HpS!WAgxl +O(E"P),
n+2 \Oixn| O 2(n +2)(n + 4) Alsn | H2 - R,

so the Weingarten operator appears inside the covariance matrix in this case as well. O
6. Multi-scale curvature descriptors

By solving the second term in the expansion from our integral invariants, we can
extract the curvature information they encode and write it in terms of the volume and
eigenvalues at a fixed scale. This means that these local statistical measurements of the
underlying point set can be employed to reconstruct or estimate its differential geometry,
e.g., from a discrete sample cloud of points. These estimators can be used in geometry
processing to ignore details below a given scale and act as feature detectors.

Employing the asymptotic expressions of section 4, we invert the relations and solve
for the principal curvatures.

Corollary 6.1. Abbreviating the integral invariants of the spherical component as
Au(py€) = Au(VH(e)), Vile) = VI(V,F(e)), then the corresponding descriptors of the
principal curvatures, at scale € > 0 and point p € S, are given by

n+4 |e*V,i1(e)

V@)= gy | T T DM T dale)| (2D

aFp
or equivalently, using the mean curvature H, by
(v o)) = P (1 B 22)

with corresponding errors |H, — H(V,"(e))| < O(e), and |r,(p) — s, (V" (e))] < O(e),
for any p=1,...,n. The eigenvectors e, (V,"(¢)) and e,1(V,"(¢)) are descriptors of
the principal and normal directions respectively.
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2 Vn 4Vn
Proof. Let us define the coeflicients a = E—H(E), b = —8—@, then the
2(n+3) 2(n+2)(n+4)
tangent eigenvalues from eq. (14) solve the principal curvatures
Ay—a 1
Ii'u = #2b — §Hp + O(E)
Fixing one . = 1,...,n, and subtracting any two such equations with p # « results in
Ao — A
R = Tbu + Ii“ + O(E),

and inserting this into the definition of H yields

n

Ay —a Aa — A 1
n _ Mw—a « (o -2 1 - )\0‘
ru(Vy'(€)) b(n + 2) O;L 2b(n+2)  2b(n+2) ot azsﬁu

The truncation error is given by the order of O(e"*5)/b ~ O(e). Alternatively, one can
solve the Hulin-Troyanov relation, eq. (12), to obtain a descriptor of Hj, and then use
this in the expression of x, in terms of A\, and H above. O

An analogous inversion process can be carried out with the series expansions of sec-
tion 5.

Corollary 6.2. Denoting by A(p,e) = M(D,(€)), Vp(e) = V(Dy(e)) the integral invariants
of the hypersurface patch domain, then the corresponding curvature descriptors at scale
e>0and pointp e S, forany p=1,...,n, are

s 0D ()

H(D; (¢)) = (i)\/ A(n + 2)2(n + 4) 2";1‘2 g)) n 8("nt22)2 (1 f “;:8) (25)
_2(n+2) [Vple) n+4 [ £ Au(p, €)

D6 = et |G e e ) Y o9

where the overall sign can be chosen by fixing a normal orientation from

(£) = sgn{ent1(Dy()), 8(Dp(€)) )

The eigenvectors e, (Dy(€)) and enq1(Dy(e)) are descriptors of the principal and normal
directions respectively. The corresponding errors are |H]§ — H(Dy(€))?| < O(e), IR, —
R(Dy(e))| < O(e), and [r5;(p) — ku(Dp(e))?| < O(e).
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Proof. By solving the second term in eq. (17) and eq. (20), let us define coefficients

)\n+1 (pa 6)
etV (e)

A:M <V;’(€) + O(e),

= V(o) —1) +0(), B=2n+2)(n+4)

so that we have the system of equations A = Hg - 2Ry, B = Z—EHE — Rp, whose

solution is

(n+2)

1 2
Ry = ﬁ((n+2)Bf(n+1)A), H, = (2B — A).
We can approximate the normal direction and orientation by using e, +1(p, ), and since
the barycenter eq. (18) has normal component with leading order in terms of H), their
mutual projection can serve to fix the orientation and overall relative sign of all the
principal curvatures. The principal curvatures themselves are then solved from eq. (19)

1
— (A —T),), where

substituting the value of H), above, resulting in x, = 10
P

H 54

~ 8(n+2)(n+4) (Aup,e) g?
r ( V(@) n+2) +06).

The errors follow straightforwardly by the truncation of A, B, I',. O

In the spirit of the limit formula obtained in [6] for regular curves in R™, relating
ratios of the covariance eigenvalues to the Frenet-Serret curvatures, we also state here
analogous expressions for hypersurfaces using the ratios of the covariance eigenvalues,
whose proofs are straightforward.

Corollary 6.3. Let p € S and consider the spherical component invariants. Then for any
p,v =1,...,n, the first n eigenvalues, X\, (p,e) = M\ (V,7(€)), of the covariance matriz
C(V,f(e)) satisfy the following limit ratio:

lim Vr?—i—l({‘:) )‘M(pa 5) - )\V(p’s) _ 4(” + 3)2
=0t V() M@ e)M(pe)  (n+2)(n+4)

[k (P) — £u(P)]- (27)

Corollary 6.4. Let p € S and consider the hypersurface patch invariants. Then for any
w,v =1,...,n, the first n eigenvalues, \,(p,e) = A\, (Dp(€)), of the covariance matriz
C(Dyp(e)) satisfy the following limit ratio:

. Au(pye) = Au(p,e)  n+2
51—1>I€+ Vale) M)A (pye)  2(n+4) [0 (P) = i (p) | Hy, (28)

and the last eigenvalue satisfies:



J. Alvarez-Vizoso et al. / Linear Algebra and its Applications 602 (2020) 179-205 201

At (P, 2 1
lim V,(¢) +1(p,¢) _nt [212 5,

0+ Au(p, )\ (pe)  2(n+4) Rp] ' (29)

These ratios can be used as well to define descriptors solving for the curvature variables
aided by the volume descriptor, like in the preceding corollaries.

7. Conclusions

In this paper we have generalized major PCA methods and results known for surfaces
in space to establish the asymptotic relationship between integral invariants and the
principal curvatures and principal directions of hypersurfaces of any dimension, which
furnishes a method to obtain geometric descriptors at any given scale using the eigenvalue
decomposition of the covariance matrix. We have seen that these methods are sufficient
to provide also estimators of the Riemann curvature tensor of embedded submanifolds
of higher-codimension, using its hypersurface projections onto the linear subspaces in
ambient space spanned by the tangent space and each of the normal vectors from an
orthonormal basis. These results establish a theoretical foundation for the implementa-
tion of the computational integral invariant approach to study the geometry of point
clouds of high dimensionality, which should be a helpful tool for manifold learning and
geometry processing.
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Appendix A. Integration of monomials over spheres

Let = (z1,...,2,) € R™, and denote the sphere and ball of radius € in R™ by:

§"(e) = {w e R : [al| =<}, B(e) = {w e R" : |}z < <},

where we set S"~1 = S"~1(1). Using generalized spherical coordinates (r, ¢1, ..., ¢n_1),
where r = ||z||, T, = z,/r € S"7}, ie.,

T1 =COS¢P1,..., Tp—1 =siN¢@ - sinp,_oc08Py_1, Tp =SsN¢1 - SiN@,_osing,_1,
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the Euclidean measure over the unit sphere and ball of any radius can be written as

n—2

dS" " =dg, 1 [[sin" ' H(¢u)dd,,  d"B=dzy---do, =" dr dS"TV (AL)
p=1

Definition A.1. For any integers aq, ..., ay € {0,1,2,...}, the integrals of the monomials

x{? - x% over the unit sphere and the ball of radius € are denoted by:

A1 ...0p

el . = /xi“-~-fc%"d8"‘1, D = / 28t 2% d"B. (A.2)

§n—1 Bn(e)

These can be computed directly in spherical coordinates by collecting factors and
separating the integrals into a product of integrals of powers of sines and cosines which
can be given in terms of the Beta function, that then telescopes and simplifies; other
shorter proof uses the usual exponential trick, see for example [37], resulting in the
following formula.

Theorem A.2. Denoting B, = 1(a,+1), the values of the integrals eq. (A.2) over spheres
are

o 0, if some «, s odd,
CE o = T(BOL(B2) - T(Ba) (4.3)
10 2 2 ifall a,, are even,
T(B1+ P2+ -+ Bn) d g

and the integrals over balls become

ent(onttan)
DY) ., = C o (A4)
1..-Qn n+(041+"'+04n) 1..-Qn

Notice that the values of the integrals of these monomials only depend on the com-
bination of powers, not on which particular coordinates have those powers. Using these
formulas we compute the relevant integrals that are needed for our work.

Remark A.3. Unless integrals over spheres of different dimension appear in the same
expression, we shall abbreviate and omit the superscript (™ to be understood from the
context.

Example A.4. Using the factorial property of the gamma function, I'(z + 1) = 2I'(2),
and the value F(%) = /7, the integrals of monomials of even powers of order 2, 4 and
6, have the following relations (shortening dS™~! as dS):

rerEe—" a2 Cs
Co = jdS=2—2—2— — e :/ iz5dS = :
2 s/1 o rG+25Y) " T(3+1) - . e n+2
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30, %
B 4 _ _ _ 2,22 - ~2
Cy = / xldS—n+2—3022, Caz = / $1$2$3d8—(n+2)(n+4)’
§n—1 Sn—1
3C 15C
_ [ aatgs— 3¢ _ :/ 0§ = — 2
Cay / xiTs dS CEDCEYY 3Ca2, Cp ry dS (n+2)(n+4)
S”fl Snfl

The value of Cy is related to the n-dimensional volume of the ball of radius e, and
the (n — 1)-dimensional area of the unit sphere by V,,(¢) = Vol(B"(¢)) = €™ Cs, and
Sn_1 = Area(S" 1) = n Cs. The integrals over balls needed in our work are:

) €n+2 52
Dy = / 7 dry---de, = n—|—202 = n+2Vn(5)’
B (e)
2 2 d d (€n+4 C 54
D — n = = Vn B
22 / L1Zy @y x (n+2)(n+4) 2 (n+2)(n +4) (6)
Bn(¢)
3 entt 3et
Dy = 4 d coodry, = ———— =— V(o).

B (e)

We also need the integral of monomials over half-balls BT (¢) (without loss of generality
we can consider the half-ball is defined by 21 > 0). If all the «; are even then nothing
changes in the proof of Theorem A.2 except that now we integrate over half the domain
and an extra factor of % is needed. If any «; is odd for i # 1, the integration over
those variables is still carried out over the same domain so the overall integral is still 0.
However, if a1 is odd the corresponding integral of that coordinate does not cancel out,
and the main formula still holds with 81 = 1 but without the factor of 2.

Example A.5. Using the formula in the mentioned adjusted form, we define and compute

entlpts
Dgn) = / 1 dvy- - dTp = 5

20 (52)
Bt (e)

(n+1) _
1 =

which gives the constant needed in our main text D r1 dry-dTper =

Bt(e)
2

T 2Vn (€). When integrating fB+(a) x2dVol, we shall just write % to be consistent with
n
our notation.
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