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1. Introduction

Due to modern developments in medical treatments and procedures, many diseases con-
sidered to be deadly decades ago, such as breast cancer, non-Hodgkin’s lymphoma, and
melanoma, have seen substantially improved cure rates recently; see, e.g., Tai et al.
(2005). This motivates the proposal of a new type of survival data, called cure rate data,
where the population consists of two groups of subjects, susceptible and non-susceptible
individuals. All susceptible subjects would eventually experience the failure if there is
no censoring, while non-susceptible subjects are not at risk of failure anymore and can
be regarded as cured. A variety of statistical methods have thus developed to analyze
cure rate data. Each cure model generally has two components: incidence which indicates
whether the event could eventually occur and latency which denotes when the event will
occur given the subject is susceptible to the event.

Existing cure rate models can be roughly divided into two categories. One category
is promotion cure models first proposed in Yakovlev and Tsodikov (1996). Some recent
developments in promotion cure models can be found in Zeng, Yin, and Ibrahim (2006)
and references therein. The model we consider belongs to the other category of cure rate
models called two-component mixture cure model. It assumes that the population is a
mixture of two sub-populations and has a survival function

Spop(t|x, z) = π(z)S(t|x) + 1− π(z), (1)

where π(z) and S(t|x) are respectively the proportion and the survival function of sus-
ceptible subjects. Here z and x are the covariates associated respectively with π and S.
They may overlap or even be identical. Some earlier developments include Berkson and
Gage (1952) where π was simply an unknown constant and S(t|x) assumed a parametric
model, and the extension in Farewell (1982) with π(z) assuming a logistic regression
model. Since then, logistic regression has become the universal approach for modeling
the proportion function π(z) in the incidence component. On the other hand, the model
choices for the survival function S(t|x) in the latency component may vary with two
distinguished competitors, namely the proportional hazards model and the accelerated
failure time model.

An early example of the proportional hazards approach is Kuk and Chen (1992),
who further extended the work of Farewell (1982) by considering a semiparametric Cox
proportional hazards model for the hazard function of S(t|x). They applied a marginal
likelihood approach and used an estimation method involving Monte Carlo simulation. In
Peng and Dear (2000) and Sy and Taylor (2000), the model was similar in spirit to that
of Kuk and Chen (1992), but the estimation was implemented through an EM algorithm
Peng (2003). The same model was considered in Corbière, Commenges, Taylor, and Joly
(2009). They kept the parametric form of covariate effect in the relative risk of Cox model
and used splines to model the baseline hazard function. A direct optimization procedure
was proposed there to estimate the parameters. However, as noted by the inventor of the
proportional hazards model, Sir D. R. Cox, biological interpretation of the proportional
hazards assumption can be quite tricky. He further commented that “accelerated life
models are in many ways more appealing” than the proportional hazards model “because
of their quite direct physical interpretation”; see, e.g., Reid (1994) and Cox (1997).

Many recent mixture cure rate models focus on the accelerated failure time modeling
of the survival component. Li and Taylor (2002) developed a mixture cure rate model
where the latency component assumes an accelerated failure time regression model with
unspecified error distribution. An EM algorithm is used for the estimation. The work of
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Zhang and Peng (2007), Xu and Zhang (2010), and Zhang, Peng, and Li (2013) focused
on improving the estimation procedure in Li and Taylor (2002) with the introduction
of a rank-like estimating equation at the M-step. Lu and Ying (2004) proposed a class
of semiparametric transformation models incorporating cure fractions, which included
both the proportional hazards model and the accelerated failure time model as special
cases. Othus, Li, and Tiwari (2009) extended their model to allow for time-dependent
covariates and dependent censoring. More recently, Lu (2010) proposed an accelerated
failure time model with cure fraction where the unknown error density was estimated by
the kernel method.

All the aforementioned papers have a major common drawback: the covariate effects
in both the incidence and the latency components assume a restrictive parametric form.
For example, the logistic regression model for the incidence always assumes a linear form
of covariate effects. For the latency, when the proportional hazard or accelerated failure
time model is used, the logarithm of the relative risk or the acceleration factor is lin-
ear in covariates. In practice, such restrictive assumption on covariate effects may not
hold and the analysis tools thus derived may not be valid. This limitation motivated the
nonparametric method developed in Wang et al. (2012), where the covariate effects in
both incidence and latency were modeled by smoothing spline ANOVA. In a smooth-
ing spline ANOVA decomposition, a multivariate function is decomposed into sum of
orthogonal components as main effects and interactions. In Wang et al. (2012), such
functional ANOVA decomposition was applied to the mean function in a nonparametric
logistic regression model of π(z) and the log hazard function corresponding to survival
function S(t|x). To ensure model identifiability, they had to enforce a proportional haz-
ards structure, although the relative risk part takes a flexible nonparametric form. Thus,
their model naturally extends the traditional proportional hazard modeling of the latency
component to allow for nonparametric form of covariate effects. On the other hand, it
leaves the nonparametric extension of accelerated failure time modeling of latency an
open problem.

Our method aims to filling in this gap by modeling the logarithm of the accelerator
in the latency and the regression mean in the incidence with smoothing spline ANOVA,
so the covariate effects now take more flexible nonparametric forms in both components.
At the same time, our method also enjoys the more direct physical interpretation than
the proportional hazards model in Wang et al. (2012).

Our smoothing spline function estimates are defined as the minimizer of a penalized
likelihood, which consists of the negative log likelihood representing the goodness-of-fit, a
roughness penalty enforcing smooth conditions, and a smoothing parameter balancing the
tradeoff. Direct optimization of the penalized likelihood is as difficult as the optimization
of the likelihoods in Peng and Dear (2000), Peng (2003), and Sy and Taylor (2000),
where they used the EM algorithm to obtain the MLEs. However, the classical EM
algorithm can only handle parameters of finite dimensions whereas our parameters are
two smooth functions residing in infinite dimensional function spaces. So we need to
extend the penalized EM (PEM) algorithm in Wang et al. (2012) to estimate the two
function parameters in our model simultaneously. Similar to the EM algorithm, the PEM
algorithm replaces the penalized likelihood by a more optimization-friendly penalized
complete log likelihood with the introduction of a latent cure status variable y. The
new objective functional consists of two penalized likelihoods, one involving only the
parameter in the incidence component and the other involving only the parameters in
the latency component. The E-step still evaluates the conditional expectations of yi’s
given the current parameter estimates. The difference from the classical EM algorithm
lies in the M-step where two penalized complete likelihoods are optimized instead of
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the complete likelihoods. The additional roughness penalties are necessary for enforcing
smoothness on the function parameters. And the extra smoothing at the M-step has been
proven to accelerate the convergence of the algorithm (Silverman, Jones, Wilson, and
Nychka 1990). Furthermore, our latency model contains an additional shape parameter
for the baseline distribution besides the function parameter for covariate effects. This
nuisance parameter adds some extra complication to the algorithm when compared with
the PEM algorithm in Wang et al. (2012). Besides the point estimators, we also derive
confidence intervals for the parameters through an extension of the Louis formula (Louis
1982), a classical tool for computing observed information matrix when the EM algorithm
is used. And we show that our nonparametric function estimates are consistent and their
convergence rates are optimal for spline estimates.

As far as we know, this is the first mixture cure rate model where the latency component
assumes an accelerated failure time model with a nonparametric form of covariate effects.
It provides a nice complement to the mixture cure rate model in Wang et al. (2012) where
the latency component has a nonparametric form of relative risk under the proportional
hazards framework. In additional to its flexibility in modeling, our method offers smooth
function estimates that are appealing to practitioners especially at the exploratory stage
of data analysis. Our simulations demonstrate excellent performance of the proposed
method in both estimation and inference. Our new method also shows some advantage
when applied to the melanoma data studied in Wang et al. (2012)

The rest of the paper is organized as follows. Section 2.1 describes the nonparametric
mixture cure rate model with the accelerated failure time latency component. Section 2.2
introduces the smoothing spline ANOVA framework. Section 2.3 presents the computa-
tional procedures for parameter estimation and inference. Section 2.4 studies the asymp-
totic properties of our estimates. Application to a melanoma study is in Section 3, and
the simulation results in Section 4. Discussions in Section 5 concludes the paper.

2. Mixture Cure Rate Model with Nonparametric Accelerator

2.1. The Model

Let (ti, δi, zi,xi) be the observed data for the ith subject, i = 1, · · · , n. Here ti is the
observed lifetime time for the ith subject, δi is an indicator with δi = 1 for observed
failures and δi = 0 for censored subjects, and zi and xi are the covariates associated with
the incidence and latency components respectively. The covariates z and x, though not
necessarily so, can overlap with each other or even be the same. Note that all the cured
subjects are censored and have δi = 0, but that some censored subjects may eventually
experience failures after the study. Assuming independent and non-informative censoring,
the observed likelihood function can be written as

lobs(π(·), S(·)) =

n∏
i=1

[π(zi)f(ti|xi)]δi [π(zi)S(ti|xi) + 1− π(zi)]
1−δi , (2)

where f(t|x) and S(t|x) are respectively the probability density function and the survival
function of failure time T given the covariate x.

For the incidence component, we propose the nonparametric logistic regression model

π(z) = exp{ζ(z)}/[1 + exp{ζ(z)}],
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where ζ(·) is an unknown smooth function. For the latency component S(t|x), we consider
the accelerated failure time (AFT) model

log(T ) = η(x) + ε,

where η(·) is an unknown smooth function and the error term ε follows an unknown
distribution with zero mean. Let x0 be the covariate value that η(x0) = 0 and S0 be the
survival function of failure time T given that x = x0. Then straightforward probability
derivation yields S(t|x) = S0(te−η(x)). Therefore, the covariate effect is to change the
time scale by a factor e−η(x), either accelerating or decelerating the time. Note that the
covariate effects in both the incidence and the latency models take nonparametric forms
and thus allow more flexibility in model restrictions.

There are several common choices for the error distribution in the AFT model.

Example 2.1 (Extreme value and Weibull distributions) When ε follows an extreme
value distribution, T follows a Weibull distribution with survival function S(t|x) =
exp[−{te−η(x)}τ ] and hazard function h(t|x) = τt−1{te−η(x)}τ , where τ is the shape pa-
rameter of the Weibull distribution. Note that the Weibull survival function also allows
for a proportional hazards model interpretation.

Example 2.2 (Normal and log normal distributions) When ε follows a normal dis-
tribution, T follows a log normal distribution with survival function S(t|x) = 1 −
Φ(log{te−η(x)}τ ) and hazard function h(t|x) =
τt−1φ(log{te−η(x)}τ )[1 − Φ(log{te−η(x)}τ )]−1, where Φ(·) and φ(·) are respectively the
cumulative distribution function and probability density function of the standard normal
distribution and 1/τ is the standard deviation of ε.

Example 2.3 (Logistic and log logistic distributions) When ε follows a logistic distribu-
tion, T follows a log logistic distribution with survival function S(t|x) = [1+{te−η(x)}τ ]−1

and hazard function h(t|x) = τt−1[1 + {te−η(x)}−τ ]−1, where 1/τ is the scale parameter
of the logistic distribution.

From now on, we will write S(t|x) = S(t; η, τ |x) and h(t|x) = h(t; η, τ |x) to emphasize
the dependence of S and h on τ and η. The mixture cure model (1) now becomes

Spop(t|x, z) = π(z)S(t; η, τ |x) + 1− π(z). (3)

We first show that this model is identifiable under a mild condition on S, whose proof is
in Appendix A. Note that this condition is clearly satisfied by Examples 2.1-2.3.

Proposition 2.1 Suppose that S(t; η1, τ1|x) = S(t; η2, τ2|x) implies η1(·) = η2(·) and
τ1 = τ2. Then the model (3) is identifiable.

Rewriting the observed likelihood (2) in terms of ζ and η, the smoothing spline estimate
of (ζ, η, τ) is simply the minimizer of the penalized likelihood

− 1

n
log lobs(ζ, η, τ) +

β

2
J1(ζ) +

λ

2
J2(η), (4)

where the first term is negative log likelihood representing the goodness-of-fit, J1 and J2

are roughness penalties enforcing certain levels of smoothness on the functions ζ and η,
and β, λ > 0 are smoothing parameters controlling the tradeoff.
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2.2. Smoothing Spline ANOVA

The minimization of the penalized likelihood (4) is carried out in a reproducing kernel
Hilbert space (RKHS) of functions. In this paper, we use cubic and tensor product cubic
smoothing splines for estimation whose detailed configurations involving the RKHS are
given below.

Let H = {η : J(η) < ∞} be a RKHS on the domain X of covariate, where J is a
square seminorm in H with a finite dimensional null space NJ = {η : J(η) = 0} ⊂ H.
Let R(·, ·) be the reproducing kernel (RK) of H such that R is a non-negative definite
function satisfying 〈R(x, ·), f(·)〉 = f(x), ∀f ∈ H, where 〈·, ·〉 is the inner product in
H; the RK R(·, ·) and the space (H, 〈·, ·〉) determine each other uniquely. Typically,
〈·, ·〉 = J(·, ·) + J̃(·, ·), where J(·, ·) is the semi inner product associated with J(·) and
J̃(·, ·) is an inner product in the null space NJ when restricted therein. There exists a
tensor sum decomposition H = NJ ⊕ HJ , where the space HJ has J(η) as its square
norm and an RK RJ satisfying J(RJ(x, ·), f(·)) = f(x), ∀f ∈ HJ . See, e.g., Section 2.1
of Gu (2013).

The following examples give the configurations for the cases of a univariate continuous
x and a bivariate x with one component continuous and the other discrete. When the
covariate x has more dimensions, one can simply incorporate them by expanding the
tensor product in Example 2.5.

Example 2.4 (Cubic Spline) Without loss of generality assume X = [0, 1] for a uni-

variate x. A choice of J(η) is
∫ 1

0 (η′′)2dx, which yields the popular cubic splines. If the

inner product in NJ is (
∫ 1

0 f dx)(
∫ 1

0 g dx)+(
∫ 1

0 f
′ dx)(

∫ 1
0 g
′ dx), then HJ = {η :

∫ 1
0 ηdx =∫ 1

0 η
′dx = 0, J(η) <∞} and the reproducing kernel RJ(x1, x2) = k2(x1)k2(x2)−k4(|x1−

x2|), where kν(x) = Bν(x)/ν! are scaled Bernoulli polynomials for x ∈ [0, 1]. The null
space NJ has a basis {1, k1(x)} of m = 2 functions, where k1(x) = x− 0.5 for x ∈ [0, 1].
See Section 2.3.3 of Gu (2013). 2

Example 2.5 (Tensor Product Spline) Consider a bivariate variable x = (z, u), where
z ∈ Z = [0, 1] and u is a categorical variable with l levels.

We first look at the function space corresponding to u. Note that the domain of u is
U = {1, . . . , l}. Functions on U are essentially vectors in Rl, so the RKHS H〈u〉 = Rl.
When u is a nominal variable, that is, its levels are not ordered, let η̄ =

∑l
u=1 η(u)/l.

Equipped with the roughness penalty J〈u〉(η) =
∑l

u=1[η(u)−η̄]2 and inner product 〈f, g〉 =∑l
u=1 f(u)g(u), the RKHS H〈u〉 decomposes as

H〈u〉 = H0〈u〉 ⊕H1〈u〉 = {η : η(1) = · · · = η(l)} ⊕
{
η :

l∑
u=1

η(u) = 0
}

with reproducing kernels R0〈u〉(u1, u2) = 1/l, R1〈u〉(u1, u2) = I[u1=u2] − 1/l.
On the other hand, the construction in Example 2.4 gives a decomposition of the RKHS
H〈z〉 on the domain Z

H〈z〉 =
{
η :
∫ 1

0 (η′′)2dz <∞
}

= H00〈z〉 ⊕H01〈z〉 ⊕H1〈z〉

= span{1} ⊕ span{k1(z)} ⊕
{
η :
∫ 1

0 ηdz =
∫ 1

0 η
′dz = 0,

∫ 1
0 (η′′)2dz <∞

}
,

with reproducing kernels R00〈z〉(z1, z2) = 1, R01〈z〉(z1, z2) = k1(z1)k1(z2), and
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R1〈z〉(z1, z2) = k2(z1)k2(z2) − k4(|z1 − z2|). The tensor product of H〈z〉 and H〈u〉 yields
six tensor sum terms Hν,µ = Hν〈z〉 ⊗ Hµ〈u〉 on Z × U , ν = 00, 01, 1 and µ = 0, 1, with
reproducing kernels Rν,µ(x1, x2) = Rν(z1, z2)Rµ(u1, u2), where xi = (zi, ui). The two
subspaces with ν = 00, 01 are of one-dimension each and can be lumped together as the
null space NJ (thus m = 2). The other four subspaces form HJ with the reproducing
kernel

RJ = θ00,1R00〈z〉,1〈u〉 + θ01,1R01〈z〉,1〈u〉 + θ1,0R1〈z〉,0〈u〉 + θ1,1R1〈z〉,1〈u〉,

where θν,µ are a set of extra smoothing parameters adjusting the relative weights of the
roughness of different components.

For interpretation, the six subspaces readily define an ANOVA decomposition

η(z, u) = η∅ + ηu(u) + ηz(z) + ηz,u(z, u)

for functions on X , with η∅ ∈ H00〈z〉⊗H00〈u〉 being the constant term, ηu ∈ H00〈z〉⊗H1〈u〉
the u main effect, ηz ∈ {H01〈z〉 ⊕H1〈z〉} ⊗ H0〈u〉 the z main effect, and ηz,u ∈ {H01〈z〉 ⊕
H1〈z〉} ⊗H1〈u〉 the interaction. See, e.g., Example 2.7 of Gu (2013). 2

Note that the optimization of the PL is carried out on the function space H and may
be considered infeasible since H is of infinite dimensions. However, by the Representer
Theorem (Wahba 1990), the minimizer of the PL in some settings actually resides in a
finite dimensional subspace, namely, H0⊕ span{RJ(x1), . . . , RJ(xn)}. Here {x1, . . . ,xn}
are observed values for x in the data and sometimes called the “knots” for smoothing
splines. In many other settings, the minimizer in this subspace provides a sufficient
approximation to the minimizer in H (Gu 2013). Furthermore, Kim and Gu (2004)
showed that instead of having n knots, the number of knots can be reduced to the order
of n2/9 without losing any efficiency. They suggested using 10n2/9 knots in practice, which
we shall follow in our computation.

For smoothing parameter (λ and θs) selection, cross-validation scores such as the gen-
eralized cross validation (GCV) score are often used in various problems (Wahba 1990;
Gu 2013). As derived in the next section, our PL (4) will be reduced to PLs similar to
some existing ones. Hence, we can directly borrow the cross validation scores in those
problems. Our simulation results suggest they work fine in our problems too.

2.3. Computation: Estimation and Inference Procedures

In this section, we introduce a penalized EM algorithm for the optimization of (4) and
extend the Louis formula to compute the confidence intervals for the parameters.

Direct optimization of (4) is difficult since the parameters (ζ, η, τ) are entangled with
each other. Therefore we consider a penalized version of the EM algorithm here to break
up (4) into separate objective functionals. Let yi be the unobservable susceptible indicator
for the ith subject. Given y = (y1, . . . , yn), the complete log likelihood decomposes as
Lc(ζ, η, τ ;y) = L1(ζ;y) + L2(η, τ ;y), where L1(ζ;y) =

∑n
i=1

[
yiζ(zi) − log{1 + eζ(zi)}

]
and L2(η, τ ;y) =

∑n
i=1

{
δi log h(ti; η, τ |xi) − yi

∫ ti
0 h(t; η, τ |xi)dt

}
. Note that L1 only

involves ζ and L2 only involves (η, τ). Hence separate optimization with respect to ζ and
(η, τ) become feasible now.

The E-step computes the conditional expectation of Lc with respect to the latent
variable yi’s given the current estimates Θ(m) = (ζ(m), η(m), τ (m)). Since L1 and L2 are
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both linear in yi’s, their expectations are readily available with

y
(m)
i = E[yi|Θ(m)] = δi + (1− δi)

S(ti; η, τ |xi)
exp{−ζ(zi)}+ S(ti; η, τ |xi)

∣∣∣∣∣
Θ(m)

.

The M-step then minimizes two penalized likelihood functionals

PL1(ζ|y(m)) ≡ − 1

n
L1(ζ;y(m)) +

β

2
J1(ζ)

and PL2(η, τ |y(m)) ≡ − 1

n
L2(η, τ ;y(m)) +

λ

2
J2(η) (5)

in their respective RKHSs Hζ = {g : J1(g) < ∞} and Hη = {k : J2(k) < ∞} to

obtain Θ(m+1) = {ζ(m+1), η(m+1), τ (m+1)}. Note that both PL1 and PL2 are convex for
the distributions considered here. So the optimizations in the M-step can be handled
by the standard Newton-Raphson procedure. The details are given in Appendix B. The
selection of the smoothing parameters β and λ in PL1 and PL2 are respectively through
the minimization of the cross-validation scores (5.28) and (8.27) in Gu (2013).

To obtain confidence intervals for the parameters (ζ(z), η(x), τ), we write as in Ap-
pendix B ζ(z) = ψζ(z)Tbζ and η(x) = ψη(x)Tbη, where ψζ , ψη are chosen spline
basis functions and bζ , bη are coefficient vectors. Recall that Θ = (ζ, η, τ), or essen-
tially (bζ ,bη, τ). The Louis formula for computing the observed information matrix is
Iobs(Θ) = EΘ[B(y; Θ)]− EΘ[G(y; Θ)G(y; Θ)T ]. Here G and B are respectively the gra-
dient vector and the negative second derivative matrix of the penalized complete log
likelihood L(y; (ζ, η, τ)) = L1(ζ;y) + nβ

2 J(ζ) + L2(η, τ ;y) + nλ
2 J(η).

After obtaining Iobs following the steps in Appendix C, we can compute the 100(1−α)%
confidence intervals of ζ(z0) and η(x0) at given points z0 and x0, as well as the confidence
interval of τ byζ̂(z0)

η̂(x0)
τ̂

± zα/2Diag


ψζ(z0)T 0 0

0 ψη(x0)T 0
0 0 1

 I−1
obs

ψζ(z0) 0 0
0 ψη(x0) 0
0 0 1

 .

where (ζ̂, η̂, τ̂) are the estimates obtained at the end of the PEM algorithm.

2.4. Asymptotic Properties

In this section, we will present the convergence rates of our function estimates ζ̂ and η̂
as well as the consistency of the parameter estimate τ̂ . Its technical proof is in Appendix
D. Let π0(z), ζ0(z), η0(x) and τ0 be the true parameters, and r1 and r2 be the constants
associated with Hζ and Hη that measures the smoothness levels enforced by these two
function spaces. A typical value for r1 and r2 are 2m when order-m splines are used for
modeling ζ and η. Then we have the following theorem.

Theorem 2.1 Under Conditions A1-A6, we have ‖ζ̂−ζ0‖22 = Op(n
−r/(r+1)), ‖η̂−η0‖22 =

Op(n
−r/(r+1)), |τ̂ − τ0|2 = Op(n

−r/(r+1)), where ‖ · ‖2 is the L2-norm and r = min(r1, r2).

Note that this is the optimal convergence rate of spline estimates when splines of order
r/2 are used. If r1 = r2, both function estimates ζ̂ and η̂ obtain their optimal convergence
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Table 1. Melanoma Cancer Application: Cross-validation comparison of four mixture cure rate models. PH is the
model in Wang et al. (2012) and the others are the proposed models with different distribution settings.

Model PH AFT AFT AFT
Weibull Log normal Log logistic

Ave. log-likelihood −280.97 −192.66 −227.48 −282.20

rates. Otherwise, only one of them can achieve the optimal rate, and the other cannot,
suffering from entangled joint estimation. Also note that the result for τ̂ can be refined to
have a

√
n-rate and asymptotic normality using the technique in Section 21.5 of Kosorok

(2008). But we choose not to pursue such refinement since τ0 is considered a nuisance
parameter here.

3. Analysis of Melanoma Cancer Data

We now apply the proposed method to a data set downloaded from the Surveillance
Epidemiology and End Results (SEER) (www.seer.cancer.gov) database released in 2008.
The dataset selected a total of 635 white patients from the nine registered metropolitan
areas who met the following criteria: (1) melanoma was their first cancer diagnosis, (2)
the cancer stage was classified as local or regional, and (3) the patient only received
the routine treatment. The failure time of interest was time from diagnosis of melanoma
to death from melanoma. A question of interest was whether survival or cure fractions
differed in this data set by gender, tumor size and age. The covariates were age at
diagnosis (range: 5 to 101 years), gender (M or F) and tumor size (Big or Small). The
dataset was analyzed by Wang et al. (2012) using the mixture cure rate model with a
proportional hazards form of latency. They presented plots of age-stratified Kaplan-Meier
curves for four age groups, each of which showing a plateau at the end of the observation
interval. This suggests the possible presence of a subpopulation of cured subjects in the
study and justifies that a cure rate data analysis is appropriate.

We first conducted a 5-fold cross validation to determine the best model for the data
among four candidates: the mixture cure rate model with proportional hazards in Wang
et al. (2012) and the proposed models with three distribution settings, namely, Weibull,
log-logistic, and log-normal. The data were randomly partitioned into 5 subsets of equal
size. In each of the 5 rounds, we fixed one subset as the testing data, used the remaining
subsets as the training data to fit the four methods with a full model specification includ-
ing all the main and interaction effects for covariates z = x = (age, gender, size), and
then computed the log likelihood on the testing subset with their corresponding function
estimates. The average log likelihoods for the four methods are shown in Table 1. Clearly,
the proposed AFT model with the Weibull distribution setting has the most advantage.
Note that the AFT model with Weibull distribution also belongs to the category of
proportional hazards as pointed out in Example 2.1. However, it is actually difficult to
pinpoint the exact forms of the baseline hazard or relative risk under the proportional
hazards setting in Wang et al. (2012). So this application gave a good demonstration of
the proposed AFT models in showing that the AFT model with Weibull distribution, or
equivalently, the proportional hazards model with Weibull distribution, might work the
best for the data. Hence we analyzed the whole data set using this model specification
and report the results below.

The corresponding fits together with their point-wise confidence intervals, are plotted
in Figures 1 and 2. In Figure 1, we see that the CIs for female group do not cover
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any constant lines and the CIs for male group can barely do so. This suggests a likely
association of age with the non-cure rate. For male patients, the non-cure rate increased
up to age 65 and then levels off. But for female patients, the non-cure rate showed a
strong and consistently increasing trend against age. For female, the non-cure rates for
both tumor size groups were comparable but the increase of the non-cure rate against
age for the small-size group seemed to be steeper than the one for the big-size group. For
male, the big-size group clearly showed a larger non-cure rate than the small-size group.
It is also reassuring to see that these results match up well with the previous findings in
Wang et al. (2012).

The estimated shape parameter τ for the Weibull distribution describing the non-cured
subpopulation is 1.45 with an estimated standard deviation of 0.08. The 95% confidence
interval for τ is [1.29, 1.61]. The estimated log of the scale parameter, η(x) is illustrated
in Figure 2. Note that the logarithm of hazard rate has a negative linear relationship
to η, so we can interpret the trends of η in terms of the log hazard rate for non-cured
patients. One interesting point is that all the curves more or less showed a turning point
around age 65. For the log hazard rates of each individual patient group, both males and
females with small tumors showed close-to-linear trend, with males having an increasing
hazard as age increases and females showing an constant hazard through all ages. The
two groups with big tumors also showed similar trends. Particularly, hazard decreased
with age up to age 65 and then increased afterwards. The hazard of the female group
with big tumors was lower at the early age than that of their male peers.

4. Empirical Studies

We now present some simulations to evaluate the estimation performance of the proposed
method and the coverage properties of the confidence intervals.

We considered the following simulation setting of true parameters

π0(z) = c0 + 0.7 sin{2(z + 0.6)}, η0(x) = log
2.5

{1 + 0.5 sin(2πx)}2.5
, τ0 = 2,

where z and x are continuous covariates. Two failure time distributions, namely, Weibull
and log normal distributions were considered. The constant c0 in π0 were chosen as
c0 = 0.1722 for Weibull distribution and c0 = −0.0278 for log normal distribution to
respectively yield 20% and 40% overall cure probabilities of all subjects. Two sample
sizes n = 400 and 800 were studied but the results for n = 800 are not presented here
due to space concern.

The covariates x were generated as a grid of 400 equally spaced values over the range
[0,1]. For covariate z, a grid of 20 equally spaced values were generated over the range
[−0.4, 0.4] first and then each value was repeated 20 times to generate all the 400 co-
variate values for z. For each observation, it was assigned as not cured according to a
Bernoulli trial with probability π0(zk); then failure times were randomly generated for
the non-cured observations from the specific failure time distribution: either the Weibull
distribution (Example 2.1) or the log normal distribution (Example 2.2) with τ = 2
and η(xk); finally, for all the observations, censoring times were generated from Weibull
distributions and the censoring status indicators were recorded. Note that all the cured
samples were recorded as being censored. The Weibull distributions for the censoring
times were chosen in a way such that the observed censoring rate was about 45%. One
hundred data replicates were generated for each setting. The point-wise 95% confidence
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Figure 1. Melanoma Cancer Application: Estimated logit non-cure rates and their confidence intervals against
age for the four patient groups determined by gender and tumor size (big or small). Superimposed are true data

points with positions determined by age and converged y′s.

intervals were calculated for ζ(z) on a z grid of size 100 equally spaced on [−0.4, 0.4], for
η(x) on a x grid of size 100 equally-spaced grid points on [0, 1].

Figures 3 and 4 respectively plot the simulation results for Weibull and log normal
distributions. The top and bottom rows represent functions ζ(·) and η(·) respectively.
The left frames show point-wise coverage of the 95% interval estimates of the functions
at the selected grid points, the right frames plot the true test functions (dash-dotted),
the averages of point-wise function estimates (solid), the averages of point-wise 95% CIs
(dashed), and the empirical 2.5% and 97.5% percentiles of point-wise function estimates
(dotted). Also superimposed in the left frames are the magnitudes of the curvatures of
the corresponding true curves.

For Figures 3 and 4, we first look at the plots for the η function. We can see that the
mean estimates of η are close to the true functions and the mean interval estimates are
close to the empirical percentiles of the 100 function estimates. The point-wise coverage
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Figure 2. Melanoma Cancer Application: Estimated η(x) and confidence intervals against age.

is generally close to the nominal level 0.95 with some under-coverage in areas close
to the boundary or where the true curve has a high curvature. The low coverage at the
boundaries is due to the dwindling information there and low coverage at high curvatures
is because the rougher parts of a curve are harder to be recovered by a nonparametric
smoothing method.

The plots for the ζ function in Figures 3 and 4 generally follow similar trends to those
for the η function. On the other hand, we also notice that both the mean estimates and
empirical coverage seem to suffer slightly in the middle of the domain.

The mean estimates of τ0 for the Weibull and log normal distributions are respectively
2.02 and 2.04, with the average of 95% confidence intervals being respectively [1.80, 2.25]
and [1.78, 2.31].

Though the results for n = 800 are not shown here, they actually show similar per-
formance with more accurate mean estimates and narrower confidence intervals. So in
conclusion, the simulation performance of the proposed method is good in both estima-
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tion and inference.
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Figure 3. Simulation Results for Weibull Distribution with Test Functions π0(z), η0(x) and n = 400. Left column:

Point-wise coverages (stepped lines). Superimposed are nominal coverage (dotted lines) and scaled |ζ′′(z)| (dashed

lines). Right column: True functions (dash-dotted) and their estimates, including averages of point-wise function
estimates (solid), averages of point-wise 95% CIs (dashed) and empirical 2.5 and 97.5 percentiles of point-wise

function estimates (dotted), all based on 100 data replicates.

5. Discussion

This paper proposes a family of mixture cure rate models with nonparametric forms of
covariate effects based on the framework of smoothing spline estimation. Both the prob-
ability function of being susceptible and the acceleration in the AFT hazard model of
susceptible subjects feature flexible nonparametric forms of covariate effects. The param-
eter estimates are shown to be consistent and confidence interval estimates are derived
under a penalized EM algorithm setting. This paper provides a nice complement to the
previous work by Wang et al. (2012) in offering a mixture cure rate model with nonpara-
metric covariate effects where the latency component assumes an accelerated failure time
model. Since Wang et al. (2012) considered the setting of proportional hazards with a
nonparametric form of relative risk, the other popular approach to modeling the latency,
these two methods combined have resolved the open problem of nonparametric modeling
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Figure 4. Simulation Results for Log Normal Distribution with Test Functions π0(z), η0(x) and n = 400. Left

column: Point-wise coverages (stepped lines). Superimposed are nominal coverage (dotted lines) and scaled |ζ′′(z)|
(dashed lines). Right column: True functions (dash-dotted) and their estimates, including averages of point-wise

function estimates (solid), averages of point-wise 95% CIs (dashed) and empirical 2.5 and 97.5 percentiles of

point-wise function estimates (dotted), all based on 100 data replicates.

of covariate effects for mixture cure rate models.
Our model is shown be theoretically identifiable. However, under parametric and semi-

parametric mixture cure rate models, numerical non-identifiability often occurs when
censored observations occur mostly before the largest failure time. One remedy is to
enforce the zero-tail constraint in Taylor (1995), which essentially assumes all the obser-
vations after the largest failure time are cured. As in Wang et al. (2012), our simulations
do not show such a problem in the proposed nonparametric cure rate model. But it does
not completely rule it out. In case it happens, one can incorporate the zero-tail constraint
into our estimation procedure by zeroing out all the yi’s of the censored observations after
the largest failure time.
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Appendix A: Proof of Proposition 2.1

Suppose that for two sets of parameters (π, η, τ) and (π̃, η̃, τ̃), we have Spop(t|x, z) =

S̃pop(t|x, z), that is, π(z)S(t; η, τ |x) + 1− π(z) = π̃(z)S(t; η̃, τ̃ |x) + 1− π̃(z). Then

π(z){1− S(t; η, τ |x)} = π̃(z){1− S(t; η̃, τ̃ |x)}. (6)

First, fixing x and z and letting t → ∞, we can see that π(z) = π̃(z) for all z. This
means we must also have (t/eη(x))τ = (t/eη̃(x))τ̃ for all t and x. Consequently, we must
have τ = τ̃ and η(x) = η̃(x) for all x.

Appendix B: M-step of The Penalized E-M Algorithm

We first deal with the optimization of PL1 in Section 2.3. Let RJ1
be the reproducing

kernel associated with J1. The minimizer of PL1 does not fall in a finite dimensional space.
Therefore, certain approximation is necessary. Instead of Hζ , we minimize PL1 in the
data-adaptive finite dimensional space Hζ,n = H0ζ ⊕ span{RJ1

(zik , ·) : k = 1, . . . , qζ,n},
where H0ζ = {g ∈ Hζ : J1(g) = 0} is the null space of J1, and {zik : k = 1, . . . , qζ,n}
is a random subset of {zi : i = 1, . . . , n}. When qζ,n = n, all the zi’s are selected. Kim

and Gu (2004) showed that a qζ,n of order n2/9 is sufficient for estimating a reasonably
smooth multivariate function in the sense that the estimates in Hζ,n and Hζ have the
same convergence rate. Without loss of generality, we express the minimizer of PL1 in
Hζ,n as

ζ(z) =

mζ∑
ν=1

dν,ζφν,ζ(z) +

qζ,n∑
k=1

ci,ζRJ1
(zik , z) ≡ φTζ (z)dζ + ξTζ (z)cζ ≡ ψζ(z)Tbζ , (7)

where {φν,ζ : ν = 1, . . . ,mζ} is a set of basis functions for H0ζ , ψζ(z)T = (φζ(z)T , ξζ(z))

and bTζ = (dTζ , c
T
ζ ). Substituting (7) into PL1 gives

− 1

n

n∑
i=1

[
yi{φTζ (zi)dζ+ξTζ (zi)cζ}− log{1+exp (φTζ (zi)dζ + ξTζ (zi)cζ)}

]
+
β

2
cTζ Qζcζ , (8)

where Qζ = (ξζ(zi1), . . . , ξζ(ziqζ,n )). For fixed smoothing parameters β and θ’s hidden in

J1, the minimizer ζβ of PL1 is computed as follows. Given an initial estimate ζ̆, write ŭi =

−Yi+ exp{ζ̆(zi)}
1+exp{ζ̆(zi)}

, w̆i = exp{ζ̆(zi)}
[1+exp{ζ̆(zi)}]2

. The Newton iteration updates ζ̆ by the minimizer of

the penalized weighted least squares functional − 1
n

∑n
i=1 w̆i{Y̆i−ζ(zi)}2 + β

2J1(ζ), where

Y̆i = ζ̆(zi) − ŭi/w̆i. The selection of the smoothing parameters can be done through an
outer-loop optimization of the cross-validation score (5.28) in Gu (2013).

For a fixed τ , PL2 is first optimized in a data-adaptive finite dimensional space Hη,n
with

η(·) =

mη∑
i=1

dν,ηφν,η(·) +

qη,n∑
k=1

ck,ηRJ2
(vik , ·) ≡ φTη (·)dη + ξTη (·)cη ≡ ψη(·)Tbη, (9)

where · stands for x and {vik : k = 1, . . . , qη,n} is a random subset of {xi : δi = 1}. For a
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fixed τ , define h1(t; η, τ |x) = −∂ log h(t; η, τ |x)/∂η and h2(t; η, τ |x) = ∂h1(t; η, τ |x)/∂η.
Given an initial estimate η̆, write ǔi = ∂L2(η̆, τ ;y)/∂η = δih1(ti; η, τ |xi) −
yi
∫ ti

0 h1(t; η, τ |xi)h(t; η, τ |xi)dt, w̌i = ∂2L2(η̆, τ ;y)/∂η2 = δih2(ti; η, τ |xi) −
yi
∫ ti

0 h2(t; η, τ |xi)h(t; η, τ |xi)dt
+yi

∫ ti
0 h2

1(t; η, τ |xi)h(t; η, τ |xi)dt, and Y̌i = η̆(xi)− ǔi/w̌i. The Newton iteration updates

η̆ by the minimizer of the penalized weighted least squares functional − 1
n

∑n
i=1 w̌i{Y̌i −

η(xi)}2 + λ
2J2(η). Similar to PL1, the selection of the smoothing parameters can be done

through an outer-loop optimization of the cross-validation score (5.28) in Gu (2013).
Next, for a fixed η, we estimate τ by maximizing L2(η, τ ;y). The algorithm then alter-
nates between the updating of η and τ .

Appendix C: Derivation of The Formula for Iobs

Plugging into L(y; (ζ, η, τ)) the expressions (7) and (9) for ζ and η and direct differenti-
ation yields

G(y; Θ) =


∑n

i=1

[
yiψζ,i −

{
1 + exp(−ψTζ,ibζ)

}−1
ψζ(zi)

]
− nβQ∗ζbζ∑n

i=1 gi(bη, τ)− nλQ∗ηbη∑n
i=1

{
δihτ (ti;ψ

T
η bη, τ |xi)− yi

∫ ti
0 hτ (t;ψTη bη, τ |xi)h(t;ψTη bη, τ |xi)dt

}
 ,

(10)

B(y; Θ) =

Bζζ 0 0
0 Bηη Bητ

0 BT
ητ Bττ

 , (11)

where ψζ,i = ψζ(zi), ψη,i = ψη(xi), Q∗ζ = diag(0, Qζ), Q∗η = diag(0, Qη),

hτ (t; η, τ |x) = −∂ log h(t; η, τ |x)/∂τ , gi(bη, τ) = δiψη,ih1(ti;ψ
T
η bη, τ |xi) −
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yi
∫ ti

0 ψη(t)h1(t;ψTη bη, τ |xi)h(t;ψTη bη, τ |xi)dt, and

Bζζ =

n∑
i=1

exp
(
ψTζ,ibζ

) {
1 + exp

(
ψTζ,ibζ

)}−2
ψζ,iψ

T
ζ,i + nβQ∗ζ ,

Bηη =

n∑
i=1

{
δih2(ti;ψ

T
η bη, τ |xi)ψη,iψTη,i

− yi
∫ ti

0
h2(t;ψTη bη, τ |xi)h(t;ψTη bη, τ |xi)ψη(t)ψη(t)Tdt

+ yi

∫ ti

0
h2

1(t;ψTη bη, τ |xi)h(t;ψTη bη, τ |xi)ψη(t)ψη(t)Tdt
}
,

Bητ =

n∑
i=1

{
δih1τ (ti;ψ

T
η bη, τ |xi)ψη,i

− yi
∫ ti

0
h1τ (t;ψTη bη, τ |xi)h(t;ψTη bη, τ |xi)ψη(t)dt

+ yi

∫ ti

0
h1(t;ψTη bη, τ |xi)h1τ(t;ψTη bη, τ |xi)h(t;ψTη bη, τ |xi)ψη(t)ψη(t)Tdt

}
,

Bττ =

n∑
i=1

{
δihττ (ti;ψ

T
η bη, τ |xi)− yi

∫ ti

0
hττ (t;ψTη bη, τ |xi)h(t;ψTη bη, τ |xi)dt

+ yi

∫ ti

0
h2
τ (t;ψTη bη, τ |xi)h(t;ψTη bη, τ |xi)dt

}
with h1τ = ∂h1(t; η, τ |x)/∂τ and hττ = ∂hτ (t; η, τ |x)/∂τ . Note E[yiyj ] = E[yi]E[yj ] for
i 6= j and E[y2

i ] = E[yi]. Hence

E
[
G(y; Θ)GT (y; Θ)

]
= E [G(y; Θ)]E [G(y; Θ)]T +

A11 A12 A13

AT12 A22 A23

AT13 AT23 A33,

 , (12)
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where

A11 =

n∑
i=1

(
E[yi]− E[yi]

2
)
ψζ,iψ

T
ζ,i,

A12 =

n∑
i=1

(
E[yi]− E[yi]

2
)
{ψζ,i

∫ ti

0
ψTη (t)h1(t;ψTη bη, τ |xi)h(t;ψTη bη, τ |xi)dt},

A13 =

n∑
i=1

(
E[yi]− E[yi]

2
)
{ψζ,i

∫ ti

0
hτ (t;ψTη bη, τ |xi)h(t;ψTη bη, τ |xi)dt},

A22 =

n∑
i=1

(
E[yi]− E[yi]

2
) ∫ ti

0
ψη(t)h1(t;ψTη bη, τ |xi)h(t;ψTη bη, τ |xi)dt

×
∫ ti

0
ψTη (t)h1(t;ψTη bη, τ |xi)h(t;ψTη bη, τ |xi)dt,

A23 =

n∑
i=1

(
E[yi]− E[yi]

2
) ∫ ti

0
ψTη (t)h1(t;ψTη bη, τ |xi)h(t;ψηbη, τ |xi)dt

×
∫ ti

0
hτ (t;ψTη bη, τ |xi)h(t;ψTη bη, τ |xi)dt,

A33 =

n∑
i=1

(
E[yi]− E[yi]

2
)
{
∫ ti

0
hτ (t;ψTη bη, τ |xi)h(t;ψTη bη, τ |xi)dt}2.

Both G and B are linear in yi, so their expectations are easily obtained through replacing
yi by E[yi] in (10) and (11). Further replacing the E[yi] in E[GGT ] and E[B] by the

converged y
(∞)
i yields the observed information matrix Iobs in the Louis formula.

Appendix D: Proof of Theorem 2.1

We will need the following conditions.

A1. The domains Z and X of covariates z and x are compact sets in Rd1 and Rd2
respectively.

A2. Given the covariates z and x, censoring time C is independent of susceptible
indicator y and failure time T ∗.

A3. Assume the observations are in a finite time interval [0,Ω]. Assume that the true
hazard function h0(t,x) for susceptible subjects is bounded away from zero and
infinity.

A4. Assume the true parameter τ0 ∈ [0,M ] for some M > 0 and the true function η0 ∈
Hη. Assume that the function S(t; η, τ |x), and thus h(t; η, τ |x), are continuous
with respect to η and τ . For any η in a sufficiently big convex neighborhood B2

of η0, there exist constants c3, c4 > 0 such that c3h(t; η0, τ |x) ≤ h(t; η, τ |x) ≤
c4h(t; η0, τ |x) for all x.

A5. Assume the true function ζ0 ∈ Hζ . Let wζ(z) = eζ(z){1 + eζ(z)}−2. For any ζ in
a sufficiently big convex neighborhood B1 of ζ0, there exist constants c1, c2 > 0
such that c1wζ0(z) ≤ wζ(z) ≤ c2wζ0(z) for all z.

A6. The smoothing parameters β � n−r1/(r1+1) and λ � n−r2/(r2+1).

Condition A1 is a common boundedness assumption on covariates. Condition A2 as-
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sumes noninformative censoring. Condition A3 is the common boundedness assumption
on the hazard. Besides an upper bound for τ0, Condition A4 assumes that η0 has proper
level of smoothness and integrates to zero. The neighborhood B2 in Condition A4 should
be big enough to contain all the estimates of η0 considered below. When the members of
B2 are all uniformly bounded, Condition A4 is automatically satisfied. Condition A5 is
similar. The orders for β and λ in Condition A6 match that in standard smooth spline
problems.

The estimates ζ̂ and (τ̂ , η̂) are respectively the minimizers of the following two penalized
likelihoods

− 1

n

n∑
i=1

[
µ̂iζ(zi)− log{1 + eζ(zi)}

]
+
β

2
J1(ζ), (13)

− 1

n

n∑
i=1

{
δi log h(ti; η, τ |xi)− µ̂i

∫ ti

0
h(t; η, τ |xi)dt

}
+
λ

2
J2(η), (14)

where

µ̂i = δi + (1− δi)
S(ti; η̂, τ̂ |xi)

exp{−ζ̂(zi)}+ S(ti; η̂, τ̂ |xi)
.

Let ζ̃ and η̃ be respectively the minimizers of

− 1

n

n∑
i=1

[
µ0iζ(zi)− log{1 + eζ(zi)}

]
+
β

2
J1(ζ), (15)

− 1

n

n∑
i=1

(
δi log h(ti; η, τ0|xi)− µ0i

∫ ti

0
h(t; η, τ0|xi)dt

)
+
λ

2
J2(η), (16)

where

µ0i = δi + (1− δi)
S(t; η0, τ0|xi)

exp{−ζ0(zi)}+ S(t; η0, τ0|xi)
.

Let

µ0(t,x, z) =
π0(z)S0(t,x)

1− π0(z) + π0(z)S0(t,x)
=

S(t; η0, τ0|x)

exp{−ζ0(z)}+ S(t; η0, τ0|x)
.

Define wτ0,η0(t,x, z) = µ0(t,x, z)
∫ t

0 h
2
1(s; η0, τ0|x)h(s; η0, τ0|x)ds. For g ∈ Hζ and k ∈ Hη,

define

V1(g) =

∫
Z
g2(z)wζ0(z)fz(z)dz, (17)

V2(k) =

∫
Z
fz(z)

∫
X
fx(x)

∫
T
k2(x)wτ0,η0(t,x, z)dtdxdz, (18)

where fz and fx are respectively the density functions for covariates z and x.
We first present a lemma without proof that indicates the equivalence between V1(·),

V2(·) and the L2-norm ‖ · ‖22. It is a straightforward conclusion from the boundedness
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conditions A1 and A3.

Lemma A.1 Let g ∈ Hζ and k ∈ Hη. Then there exist constants 0 < c1 ≤ c2 < ∞ and
0 < c3 ≤ c4 <∞ such that

c1‖g‖22 ≤ V1(g) ≤ c2‖g‖22 and c3‖k‖22 ≤ V2(k) ≤ c4‖k‖22.

Wang, Du and Liang (2012) have shown that (V1 +βJ1)(ζ̃−ζ0) = Op(β+n−1β−1/r1) =

Op(n
−r1/(r1+1)) given Conditions A5 and A6. The rest of our proof consists of two steps,

dealing respectively with the convergence rates of η̃ (step one), and ζ̂ and η̂ (step three).
Step One: Convergence rate of η̃.
We will derive this through an eigenvalue analysis with two phases. In the first phase,

we show the convergence rate Op(n
−r2/(r2+1)) for the minimizer η̃∗ of a quadratic ap-

proximation to (15). In the second phase, we show that the difference between η̃∗ and η̃
is also Op(n

−r2/(r2+1)), and so is the convergence rate of η̃.
A quadratic functional B is said to be completely continuous with respect to another

quadratic functional A, if for any ε > 0, there exists a finite number of linear functionals
L1, . . . , Lk such that Ljf = 0, j = 1, . . . , k, implies that B(f) ≤ εA(f); When a quadratic
functional B is completely continuous with respect to another quadratic functional A,
there exists eigenfunctions {φν , ν = 1, 2, · · · } such that B(φν , φµ) = δνµ and A(φν , φµ) =
ρνδνµ, where δνµ is the Kronecker delta and 0 ≤ ρν ↑ ∞. And any function satisfying
A(f) < ∞ has a Fourier series expansion f =

∑
ν fνφν , where fν = B(f, φν) are the

Fourier coefficients. See Gu (2013).
Two more lemmas without proof are presented next. The first one follows directly

from the boundedness conditions A1 and A3, the results in Section 9.1 of Gu (2013) and
Lemma A.1. The second one is exactly Lemma 9.1 in Gu (2013).

Lemma A.2 V2 is completely continuous to J2 and the eigenvalues ρν of J2 with respect
to V2 satisfy that as ν →∞, ρ−1

ν = O(νr2).

Lemma A.3 As λ → 0, the sums
∑

ν
λρν

(1+λρν)2 ,
∑

ν
1

(1+λρν)2 , and
∑

ν
1

1+λρν
are all of

order O(λ−1/r2).

Consider the minimizer η̃∗ of the quadratic functional

1

n

n∑
i=1

η(xi){δih1(ti; η0, τ0|xi)− µ0i

∫ ti

0
h1(t; η0, τ0|xi)h(t; η0, τ0|xi)}

+
1

2
V2(η − η0) +

λ

2
J2(η). (19)

Let η =
∑

ν ηνφν and η0 =
∑

ν ην,0φν be the Fourier expansions of η and
η0. Write γν = n−1

∑n
i=1 φν(xi)ui(η0, ν0), where ui(η, τ) = δih1(ti; η, τ |xi) −

µ0i

∫ ti
0 h1(t; η, τ |xi)h(t; η, τ |xi)dt. Plugging them into (19), we can show that the min-

imizer of (19) has Fourier coefficients η̃∗ν = (γν + ην,0)/(1 + λρν). Note that V2(φν) = 1.
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Straightforward calculation gives E[γν ] = 0 and E[γ2
ν ] = n−1. Then,

E[V2(η̃∗ − η0)] =
1

n

∑
ν

1

(1 + λρν)2
+ λ

∑
ν

λρν
(1 + λρν)2

ρνη
2
ν,0,

E[λJ2(η̃∗ − η0)] =
1

n

∑
ν

λρν
(1 + λρν)2

+ λ
∑
ν

(λρν)2

(1 + λρν)2
ρνη

2
ν,0.

(20)

Combining Lemma A.3 and (20), we obtain that (V2+λJ2)(η̃∗−η0) = Op(λ+n−1λ−1/r2),
as n→∞ and λ→ 0.

For a functional L(f), define the differential operator Df,g as Df,g(L) = dL(f+αg)
dα

∣∣∣
α=0

.

Applying Dη̃,η̃−η̃∗ to (16) yields

1

n

n∑
i=1

ui(η̃, τ0){η̃(xi)− η̃∗(xi)}+ λJ2(η̃, η̃ − η̃∗) = 0. (21)

Applying Dη̃∗,η̃−η̃∗ to (19) yields

1

n

n∑
i=1

ui(η0, τ0){η̃(xi)− η̃∗(xi)}+ V2(η̃∗ − η0, η̃ − η̃∗) + λJ2(η̃∗, η̃ − η̃∗) = 0. (22)

Subtracting (22) from (21) yields

λJ2(η̃ − η̃∗)− 1

n

n∑
i=1

ui(η̃, τ0){η̃(xi)− η̃∗(xi)}

= V2(η̃∗ − η0, η̃ − η̃∗) +
1

n

n∑
i=1

ui(η0, τ0){η̃(xi)− η̃∗(xi)}. (23)

Now by the mean value theorem, Condition A4, and Lemma 9.16 in Gu (2013), (23)
indicates

(c3V2 + λJ2)(η̃− η̃∗) ≤
{

(|1− c|V2 + λJ2)(η̃− η̃∗)
}1/2

Op
(
{(|1− c|V2 + λJ2)(η̃− η0)}1/2

)
,

where c ∈ [c3, c4] and c3, c4 are constants in Condition A(4). Hence (V2 + λJ2)(η̃ −
η̃∗) is Op(λ + n−1λ−1/r2). Consequently, (V2 + λJ2)(η̃ − η0) = Op(λ + n−1λ−1/r2) =

Op(n
−r2/(r2+1)) given Condition A6.

Step Two: Convergence rates of ζ̂ and η̂.
Let uζ(z) = eζ(z)(1 + eζ(z))−1. Applying D

ζ̃,ζ̃−ζ0 to (15) and D
ζ̂,ζ̃−ζ0 to (13), and

subtracting the resulting equations give

1

n

n∑
i=1

(µ̂i − µ0i)(ζ̃ − ζ0)i =
1

n

n∑
i=1

(u
ζ̂
− u

ζ̃
)i(ζ̃ − ζ0)i + βJ1(ζ̂ − ζ̃, ζ̃ − ζ0). (24)

Applying Dη̃,η̃−η0 to (16) and Dη̂,η̃−η0 to (14), and subtracting the resulting equations
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give

1

n

n∑
i=1

(µ̂i − µ0i){η̃(xi)− η0(xi)}
∫ ti

0
h1(t; η̂, τ̂ |xi)h(t; η̂, τ̂ |xi)dt

− 1

n

n∑
i=1

δi{η̃(xi)− η0(xi)}{h1(ti; η̂, τ̂ |xi)− h1(ti; η̃, τ0|xi)}

= − 1

n

n∑
i=1

µ0i{η̃(xi)− η0(xi)}
{∫ ti

0
h1(t; η̂, τ̂ |xi)h(t; η̂, τ̂ |xi)dt

−
∫ ti

0
h1(t; η̃, τ0|xi)h(t; η̃, τ0|xi)dt

}
+ λJ2(η̂ − η̃, η̃ − η0). (25)

For 0 ≤ α1, α2, α3 ≤ 1, consider

Ai(α1, α2, α3) = δi + (1− δi)S
(
t; η0 + α2(η̂ − η0), τ0 + α3(τ̂ − τ0)|xi

)
×
(

exp[−{ζ0 + α1(ζ̂ − ζ0)}(zi)] + S
(
t; η0 + α2(η̂ − η0), τ0 + α3(τ̂ − τ0)|xi

))−1
.

Then µ̂i = Ai(1, 1, 1) and µ0i = Ai(0, 0, 0). By the first order Taylor expansion of Ai at
(0, 0, 0),

µ̂i ≈ µ0i+(1−δi)Mi

{
(ζ̂−ζ0)(zi)+Sη(ti; η0, τ0|xi)(η̂−η0)(xi)+Sτ (ti; η0, τ0|xi)(τ̂ −τ0)

}
,

(26)

where Mi = exp{−ζ0(zi)}S(ti; η0, τ0|xi)
[

exp{−ζ0(zi)} + S(ti; η0, τ0|xi)
]−2

, Sη = ∂S/∂η
and Sτ = ∂S/∂τ .

Plugging (26) into (24), a combination of the mean value theorem, Conditions A4-A5,
and Lemma 10.17 of Gu (2013) can show that as β → 0 and nβ2/r1 →∞, (24) indicates

{C1‖ζ̂ − ζ0‖ · ‖ζ̃ − ζ0‖+ C2‖η̂ − η0‖ · ‖ζ̃ − ζ0‖+ C3|τ̂ − τ0| · ‖ζ̃ − ζ0‖}{1 + op(1)}

= C4V1(ζ̂ − ζ̃, ζ̃ − ζ0) + βJ1(ζ̂ − ζ̃, ζ̃ − ζ0) (27)

for some constants C1, C2, C3, C4 > 0. Similarly, (26) and (25) indicates that as λ → 0
and nλ2/r2 →∞,

{C5‖ζ̂ − ζ0‖ · ‖η̃ − η0‖+ C6‖η̂ − η0‖ · ‖η̃ − η0‖+ C7|τ̂ − τ0| · ‖η̃ − η0‖}{1 + op(1)}
= C8V2(η̂ − η̃, η̃ − η0) + λJ2(η̂ − η̃, η̃ − η0). (28)

for some constants C4, C5, C6 > 0. Hence, (27) and (28) combined with results in the

previous step and Lemma A.1 yield ‖ζ̂−ζ0‖2 = Op(n
−r/(r+1)), ‖η̂−η0‖2 = Op(n

−r/(r+1)),

and |τ̂ − τ0|2 = Op(n
−r/(r+1)) for r = min(r1, r2).
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