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Abstract

- Chris Peterson’ - Louis Scharf?

We propose a method for extending Kohonen’s self-organizing mapping to the geometric framework of the Grassmannian.
The resulting algorithm serves as a prototype of the extension of the SOM to the setting of abstract manifolds. The
ingredients required for this are a means to measure distance between two points, and a method to move one point in the
direction of another. In practice, the data are not required to have a representation in Euclidean space. We discuss in detail
how a point on a Grassmannian is moved in the direction of another along a geodesic path. We demonstrate the imple-
mentation of the algorithm on several illustrative data sets, hyperspectral images and gene expression data sets.
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1 Introduction

In the visualization of data, we often resort to the com-
putation of means or centroids of data, computed from
labeled or unlabeled training sets, or from nearest neigh-
bors within a single data set. It is then natural to visualize
these centroids, and the associated neighborhood data,
using dimensionality reduction techniques such as self-or-
ganizing mappings (SOMs) [16-19]. This approach has
proven to be a valuable tool for the low-dimensional
visualization of data, see, e.g., [20, 27] in addition to an
extended bibliography indicating the widespread applica-
tions of this methodology [14]. Specifically, in [19]
Kohonen shows some of the most extensive applications of
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SOM including management of massive textual databases
and bioinformatics, the latter of which will also be
explored under the context of pathway analysis in this
paper. The key ingredient of this idea is that points that are
neighbors in a high-dimensional space are represented as
neighbors in a low-dimensional index space, a feature that
arises through the self-organizing properties of the algo-
rithm. When the data consist of a collection of k-dimen-
sional subspaces of a common n-dimensional vector space,
then the appropriate setting for analysis is the Grassman-
nian manifold, Gr(k,n), whose points parameterize the k-
dimensional subspaces of R".

There is now considerable evidence that subspaces may
serve as statistics for data analysis. The idea is that data
may be organized into distinguishing subspaces. Data
residing in the same subspace are invariant to confounding
variations in the data, but data residing in separate sub-
spaces are covariant to the variations that count for pattern
recognition, or classification, see, e.g., [12, 23-25, 29]. The
basic idea behind the approach is to compare an unlabeled
observation to a collection of subspaces, each of which is
constructed from several patterns of a given class. Each
subspace represents a set of data which is labeled as sim-
ilar, even though it may have been recorded in conditions
undergoing a variable change of state. As an example, a
vector space could be associated with a set of digital
images of an object collected under a variety of different
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illumination conditions [2, 4, 5, 7]. It has been observed
that the pattern set framework, based on subspaces, can
enhance the robustness of pattern recognition algorithms.
For example, in the case of using the subspace approach to
capture variations in illumination conditions, the resolution
of images can be reduced without sacrificing classification
accuracy [6].

One attractive tool for set-to-set pattern analysis is the
geometric framework of the Grassmannian. More formally,
the Grassmannian Gr(k, n) is a manifold whose points
parameterize the k-dimensional subspaces of a fixed n-di-
mensional vector space. As such, it provides a setting for
comparing distances between subspaces using a variety of
metrics. The most widely used class of metrics are func-
tions of the principal angles between the subspaces as these
lead to comparisons that are invariant under orthogonal
transformations. Further, it is possible to transition from
one subspace to another along a shortest path, or geodesic
(typically represented as a path consisting of orthonormal
matrices). These ingredients make it possible to convert the
SOM algorithm on vector spaces to an analogous algorithm
on Grassmannians.

In this paper we develop the Grassmannian SOM algo-
rithm by modifying the standard SOM algorithm to operate
in the setting of the Grassmann framework. We use the
resulting approach to visualize subspaces of data in high-
dimensional spaces on low-dimensional index sets.

2 The mathematics of the Grassmannian

It is conventional to view a datum as a point in a high-
dimensional ambient space such as Euclidean, and a col-
lection of data as a set of points in this ambient space. Data
from a common source, or of a common characteristic, are
then viewed as data that reside in a common neighborhood
of the ambient space. But how is neighborhood to be
defined? In many applications a neighborhood consists of
data that are composed of a linear combination of a com-
mon set of orthogonal basis vectors, organized into the k
frame V = [vy,vy,..., V). Sometimes the k-frame itself is
desciptive of the data, in which case we are interested in
the set of all such k-frames. The manifold whose points
parameterize the k-frames of an n-dimensional vector
space, equipped with the standard inner product, is the
Stiefel manifold St(k,n). It may be represented as
O(n)/O(n — k), which codes for the idea that a sampling of
the Stiefel manifold for a k-frame V is a sampling of the
orthogonal group for an orthogonal matrix Q, followed by
a moding out of the basis for the orthogonal subspace
spanned by the trailing n — k orthogonal vectors in the
orthogonal matrix Q. The leading k orthogonal vectors of
Q are then an ordered basis for the k-frame V.

@ Springer

But in many applications the k-frame is too fine-grained.
In other words, it is not the k-frame itself that matters, but
rather the subspace of vectors in the ambient space that can
be constructed from the frame. It is the range of V that
counts, not V itself. This subspace we denote (V). The
manifold whose points parameterize all such subspaces is
the Grassmann manifold Gr(k,n) and we represent it as
O(n)/O(k) x O(n — k), which codes for the idea that a
sampling from this manifold for a subspace (V) amounts to
sampling from O(n), followed by a moding out of the basis
for the signal subspace spanned by the leading k orthogonal
vectors and a moding out by the basis from the orthogonal
subspace spanned by the trailing n — k orthogonal vectors
of Q. What is left is a sampling of the Grassmann manifold
for a k-dimensional subspace of R”. This discussion may be
generalized to orthogonal groups, k-frames, and k-dimen-
sional subspaces of arbitrary inner product spaces.

In some applications, one is interested in uniform sam-
ples from O(n), St(k,n), and Gr(k,n). This may be
achieved by constructing an n X n matrix of independent
and identically distributed normal[0, 1] random variables,
and QR factoring it for Q. The matrix Q obtained in this
manner is drawn from the uniform distribution on the
orthogonal group with respect to Haar measure, which is to
say the distribution of Q is invariant to left orthogonal
transformation. The corresponding samplings for V and
(V) are uniform with respect to Haar measure. It is not
claimed that real data, organized into subspaces, produce
uniformly distributed subspaces. Rather, it is claimed that
the extent to which data and its subspaces produce non-
uniformly distributed subspaces is the extent to which data
bring information about the geometric structure of the
underlying mechanisms that generated the data. This raises
the question of distances and angles between subspaces of
the Grassmannian. In particular, the distances between
points on the Grassmannian are measured in terms of the
principle angles between their subspaces.

2.1 Overview of angles

We provide a short summary of the computation of angles
between subspaces initially described in [3]. Let X and Y be
two vector subspaces of R" such that

p =dim(X) > dim(Y) = ¢>1,

then the principal angles 0 € [0,5],1 <k <gq between
X and Y are defined recursively by

cos(y) = max max u'v=uv, k=1...q (1)
ueXvevy

subject to |[u|| =|v|]|=1,uTu; =0 and vTv; =0 for

i=1...k—1. Clearly, the principal angles satisfy
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0<0,<0,<---<0,<7% Henceforth, 0= (0y,...,0,)
will denote the principal angle vector. Note that we have
abused notation somewhat in using X to represent both a
subspace and an orthonormal matrix whose columns span
this space. For additional details related to algorithms for
the computation of principal angles see [3].

2.2 Metrics on the Grassmannian

Let A, B be two points on the Grassmannian Gr(k, n).
Again, we are thinking of these points as subspaces though
they are represented by orthonormal matrices whose col-
umns span the subspaces. The geodesic distance between
these two points is given by

dy(A,B) = [|(01,- .., 00) |, (2)
Other metrics are possible, e.g., the chordal distance
dy(A,B) = [|(sin(0,), . . ., sin(6)) ||, (3)

We note that it is possible to show that the Grassmannian
may be isometrically embedded into Euclidean space when
the chordal metric is employed and this is not the case for
the geodesic metric [11]; see also [9].

Principal angles between subspaces are defined regard-
less of the dimensions of the subspaces, denoted, e.g.,
dim A. Thus, inspired by the Riemannian geometry of the
Grassmannian, we may define, for any vector subspaces A,
B of R" the geodesic distance

dg(A, B) = [[(01, ..., 00)l,,

for any ¢ < min{dimA,dim B}. While d; is not, strictly
speaking, a metric (for example, if dimA N B>/, then
di(A,B) = 0), it nevertheless provides an efficient and
useful tool for analyzing configurations in Uy /Gr(k,n).
The geometry driving these distance measures is captured
by the notion of a Schubert variety Q,(W) C Gr(k, n). Let
W be a subspace of R", then we define

Q)W) = {E € Gr(k,n) | dim(E N W) > £}

With this notation, dy(A, B) simply measures the distance
between A and  Q(B), ie. d(A,Q(B)) =
min{di(A, C)|C € Q;(B)} (it is worth noting that under

this interpretation, d¢(A, B) = dy(B,A)).

2.3 Geodesics

In this section we introduce the geodesic formula between
two points on the Grassmann manifold proposed in [1]. Our
presentation of this result is intended to be self-contained
and contains additional details and examples not found in
[1]. This section is intended to provide the background

necessary to facilitate the understanding of how this tool is
integrated into the SOM algorithm.

Here it is convenient to view the Grassmannian Gr(k, n)
as the quotient manifold O(n)/O(k) x O(n — k). Let Q €
O(n) be an n-by-n orthogonal matrix. The equivalence
class [Q] is the set of all orthogonal matrices whose first
k columns span the same subspace as the one spanned by
the first k columns of Q. A point on the Grassmann man-
ifold is the equivalence class,

a-{o(% ) ):ecow.oicon-n}

One advantage of this representation is that we may utilize
the orthogonal group geodesic and the quotient geometry
of the Grassmann manifold.

Suppose Q is an element in O(n) (thus Q is an n-by-n
orthogonal matrix). The tangent space to O(n) at Q,
denoted by TpO(n), can be computed by considering
curves on O(n) which pass through Q. Let X(f) be any
smooth curve on O(n) which goes through Q at t =0, i.e.
X(0) = Q. Since X(t)"X(r) =1 for all ¢, differentiating
both sides of the equation with respect to ¢ yields
X(@0)'X() +X(1)"X(t)=0. At =0, we have
X(0)"Q + Q"X(0) = 0. By computing the dimension of
O(n) and the dimension of the set of matrices 4 such that
ATQ + QT4 = 0, one verifies that TpO(n) is exactly the set
of matrices A4 where QT4 is any n-by-n skew symmetric
matrix. Therefore, the set of tangent vectors in TpO(n) is
the set of matrices A4 which has the form 4 = QA where A
is any n-by-n skew symmetric matrix. It is further shown in
[13] that a geodesic path on O(n) is given by the expo-
nential flow: Q(7) = Qexp(rA) where A € R™" is a skew
symmetric matrix and Q(0) = Q.

Gr(k, n) is a quotient space of O(n). The tangent space to
O(n) at Q, TpO(n), can be decomposed into a vertical
space Vy and a horizontal space Hy. The vertical space is
the set of vectors in the tangent space corresponding to
motions flowing along the equivalence class [Q] at Q. The
horizontal space is defined as the orthogonal (with respect
to the Euclidean metric) complement of the vertical space
in TpO(n). Here the Euclidean metric is defined as a
function d : TpO(n) x TpO(n)—R:

d(U,V) = Tr(U™V)

= vec(U)"vec(V)
Intuitively, the vectors in the vertical space can be thought
of as the set of velocity vectors which preserve the
equivalence class while the vectors in the horizontal space
modify the equivalence class. Therefore, tangent vectors to

geodesics must be restricted to the horizontal space.
Moreover, if V is a tangent vector to Gr(k,n) at [Q], then

@ Springer
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there is a horizontal vector V € Hyp which represents
V uniquely. Please note that Gr(k,n) is an abstract mani-
fold as is a tangent space to Gr(k, n). The horizontal space
provides us with a way to represent abstract tangent vectors
with matrices. The idea of the vertical space and the hor-
izontal space is illustrated in Fig. 1.

The computation of the vertical space at a point Q €
O(n) is similar to the computation of the tangent space to

O(n). Let
_of Q@) 0
V<t> B Q( ]E) ank(t) )

be any smooth curve on the elements of the equivalence
class [Q] with Qi(0) =1 and Q,x(0) =1, ie.
V(0) = Q. We observe that V()" V() = I. Differentiating
both sides and evaluating at ¢t = 0 yields

0:(0)" + 0,(0) =0
Qn—k(O)T + Qn—k(o) =0

Utilizing this computation along with a dimension count, we
show that the vertical space at a point Q is the set of matrices

Orthogonal Group O(N)

Quotient map:

Grassmann: Gr(k,N)

Fig. 1 This figure illustrates the idea of the vertical space V, and
horizontal space Hy at a point Q. Tjg/Gr(k, n) is the tangent space to
Gr(k,n) at [Q]. It can be shown that a tangent vector V € TigGr(k, n)
can be uniquely represented by a tangent vector V € Hyp. Hence, we
can use matrices to represent tangent vectors to points on Gr(k,n)

@ Springer
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where C is a k-by-k skew symmetric matrix and D is a
(n — k)-by-(n — k) skew symmetric matrix. The horizontal
space Hy is the set of matrices which are orthogonal to the
vertical space and living in ToO(n). Consider the following
set of equations

CcC 0
Tr(AT =0
o )
A=0A
where A € R, C € R¥* and D e RUH*0=5 are

skew symmetric matrices. The solution set to the above
system, i.e. the horizontal space at Q is the set of matrices

wo-{e(y o)}

We observe that the orthogonal group geodesic
_ BT

)
has horizontal tangent vector

00 =00 ‘OBT)

for all # along Q(#). Therefore, Q(7) is still a shortest path on
the quotient space Gr(k,n), i.e. by further restricting A to
be of the form

T
A= <0 -5 ) B e Ri-bx®)
B 0

we obtain a representative of the geodesic path on Gr(k, n)
Q(r) = Qexp(iA).

The (n — k)-by-(k) submatrix B specifies the velocity of the
geodesic flow. This approach provides us an easy method
to compute the geodesic formula on the Grassmann man-
ifold using n-by-k matrices.

In numerical applications, what matters is the span of
the first k columns of Q(f); hence, the geodesic formula can
be rewritten as,

®(1) = Qexp(tA)J

0(1) = Qexp (r(g

Ik
05—k k
k orthonormal matrix for any ¢ € [0, 1]. For numerical
computation we introduce the following way to represent
points on the Stiefel manifold. Each point on S#(k, n) can
be expressed as a n-by-k orthonormal matrix Y such that

where J:{ }ER’M‘ and &(r) is a n-by-

Y'Y =I. In this way, we can view the Grassmann
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manifold Gr(k,n) as a quotient manifold of the Stiefel
Manifold St(k, n). The equivalence class [Y] can be defined
as

Y] = {YD:D € 0(k)}.

By viewing the Grassmann manifold as a quotient manifold
of the Stiefel manifold, we can compute the corresponding
vertical space and horizontal space. With the computation
illustrated above, one can verify the vertical space at Y is
the set of matrices,

Vy ={YA:A € R AT + A =0}.
And the horizontal space is
Hy ={N:N € R Ny =0}.

Therefore, a tangent vector to the Grassmann manifold at
[Y] can be uniquely represented by a n-by-k matrix N where
YTN = 0. With this in mind, we can use the following
theorem to compute the geodesic flow @(7) numerically in
a convenient way.

Theorem 1 If &(t) = Qexp(tA)J, with &(0) =X and

. N _pT
@(0) = H where A = [2 g ], then

®(1) = XV cos(Zt)V' + Usin(Zr)V" (4)

where UXVT is the compact singular value decomposition
(SVD) of H. Here U is an n-by-k orthonormal matrix, X is a
k-by-k diagonal matrix and V is a k-by-k orthogonal
matrix.

The proof of this Theorem is given in [13]. At this point,
given initial conditions i.e. an initial position X and an
initial velocity H, we can sample the resulting geodesic at
various values of ¢ € [0,1]. Our task, however, is the
inverse operation: Given n-by-k orthonormal matrices X
and Y representing equivalence classes [X] and [Y] on
Gr(k,n), find an appropriate velocity matrix H such that a
geodesic with velocity H, starting at [X], reaches [Y] in unit
time. The idea behind these two problems is illustrated in
Fig. 2.

Instead of computing H directly, we assemble H via its
compact SVD H = Uevr. By Theorem 1, at r =1, we
have

YD = XV cos(@)V" + Usin(@) V"

where D is any k-by-k orthogonal matrix (since we are only
required to reach a point in the equivalence class, i.e.
YD € [Y]). H is in the tangent space; hence, it can be
readily verified that XTH = 0 and consequently XU = 0.
Multiplying by XT on both sides of the equation yields

Veos(@)VT = xTyD

Usin(@)VT = (I — XXT)YD

Then,

Usin(@)V' (Veos(@)V)) ™! = Utan(0)VT
= (I —xx")yD(X YD)
=1 -xx"yx"y)"!

Therefore, to find the velocity matrix H, it suffices to
compute the compact SVD, (I — XX")Y(XTy)™' = UZVT,
and H = UGOVT where © = arctan(X). One subtlety in
Eq. (4) is that if V is multiplied from the right on both sides
of the equation, we still have a representative of the same
equivalence class as ®(z), i.e. @(¢)V is equivalent to ®(r)
on Gr(k,n) for all ¢.

To summarize the derivation above, we present the
formula for computing the geodesic path between two
points X, Y € Gr(k,n), which can be found in [1].

G(t) = XV cos Ot + U sin Ot (5)

We observe that

[G(O)] = [X]
and
[G(1)] = [Y]

and the trajectory G(t) traces out the path of shortest dis-
tance on Gr(k,n) in terms of the geodesic metric given by
Equation (2). The quantities U,2 and V are found by
computing the singular value decomposition of the pro-
jection of

M=y y)"
onto the orthogonal complement of X, i.e.,
usvt = (1 -xx"y(xTy)™!

where X and Y are given and the inverse of XTY exists.
Further, it can be shown that

O = atan (2)

to complete the requirements of computing the geodesic
between two subspaces X and Y as prescribed in Eq. (5).
This formula is a key ingredient for extending the self-
organizing mapping algorithm on vector spaces to
Grassmannians.

We present the following example as an illustration of
the numerical computation of the geodesic formula
between two points.

@ Springer
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Fig. 2 This figure illustrates the

two problems related to the Ko0) #

H=?

O

geodesic formula
®0) =X

(a) Given initial position and velocity,
find geodesic flow. Formula is given in

equation (4).

Let
1 0
0 1
X= 0 0
0 0
and

be two matrices representing points [X] and [Y] on Gr(2, 4).
First we compute the compact singular value
decomposition

uzvt = (1 -xx"y(xTy)"".

We find

5 1.6180 0
N 0 0.6180 )"

Compute atan along the diagonal to get

10172 0
6= .
( 0 0.5536>

Hence
(cos(l.Ol72t) 0 )

cos Ot = .

0 sin(0.5536¢)
and

. (sin(l.0172t) 0 >

sin @t = ) .

0 sin(0.5536¢)

@ Springer

P0)=X

P =Y

(b) Given two points on Grassmann,
recover the velocity which induces a
geodesic flow between points. Formula
is given in equation (5).

Now we can sample points along this geodesic.
Fort =0,

—0.5257 —0.8507
0.8508  —0.5257
G(O) - ’
0 0
0 0

whose column vectors span the same subspace as the col-
umn vectors of X. The same can also be verified for Y and
G(1) by computing the principal angles between Y and
G(1). If ¢ is sampled uniformly on the interval [0, 1], one
can verify that all the distances between any pair of adja-
cent points are the same. i.e. the geodesic has constant
speed. One example is at t:%,
between X and G(%) is the same as the distance between
G(%) and Y. ie. dy(X, G(%)) = dg(G(%), Y) (Table 1).

the geodesic distance

Table 1 The classes of the Indian Pines data

Alfalfa 46
Corn-notill 1428
Corn-mintill 830
Corn 237
Grass-pasture 483
Grass-trees 730
Grass-pasture-mowed 28
Hay-windrowed 478
Oats 20
Soybean-notill 972
Soybean-mintill 2455
Soybean-clean 593
Wheat 205
Woods 1265
Buildings-Grass-Trees-Drives 386
Stone-Steel-Towers 93

The bold denotes the data that were used in our experiment
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3 Self-organizing mappings on Gr(k,n)

In this section we present the extension of the SOM
algorithm on vector spaces to the setting of the Grass-
mannian, a manifold whose points parameterize all k-di-
mensional subspaces of a fixed n-dimensional vector space.

Following [16-19], for data x*¥), u = 1,..., P in Eucli-
dean space we select an initial set of centers {c;} where the
subscript i is the label of the spatial index a;. Since the
algorithm iteratively updates these initial centers, we add a
superscript m to identify the value of ¢; at the mth iteration.
The update equation is given by

m+1 _ m m
" = + emh(d(ai ai,)) (x — ')
where i* is the winning center associated to pattern x, i.e.,
v . m
i, = arg min [x — ¢l

Here the distance between the point x and the center ¢ is
given by the standard Euclidean norm. We also take the

i* = arg mind, (X, C;)

where the metric d, is given by Eq. (2). To move the centers
toward the pattern subspace X according to the SOM update,
we compute the geodesic, as described in detail above,
between each subspace center C; and subspace pattern X

Usv' = (I - cHCi(X"C;) " and © = arctan(X).
Our localization term now becomes

t = ehy(d(ai,air)).

We now take

ha(s) = exp(—s*/a;)

where g, = 0o(1 —n/T) and €, = (1 —n/T). The cen-
ters thus change along the geodesic by moving from C;(0)
to C;(t) = C;V cos Ot + U sin @t, where ¢ is adjusted both
for the local neighborhoods of the indices and the step size.

Algorithm 1: Grassmannian Self-Organizing Mapping

the index set.

Step 3: Repeat until convergence.

Input Data: Load class labeled data matrices {X7} € R"*? where k is the number
of samples in each subspace and n is the dimension of the data, j is
the class index, 7 is the matrix index.

Output Data: Final centers and indices of each data subspace.

Result: Representation of points on Gr(k,n) as indices of SOM centers.

Initialization: Set the number of samples per subspace k, the number of centers N,

initialize centers C; as random d-dimensional subspaces and select

Define: Select the (pseudo)-metric on Grassmannian and compute the distance
matrix between all pairs of subspaces.

Step 1: Present a random subspace to the network.

Step 2: Move all the centers C; proportionally towards the presented subspace
along the appropriate geodesic.

localization function as the standard
h(s) = exp(—s" /")

and d is a metric that induces the topology on the index set.
For simplicity, in this paper we will restrict our attention to
the case

d(ai,aj) = [la; — ajll,

On the Grassmannian the points are no longer elements of
n-dimensional Euclidean space, but points X, Y € Gr(k,n),
i.e., k-dimensional subspaces of R". For a given subspace
X we identify the center, i.e., from the set of subspaces that
represent centers {C;}, that is closest via

4 Numerical results

In this section we apply the Grassmannian SOM algorithm
to both synthetic and real-world data sets including
hyperspectral images and gene expression data.

4.1 Synthetic data

We begin with an illustrative example concerning a path
along random points on the Grassmannian. We randomly
select points on Gr(2, 10) by sampling the interval [0, 1]
using the uniform distribution to fill the entries of four
10 x 2 matrices. These are then orthogonalized using the
QR-decomposition to produce the matrices OQy,...,

@ Springer
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distance

10.5

10.45

10.4

point

center

Fig. 3 This matrix has the distances between the point i and center j
after convergence. Note that point i is closest to center j when i = j,
reflecting the ordering mechanism of the Grassmannian SOM

Q4 € R, These points serve as representatives of the
subspaces [01], (0], [Qs], [Q4] € Gr(2,10).

4.1.1 Parameterizing subspaces

Our first application concerns the use of 1D integer index
sets to parameterize a path through a set of subspaces on
the Grassmannian. When we use clock arithmetic, this is
the well-known approximate solution to the traveling
salesman problem on a Grassmann manifold. We generate
data by sampling ten points on the line segment

Z(t) = (1 =0)Q1 +10,

where each element Z is then orthogonalized using the QR-
decomposition. Using classical multidimensional scaling,
we establish that the distance matrix is non-Euclidean
given the eigenvalues (0.3,0.0028, —0.0004). The Grass-
mannian SOM algorithm serves to sort the points on this
segment." We initialize the centers in the Grassmannian
SOM algorithm with random points taken from Gr(2, 10)
and use the integer index set {1,2,...,10}. The distances
between the points and the final ordered centers are shown
in Fig. 3. We took ry = 10,ep = 0.2 and the minimum
angle distance measure when computing the winning

' Of course in this example the ordering of the points on the
Grassmannian is available to us. However, in general we can
determine a one-dimensional parameterization of a set of points on a
Grassmannian that approximately passes through nearest neighbors.

@ Springer

center for a data point; see also [6]. We proceed similarly
in the examples that follow. Note that although we are
measuring pseudo-distances between points in this way, we
are updating the centers along the true Grassmannian
geodesics.

4.1.2 A square on Gr(2, 10)

In our second illustrative example, shown in Fig. 4, we add
additional segments of points to the curve on the Grass-
mannian. In one case we connect two segments of ten
points each that share one point. Secondly, we make a
square by having four segments that share four points. In
each case the mapping of the path on Gr(2,10) to the
square lattice index set captures the geometry of the points.
We see an apparently missing point on each lattice where
two points on the curve had the same winning center.

4.2 Indian Pines

To illustrate the utility of the proposed method for visu-
alizing real data, we apply it to the well-known Indian
Pines hyperspectral image [21]. We have considered this
data set before in the context of the band selection problem
[8] and the persistent homology for signal detection on
Grassmannians [10]. A related visualization application
invokes the technique of multidimensional scaling and
sparse support vector machines [9]. The classes are shown
in Fig. 5.

In this application we selected the 12 classes that were
large enough to give 20 subspaces of dimension ten. Since
this application is merely intended to illustrate the model,
we made no attempt to optimize our parameters. However,
our previous work suggests these dimensions are reason-
able [9]. Thus, we are visualizing 240 labeled points in 220
dimensions by first constructing sets of ten-dimensional
subspaces in 220 dimensions using the SVD.

We initialized the centers for Grassmannian SOM by
selecting 900 ten-dimensional subspaces at random, cor-
responding to a 30 x 30 integer lattice. This was done by
computing the singular value decomposition of matrices of
size 220 by 10 from the uniform distribution. In Fig. 6, we
see the results of the Grassmannian SOM algorithm where
points in the same class have been organized to have
similarly valued indices.

In Figs. 7 and 8, we see the results of the Grassmannian
SOM when the points reside on Gr(2,220) and Gr(1,220),
respectively. This data set is well-known as a challenging
classification problem. For example, there are classes
which are inherently very similar such as corn (green),
corn-notill (red) and corn-mintill (blue). We see that these
three classes are well separated for SOM on Gr(10,220)
while there is overlap using Gr(1,220) and Gr(2,220). In
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Fig. 9 Mapping of gene expression data on T cell receptor signaling
pathway (color figure online)

particular, the corn-mintill (blue) is much less localized on
the lower-dimensional Grassmannians. We observe excel-
lent clustering in the majority of classes with the possible
exception of green pasture (x) which shows distinct spread
suggesting it has significant spectral overlap with the other
classes. These results vary the dimension of the Grass-
mannian and are higher resolution than those presented in
the preliminary work [15].

4.3 Gene expression data

Here we examine the application of Grassmannian SOM to
two gene expression data sets. The first is related to the
immune response in mice to the Ebola virus while the
second explores the human immune response to respiratory
infection.
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Fig. 10 These four plots are 2D visualizations of Uninfected Control
and Infected subjects from hour 30 to 48. Top left: PCA visualization.
Top right: Grassmannian SOM on Gr(1,56). Bottom left:
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Grassmannian SOM on Gr(2,56). Bottom right: Grassmannian
SOM on Gr(3,56) (color figure online)



Neural Computing and Applications

4.3.1 Ebola mice data

In this example we examine the application of Grassman-
nian SOM to a gene expression data set collected from
mice responding to infection from the Ebola virus [28].
Each raw data point consists of a set of over 12,000 genes.
As a preprocessing step, we identify the subset of all dis-
criminatory genes that classify infected versus controls; see
[26, 30] for details. Using these genes as the starting point,
we identified some 1300 biological pathways potentially of
interest in the immune response to infection. Subsequently
we applied machine learning techniques to select best
pathways for further study. We have selected one of these
pathways, i.e., the T cell receptor signaling pathway con-
sisting of 48 genes, as an example to test the Grassmannian
SOM algorithm on the Ebola Virus. We pick 3 points at
random from each class to construct a single point on the
Grassmannian. Hence, each point on the Grassmannian
lives on Gr(3,48), i.e., it consists of 48 genes and three
biological samples. The result of training the Grassmannian
SOM algorithm is shown in Fig. 9 where the high-dimen-
sional observations are mapped to the two-dimensional
index set in the usual manner. The red points represent
control samples of healthy non-human primates. The green
* points are the gene expression values at day one, while
the blue + samples reflect expression at day 2 after
exposure to infection by the Ebola virus. Although we do
observe some of the desired clustering with this example,
additional data appear to be required to provide a more
complete picture. Hence, we present the following example
on H3N2 influenza data set.

4.3.2 H3N2 influenza data

The H3N2 gene expression data sets were downloaded
from GEO GSE73072 which consists of 7 studies. Two
H3N2 challenge studies, i.e. Dee2 and Dee3, are selected
for this experiment. See [22] for more details. We used the
Reactome interferon alpha beta signaling pathway, which
contains 56 genes, to form our data matrix. Hence, each
data point resides on Gr(k,56). The solid blue circles
represent uninfected control data (before inoculation) and
red triangles represent infected samples from hour 30 to 48
after inoculation. For each k, we attached 900 randomly
generated k-dimensional subspaces to a 30 x 30 integer
lattice, which is done in the same way as is described in
Sect. 4.2. In Fig. 10, we see the results of Grassmannian
SOM when data points live on Gr(1l,56)(top right),
Gr(2,56)(bottom left) and Gr(3,56)(right). We observe
that two classes are well separated for SOM on Gr(3, 56)
while we start seeing overlaps on Gr(2,56) and even more
overlaps on Gr(1,56). As a comparison, we also included
the 2D visualization via PCA(top left) of this dataset, from

which we can also find overlaps between two classes when
data are projected onto the first two principal components.
This example shows strong clustering performance when
Grassmannian SOM is applied to biological gene expres-
sion pathway data.

5 Conclusion

We have presented an extension of the self-organizing
mapping algorithm to the geometric setting of the Grass-
mann manifold. The approach moves centers toward data
points presented to the network by moving proportionally
along the geodesic, or shortest path, between two elements
of Gr(k,n). We illustrate the method by showing that the
algorithm organizes the hyperspectral image data in the
index space and separates ten-dimensional subspaces of
220-dimensional space. While lower-dimensional Grass-
mannians also capture significant structure, the 10-D sub-
spaces captured the most variability consistent with
observations made using other algorithms. We also observe
that three-dimensional subspaces resolve the H3N2 data
into separable control and infected classes while these are
clearly non-separable using either a standard PCA projec-
tion or Grassmannian SOM with one-dimensional sub-
spaces. Hence, the data subspace perspective is essential to
adequately process the data using SOM.

It is not necessary in practice for the points to reside on
the same Grassmannian. The distance between a k-di-
mensional and j-dimensional subspace with k<j is now
just a function of the first k angles. It is of course poten-
tially important to experiment with the size of the dimen-
sions, but for this paper we have fixed them to be equal for
each subspace.

Note that we have yet to systematically explore the
impact of the metric for computing winning centers on the
algorithm. One can envision optimizing this metric for
improved data visualization. It will be interesting to con-
sider the extension of SOM to other abstract manifolds
such as the Stiefel and flag manifolds.
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