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Abstract
We propose a method for extending Kohonen’s self-organizing mapping to the geometric framework of the Grassmannian.

The resulting algorithm serves as a prototype of the extension of the SOM to the setting of abstract manifolds. The

ingredients required for this are a means to measure distance between two points, and a method to move one point in the

direction of another. In practice, the data are not required to have a representation in Euclidean space. We discuss in detail

how a point on a Grassmannian is moved in the direction of another along a geodesic path. We demonstrate the imple-

mentation of the algorithm on several illustrative data sets, hyperspectral images and gene expression data sets.
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1 Introduction

In the visualization of data, we often resort to the com-

putation of means or centroids of data, computed from

labeled or unlabeled training sets, or from nearest neigh-

bors within a single data set. It is then natural to visualize

these centroids, and the associated neighborhood data,

using dimensionality reduction techniques such as self-or-

ganizing mappings (SOMs) [16–19]. This approach has

proven to be a valuable tool for the low-dimensional

visualization of data, see, e.g., [20, 27] in addition to an

extended bibliography indicating the widespread applica-

tions of this methodology [14]. Specifically, in [19]

Kohonen shows some of the most extensive applications of

SOM including management of massive textual databases

and bioinformatics, the latter of which will also be

explored under the context of pathway analysis in this

paper. The key ingredient of this idea is that points that are

neighbors in a high-dimensional space are represented as

neighbors in a low-dimensional index space, a feature that

arises through the self-organizing properties of the algo-

rithm. When the data consist of a collection of k-dimen-

sional subspaces of a common n-dimensional vector space,

then the appropriate setting for analysis is the Grassman-

nian manifold, Grðk; nÞ, whose points parameterize the k-

dimensional subspaces of Rn.

There is now considerable evidence that subspaces may

serve as statistics for data analysis. The idea is that data

may be organized into distinguishing subspaces. Data

residing in the same subspace are invariant to confounding

variations in the data, but data residing in separate sub-

spaces are covariant to the variations that count for pattern

recognition, or classification, see, e.g., [12, 23–25, 29]. The

basic idea behind the approach is to compare an unlabeled

observation to a collection of subspaces, each of which is

constructed from several patterns of a given class. Each

subspace represents a set of data which is labeled as sim-

ilar, even though it may have been recorded in conditions

undergoing a variable change of state. As an example, a

vector space could be associated with a set of digital

images of an object collected under a variety of different
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illumination conditions [2, 4, 5, 7]. It has been observed

that the pattern set framework, based on subspaces, can

enhance the robustness of pattern recognition algorithms.

For example, in the case of using the subspace approach to

capture variations in illumination conditions, the resolution

of images can be reduced without sacrificing classification

accuracy [6].

One attractive tool for set-to-set pattern analysis is the

geometric framework of the Grassmannian. More formally,

the Grassmannian Gr(k, n) is a manifold whose points

parameterize the k-dimensional subspaces of a fixed n-di-

mensional vector space. As such, it provides a setting for

comparing distances between subspaces using a variety of

metrics. The most widely used class of metrics are func-

tions of the principal angles between the subspaces as these

lead to comparisons that are invariant under orthogonal

transformations. Further, it is possible to transition from

one subspace to another along a shortest path, or geodesic

(typically represented as a path consisting of orthonormal

matrices). These ingredients make it possible to convert the

SOM algorithm on vector spaces to an analogous algorithm

on Grassmannians.

In this paper we develop the Grassmannian SOM algo-

rithm by modifying the standard SOM algorithm to operate

in the setting of the Grassmann framework. We use the

resulting approach to visualize subspaces of data in high-

dimensional spaces on low-dimensional index sets.

2 The mathematics of the Grassmannian

It is conventional to view a datum as a point in a high-

dimensional ambient space such as Euclidean, and a col-

lection of data as a set of points in this ambient space. Data

from a common source, or of a common characteristic, are

then viewed as data that reside in a common neighborhood

of the ambient space. But how is neighborhood to be

defined? In many applications a neighborhood consists of

data that are composed of a linear combination of a com-

mon set of orthogonal basis vectors, organized into the k

frame V ¼ ½v1; v2; . . .; vk�. Sometimes the k-frame itself is

desciptive of the data, in which case we are interested in

the set of all such k-frames. The manifold whose points

parameterize the k-frames of an n-dimensional vector

space, equipped with the standard inner product, is the

Stiefel manifold Stðk; nÞ. It may be represented as

OðnÞ=Oðn� kÞ, which codes for the idea that a sampling of

the Stiefel manifold for a k-frame V is a sampling of the

orthogonal group for an orthogonal matrix Q, followed by

a moding out of the basis for the orthogonal subspace

spanned by the trailing n� k orthogonal vectors in the

orthogonal matrix Q. The leading k orthogonal vectors of

Q are then an ordered basis for the k-frame V.

But in many applications the k-frame is too fine-grained.

In other words, it is not the k-frame itself that matters, but

rather the subspace of vectors in the ambient space that can

be constructed from the frame. It is the range of V that

counts, not V itself. This subspace we denote hVi. The

manifold whose points parameterize all such subspaces is

the Grassmann manifold Grðk; nÞ and we represent it as

OðnÞ=OðkÞ � Oðn� kÞ, which codes for the idea that a

sampling from this manifold for a subspace hVi amounts to

sampling from O(n), followed by a moding out of the basis

for the signal subspace spanned by the leading k orthogonal

vectors and a moding out by the basis from the orthogonal

subspace spanned by the trailing n� k orthogonal vectors

of Q. What is left is a sampling of the Grassmann manifold

for a k-dimensional subspace of Rn. This discussion may be

generalized to orthogonal groups, k-frames, and k-dimen-

sional subspaces of arbitrary inner product spaces.

In some applications, one is interested in uniform sam-

ples from O(n), Stðk; nÞ, and Grðk; nÞ. This may be

achieved by constructing an n� n matrix of independent

and identically distributed normal½0; 1� random variables,

and QR factoring it for Q. The matrix Q obtained in this

manner is drawn from the uniform distribution on the

orthogonal group with respect to Haar measure, which is to

say the distribution of Q is invariant to left orthogonal

transformation. The corresponding samplings for V and

hVi are uniform with respect to Haar measure. It is not

claimed that real data, organized into subspaces, produce

uniformly distributed subspaces. Rather, it is claimed that

the extent to which data and its subspaces produce non-

uniformly distributed subspaces is the extent to which data

bring information about the geometric structure of the

underlying mechanisms that generated the data. This raises

the question of distances and angles between subspaces of

the Grassmannian. In particular, the distances between

points on the Grassmannian are measured in terms of the

principle angles between their subspaces.

2.1 Overview of angles

We provide a short summary of the computation of angles

between subspaces initially described in [3]. Let X and Y be

two vector subspaces of Rn such that

p ¼ dimðXÞ� dimðYÞ ¼ q� 1;

then the principal angles hk 2 ½0; p
2
�; 1� k� q between

X and Y are defined recursively by

cosðhkÞ ¼ max
u 2 X

max
v 2 Y

uTv ¼ uT
k vk; k ¼ 1 . . . q ð1Þ

subject to jjujj ¼ jjvjj ¼ 1; uTui ¼ 0 and vTvi ¼ 0 for

i ¼ 1 . . . k � 1. Clearly, the principal angles satisfy
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0� h1 � h2 � � � � � hq � p
2
. Henceforth, h ¼ ðh1; . . .; hqÞ

will denote the principal angle vector. Note that we have

abused notation somewhat in using X to represent both a

subspace and an orthonormal matrix whose columns span

this space. For additional details related to algorithms for

the computation of principal angles see [3].

2.2 Metrics on the Grassmannian

Let A, B be two points on the Grassmannian Gr(k, n).

Again, we are thinking of these points as subspaces though

they are represented by orthonormal matrices whose col-

umns span the subspaces. The geodesic distance between

these two points is given by

dgðA;BÞ ¼ kðh1; . . .; hkÞk2 ð2Þ

Other metrics are possible, e.g., the chordal distance

dgðA;BÞ ¼ kðsinðh1Þ; . . .; sinðhkÞÞk2 ð3Þ

We note that it is possible to show that the Grassmannian

may be isometrically embedded into Euclidean space when

the chordal metric is employed and this is not the case for

the geodesic metric [11]; see also [9].

Principal angles between subspaces are defined regard-

less of the dimensions of the subspaces, denoted, e.g.,

dimA. Thus, inspired by the Riemannian geometry of the

Grassmannian, we may define, for any vector subspaces A,

B of Rn the geodesic distance

dgðA;BÞ ¼ kðh1; . . .; h‘Þk2;

for any ‘� minfdimA; dimBg. While d‘ is not, strictly

speaking, a metric (for example, if dimA \ B� ‘, then

d‘ðA;BÞ ¼ 0), it nevertheless provides an efficient and

useful tool for analyzing configurations in [k� ‘Grðk; nÞ.
The geometry driving these distance measures is captured

by the notion of a Schubert variety �X‘ðWÞ � Grðk; nÞ. Let

W be a subspace of Rn, then we define

�X‘ðWÞ ¼ fE 2 Grðk; nÞ j dimðE \WÞ� ‘g:

With this notation, d‘ðA;BÞ simply measures the distance

between A and �X‘ðBÞ, i.e. dðA; �X‘ðBÞÞ ¼
minfdkðA;CÞjC 2 X‘ðBÞg (it is worth noting that under

this interpretation, d‘ðA;BÞ ¼ d‘ðB;AÞ).

2.3 Geodesics

In this section we introduce the geodesic formula between

two points on the Grassmann manifold proposed in [1]. Our

presentation of this result is intended to be self-contained

and contains additional details and examples not found in

[1]. This section is intended to provide the background

necessary to facilitate the understanding of how this tool is

integrated into the SOM algorithm.

Here it is convenient to view the Grassmannian Grðk; nÞ
as the quotient manifold OðnÞ=OðkÞ � Oðn� kÞ. Let Q 2
OðnÞ be an n-by-n orthogonal matrix. The equivalence

class [Q] is the set of all orthogonal matrices whose first

k columns span the same subspace as the one spanned by

the first k columns of Q. A point on the Grassmann man-

ifold is the equivalence class,

½Q� ¼ Q
Qk 0

0 Qn�k

� �
: Qk 2 OðkÞ; Qn�k 2 Oðn� kÞ

� �

One advantage of this representation is that we may utilize

the orthogonal group geodesic and the quotient geometry

of the Grassmann manifold.

Suppose Q is an element in O(n) (thus Q is an n-by-n

orthogonal matrix). The tangent space to O(n) at Q,

denoted by TQOðnÞ, can be computed by considering

curves on O(n) which pass through Q. Let X(t) be any

smooth curve on O(n) which goes through Q at t ¼ 0, i.e.

Xð0Þ ¼ Q. Since XðtÞT
XðtÞ ¼ I for all t, differentiating

both sides of the equation with respect to t yields

_XðtÞT
XðtÞ þ XðtÞT _XðtÞ ¼ 0. At t ¼ 0, we have

_Xð0ÞT
Qþ QT _Xð0Þ ¼ 0. By computing the dimension of

O(n) and the dimension of the set of matrices D such that

DTQþ QTD ¼ 0, one verifies that TQOðnÞ is exactly the set

of matrices D where QTD is any n-by-n skew symmetric

matrix. Therefore, the set of tangent vectors in TQOðnÞ is

the set of matrices D which has the form D ¼ QA where A

is any n-by-n skew symmetric matrix. It is further shown in

[13] that a geodesic path on O(n) is given by the expo-

nential flow: QðtÞ ¼ Q expðtAÞ where A 2 Rn�n is a skew

symmetric matrix and Qð0Þ ¼ Q.

Grðk; nÞ is a quotient space of O(n). The tangent space to

O(n) at Q, TQOðnÞ, can be decomposed into a vertical

space VQ and a horizontal space HQ. The vertical space is

the set of vectors in the tangent space corresponding to

motions flowing along the equivalence class [Q] at Q. The

horizontal space is defined as the orthogonal (with respect

to the Euclidean metric) complement of the vertical space

in TQOðnÞ. Here the Euclidean metric is defined as a

function d : TQOðnÞ � TQOðnÞ7!R:

dðU;VÞ ¼ TrðUTVÞ
¼ vecðUÞT

vecðVÞ

Intuitively, the vectors in the vertical space can be thought

of as the set of velocity vectors which preserve the

equivalence class while the vectors in the horizontal space

modify the equivalence class. Therefore, tangent vectors to

geodesics must be restricted to the horizontal space.

Moreover, if V is a tangent vector to Grðk; nÞ at [Q], then
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there is a horizontal vector V 2 HQ which represents

V uniquely. Please note that Grðk; nÞ is an abstract mani-

fold as is a tangent space to Grðk; nÞ. The horizontal space

provides us with a way to represent abstract tangent vectors

with matrices. The idea of the vertical space and the hor-

izontal space is illustrated in Fig. 1.

The computation of the vertical space at a point Q 2
OðnÞ is similar to the computation of the tangent space to

O(n). Let

VðtÞ ¼ Q
QkðtÞ 0

0 Qn�kðtÞ

� �

be any smooth curve on the elements of the equivalence

class [Q] with Qkð0Þ ¼ Ik and Qn�kð0Þ ¼ In�k, i.e.

Vð0Þ ¼ Q. We observe that VðtÞT
VðtÞ ¼ I. Differentiating

both sides and evaluating at t ¼ 0 yields

_Qkð0ÞT þ _Qkð0Þ ¼ 0

_Qn�kð0ÞT þ _Qn�kð0Þ ¼ 0

Utilizing this computation along with a dimension count, we

show that the vertical space at a point Q is the set of matrices

VQ ¼ Q
C 0

0 D

� �� �
;

where C is a k-by-k skew symmetric matrix and D is a

ðn� kÞ-by-ðn� kÞ skew symmetric matrix. The horizontal

space HQ is the set of matrices which are orthogonal to the

vertical space and living in TQOðnÞ. Consider the following

set of equations

TrðDTQ
C 0

0 D

� �
Þ ¼ 0

D ¼ QA

where A 2 Rn�n, C 2 Rk�k and D 2 Rðn�kÞ�ðn�kÞ are

skew symmetric matrices. The solution set to the above

system, i.e. the horizontal space at Q is the set of matrices

HQ ¼ Q
0 � BT

B 0

� �� �
:

We observe that the orthogonal group geodesic

QðtÞ ¼ Q exp t
0 � BT

B 0

� �� �

has horizontal tangent vector

_QðtÞ ¼ QðtÞ 0 � BT

B 0

� �

for all t along Q(t). Therefore, Q(t) is still a shortest path on

the quotient space Grðk; nÞ, i.e. by further restricting A to

be of the form

~A ¼ 0 � BT

B 0

� �
; B 2 Rðn�kÞ�ðkÞ

we obtain a representative of the geodesic path on Grðk; nÞ

QðtÞ ¼ Q expðt ~AÞ:

The ðn� kÞ-by-(k) submatrix B specifies the velocity of the

geodesic flow. This approach provides us an easy method

to compute the geodesic formula on the Grassmann man-

ifold using n-by-k matrices.

In numerical applications, what matters is the span of

the first k columns of Q(t); hence, the geodesic formula can

be rewritten as,

UðtÞ ¼ Q expðt ~AÞJ

where J ¼ Ik
0n�k;k

� �
2 Rn�k and UðtÞ is a n-by-

k orthonormal matrix for any t 2 ½0; 1�. For numerical

computation we introduce the following way to represent

points on the Stiefel manifold. Each point on St(k, n) can

be expressed as a n-by-k orthonormal matrix Y such that

YTY ¼ Ik. In this way, we can view the Grassmann

Fig. 1 This figure illustrates the idea of the vertical space VQ and

horizontal space HQ at a point Q. T½Q�Grðk; nÞ is the tangent space to

Grðk; nÞ at [Q]. It can be shown that a tangent vector V 2 T½Q�Grðk; nÞ
can be uniquely represented by a tangent vector V 2 HQ. Hence, we

can use matrices to represent tangent vectors to points on Grðk; nÞ
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manifold Grðk; nÞ as a quotient manifold of the Stiefel

Manifold St(k, n). The equivalence class [Y] can be defined

as

½Y � ¼ fYD : D 2 OðkÞg:

By viewing the Grassmann manifold as a quotient manifold

of the Stiefel manifold, we can compute the corresponding

vertical space and horizontal space. With the computation

illustrated above, one can verify the vertical space at Y is

the set of matrices,

VY ¼ fYA : A 2 Rk�k;AT þ A ¼ 0g:

And the horizontal space is

HY ¼ fN : N 2 Rn�k;NTY ¼ 0g:

Therefore, a tangent vector to the Grassmann manifold at

[Y] can be uniquely represented by a n-by-k matrix N where

YTN ¼ 0. With this in mind, we can use the following

theorem to compute the geodesic flow UðtÞ numerically in

a convenient way.

Theorem 1 If UðtÞ ¼ Q expðt ~AÞJ, with Uð0Þ ¼ X and

_Uð0Þ ¼ H where ~A ¼ 0 �BT

B 0

� �
, then

UðtÞ ¼ XV cosðRtÞVT þ U sinðRtÞVT ð4Þ

where URVT is the compact singular value decomposition

(SVD) of H. Here U is an n-by-k orthonormal matrix, R is a

k-by-k diagonal matrix and V is a k-by-k orthogonal

matrix.

The proof of this Theorem is given in [13]. At this point,

given initial conditions i.e. an initial position X and an

initial velocity H, we can sample the resulting geodesic at

various values of t 2 ½0; 1�. Our task, however, is the

inverse operation: Given n-by-k orthonormal matrices X

and Y representing equivalence classes [X] and [Y] on

Grðk; nÞ, find an appropriate velocity matrix H such that a

geodesic with velocity H, starting at [X], reaches [Y] in unit

time. The idea behind these two problems is illustrated in

Fig. 2.

Instead of computing H directly, we assemble H via its

compact SVD H ¼ UHVT. By Theorem 1, at t ¼ 1, we

have

YD ¼ XV cosðHÞVT þ U sinðHÞVT

where D is any k-by-k orthogonal matrix (since we are only

required to reach a point in the equivalence class, i.e.

YD 2 ½Y�). H is in the tangent space; hence, it can be

readily verified that XTH ¼ 0 and consequently XTU ¼ 0.

Multiplying by XT on both sides of the equation yields

V cosðHÞVT ¼ XTYD

U sinðHÞVT ¼ ðI � XXTÞYD

Then,

U sinðHÞVTðV cosðHÞVTÞ�1 ¼ U tanðHÞVT

¼ ðI � XXTÞYDðXTYDÞ�1

¼ ðI � XXTÞYðXTYÞ�1

Therefore, to find the velocity matrix H, it suffices to

compute the compact SVD, ðI � XXTÞYðXTYÞ�1 ¼ URVT,

and H ¼ UHVT where H ¼ arctanðRÞ. One subtlety in

Eq. (4) is that if V is multiplied from the right on both sides

of the equation, we still have a representative of the same

equivalence class as UðtÞ, i.e. UðtÞV is equivalent to UðtÞ
on Grðk; nÞ for all t.

To summarize the derivation above, we present the

formula for computing the geodesic path between two

points X; Y 2 Grðk; nÞ, which can be found in [1].

GðtÞ ¼ XV cosHt þ U sinHt ð5Þ

We observe that

½Gð0Þ� ¼ ½X�

and

½Gð1Þ� ¼ ½Y �

and the trajectory G(t) traces out the path of shortest dis-

tance on Grðk; nÞ in terms of the geodesic metric given by

Equation (2). The quantities U;R and V are found by

computing the singular value decomposition of the pro-

jection of

M ¼ YðXTYÞ�1

onto the orthogonal complement of X, i.e.,

URVT ¼ ðI � XXTÞYðXTYÞ�1

where X and Y are given and the inverse of XTY exists.

Further, it can be shown that

H ¼ atan ðRÞ

to complete the requirements of computing the geodesic

between two subspaces X and Y as prescribed in Eq. (5).

This formula is a key ingredient for extending the self-

organizing mapping algorithm on vector spaces to

Grassmannians.

We present the following example as an illustration of

the numerical computation of the geodesic formula

between two points.
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Let

X ¼

1 0

0 1

0 0

0 0

0
BB@

1
CCA

and

Y ¼

1ffiffiffi
2

p 1ffiffiffi
3

p

0
1ffiffiffi
3

p

0
1ffiffiffi
3

p

� 1ffiffiffi
2

p 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

be two matrices representing points [X] and [Y] on Grð2; 4Þ.
First we compute the compact singular value

decomposition

URVT ¼ ðI � XXTÞYðXTYÞ�1:

We find

R ¼
1:6180 0

0 0:6180

� �
:

Compute atan along the diagonal to get

H ¼
1:0172 0

0 0:5536

� �
:

Hence

cosHt ¼
cosð1:0172tÞ 0

0 sinð0:5536tÞ

� �

and

sinHt ¼
sinð1:0172tÞ 0

0 sinð0:5536tÞ

� �
:

Now we can sample points along this geodesic.

For t ¼ 0,

Gð0Þ ¼

�0:5257 � 0:8507

0:8508 � 0:5257

0 0

0 0

0
BBB@

1
CCCA;

whose column vectors span the same subspace as the col-

umn vectors of X. The same can also be verified for Y and

G(1) by computing the principal angles between Y and

G(1). If t is sampled uniformly on the interval [0, 1], one

can verify that all the distances between any pair of adja-

cent points are the same. i.e. the geodesic has constant

speed. One example is at t ¼ 1
2
, the geodesic distance

between X and Gð1
2
Þ is the same as the distance between

Gð1
2
Þ and Y. i.e. dgðX;Gð1

2
ÞÞ ¼ dgðGð1

2
Þ; YÞ (Table 1).

(a) Given initial position and velocity,
find geodesic flow. Formula is given in
equation (4).

(b) Given two points on Grassmann,
recover the velocity which induces a
geodesic flow between points. Formula
is given in equation (5).

Fig. 2 This figure illustrates the

two problems related to the

geodesic formula

Table 1 The classes of the Indian Pines data

Alfalfa 46

Corn-notill 1428

Corn-mintill 830

Corn 237

Grass-pasture 483

Grass-trees 730

Grass-pasture-mowed 28

Hay-windrowed 478

Oats 20

Soybean-notill 972

Soybean-mintill 2455

Soybean-clean 593

Wheat 205

Woods 1265

Buildings-Grass-Trees-Drives 386

Stone-Steel-Towers 93

The bold denotes the data that were used in our experiment
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3 Self-organizing mappings on Gr(k;nÞ

In this section we present the extension of the SOM

algorithm on vector spaces to the setting of the Grass-

mannian, a manifold whose points parameterize all k-di-

mensional subspaces of a fixed n-dimensional vector space.

Following [16–19], for data xðlÞ; l ¼ 1; . . .;P in Eucli-

dean space we select an initial set of centers fcig where the

subscript i is the label of the spatial index ai. Since the

algorithm iteratively updates these initial centers, we add a

superscript m to identify the value of ci at the mth iteration.

The update equation is given by

cmþ1
i ¼ cmi þ �mhðdðai; ai	mÞÞðx� cmi Þ

where i	 is the winning center associated to pattern x, i.e.,

i	m ¼ arg min
i

kx� cmi k2:

Here the distance between the point x and the center cmi is

given by the standard Euclidean norm. We also take the

localization function as the standard

hðsÞ ¼ expð�s2=r2Þ

and d is a metric that induces the topology on the index set.

For simplicity, in this paper we will restrict our attention to

the case

dðai; ajÞ ¼ kai � ajk2

On the Grassmannian the points are no longer elements of

n-dimensional Euclidean space, but points X; Y 2 Grðk; nÞ,
i.e., k-dimensional subspaces of Rn. For a given subspace

X we identify the center, i.e., from the set of subspaces that

represent centers fCig, that is closest via

i	 ¼ arg min
i

dgðX;CiÞ

where the metric dg is given by Eq. (2). To move the centers

toward the pattern subspace X according to the SOM update,

we compute the geodesic, as described in detail above,

between each subspace center Ci and subspace pattern X

URVT ¼ ðI � CT
i ÞCiðXTCiÞ�1

and H ¼ arctanðRÞ:

Our localization term now becomes

t ¼ �nhnðdðai; ai	 ÞÞ:

We now take

hnðsÞ ¼ expð�s2=r2
nÞ

where rn ¼ r0ð1 � n=TÞ and �n ¼ �0ð1 � n=TÞ. The cen-

ters thus change along the geodesic by moving from Cið0Þ
to CiðtÞ ¼ CiV cosHt þ U sinHt; where t is adjusted both

for the local neighborhoods of the indices and the step size.

4 Numerical results

In this section we apply the Grassmannian SOM algorithm

to both synthetic and real-world data sets including

hyperspectral images and gene expression data.

4.1 Synthetic data

We begin with an illustrative example concerning a path

along random points on the Grassmannian. We randomly

select points on Grð2; 10Þ by sampling the interval [0, 1]

using the uniform distribution to fill the entries of four

10 � 2 matrices. These are then orthogonalized using the

QR-decomposition to produce the matrices Q1; . . .;

Algorithm 1: Grassmannian Self-Organizing Mapping

Input Data: Load class labeled data matrices {Xj
i } ∈ R

n×d where k is the number
of samples in each subspace and n is the dimension of the data, j is
the class index, i is the matrix index.

Output Data: Final centers and indices of each data subspace.
Result: Representation of points on Gr(k, n) as indices of SOM centers.
Initialization: Set the number of samples per subspace k, the number of centers N ,

initialize centers Ci as random d-dimensional subspaces and select
the index set.

Define: Select the (pseudo)-metric on Grassmannian and compute the distance
matrix between all pairs of subspaces.

Step 1: Present a random subspace to the network.
Step 2: Move all the centers Ci proportionally towards the presented subspace

along the appropriate geodesic.
Step 3: Repeat until convergence.
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Q4 2 R10�2. These points serve as representatives of the

subspaces ½Q1�; ½Q2�; ½Q3�; ½Q4� 2 Grð2; 10Þ.

4.1.1 Parameterizing subspaces

Our first application concerns the use of 1D integer index

sets to parameterize a path through a set of subspaces on

the Grassmannian. When we use clock arithmetic, this is

the well-known approximate solution to the traveling

salesman problem on a Grassmann manifold. We generate

data by sampling ten points on the line segment

ZðtÞ ¼ ð1 � tÞQ1 þ tQ2

where each element Z is then orthogonalized using the QR-

decomposition. Using classical multidimensional scaling,

we establish that the distance matrix is non-Euclidean

given the eigenvalues ð0:3; 0:0028;�0:0004Þ. The Grass-

mannian SOM algorithm serves to sort the points on this

segment.1 We initialize the centers in the Grassmannian

SOM algorithm with random points taken from Grð2; 10Þ
and use the integer index set f1; 2; . . .; 10g. The distances

between the points and the final ordered centers are shown

in Fig. 3. We took r0 ¼ 10; �0 ¼ 0:2 and the minimum

angle distance measure when computing the winning

center for a data point; see also [6]. We proceed similarly

in the examples that follow. Note that although we are

measuring pseudo-distances between points in this way, we

are updating the centers along the true Grassmannian

geodesics.

4.1.2 A square on Gr(2; 10Þ

In our second illustrative example, shown in Fig. 4, we add

additional segments of points to the curve on the Grass-

mannian. In one case we connect two segments of ten

points each that share one point. Secondly, we make a

square by having four segments that share four points. In

each case the mapping of the path on Grð2; 10Þ to the

square lattice index set captures the geometry of the points.

We see an apparently missing point on each lattice where

two points on the curve had the same winning center.

4.2 Indian Pines

To illustrate the utility of the proposed method for visu-

alizing real data, we apply it to the well-known Indian

Pines hyperspectral image [21]. We have considered this

data set before in the context of the band selection problem

[8] and the persistent homology for signal detection on

Grassmannians [10]. A related visualization application

invokes the technique of multidimensional scaling and

sparse support vector machines [9]. The classes are shown

in Fig. 5.

In this application we selected the 12 classes that were

large enough to give 20 subspaces of dimension ten. Since

this application is merely intended to illustrate the model,

we made no attempt to optimize our parameters. However,

our previous work suggests these dimensions are reason-

able [9]. Thus, we are visualizing 240 labeled points in 220

dimensions by first constructing sets of ten-dimensional

subspaces in 220 dimensions using the SVD.

We initialized the centers for Grassmannian SOM by

selecting 900 ten-dimensional subspaces at random, cor-

responding to a 30 � 30 integer lattice. This was done by

computing the singular value decomposition of matrices of

size 220 by 10 from the uniform distribution. In Fig. 6, we

see the results of the Grassmannian SOM algorithm where

points in the same class have been organized to have

similarly valued indices.

In Figs. 7 and 8, we see the results of the Grassmannian

SOM when the points reside on Grð2; 220Þ and Grð1; 220Þ,
respectively. This data set is well-known as a challenging

classification problem. For example, there are classes

which are inherently very similar such as corn (green),

corn-notill (red) and corn-mintill (blue). We see that these

three classes are well separated for SOM on Grð10; 220Þ
while there is overlap using Grð1; 220Þ and Grð2; 220Þ. In

distance
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0.35
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0.45
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Fig. 3 This matrix has the distances between the point i and center j

after convergence. Note that point i is closest to center j when i ¼ j,

reflecting the ordering mechanism of the Grassmannian SOM

1 Of course in this example the ordering of the points on the

Grassmannian is available to us. However, in general we can

determine a one-dimensional parameterization of a set of points on a

Grassmannian that approximately passes through nearest neighbors.
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Fig. 5 The class regions of the Indian Pines data set [21]
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Fig. 6 This figure shows the final configuration of the points as

mapped to the 2D index set from Grð10; 220Þ
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Fig. 7 The converged Grassmannian SOM applied to the Indian Pines

classes on Grð2; 220Þ (color figure online)
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Fig. 8 The converged Grassmannian SOM applied to the Indian Pines

classes on Grð1; 220Þ (color figure online)
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particular, the corn-mintill (blue) is much less localized on

the lower-dimensional Grassmannians. We observe excel-

lent clustering in the majority of classes with the possible

exception of green pasture (x) which shows distinct spread

suggesting it has significant spectral overlap with the other

classes. These results vary the dimension of the Grass-

mannian and are higher resolution than those presented in

the preliminary work [15].

4.3 Gene expression data

Here we examine the application of Grassmannian SOM to

two gene expression data sets. The first is related to the

immune response in mice to the Ebola virus while the

second explores the human immune response to respiratory

infection.
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5
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8
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11

Fig. 9 Mapping of gene expression data on T cell receptor signaling

pathway (color figure online)

Fig. 10 These four plots are 2D visualizations of Uninfected Control

and Infected subjects from hour 30 to 48. Top left: PCA visualization.

Top right: Grassmannian SOM on Grð1; 56Þ. Bottom left:

Grassmannian SOM on Grð2; 56Þ. Bottom right: Grassmannian

SOM on Grð3; 56Þ (color figure online)
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4.3.1 Ebola mice data

In this example we examine the application of Grassman-

nian SOM to a gene expression data set collected from

mice responding to infection from the Ebola virus [28].

Each raw data point consists of a set of over 12,000 genes.

As a preprocessing step, we identify the subset of all dis-

criminatory genes that classify infected versus controls; see

[26, 30] for details. Using these genes as the starting point,

we identified some 1300 biological pathways potentially of

interest in the immune response to infection. Subsequently

we applied machine learning techniques to select best

pathways for further study. We have selected one of these

pathways, i.e., the T cell receptor signaling pathway con-

sisting of 48 genes, as an example to test the Grassmannian

SOM algorithm on the Ebola Virus. We pick 3 points at

random from each class to construct a single point on the

Grassmannian. Hence, each point on the Grassmannian

lives on Grð3; 48Þ, i.e., it consists of 48 genes and three

biological samples. The result of training the Grassmannian

SOM algorithm is shown in Fig. 9 where the high-dimen-

sional observations are mapped to the two-dimensional

index set in the usual manner. The red points represent

control samples of healthy non-human primates. The green

* points are the gene expression values at day one, while

the blue ? samples reflect expression at day 2 after

exposure to infection by the Ebola virus. Although we do

observe some of the desired clustering with this example,

additional data appear to be required to provide a more

complete picture. Hence, we present the following example

on H3N2 influenza data set.

4.3.2 H3N2 influenza data

The H3N2 gene expression data sets were downloaded

from GEO GSE73072 which consists of 7 studies. Two

H3N2 challenge studies, i.e. Dee2 and Dee5, are selected

for this experiment. See [22] for more details. We used the

Reactome interferon alpha beta signaling pathway, which

contains 56 genes, to form our data matrix. Hence, each

data point resides on Grðk; 56Þ. The solid blue circles

represent uninfected control data (before inoculation) and

red triangles represent infected samples from hour 30 to 48

after inoculation. For each k, we attached 900 randomly

generated k-dimensional subspaces to a 30 � 30 integer

lattice, which is done in the same way as is described in

Sect. 4.2. In Fig. 10, we see the results of Grassmannian

SOM when data points live on Grð1; 56Þ(top right),

Grð2; 56Þ(bottom left) and Grð3; 56Þ(right). We observe

that two classes are well separated for SOM on Grð3; 56Þ
while we start seeing overlaps on Grð2; 56Þ and even more

overlaps on Grð1; 56Þ. As a comparison, we also included

the 2D visualization via PCA(top left) of this dataset, from

which we can also find overlaps between two classes when

data are projected onto the first two principal components.

This example shows strong clustering performance when

Grassmannian SOM is applied to biological gene expres-

sion pathway data.

5 Conclusion

We have presented an extension of the self-organizing

mapping algorithm to the geometric setting of the Grass-

mann manifold. The approach moves centers toward data

points presented to the network by moving proportionally

along the geodesic, or shortest path, between two elements

of Grðk; nÞ. We illustrate the method by showing that the

algorithm organizes the hyperspectral image data in the

index space and separates ten-dimensional subspaces of

220-dimensional space. While lower-dimensional Grass-

mannians also capture significant structure, the 10-D sub-

spaces captured the most variability consistent with

observations made using other algorithms. We also observe

that three-dimensional subspaces resolve the H3N2 data

into separable control and infected classes while these are

clearly non-separable using either a standard PCA projec-

tion or Grassmannian SOM with one-dimensional sub-

spaces. Hence, the data subspace perspective is essential to

adequately process the data using SOM.

It is not necessary in practice for the points to reside on

the same Grassmannian. The distance between a k-di-

mensional and j-dimensional subspace with k\j is now

just a function of the first k angles. It is of course poten-

tially important to experiment with the size of the dimen-

sions, but for this paper we have fixed them to be equal for

each subspace.

Note that we have yet to systematically explore the

impact of the metric for computing winning centers on the

algorithm. One can envision optimizing this metric for

improved data visualization. It will be interesting to con-

sider the extension of SOM to other abstract manifolds

such as the Stiefel and flag manifolds.
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