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1. Introduction

Manifold learning has as its prime goal the local characterization and reconstruction 
of manifold geometry from the study of the underlying point set, usually embedded as 
a submanifold in an ambient space, typically Euclidean. To obtain theoretical results 
that can serve as tools for this endeavor, it is assumed that the complete continuous 
point set is known so that local statistical invariants on given domains can be shown 
to be related to the relevant local geometry, whereas in practice only a finite cloud of 
points, probably with noise, is available. In geometry processing, the development of 
these methods provides us with descriptors that serve as geometry estimators, guide a 
possible reconstruction, or provide feature detectors. The integral invariant point of view 
attempts to overcome some of the difficulties of computational geometry when facing the 
task of extracting information that is classically defined as a differential invariant, like 
curvature, since its discrete version reduces to, e.g., sums instead of finite differences. 
The multi-scale behavior and averaging nature of these invariants is also of importance 
in applications and their possible stability and robustness with respect to noise.

Series expansion of the volume of small geodesic balls within a manifold [1], and vol-
umes cut out by a hypersurface inside a ball of the ambient space [2], have been shown 
to be given in terms of the manifold curvature scalar invariants. In order to obtain 
local adaptive Galerkin bases for large-dimensional dynamical systems, the eigenvalue 
decomposition of covariance matrices of spherical intersection domains on the invariant 
manifold was introduced in [3], [4,5] to provide estimates of the dimension of the man-
ifold and a suitable decomposition of phase space at every point. In the case of curves, 
the Frenet-Serret apparatus is recovered with explicit formulas at scale to obtain descrip-
tors of the generalized curvatures in terms of the eigenvalues of the covariance matrix 
[6]. Integral invariants were already introduced and employed in geometry processing 
applications by [7], [8,9], [10,11], [12,13]. Local principal component analysis of this type 
has been studied primarily for the case of curves and surface in 2D and 3D in [10,11], 
[13], [14], [15], [16], [17], as a means to determine relevant local geometric information 
while maintaining stability with respect to noise [18], [19,20], e.g., for feature and shape 
detection using point clouds or meshes in computer graphics. Voronoi-based feature esti-
mation [21,22] has also taken advantage of the PCA covariance matrix approach. Those 
methods study embedded manifolds whereas intrinsic probability and statistical analysis 
using geometric measurements inside a Riemannian manifold have also been developed 
[23,24] and could be used to do covariance analysis of submanifolds embedded in curved 
ambient spaces.

The complementary side of this framework is the study of finite point clouds and how 
their discrete PCA covariance matrices converge with the number of points to the exact 
analytical result of the smooth case, as studied in our work. Methods using geometric 
measure theory and harmonic analysis have been developed [25,26], [27,28] in order to 
study noisy samples from probability distributions supported on submanifolds of a high-
dimensional Euclidean space [29]. In these works, ranges of scales are determined, taking 
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into account curvature, for the covariance matrices to be most informative and close to 
the noisy empirical matrices. The approach of [29] is complemented by ours in the sense 
that we obtain explicitly the next to leading order terms of the eigenvalue expansion for 
the complete smooth data set providing the direct theoretical link between curvature and 
covariance. Since [29] develops an explicit algorithm for the estimation of the dimension 
of the manifold, a natural next step would be to expand these multiscale methods in 
order to apply them to our main theorems and thus to estimate curvature from noisy 
point clouds. Our descriptor algorithm to estimate the Riemann curvature provides the 
theoretical result to fulfill this task in practice.

In this paper we follow and generalize the major theoretical results of [20] for surfaces 
in space to hypersurfaces in any dimension, which in turn allows for the extension of 
their approach to obtain descriptors of the extrinsic and intrinsic curvature at a given 
scale for any Riemannian submanifold of general codimension in Euclidean space. Future 
work will show how the analysis for the ball intersection patch case further extends to 
general codimension, [30,31], establishing the connection between the generalized third 
fundamental form and the integral invariants, i.e. between local Riemannian geometry 
and local covariance integrals.

The structure of the paper is as follows: In section 2, PCA integral invariants and 
geometric descriptors are introduced to show how the study of hypersurfaces is sufficient 
to study the curvature of Riemannian submanifolds of any dimension by applying the 
analysis to k hypersurface projections (where k is the codimension of the submanifold). 
In section 3, an explicit toy example of the correspondence between the differential-
geometric curvature and the integral invariant covariance is detailed. In section 4, these 
integral invariants are analytically computed for a volume region delimited by a hyper-
surface inside a ball; the asymptotic expansions of the invariants with respect to the scale 
of the ball are shown to be given in terms of the principal curvatures and the dimension, 
and the eigenvectors of the covariance matrix are shown to converge in the limit to the 
principal directions. In section 5, the analogous analysis is carried out for the integral 
invariants of the hypersurface patch cut out by the ball. In section 6, we see how these 
asymptotic formulas can be inverted to yield geometric descriptors at scale of the prin-
cipal curvatures and principal directions for hypersurfaces, thus establishing concrete 
formulas to use in our final algorithm for curvature descriptors of Riemannian submani-
folds. The notation and technical results needed for all computations are summarized in 
appendix A.

2. Integral invariants and descriptors

Our approach generalizes the theoretical part of the seminal work [20] with a focus 
on the analytical expansion of integral invariants to get descriptors of manifold curva-
ture in any dimension. The local integral invariants considered are integrals over small 
kernel domains determined by balls and the hypersurface. In particular, we will focus 
on the Principal Component Analysis of a (n + 1)-dimensional region delimited by the 
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hypersurface inside a ball centered at a point on the hypersurface, and the n-dimensional 
patch on the submanifold cut out by such a ball. In general, one can define invariants for 
a measurable domain by computing the moments of the coordinates of the points inside, 
which leads us to

Definition 2.1. Let D be a measurable domain in Rn, the integral invariants associated 
to the moments of order 0, 1 and 2 of the coordinate functions of the points of D are: 
the volume

V (D) = E[1 · χD(X)] =
∫
D

1 dVol, (1)

the barycenter

s(D) = E[X · χD(X)] = 1
V (D)

∫
D

X dVol, (2)

and the eigenvalue decomposition of the covariance matrix

C(D) = E[(X−s(D))⊗(X−s(D))T ·χD(X)] =
∫
D

(X−s(D))⊗(X−s(D))T dVol. (3)

Here dVol is the measure on D induced by restriction of the Euclidean measure, and the 
tensor product is to be understood as the outer product of the components in a chosen 
basis. E represents taking the expectation value over all possible X in their domain, i.e. 
Rn, and χD is the characteristic function of the set D (i.e., 1 if and only if X ∈ D, zero 
otherwise).

An integral invariant descriptor F (D) of some feature F of a measurable domain 
D is any expression for F completely given in terms of V (D), s(D), the eigenvalue 
decomposition of C(D) or other integral invariants. If the domain D is determined by a 
region of a hypersurface S, the main geometric descriptors are any principal curvature 
estimators κμ(D) of κμ(p), and principal and normal direction estimators eμ(D), N (D)
of eμ(p), N(p), for some known point p ∈ S. If the domain D is determined by a region of 
an embedded manifold M, the main geometric descriptor is any second fundamental form 
estimator, II(D) of IIp, for some known point p ∈ M. Since our domain D of interest 
will possess a natural scale ε determined by the size of the ball that shall define it, we 
shall talk about descriptors at scale. Moreover, throughout all the paper we consider ε
to be small enough so that we can approximate the hypersurface S by the local graph 
representation of its osculating quadric at p, which is sufficient to obtain the leading 
terms of the asymptotic expansions with scale of the integral invariants.

These descriptors become valuable tools to perform manifold learning, feature detec-
tion and shape estimation when only partial knowledge of the complete set of points is 
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known or when noise is present. In this regard, [19,20,17] carried out experimental and 
theoretical analysis of the stability of these and other descriptors in the case of curves 
and surfaces in R3, reporting for example that the invariants of the spherical component 
domain are more robust with respect to noise than the patch region ones. It is to be 
expected that the same stability behavior holds in the hypersurface case due to the sen-
sitivity to small changes of an n-dimensional patch compared to an (n + 1)-dimensional 
volume of which the perturbed patch is only part of its boundary.

When the asymptotic expansions with respect to scale of hypersurface integral in-
variants are available to high enough order, curvature information can be extracted by 
truncating the series and inverting the relations in order to obtain a computable multi-
scale estimator of the actual curvatures. In particular, the eigenvalues of the covariance 
matrix will provide such a descriptor for the principal curvatures of a smooth hyper-
surface, κμ(D), and its eigenvectors {eμ(D)}nμ=1, and en+1(D), will do the same for 
the normal direction. In order to produce analogous descriptors for an embedded Rie-
mannian manifold of higher codimension, we just need to apply the procedure to the 
k hypersurfaces created by projecting the manifold down to (n + 1) linear subspaces 
determined by its tangent space and each of the normal directions.

Lemma 2.2. Let M ⊂ Rn+k be an n-dimensional embedded Riemannian manifold, and 
fix an orthonormal basis {eμ}nμ=1 of the tangent space TpM, and an orthonormal basis 
{N j}kj=1 of the normal space NpM at p ∈ M. Consider a ball B(n+k)

p (ε) for small 
enough ε > 0, such that the projections of M ∩B(n+k)

p (ε) onto the linear subspaces TpM ⊕
〈N i〉, for all i = 1, . . . , k, are smooth hypersurfaces Si. Then, if κ(i)

μ (D), {e(i)
μ (D)}nμ=1

are descriptors of the principal curvatures and principal directions at p for each of the 
hypersurfaces Si, then the second fundamental form of M at p has a descriptor:

IIp(D)(eμ, eν) =
k∑

i=1
[Vi(D)Ki(D)V (D)Ti ]μν N i , μ, ν = 1, . . . , n, (4)

where [Vi(D)] are the matrices whose columns are the components of {e(i)
μ (D)}nμ=1 in 

the chosen basis {eμ}nμ=1, and [Ki(D)] is the diagonal matrix of principal curvature 
estimators. In turn, the Riemann curvature tensor of M at p acquires a descriptor:

〈R(D)(eμ, eν)eα, eβ〉 =
k∑

i=1

(
[ViKiV

T
i ]μβ [ViKiV

T
i ]να − [ViKiV

T
i ]μα[ViKiV

T
i ]νβ

)
. (5)

In fact, the matrices [Vi(D)Ki(D)V T
i (D)] are a descriptor of the local Hessian of Sj at p.

Proof. By the implicit function theorem, there is a neighborhood of Up ⊂ TpM such that 
the manifold can be locally given by a graph x 	→ (x, f1(x), . . . , fk(x)), where x ∈ Up, 
p corresponds to 0, and ∇fi(0) = 0. From this, the projection hypersurfaces Si are just 
(x, fi(x)) within the linear subspace TpM ⊕ 〈Ni〉, for i = 1, . . . , k. It can be shown 



184 J. Álvarez-Vizoso et al. / Linear Algebra and its Applications 602 (2020) 179–205
[32, vol. II ex. 3.3.] that the second fundamental form of M at p is precisely the linear 
combination of the second fundamental forms of each of the hypersurface projections 
weighed by the corresponding normal vector, i.e.,

IIp(eμ, eν) =
k∑

i=1

[
∂2fi

∂xμ∂xν
(p)
]
N i

Analyzing each of those hypersurfaces in TpM ⊕ 〈N i〉 ∼= Rn+1, to obtain descriptors 
κ

(i)
μ (D), {e(i)

μ (D)}nμ=1 for every i, we obtain precisely a descriptor of the eigenvalue 
decomposition of each Hessian, i.e., Hess fi|p(D) = [Vi(D)Ki(D)V (D)Ti ] is an estimator 
of the second fundamental form of Si at p in the original basis. Applying Gauß equation

〈R(eμ, eν)eα, eβ〉 = 〈 II(eμ, eβ), II(eν , eα) 〉 − 〈 II(eμ, eα), II(eν , eβ) 〉 (6)

yields a corresponding descriptor for the Riemann tensor. �
A concrete application of this result in a toy computation is presented in the next sec-

tion. We summarize the steps for the applicability of these ideas for arbitrary embedded 
Riemannian manifolds in the following algorithm.

Algorithm 1 Curvature descriptors from ball intersections.
Input: Point-set M ⊂ Rn+k, point p ∈ M, radius ε > 0
Output: 2nd fundamental form descriptor IIp(ε), Riemann tensor descriptor Rμναβ(ε) at p

if current basis is not known to split TpM ⊕ NpM into a tangent and normal basis then
- Find the eigenvectors {eμ}n

μ=1 ∪ {Ni}k
i=1 of E[(X − p) ⊗ (X − p)T · χBp(ε)∩M(X)]

{Dimension n and split basis are determined by different scaling of eigenvalues, cf. [5]}
- Update the basis to the normalized eigenvector basis

end if
for i = 1 to n do

- Project M to a hypersurface Si in the linear subspace 〈{eμ}n
i=1, Ni〉 ∼= Rn+1 ⊂ Rn+k

- Determine region Di := V +
p (ε) (cf. Lemma 4.2) or Dp(ε) (cf. section 5) of this Si

- Compute the induced volume V (Di) = E[1 · χDi
(X)]

- Compute the barycenter s(Di) = E[X · χDi
(X)]/V (Di)

- Compute the eigenvectors {e(i)
μ (ε)}n

i=1∪N i(ε), and eigenvalues {λ(i)
μ (ε)}n+1

μ=1 of the covariance matrix 
C(Di) = E[(X − s(Di)) ⊗ (X − s(Di))T · χDi

(X)]
- Obtain the principal curvatures κ(i)

μ (ε) from λ(i)
μ (ε) using Corollary 6.1 or Corollary 6.2

- Set Vi to the matrix whose columns are {e(i)
μ (ε)}n

i=1

- Set Ki to the diagonal matrix of {κ(i)
μ (ε)}n

μ=1

- Determine the Hessian matrix descriptor at p of Si by II(i)
p (ε) = [Vi · Ki · V T

i ]
end for
- Obtain the 2nd fundamental form estimator: IIp(ε)(eμ, eν) = ∑k

i=1[II
(i)
p (ε)]μν Ni(ε)

- Obtain the Riemann curvature tensor estimator:
Rμναβ(ε) = 〈R(ε)(eμ, eν)eα, eβ〉 =

∑k
i=1

(
[II(i)

p (ε)]μβ [II(i)
p (ε)]να − [II(i)

p (ε)]μα[II(i)
p (ε)]νβ

)

3. Example of the covariance-curvature correspondence

Let us study a simple analytic toy example to understand the integral invariant ap-
proach to differential geometry. The classical approach follows [33]. Let M ⊂ R4 be an 
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embedded smooth surface such that around a point p ∈ M it has a local graph expres-
sion in a neighborhood Up given to second order by its osculating quadric M(2)

p (indeed, 
note that curvature is fully determined by this second order truncation, but our general 
analysis will take into account the errors from the full series):

M(2)
p = {(x, y, f1, f2) ∈ R4 | f1(x, y) = −1

2x
2−3xy− 1

2y
2, f2(x, y) = 9

4x
2+

√
3

2 xy+7
4y

2}.

This can always be done for arbitrary dimension and we can think of fi(x) as the leading 
order truncation of the Taylor expansions of the local graph functions of M over TpM, 
with x as coordinates of this tangent space. Given an orthonormal tangent basis {eμ}nμ=1
and normal basis {N i}ki=1, the extrinsic curvature of M at p is encoded by the second 
fundamental form, determined by the Hessians II(i)

p of fi(x) as seen in the previous 
section. Thus, for this example it can be written as the following quadratic form with 
values in the normal space NpM, for any a, b ∈ TpM:

IIp(a, b) =
2∑

i=1
II(i)

p (a, b)N i =
(
aT ·

[
−1 −3
−3 −1

]
· b
)

N1 +
(
aT ·

[
9
2

√
3

2√
3

2
7
2

]
· b
)

N2.

(7)
The mean curvature vector is then Hp = tr IIp = H1N1 + H2N2 = −2N1 + 8N2, so 
we can consider ||Hp|| = 2

√
17 ≈ 8.2462112512 a scalar characterization of the extrinsic 

curvature at p. The (intrinsic) Riemann curvature tensor for a surface, even embedded in 
higher dimension, has only 1 independent component, the Gaußian curvature R1221 = 7. 
We can see this by computing the curvature operators at p in our orthonormal tangent 
basis using eq. (7) in eq. (6):

Rp(e1, e2) = −Rp(e2, e1) =
[
0 −7
7 0

]
, Rp(e1, e1) = Rp(e2, e2) =

[
0 0
0 0

]
. (8)

The Ricci operator is Ricp =
[
7 0
0 7

]
, so the scalar curvature is Rp = trRicp = 14, 

again the only independent intrinsic invariant (same as R1221 upon normalization by 
dimM, a convention which we do not follow here). These computations yield the classical 
geometric invariants determined by the differential structure of M around p.

From the integral invariant point of view, the aim is to obtain the same information 
by completely different means: using the eigenvalue decomposition of the covariance 
matrix of domains determined by the underlying point-set of M around p, i.e. instead 
of employing (covariant) derivatives on M, the same information is hidden within the 
asymptotics of integrals over local domains. Conceptually this signifies that we need only 
know the measure function over a domain within M, i.e. a means to evaluate expectation 
values E[· · ·χD(X)], which is equivalent to knowing only one volume element function, 
e.g. 

√
det g(x)dnx in local coordinates, instead of the (n +k) embedding functions X(x), 

or the n(n + 1)/2 components of the metric tensor gμν = 〈 ∂X , 
∂X 〉. Therefore the 
∂xμ ∂xν
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integral invariant approach furnishes in principle a dictionary between covariance and 
curvature that requires less actual knowledge about the parametrization focusing on the 
underlying point-set, thus providing a more adequate methodology when only a discrete 
point cloud sample is available.

In our toy example we can analytically show this correspondence to high precision 
since the embedding functions are known and the integral invariants of eq. (1), eq. (2)
and eq. (3) can be expressed explicitly and computed numerically. Since there are two 
normal directions there are no canonical principal directions and principal curvatures for 
a surface in R4, but one such set for each normal direction. Choosing N1 and N2, the 
principal directions and curvatures are just the eigenvalue decomposition of the Hessian 
matrices in eq. (7). Therefore, we can consider the projected local (hyper)surfaces Si

given by the graphs (x, fi(x)) in the linear subspaces TpM ⊕ 〈N i〉, with corresponding 
principal directions {e(i)

μ (p)}nμ=1 and principal curvatures {κ(i)
μ (p)}nμ=1, for i = 1 . . . k, 

here k = 2. This yields two local surfaces in two R3 subspaces of R4, with princi-
pal directions and principal curvatures given by the eigenvalue decomposition of each [

∂2fi
∂xμ∂xν (0)

]
:

κ
(1)
1 (p) = 2, e(1)

1 (p) = 1√
2
(−1, 1, 0)T and κ

(1)
2 (p) = −4, e(1)

2 (p) = 1√
2
(1, 1, 0)T , (9)

κ
(2)
1 (p) = 3, e(2)

1 (p) = (−1
2 ,

√
3

2 , 0)T and κ
(2)
2 (p) = 5, e(2)

2 (p) = (
√

3
2 ,

1
2 , 0)T . (10)

Determining these for each Si from integral invariants makes it possible to recover the 
Hessian matrices and hence the full second fundamental form IIp of M, and the Riemann 
tensor thereafter. As domain Di for our descriptors we shall use the intersection regions 
B

(n+1)
p (ε) ∩ Si, which cuts out a patch domain in Si around p using the ambient space 

ball of radius ε > 0, see Fig. 1a and section 5. The moments of inertia of the shaded 
region in the figure yield approximations at scale ε to the principal and normal directions 
and the principal curvatures at p. In our example Di = {(x, y, z) ∈ TpM ⊕ 〈N i〉 | z =
fi(x, y), x2 + y2 + fi(x, y)2 ≤ ε2}. These regions are well-defined for ε small enough 
which is sufficient to establish the asymptotic behavior of the integral invariants with 
the scale of the domain, as developed in the sections below, so that the covariance-
curvature correspondence is well-defined in the limit to provide curvature estimators in 
the general case when the local graph expression of the manifold is of course unknown 
and the domain may be bigger. In that case the Di are known only as point-sets and 
the expectation values can only be computed numerically. According to our results in 
section 5, the volumes and barycenters to leading order are:

Vol(D1) = πε2(1 + 9
8ε

2 + . . . ), Vol(D2) = πε2(1 + 1
8ε

2 + . . . ),

s(D1) = (0, 0, −ε2

4 + . . . )T , s(D2) = (0, 0, ε2 + . . . )T .
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Fig. 1. (a) The covariance EVD of domains determined by ball intersections at scale provide descriptors that 
approximate the principal and normal directions and principal curvatures of a hypersurface at a generic 
point. (b) In general codimension, this covariance analysis for projection hypersurfaces of the embedded 
manifold can be used to estimate the 2nd fundamental form and Riemann tensor. The simple example of 
the text shows the asymptotic convergence to the exact value of extrinsic and intrinsic curvature (||H|| and 
R1212 resp.)

More importantly, the covariance matrices in this example have the following analytical 
form:

C(Di) = E[(X − s(Di)) ⊗ (X − s(Di))T · χD(X)]

=
∫

x2+y2+f2
i ≤ε2

⎡⎢⎣ x2 xy x(fi − Hiε
2

8 )
yx y2 y(fi − Hiε

2

8 )
x(fi − Hiε

2

8 ) y(fi − Hiε
2

8 ) (fi − Hiε
2

8 )2

⎤⎥⎦√det gi(x, y) dxdy,

where the induced volume elements on Si are:

dVol1 =
√

det g1(x, y) dxdy =
√

1 + 10x2 + 12xy + 10y2 dxdy,

dVol2 =
√

det g2(x, y) dxdy =
√

1 + 21x2 + 8
√

3xy + 13y2 dxdy.

For instance, for ε = 0.01 numerical integration yields:

C(D1) =

⎡⎣ 7.8544392039 · 10−9 −3.9289733304 · 10−13 −1.6500538629 · 10−49

−3.9289733304 · 10−13 7.8544392039 · 10−9 −3.2345707458 · 10−49

−1.6500538629 · 10−49 −3.2345707458 · 10−49 1.2431757559 · 10−12

⎤⎦ ,
C(D2) =

⎡⎣ 7.8516906374 · 10−9 −4.5347390337 · 10−13 9.9391924526 · 10−50

−4.5347390337 · 10−13 7.8522142640 · 10−9 5.3725545096 · 10−49

9.9391924526 · 10−50 5.3725545096 · 10−49 1.1769570544 · 10−12

⎤⎦ .
From Theorem 5.4 below their respective eigenvectors approximate the principal and 

normal directions of Si at this scale, and the corresponding eigenvalues serve as input 
for the formulas of Corollary 6.2 to estimate the principal curvatures as well:
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κ
(1)
1 (ε) = 1.9947, e

(1)
1 (ε) = (−0.7071067812, 0.7071067812, −3.238 · 10−41)T

κ
(1)
2 (ε) = −3.99306, e

(1)
2 (ε) = (0.7071067812, 0.7071067812, 2.750 · 10−41)T

κ
(2)
1 (ε) = 2.99845, e

(2)
1 (ε) = (−0.5000000000, −0.8660254038, 5.097 · 10−35)T

κ
(2)
2 (ε) = 4.9982, e

(2)
2 (ε) = (0.8660254038, 0.5000000000, 3.696 · 10−35)T .

Compare these descriptive values at scale ε = 0.01 with the exact analytical values 
of eq. (9) and eq. (10). Now, since these are supposed to be as well the eigenvalue 
decomposition of the Hessian matrices of fi, we have essentially achieved an integral 
reconstruction of the second fundamental form of M at p, at scale ε = 0.01:

IIp(ε) =
[
−0.9991798599 −2.9938785021
−2.9938785021 −0.9991798599

]
N1 +

[
4.4982644881 0.8659210756
0.8659210756 3.4983849558

]
N2,

so ||Hp(ε)|| = 8.2425629448. Therefore the procedure yields an estimation of the Rie-
mann curvature tensor:

Rp(ε)(e1, e2) = −Rp(ε)(e2, e1) =
[

0 −7.02189341
7.02189341 0

]
,

to be compared with the exact tensors of eq. (7) and eq. (8).
By repeating this procedure at different scales ε one can clearly see the convergence of 

the covariance-curvature correspondence in this example, cf. Fig. 1b. The steps followed 
here generalize to any dimension and are summarized in Algorithm 1. In the rest of the 
paper we develop the technical machinery needed to establish the validity, formulae and 
algorithm of this asymptotic correspondence, providing the theoretical foundation of this 
methodology for practical applications in manifold learning.

4. Hypersurface spherical component integral invariants

The following domain is introduced in [2] to study the relation between the mean 
curvature of hypersurfaces and the volume of sections of balls (we reserve their notation 
B+

p (ε) for the half-ball).

Definition 4.1. Let S be a smooth hypersurface in Rn+1 with a locally chosen normal 
vector field N : S → Rn+1. Let B(n+1)

p (ε) be a ball of radius ε > 0 centered at a point 
p ∈ S, for small enough ε the hypersurface always separates this ball into two connected 
components. Define the region V +

p (ε) to be that component such that N(p) is oriented 
towards its interior.

All the methods and results of [20] for surfaces using this domain generalize because to 
approximate integrals of functions over this type of region in R3, the formula developed 
in their work makes use of the hypersurface approximations of [2], valid in any dimension. 



J. Álvarez-Vizoso et al. / Linear Algebra and its Applications 602 (2020) 179–205 189
Note we start to use the notation from the appendix. Also, in the rest of the paper we 
shall say that a smooth function f(x) has order O(xn) if its local power series around 
x = 0 begins at order n, i.e., the nth-order derivative at x = 0 is nonzero whereas all 
the lower order derivatives are zero at that point; this generalizes to functions of several 
variables by referring to its first nonzero higher-order partial derivative at the center of 
the expansion.

Lemma 4.2. Let f : Rn+1 → R be a function of order O(ρkzl) in cylindrical coordinates 
X = (x, z) = (ρx, z), x ∈ Sn−1, let S be a graph hypersurface given by the function 
z(x) whose normal at the origin points in the positive z-axis, and V +

p (ε) the spherical 
component delimited by this S, then

∫
V +
p (ε)

f(X)dVol =
∫

B+
p (ε)

f(X)dVol −
∫

Bn
p (ε)

⎡⎢⎣
z= 1

2
∑n

μ=1 κμx
2
μ∫

z=0

f(x, z) dz

⎤⎥⎦ dnx + O(εk+2l+n+3)

(11)
where the half-ball B+

p (ε) consists of the points of Bn+1
p (ε) such that z ≥ 0.

Proof. We approximate z(x) by its osculating quadric at the origin, 1
2
∑n

μ=1 κμx
2
μ, and 

remove from the complete half-ball integral of f(X) its contribution from below the 
paraboloid. The exact integration domain is determined by the sphere intersection with 
the hypersurface, {‖x‖2 +z(x)2 ≤ ε2}, and what can be computed exactly is the integral 
over the cylinder {ρ ≤ ε}, so that for every x ∈ B

(n)
p (ε) ⊂ TpS, we can remove the 

contribution of 
∫ z

0 f(x, z)dz. Then:

∫
V +
p (ε)

f(X)dVol ≈
∫

B+
p (ε)

f(X)dVol −
∫

Bn
p (ε)

⎡⎢⎣ z(x)∫
z=0

f(x, z(x)) dz

⎤⎥⎦ dnx.

We need to find the order of the error in this approximation. The volume in the second 
integral extends outside the ball that defines V +

p (ε), which is inscribed in the cylinder, 
and thus the integral below the hypersurface is subtracting an extra contribution from 
the region Ω, that lies outside the sphere but inside the cylinder and is bounded by the 
hypersurface. Thus ∫

Ω

f(X)dVol ≤ max
X∈Ω

|f(X)| · Vol(Ω).

Since z(ρx) ∼ O(ρ2), then maxX∈Ω |f(X)| ∼ O(ρk(ρ2)l). To bound the volume of Ω, 
notice ρ is bounded by ε from the cylinder and by approximately ε − Cε3 from the 
intersection of the sphere with the hypersurface, for some constant C (cf. Lemma 5.1
below or the estimation in [2]). This maximum thickness O(ε3) is added up for every 
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point of the base sphere, whose area is ∼ O(εn−1). Now, the maximum height in the z
direction of Ω is of order O(ε2) because it is given by the intersection of the cylinder 
with the hypersurface. Therefore, Vol(Ω) ∼ O(ε2εn−1ε3) ∼ O(εn+4). The total error 
of this approximation is then O(εk+2l+n+4). Finally, the graph function z(x) is to be 
approximated as a quadric, truncating the terms O(ρ3) from its Taylor series. This makes 
a new error in the second integral of our formula, given by the integral over the region in 
between the quadric and the actual hypersurface, which has height given by the O(ρ3)
Therefore, the integral we are neglecting by this truncation makes an error

∫
Sn−1

ρ=ε∫
ρ=0

O(ρk(ρ2)l)O(ρ3)ρn−1dρ dS ∼ O(εk+2l+n+3)

which is the leading order of the two errors studied for the original integral. �
This type of approximations were used by [2] to obtain the first integral invariant.

Proposition 4.3 (Hulin and Troyanov). The volume of the spherical component cut by 
a hypersurface has the asymptotic expansion, with the mean curvature Hp appearing to 
second order:

V (V +
p (ε)) = Vn+1(ε)

2 − ε2 Vn(ε)
2(n + 2)Hp + O(εn+3). (12)

Proposition 4.4. The barycenter of the spherical component is of the form:

s(V +
p (ε)) = [ 0, . . . , 0, 2 Vn(ε)

Vn+1(ε)
ε2

n + 2

(
1 + Vn(ε)

Vn+1(ε)
ε2

n + 2Hp

)
]T + O(ε3). (13)

Proof. Notice that 
∫
V +
p (ε)x dVol = O(εn+4) because applying Lemma 4.2, 

∫
B+

p (ε)x dnx dz

is zero, and the second integral is of monomials of odd degree. Then the normal compo-
nent

[V (V +
p (ε))s(V +

p (ε))]z =
∫

B+
p (ε)

z dnx dz −
∫

Bn
p (ε)

1
2

[
n∑

μ=1
κμx

2
μ

]2

dnx + O(εn+4)

= D
(n+1)
1 + O(εn+4)

where we have discarded the second integral since its order is O(D(n)
4 ) = O(D(n)

22 ) ∼
O(εn+4), which leaves the same order O(ε3) as the error after dividing by the volume. 
The final expression follows from inverting the volume formula and using D(n+1)

1 from 
the appendix. �
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Theorem 4.5. The covariance matrix C(V +
p (ε)) has eigenvalues with the following series 

expansion, for all μ = 1, . . . , n:

λμ(V +
p (ε)) = Vn+1(ε)

ε2

2(n + 3) − Vn(ε) ε4

2(n + 2)(n + 4)(2κμ(p) + Hp) + O(εn+5), (14)

λn+1(V +
p (ε)) = Vn+1(ε)

ε2

2(n + 3) − 2 Vn(ε)2

Vn+1(ε)
ε4

(n + 2)2

(
1 + Vn(ε)

Vn+1(ε)
ε2

n + 2Hp

)
+ O(εn+5). (15)

Moreover, in the limit ε → 0+, when the principal curvatures are different, the corre-
sponding eigenvectors eμ(V +

p (ε)) converge linearly to the principal directions of S at p, 
and en+1(V +

p (ε)) converges quadratically to the hypersurface normal vector N at p.

Proof. Working in the basis formed by the principal directions and the normal vector 
of the hypersurface at the fixed point p, we shall compute the entries of the covariance 
matrix and see that it is diagonal to all orders smaller than O(εn+5), precisely the error 
we get in the diagonal elements, therefore the eigenvalues coincide with those diagonal 
terms up to that error since differences between eigenvalues of symmetric matrices are 
bounded by the matrix norm metric. The covariance matrix splits into the first two terms 
of

C(V +
p (ε)) =

∫
V +
p (ε)

X⊗XT dVol−
∫

V +
p (ε)

X⊗sT dVol−
∫

V +
p (ε)

s⊗XT dVol+
∫

V +
p (ε)

s⊗sT dVol,

because the last three terms become the same upon integration. To compute the term 
left we can use the expression for V s from the proof of the barycenter formula to get:∫

V +
p (ε)

s⊗ sT dVol = V (V +
p (ε))s⊗ sT =

[
O(εn+7)n×n O(εn+5)n×1
O(εn+5)1×n V (V +

p (ε))s2
z

]

where V (V +
p (ε))s2

z = [D(n+1)
1 ]2

V (V +
p (ε))

+ O(εn+5). The other contribution to the last matrix 

entry is

∫
V +
p (ε)

z2 dVol =
∫

B+
p (ε)

z2 dnx dz − 1
24

∫
Bn

p (ε)

[
n∑

μ=1
κμx

2
μ

]3

dnx + O(εn+7)

= D
(n+1)
2
2 + O(εn+6),

in which we have neglected the second integral for being of higher order than the barycen-
ter matrix error, whose subtraction yields the stated result for the normal eigenvalue. No-
tice that the other elements in the last column and row of the complete covariance matrix 
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are O(εn+5) since the remaining contributions come from 
∫
V +
p (ε) xμz dVol ∼ O(εn+6), 

and its approximation formula has all monomials with odd powers in x.
Now, we compute the tangent coordinates block. This can be done at once for any 

μ, ν = 1, . . . , n, noticing that when μ �= ν, the integrals of Lemma 4.2 are of monomials 
of odd degree in tangent coordinates so the off-diagonal elements are O(εn+5), (we use 
that D4 = 3D22):

∫
V +
p (ε)

x2
μ dVol =

∫
B+

p (ε)

x2
μ d

nx dz −
∫

Bn
p (ε)

x2
μ

(
1
2

n∑
α=1

καx
2
α

)
dnx + O(εn+5)

= D
(n+1)
2
2 − D

(n)
4
2 κμ − D

(n)
22
2
∑
α�=μ

κα + O(εn+5)

= D
(n+1)
2
2 − D

(n)
22
2 (2κμ + Hp) + O(εn+5).

The perturbation theory of Hermitian matrices [34], [35] shows the convergence of 
the eigenvectors to the principal directions in the case of no multiplicity: truncating 
C(V +

p (ε)) to order lower than O(εn+5), that is precisely the order of the perturbation 
with respect to the exact diagonalized matrix. Fixing an eigenvalue λμ(V +

p (ε)) with 
μ �= n + 1, the minimum difference to the other eigenvalues is of order ∼ εn+4(κμ − κν), 
whereas for the last eigenvalue its distance to all the others is already at lead-
ing order ∼ εn+3. Therefore, from the sin θ theorem [34], the perturbation O(εn+5)
changes the eigenvectors {eμ(V +

p (ε))}nμ=1 with respect to the principal directions as 
O(εn+5)/O(εn+4(κμ −κν)) ∼ ε

κμ−κν
, and changes the eigenvector en+1(V +

p (ε)) with re-
spect to the normal as O(εn+5)/O(εn+3) ∼ ε2, i.e., in the limit ε → 0+ the eigenvectors
of C(V +

p (ε)) get a vanishing correction with respect to the principal directions. �
Therefore, we may write the covariance matrix as:

C(V +
p (ε)) = Vn+1(ε) ε2

2(n + 3) Idn+1 − Vn(ε) ε4

(n + 2)(n + 4)

(
Ŝ + H

2 Idn 0n×1

01×n 2 Vn(ε)(n+4)
Vn+1(ε)(n+2)

)
+ O(εn+5),

where the Weingarten operator Ŝ at p is diag(κ1(p), . . . , κn(p)) in our basis.

5. Hypersurface patch integral invariants

Now, we shall compute the asymptotic expansions of the integral invariants of the 
hypersurface patch cut out by a ball centered at p and radius ε > 0, i.e. over the domain 
Dp(ε) = S ∩ Bn+1

p (ε). Since a parametrization of the region is needed to perform the 
integrals locally, we need to find local parametric equations of the boundary ∂(S ∩
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Bn+1
p (ε)) to high enough order in ε so that we can expand asymptotically the integral 

invariants in terms of the geometric information of the hypersurface at the point. The 
strategy of [20], hinted in [2], obtaining a cylindrical coordinate approximation for the 
boundary radius of the patch, works in general dimension as follows.

Lemma 5.1. In cylindrical coordinates (ρ, φ1, . . . , φn−1, z) over the tangent space TpS, 
fixing the basis to the principal directions and the normal vector of S at p, the parametric 
equations of a point X = (ρx1, . . . , ρxn, z)T in ∂Dp(ε) = S ∩ Sn

p (ε), are

r(x) := ρ(x1, . . . , xn) = ε− 1
8κ

2(x)ε3 + O(ε4), z(x1, . . . , xn) = 1
2κ

2(x)ε2 + O(ε3),
(16)

where x1, . . . , xn are the coordinates of points on Sn−1⊂ TpS, and κ(x) =κ(x1, . . . , xn) =∑n
μ=1 κμx

2
μ is the normal curvature of S at p cut by a normal plane in the direction of 

x.

Proof. In this coordinate system the expansion of the function that locally defines S is 
z(x) = 1

2
∑n

μ=1 κμx
2
μ + O(x3) = 1

2κ(x)ρ2 + O(ρ3) since xμ = ρxμ, and because IIp is 
diagonal in our basis with x a unit vector, the curve curvature cut by a normal plane is 
by Euler’s formula κ(x) = IIp(x, x) =

∑n
μ=1 κμx

2
μ. Now, a point X = (ρx1, . . . , ρxn, z)T

in S ∩Sn
p (ε) satisfies the equation of the sphere ρ2 + z2 = ε2. Substituting the expansion 

of z(x) above, we obtain 1
4κ(x)2ρ4 + ρ2 − ε2 + O(ρ5) = 0, which up to order 4 is 

a biquadratic equation in ρ whose positive solution is the following and leads to the 
mentioned approximation:

ρ2 = 2
κ(x)2

(
−1 +

√
1 + κ(x)2ε2

)
= ε2 − 1

4κ(x)2ε4 + O(ε6),

then by extracting a common factor ε2 and taking the square root, the approximation 
expression follows. �

The volume or mass of the domain can be expressed as a correction to the volume of 
the n-ball in terms of the extrinsic mean curvature Hp and intrinsic curvature Rp of S
at the point, as it depends on the embedding. This compares to the case of the volume of 
a geodesic ball domain inside a manifold [1], which exhibits a correction only dependent 
on the intrinsic scalar curvature Rp.

Proposition 5.2. The n-dimensional area of the hypersurface patch expands as

V (Dp(ε)) = Vn(ε)
[
1 + ε2

8(n + 2)(H2
p − 2Rp) + O(ε3)

]
. (17)

Proof. Computing the induced metric tensor using Lemma 5.1, the volume around p
becomes
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dVol|Dp(ε) =
√

det g(x) dx1 · · · dxn =
[
1 + 1

2

n∑
μ=1

κ2
μx

2
μ + O(x3)

]
dx1 · · · dxn,

since ‖∇z(x)‖2 can be considered small for small enough ε > 0, because in our coor-
dinates ∇z(0) = 0. With this and the cylindrical measure, eq. (A.1), the integration 
becomes

V (Dp(ε)) =
∫

S∩Bn+1
p (ε)

dVol =
∫

Sn−1

dS

r(x)∫
0

[
1 + 1

2

n∑
μ=1

κ2
μ ρ

2x2
μ + O(ρ3)

]
ρn−1 dρ

=
∫

Sn−1

dS

[
1
n

(ε− κ(x)2ε3

8 + O(ε4))n

+ 1
2

n∑
μ=1

κ2
μx

2
μ

n + 2(ε− κ(x)2ε3

8 + O(ε4))n+2 + O(εn+4)
]

after integrating over ρ up to the boundary radius. Expanding the binomial series and 
the square of the normal curvature, all the remaining integrals are in Theorem A.4, 
leading to

V (Dp(ε)) = Vn(ε) − εn+2

8

∫
Sn−1

dS

[
n∑

μ=1
κ2
μx

4
μ + 2

n∑
μ<ν

κμκνx
2
μx

2
ν

]
+ C2 ε

n+2

2(n + 2)

n∑
μ=1

κ2
μ

+ O(εn+3)

= Vn(ε) + εn+2

n + 2

[(
C2

2 − n + 2
8 C4

) n∑
μ=1

κ2
μ − C22

n + 2
8 2

n∑
μ<ν

κμκν

]

+ O(εn+3),

where the final expression is obtained upon recognizing the mean and scalar curvature 
in terms of the principal curvatures, and using the relations among the coefficients from 
the appendix. �

The center of mass in this case turns out to deviate, to leading order in ε, only in the 
normal direction with respect to the center of the ball.

Proposition 5.3. The barycenter of the patch region has coordinates in the principal basis 
with respect to p given by

s(Dp(ε)) = [O(ε4), . . . ,O(ε4), ε2
Hp + O(ε3) ]T . (18)
2(n + 2)
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Proof. When integrating any tangent component xα of X, only factors with an odd 
power in some components are produced because the computable terms (see previous 
proof) now contain products xαx2

μ, xαx
4
μ and xαx

2
μx

2
ν , which always have an odd power 

factor regardless of the subindices combination. Therefore the first n components of 
V (Dp(ε))s(Dp(ε)) are of order O(εn+4), coming from the error inside r(x)n+1 after 
integrating radially the first term xαρ

n−1dρ. The normal component of X integrates as

∫
S∩Bn+1

p (ε)

z dVol =
∫

Sn−1

dS

r(x)∫
0

[
1
2κ(x)ρ2 + O(ρ3)

] [
1 + 1

2

n∑
μ=1

κ2
μρ

2x2
μ + O(ρ3)

]
ρn−1 dρ

=
∫

Sn−1

dS

[
κ(x)

2(n + 2)(ε− κ(x)2

8 ε3 + O(ε4))n+2 + O(εn+3)
]
= C2

εn+2

2(n + 2)Hp + O(εn+3).

Then normalizing by the volume to lowest order cancels the coefficient C2ε
n. �

Finally, the study of the covariance matrix of the patch domain shows a behavior 
similar to the spherical component, but where the next-to-leading order contribution to 
the eigenvalues includes only products of principal curvatures and no linear terms on 
them.

Theorem 5.4. The covariance matrix C(Dp(ε)) has n eigenvalues that scale like εn+2 as

λμ(Dp(ε)) = Vn(ε)
[

ε2

n + 2 + ε4

8(n + 2)(n + 4)(H2
p − 2Rp − 4Hpκμ(p))

]
+O(εn+5), (19)

for all μ = 1, . . . , n, and one eigenvalue scaling as εn+4 with leading term

λn+1(Dp(ε)) = Vn(ε) ε4

2(n + 2)(n + 4)

(
n + 1
n + 2H

2
p −Rp

)
+ O(εn+5). (20)

Moreover, in the limit ε → 0+, if the principal curvatures at p are all different, the 
eigenvectors eμ(Dp(ε)) corresponding to the first n eigenvalues converge to the principal 
directions of S at p, and the last eigenvector en+1(Dp(ε)) converges to the hypersurface 
normal vector N(p).

Proof. We need to evaluate 
∫
Dp(ε) X(x) ⊗X(x)T

√
det g dnx and V (Dp(ε))s(Dp(ε)) ⊗

s(Dp(ε))T . The latter can be obtained from the previous proof:

[O(εn+4), . . . ,O(εn+4), C2ε
n+2

2(n + 2)Hp + O(εn+3) ]T

⊗[O(ε4), . . . ,O(ε4), ε2
Hp + O(ε3)],
2(n + 2)
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resulting in all entries of the n × n block being O(εn+8), the first n elements of the last 
column and last row being O(εn+6), and the last element of the matrix becoming

[V (Dp(ε))s(Dp(ε)) ⊗ s(Dp(ε))T ](n+1),(n+1) = Vn(ε) ε4

4(n + 2)2H
2
p + O(εn+5),

(we already disregarded the term of O(εn+6) that can be computed for this matrix entry 
because, as shown below, the other contributing term in that position has error O(εn+5)).

Now, the rest of the covariance matrix requires the longest computations so far. The 
entries of X(x) ⊗X(x)T are of three types: xμxν , xμz(x) and z(x)2. The first n entries 
of the last column and last row, xμz(x), contribute at order O(εn+4). This implies that 
the matrix may not decompose at order O(εn+4) as direct sum of a “tangent” n ×n block, 
the integrals of [xμxν ], and a “normal” 1 × 1 block, the integral of z(x)2. Hence, the 
argument in the proof of Theorem 4.5 to equate the diagonal elements of this expansion 
with that of the actual eigenvalues cannot be made here, since there are off-diagonal 
error elements at the same order as the diagonal approximation. Nevertheless, one can 
show, cf. [30], how these do not affect the eigenvalues at the order we are interested 
in by writing the eigenvalue-eigenvector equation as a series expansion order-by-order, 
which is always possible and converges for Hermitian matrices of converging power series 
elements [36], such as our C(Dp(ε)):

[ a ε2

(
Idn 0n×1
01×n 0

)
+ b ε4

(
An×n Bn×1
B1×n C

)
+ O(ε5) ][V (0) + V (1)ε + V (2)ε2 + . . . ] =

= (λ(1)ε1 + λ(2)ε2 + λ(3)ε3 + λ(4)ε4 + . . . )[V (0) + V (1)ε + V (2)ε2 + . . . ].

Therefore, expanding the components of C(Dp(ε)) shall yield exactly the actual eigen-
values to order O(εn+4). The last matrix element expands the integrals into the following 
terms

∫
S∩Bn+1

p (ε)

z2 dVol = 1
4

⎡⎣ n∑
α=1

κ2
α

∫
Sn−1

x4
α dS + 2

n∑
α<β

κακβ

∫
Sn−1

x2
αx

2
β dS

⎤⎦ εn+4

n + 4 + O(εn+5)

= εn+4

4(n + 4)
[
C4(H2

p −Rp) + C22Rp

]
+ O(εn+5),

whereof subtracting the barycenter matrix contribution, the last eigenvalue becomes

λn+1(p, ε) = C2 ε
n+4

4(n + 2)(n + 4)
[
3H2

p − 2Rp

]
− C2 ε

n+4

4(n + 2)2H
2
p + O(εn+5).

The “tangent” block entries can be computed simultaneously for any μ, ν = 1, . . . , n:
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∫
S∩Bn+1

p (ε)

xμxν dVol =
∫

Sn−1

dS

r(x)∫
0

ρ2xμxνρ
n−1

[
1 + 1

2

n∑
α=1

κ2
αρ

2x2
α + O(ρ3)

]
dρ

= εn+2

n + 2

⎡⎣δμνC2 −
ε2(n + 2)

8

∫
Sn−1

dS xμxν

⎛⎝ n∑
α=1

κ2
αx

4
α + 2

n∑
α<β

κακβx
2
αx

2
β

⎞⎠⎤⎦ +

+ εn+4

n + 4
δμν
2

⎛⎝κ2
μ

∫
Sn−1

x4
μ dS +

n∑
α�=μ

κ2
α

∫
Sn−1

x2
αx

2
μ dS

⎞⎠+ O(εn+5),

where the δμν appears because the monomials get an odd power if μ �= ν. Now, the 
different integrals inside the indexed sums result in different constants depending on the 
different monomials that the terms x2

μx
4
α and x2

μx
2
αx

2
β can combine into, and after some 

algebraic manipulations the above integral is equal to

C2
εn+2

n + 2δμν + εn+4

n + 4δμν

⎡⎣(C4

2 − n + 4
8 C6)κ2

μ + (C22

2 − n + 4
8 C24)

n∑
α�=μ

κ2
α

−n + 4
8 (2C24

n∑
α�=μ

κμκα + C222

n∑
α�=β

α,β �=μ

κακβ)

⎤⎥⎥⎦+ O(εn+5).

Notice that the summations in the last equation are all over indices that must be different 
from μ, so we can add and subtract the corresponding missing terms to those sums as long 
as we subtract them in the correct place. Doing this, and using the crucial relationships 
between the constants from the appendix, each of the different terms under the big braces 
simplify to:

(C4

2 − n + 4
8 C6 −

C22

2 + n + 4
8 C24)κ2

μ = − C2

2(n + 2)κ
2
μ(p),

(C22

2 − n + 4
8 C24)

n∑
α=1

κ2
α = C2

8(n + 2)(H2
p −Rp),

− n + 4
8 ((2C24 − 2C222)

n∑
α�=μ

κμκα + 2C222

n∑
α<β

κακβ)

= − C2

2(n + 2)Rμμ(p) + C2

8(n + 2)Rp,

recalling that the diagonal components of the Ricci tensor for hypersurfaces are Rμμ(p) =∑n
α�=μ κα(p)κμ(p), and the scalar curvature is Rp = 2 

∑n
μ<ν κμ(p)κν(p). Finally, these 

add up into the expression
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∫
Dp(ε)

xμxνdVol = δμνVn(ε)
[

ε2

n + 2 + ε4

8(n + 2)(n + 4)(H2
p − 2Rp − 4κ2

μ − 4Rμμ)
]

+ O(εn+5),

and since κ2
μ(p) + Rμμ(p) = κμ(p)Hp the stated formula for the tangent eigenvalues 

follows from the diagonal of this block. Therefore, we can write C(D+
p (ε)) =

Vn(ε) ε2

n + 2

(
Idn 0n×1
01×n 0

)
+ Vn(ε) ε4

2(n + 2)(n + 4)

(
H2−2R

4 Idn −Hp Ŝ An×1

A1×n
n+1
n+2H

2
p −Rp

)
+O(εn+5),

so the Weingarten operator appears inside the covariance matrix in this case as well. �
6. Multi-scale curvature descriptors

By solving the second term in the expansion from our integral invariants, we can 
extract the curvature information they encode and write it in terms of the volume and 
eigenvalues at a fixed scale. This means that these local statistical measurements of the 
underlying point set can be employed to reconstruct or estimate its differential geometry, 
e.g., from a discrete sample cloud of points. These estimators can be used in geometry 
processing to ignore details below a given scale and act as feature detectors.

Employing the asymptotic expressions of section 4, we invert the relations and solve 
for the principal curvatures.

Corollary 6.1. Abbreviating the integral invariants of the spherical component as 
λμ(p, ε) ≡ λμ(V +

p (ε)), Vp(ε) ≡ V (V +
p (ε)), then the corresponding descriptors of the 

principal curvatures, at scale ε > 0 and point p ∈ S, are given by

κμ(V +
p (ε)) = n + 4

ε4Vn(ε)

⎡⎣ε2Vn+1(ε)
n + 3 − (n + 1)λμ(p, ε) +

n∑
α�=μ

λα(p, ε)

⎤⎦ , (21)

or equivalently, using the mean curvature H, by

H(V +
p (ε)) = (n + 2)Vn+1(ε)

ε2Vn(ε)

(
1 − 2 Vp(ε)

Vn+1(ε)

)
, (22)

κμ(V +
p (ε)) = (n + 2)(n + 4)

ε4Vn(ε)

(
ε2Vn+1(ε)
2(n + 3) − λμ(p, ε)

)
+ 1

2H(V +
p (ε)), (23)

with corresponding errors |Hp − H(V +
p (ε))| ≤ O(ε), and |κμ(p) − κμ(V +

p (ε))| ≤ O(ε), 
for any μ = 1, . . . , n. The eigenvectors eμ(V +

p (ε)) and en+1(V +
p (ε)) are descriptors of 

the principal and normal directions respectively.
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Proof. Let us define the coefficients a = ε2 Vn+1(ε)
2(n + 3) , b = − ε4Vn(ε)

2(n + 2)(n + 4), then the 

tangent eigenvalues from eq. (14) solve the principal curvatures

κμ = λμ − a

2b − 1
2Hp + O(ε).

Fixing one μ = 1, . . . , n, and subtracting any two such equations with μ �= α results in

κα = λα − λμ

2b + κμ + O(ε),

and inserting this into the definition of H yields

κμ(V +
p (ε)) = λμ − a

b(n + 2) −
n∑

α�=μ

λα − λμ

2b(n + 2) = 1
2b(n + 2)

⎛⎝−2a + (n + 1)λμ −
n∑

α�=μ

λα

⎞⎠ .

The truncation error is given by the order of O(εn+5)/b ∼ O(ε). Alternatively, one can 
solve the Hulin-Troyanov relation, eq. (12), to obtain a descriptor of Hp, and then use 
this in the expression of κμ in terms of λμ and H above. �

An analogous inversion process can be carried out with the series expansions of sec-
tion 5.

Corollary 6.2. Denoting by λ(p, ε) ≡ λ(Dp(ε)), Vp(ε) ≡ V (Dp(ε)) the integral invariants 
of the hypersurface patch domain, then the corresponding curvature descriptors at scale 
ε > 0 and point p ∈ S, for any μ = 1, . . . , n, are

R(D+
p (ε)) = 2(n + 2)2(n + 4)λn+1(p, ε)

n ε4 Vn(ε) − 8(n + 1)(n + 2)
n ε2

(
Vp(ε)
Vn(ε) − 1

)
(24)

H(D+
p (ε)) = (±)

√
4(n + 2)2(n + 4)λn+1(p, ε)

n ε4Vn(ε) + 8(n + 2)2
n ε2

(
1 − Vp(ε)

Vn(ε)

)
, (25)

κμ(D+
p (ε)) = 2(n + 2)

ε2H(D+
p (ε))

[
Vp(ε)
Vn(ε) + n + 4

ε2

(
ε2

n + 2 − λμ(p, ε)
Vn(ε)

)
− 1
]
, (26)

where the overall sign can be chosen by fixing a normal orientation from

(±) = sgn〈 en+1(Dp(ε)), s(Dp(ε)) 〉.

The eigenvectors eμ(Dp(ε)) and en+1(Dp(ε)) are descriptors of the principal and normal 
directions respectively. The corresponding errors are |H2

p − H(Dp(ε))2| ≤ O(ε), |Rp −
R(Dp(ε))| ≤ O(ε), and |κ2

μ(p) − κμ(Dp(ε))2| ≤ O(ε).
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Proof. By solving the second term in eq. (17) and eq. (20), let us define coefficients

A = 8(n + 2)
ε2

(
Vp(ε)
Vn(ε) − 1

)
+ O(ε), B = 2(n + 2)(n + 4)λn+1(p, ε)

ε4 Vn(ε) + O(ε),

so that we have the system of equations A = H2
p − 2Rp, B = n+1

n+2H
2
p − Rp, whose 

solution is

Rp = 1
n

((n + 2)B − (n + 1)A), H2
p = (n + 2)

n
(2B −A).

We can approximate the normal direction and orientation by using en+1(p, ε), and since 
the barycenter eq. (18) has normal component with leading order in terms of Hp, their 
mutual projection can serve to fix the orientation and overall relative sign of all the 
principal curvatures. The principal curvatures themselves are then solved from eq. (19)
substituting the value of Hp above, resulting in κμ = 1

4Hp
(A − Γμ), where

Γμ = 8(n + 2)(n + 4)
ε4

(
λμ(p, ε)
Vn(ε) − ε2

n + 2

)
+ O(ε).

The errors follow straightforwardly by the truncation of A, B, Γμ. �
In the spirit of the limit formula obtained in [6] for regular curves in Rn, relating 

ratios of the covariance eigenvalues to the Frenet-Serret curvatures, we also state here 
analogous expressions for hypersurfaces using the ratios of the covariance eigenvalues, 
whose proofs are straightforward.

Corollary 6.3. Let p ∈ S and consider the spherical component invariants. Then for any 
μ, ν = 1, . . . , n, the first n eigenvalues, λμ(p, ε) ≡ λμ(V +

p (ε)), of the covariance matrix 
C(V +

p (ε)) satisfy the following limit ratio:

lim
ε→0+

V 2
n+1(ε)
Vn(ε)

λμ(p, ε) − λν(p, ε)
λμ(p, ε)λν(p, ε)

= 4(n + 3)2

(n + 2)(n + 4)[κν(p) − κμ(p)]. (27)

Corollary 6.4. Let p ∈ S and consider the hypersurface patch invariants. Then for any 
μ, ν = 1, . . . , n, the first n eigenvalues, λμ(p, ε) ≡ λμ(Dp(ε)), of the covariance matrix 
C(Dp(ε)) satisfy the following limit ratio:

lim
ε→0+

Vn(ε)λμ(p, ε) − λν(p, ε)
λμ(p, ε)λν(p, ε)

= n + 2
2(n + 4)[κν(p) − κμ(p)]Hp, (28)

and the last eigenvalue satisfies:
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lim
ε→0+

Vn(ε) λn+1(p, ε)
λμ(p, ε)λν(p, ε)

= n + 2
2(n + 4)

[
n + 1
n + 2

H2
p −Rp

]
. (29)

These ratios can be used as well to define descriptors solving for the curvature variables 
aided by the volume descriptor, like in the preceding corollaries.

7. Conclusions

In this paper we have generalized major PCA methods and results known for surfaces 
in space to establish the asymptotic relationship between integral invariants and the 
principal curvatures and principal directions of hypersurfaces of any dimension, which 
furnishes a method to obtain geometric descriptors at any given scale using the eigenvalue 
decomposition of the covariance matrix. We have seen that these methods are sufficient 
to provide also estimators of the Riemann curvature tensor of embedded submanifolds 
of higher-codimension, using its hypersurface projections onto the linear subspaces in 
ambient space spanned by the tangent space and each of the normal vectors from an 
orthonormal basis. These results establish a theoretical foundation for the implementa-
tion of the computational integral invariant approach to study the geometry of point 
clouds of high dimensionality, which should be a helpful tool for manifold learning and 
geometry processing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank Louis Scharf for very helpful discussions during the writing of 
this paper. This paper is based on research partially supported by the National Science 
Foundation under Grants No. DMS-1513633, and DMS-1322508.

Appendix A. Integration of monomials over spheres

Let x = (x1, . . . , xn) ∈ Rn, and denote the sphere and ball of radius ε in Rn by:

Sn−1(ε) = {x ∈ Rn : ‖x‖ = ε}, Bn(ε) = {x ∈ Rn : ‖x‖ ≤ ε},

where we set Sn−1 = Sn−1(1). Using generalized spherical coordinates (r, φ1, . . . , φn−1), 
where r = ‖x‖, xμ = xμ/r ∈ Sn−1, i.e.,

x1 = cosφ1, . . . , xn−1 = sinφ1 · · · sinφn−2 cosφn−1, xn = sinφ1 · · · sinφn−2 sinφn−1,
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the Euclidean measure over the unit sphere and ball of any radius can be written as

dSn−1 = dφn−1

n−2∏
μ=1

sinn−1−μ(φμ)dφμ, dnB = dx1 · · · dxn = rn−1dr dSn−1. (A.1)

Definition A.1. For any integers α1, . . . , αn ∈ {0, 1, 2, . . . }, the integrals of the monomials 
xα1

1 · · ·xαn
n over the unit sphere and the ball of radius ε are denoted by:

C(n)
α1...αn

=
∫

Sn−1

xα1
1 · · ·xαn

n dSn−1, D(n)
α1...αn

=
∫

Bn(ε)

xα1
1 · · ·xαn

n dnB. (A.2)

These can be computed directly in spherical coordinates by collecting factors and 
separating the integrals into a product of integrals of powers of sines and cosines which 
can be given in terms of the Beta function, that then telescopes and simplifies; other 
shorter proof uses the usual exponential trick, see for example [37], resulting in the 
following formula.

Theorem A.2. Denoting βμ = 1
2(αμ+1), the values of the integrals eq. (A.2) over spheres 

are

C(n)
α1...αn

=

⎧⎨⎩0, if some αμ is odd,

2 Γ(β1)Γ(β2) · · ·Γ(βn)
Γ(β1 + β2 + · · · + βn) , if all αμ are even,

(A.3)

and the integrals over balls become

D(n)
α1...αn

= εn+(α1+···+αn)

n + (α1 + · · · + αn) C(n)
α1...αn

. (A.4)

Notice that the values of the integrals of these monomials only depend on the com-
bination of powers, not on which particular coordinates have those powers. Using these 
formulas we compute the relevant integrals that are needed for our work.

Remark A.3. Unless integrals over spheres of different dimension appear in the same 
expression, we shall abbreviate and omit the superscript (n) to be understood from the 
context.

Example A.4. Using the factorial property of the gamma function, Γ(z + 1) = zΓ(z), 
and the value Γ(1

2 ) =
√
π, the integrals of monomials of even powers of order 2, 4 and 

6, have the following relations (shortening d Sn−1 as d S):

C2 =
∫

x2
1 dS = 2

Γ(3
2 )Γ(1

2)n−1

Γ(3
2 + n−1

2 )
= πn/2

Γ(n2 + 1) , C22 =
∫

x2
1x

2
2 dS = C2

n + 2 ,

Sn−1 Sn−1
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C4 =
∫

Sn−1

x4
1 dS = 3C2

n + 2 = 3C22, C222 =
∫

Sn−1

x2
1x

2
2x

2
3 dS = C2

(n + 2)(n + 4) ,

C24 =
∫

Sn−1

x2
1x

4
2 dS = 3C2

(n + 2)(n + 4) = 3C222, C6 =
∫

Sn−1

x6
1 dS = 15C2

(n + 2)(n + 4) .

The value of C2 is related to the n-dimensional volume of the ball of radius ε, and 
the (n − 1)-dimensional area of the unit sphere by Vn(ε) = Vol(Bn(ε)) = εn C2, and 
Sn−1 = Area(Sn−1) = n C2. The integrals over balls needed in our work are:

D2 =
∫

Bn(ε)

x2
1 dx1 · · · dxn = εn+2

n + 2C2 = ε2

n + 2Vn(ε),

D22 =
∫

Bn(ε)

x2
1x

2
2 dx1 · · · dxn = εn+4

(n + 2)(n + 4)C2 = ε4

(n + 2)(n + 4)Vn(ε),

D4 =
∫

Bn(ε)

x4
1 dx1 · · · dxn = 3 εn+4

(n + 2)(n + 4)C2 = 3 ε4

(n + 2)(n + 4)Vn(ε).

We also need the integral of monomials over half-balls B+(ε) (without loss of generality 
we can consider the half-ball is defined by x1 ≥ 0). If all the αi are even then nothing 
changes in the proof of Theorem A.2 except that now we integrate over half the domain 
and an extra factor of 1

2 is needed. If any αi is odd for i �= 1, the integration over 
those variables is still carried out over the same domain so the overall integral is still 0. 
However, if α1 is odd the corresponding integral of that coordinate does not cancel out, 
and the main formula still holds with β1 = 1 but without the factor of 2.

Example A.5. Using the formula in the mentioned adjusted form, we define and compute

D
(n)
1 =

∫
B+(ε)

x1 dx1 · · · dxn = εn+1 π
n−1

2

2Γ(n+3
2 )

,

which gives the constant needed in our main text D(n+1)
1 =

∫
B+(ε)

x1 dx1 · · · dxn+1 =

ε2

n + 2Vn(ε). When integrating 
∫
B+(ε) x

2
1dVol, we shall just write D2

2 to be consistent with 

our notation.
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