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Abstract—We establish a nonasymptotic lower bound on the L2
minimax risk for a class of generalized linear models. It is further
shown that the minimax risk for the canonical linear model
matches this lower bound up to a universal constant. Therefore,
the canonical linear model may be regarded as most favorable
among the considered class of generalized linear models (in
terms of minimax risk). The proof makes use of an information-
theoretic Bayesian Cramér-Rao bound for log-concave priors,
established by Aras et al. (2019).

I. INTRODUCTION AND MAIN RESULTS

As their name suggests, generalized linear models (GLMs)
are a flexible class of parametric statistical models that gener-
alize the class of linear models relating a random observation
X € R" to a parameter 6 € RY via the linear relation

X =M0+Z, ey

where M € R™*? is a known (fixed) design matrix, and
Z € R™ is a random noise vector. For a univariate GLM in
canonical form with natural parameter 7 € R, the density of
observation X € R given n is expressed as the exponential

family e — B(n)
f(z;m) = h(z) exp <S(O)> :

for known functions h : X C R — [0, 0o) (the base measure),
® : R — R (the cumulant function) and a scale parameter
s(o) > 0. For this general class of models, the question of
central importance is how well one can estimate 7 from an
observation X ~ f(-;n), where f(-;n) is understood to be
a density on a probability space (¥ C R, F) with respect
to a dominating o-finite measure A. This class of models
captures a wide variety of parametric models such as binomial,
Gaussian, Poisson, etc. As a specific example, we can take
X = {0,1,2,...} equipped with the counting measure .
For h(x) = 1/x!, ®(t) = ¢! and s(o) = 1, the observation
X ~ f(+;m) will be Poisson(e").

In this paper, we restrict our attention to multivariate GLMs

of the form
— ©((my, 0))
o)) e

for a real parameter # € R? and a fixed design matrix M €
R4 with rows given by the vectors {m;}", C R% In
words, the above model assumes each X; is drawn from the
same exponential family, with respective natural parameters

n

fa;0) =11 {h(:ri) exp (%‘<mi79>

i=1
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(m;,0), i = 1,2,...,n. This captures the linear model (1)
in the usual case where the noise vector Z is assumed to be
standard normal on R", but is also flexible enough to capture
many other models of interest.

In terms of parameter estimation, a typical figure of merit
is the constrained Lo minimax risk, which corresponds to the
worst-case Lo estimation error, where 6 is allowed to range
over a constrained set ©. For our purposes, we take © equal
to the Euclidean ball in R?, denoted Bg(1) := {v : v €
R?, ||v||2 < 1}, which is a common choice in applications.
More precisely, we make the following definition.

Definition 1. For the generalized linear model (2), we define
the associated minimax risk via

R*(h,® M, s(c)) :=inf sup E[6— 0|2,
6 0eBg(1)

where the expectation is over X ~ f(-;0), and the infimum is
over all R%*-valued estimators 0 (i.e., measurable functions of
the observation X).

Before we state our main results, we make the following
assumption throughout:

Assumption 1. We assume the cumulant function ® : R — R
in (2) is twice-differentiable, with second derivative uniformly
bounded as ®" < L, for some L > 0.

Remark 2. This assumption is standard in the literature on
minimax estimation for GLMs, and is equivalent to the map
0 — Ex~f(0)[X] being L-Lipschitz. See, for example, [1]—
[4].

Our first main result is a general lower bound on the
minimax risk for the class of GLMs introduced above.

Theorem 3. The Lo minimax risk for the class of models (2)
is lower bounded according to

R*(h,®, M, s(c)) 2 min (S(LU) Tr (MTM)™h), 1) . (3)

where 2 denotes inequality, up to a universal constant.

Remark 4. In case M M is not invertible, we adopt the
convention that Tr (M " M)~") = +oc. This situation occurs
when M is not full rank, in which case 0 is not identifiable
in the null space of M and constant error is unavoidable.
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Remark 5. In fact, with minor modification, Theorem 3 holds
for the more general class of GLMs with observations drawn
from densities of the form

n

Fa:0) =] {him) exp (xi(m“wsi(ff o 9») } '

=1

See Section II-C for further remarks.

Remark 6. Since minimax risk is generally characterized
modulo universal constants, the statement (3) in terms of 2
is sufficient for our purposes. However, a careful analysis of
our arguments reveals that 2 can be replaced with > at the
expense of including a modest constant in the RHS of (3) (e.g.,

1/(mwe?)).

Most interestingly, the minimax bound (3) holds uniformly
over the class of GLMs given by (2), and is of the correct
order for the canonical linear model (1). Indeed, under the
linear model X = LM6O + Z, where Z is standard Gaussian
with covariance o2 - I and the design matrix M is full rank,
the maximum likelihood estimator (MLE) estimator éMLE is
given by

Ome = L~ (M TM)*MTX.

One can explicitly calculate the Lo error as
E||0 — Owue(3 = E0 - L7 (MTM) " MTX3
1 _
= SEI(MTM) M7

o2
=7 Tr((MTM)™h).
The linear model in this case corresponds to h(z) =
e~ /(2L 4(5) = o2, and D(t) = Lt2/2 in (2).
Comparing (4) to Theorem 3, we find that our minimax
lower bound is achieved (up to a universal constant) for
linear models of the above form. To summarize, we have the
following:

“

Corollary 7. Fix a design matrix M, scale parameter s(o)
and L > 0. Among those generalized linear models in (2)
with ®" < L, linear models are most favorable in terms of
minimax risk. More precisely, among this class of models,

R*(h,®, M, 5(0)) 2 R* (e~ O/ CL@) ()2 /2 M, (o).

Roughly speaking, the above asserts that linear models are
most favorable among a broad class of GLMs, giving this
paper its name.

A. Related Work

Perhaps most closely related to our work is that of
Abramovich and Grinshtein [1], albeit for a slightly differ-
ent setup. In particular, Abramovich and Grinshtein provide
minimax lower bounds for the Kullback-Leibler divergence
between the vector M6 and any estimator M6 under a k-
sparse setting ||6]|o < k, with the parameter 6 constrained to
have at most k£ non-zero entries. When the cumulant function
® is strongly convex with 0 < R < ®” < L for some fixed

constants R, L, we can adapt the arguments of [1] to obtain
the following Lo minimax lower bound

ds(o)R Amin (M T M)

inf sup ||M6— M@|3 > INWEYATIR

= 2
M6 9eBd (1) L

where M is assumed to be full rank and \,,;,, and \,.x denote
smallest and largest eigenvalues, respectively. The minimax
lower bound for estimating M6 is not directly comparable
to our result, where the goal is estimation of #. Neverthe-
less, using the operator norm inequality ||M (0 — 0)|2 <
Amax(MTM)||6 — 6|2, we may conclude

ds(0)R  Amin(MTM)
Aax (M M)

inf sup |0 — 0|3 2
0 oeBd(1) ? L?

A direct computation shows that (3) is sharper than the above
L, minimax estimate since
d Amin(M T M) d
)‘Iznax(MTM) N )‘de(MTM)

<Tr ((MTM) 7).

As for a general theory, apart from the gaussian linear
model, the minimax estimator for the GLM does not have a
closed form, but the Maximum Likelihood Estimator (MLE)
can be approximated by iterative weighted linear regression
[5]. A variety of estimators such as aggregate estimators [6],
robust estimators [7] and GLM with Lasso [9] have been
proposed to solve different settings of the GLM. We refer
interested readers to [8] for the theory of GLMs.

Another line of related work explores models with stochastic
design matrix M. Duchi, Jordan and Wainwright [10] consider
inference of a parameter 6 under privacy constraints. Negahban
et al. [3] and Loh et al. [4] provide consistency and conver-
gence rates for M-estimators in GLMs with low-dimensional
structure under high-dimensional scaling.

Separate from the minimax problems considered here,
model selection is another line of popular work. Model se-
lection in linear regression dates back to the seventies and has
regained popularity over the past decade, due to the increase in
need of data exploration for high dimensional data; see [11]-
[13] and many other works for the history. More recently, tools
in model selection for linear regression have been adapted for
the GLM; see [1] for a brief discussion.

B. Organization

The remainder of this paper is organized as follows. Pre-
liminaries for the derivation of our minimax lower bounds are
introduced in Section II-A. The proof of Theorem 3 is given
in Section II-B, with further remarks in Section II-C.

II. DERIVATION OF MINIMAX BOUND FOR THE GLM

The following notation is used throughout: upper-case let-
ters (e.g., X, Y) denote random variables or matrices, and
lower-case letters (e.g., x,y) denote realizations of random
variables or vectors. We use subscript notation v; to denote the
i-th component of a vector v = (v1,va, ..., vq), and we define

the leave-one-out vector v\) 1= (vy, ..., V;_1,0j41,. .., Vq)-
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A. Preliminaries

In the general framework of parametric statistics, let
(X,F,Py;0 € RY) be a dominated family of probability
measures on a measurable space (X, F) with dominating o-
finite measure A. To each Py, we associate a density f(-;6)
with respect to A\ according to

dPy(x) = f(x;0)d\(x). )

Assuming the maps 6 — f(x;0), x € X, are differentiable,
the Fisher information matrix associated to observation X ~
f(:;0) and parameter § € R? is defined as the matrix-valued
map 6 — Zx () with components

dlog f(X;6) dlog f(X:0)
00; 00; ’
Here and throughout, log denotes the natural logarithm. The

following regularity assumption is standard when dealing with
Fisher information.

[Zx(0)i; =E 0 € RY.

Assumption 2. The densities f(-;0) are sufficiently regular
to permit the following exchange of integration and differen-
tiation:

/ Vof(z:0)dA(z) =0; 6€R% (6)
X

Here, Vg denotes the gradient with respect to 6.

While the Fisher information is one notion of information
that an observation X ~ f(-;6) reveals about the unknown
parameter 6, it also makes sense to consider the usual mu-
tual information I(X;#) under the further assumption that 6
is distributed according to a known prior distribution 7 (a
probability measure on R¢). Recent results by the authors
together with Aras and Pananjady establish a quantitative
relation between these two notions of information [14]. To
state the result precisely, recall that a probability measure
dp = e Vdx on RY is said to be log-concave if the potential
V :R? = R is a convex function.

Lemma 8 ([14, Theorem 2]). Let 0 ~ 7, where w is log-
concave on R%, and given 0 let X ~ f(-;0). If Assumption 2
holds, then

f(X;e><d-¢<

Tr(Cov(@));pTr (EIX(G))> s

where

¢<x)::{WE roswsl

1+%logw if v > 1.

As discussed extensively in [14], the above result is related
to the van Trees inequality [15], [16], and its entropic im-
provement due to Efroimovich [17]. The crucial feature of
(7) compared to these other results is that it does not depend
on the (information theorist’s version of) Fisher information
of the prior m, commonly denoted J (7). This is what is
gained via the assumption of log-concavity, and is important
for our analysis where we introduce (log-concave) priors with
arbitrarily large Fisher information.

B. Proof of Theorem 3

Recall that the design matrix M has as its rows {m;}; C
R?. Writing the matrix M in terms of its SVD M = UXV "
and defining u; as the ¢-th column of the matrix U T, we have

. = . T — - )
<m17 9> <Eul "Vi 0,> <mlv 0>7 (8)
My 0
where we defined the variables m; := Su; and 6 := V4.

Since V is an orthogonal matrix by definition, it follows
by rotation invariance of the Ly ball Bg(1) that the esti-
mation problem can be equivalently formulated under the
reparametrization (6, M) — (0, M), where M := MV =
U3X. More specifically, the minimax risk for  over the set of
estimators for estimating & € Bg(1) is equal to the minimax
risk for estimating 6 € BZ(1). More precisely,

inf sup E[6—0|2 =inf sup E[f—0|3.

0 0eBd(1) 0 0eBg(1)
As a result, we may assume without loss of generality that
MT M is a diagonal matrix.

By definition, minimax risk is lower bounded by the Bayes
risk, when 6 is assumed to be distributed according to a
prior 7, defined on the Lo ball Bg(1). Hence, our task is
to judiciously select a prior 7 that yields the desired lower
bound. Toward this end, we will let = be the uniform measure
on the rectangle Hle[fei/Q, €;/2] for values (€;);=12,... 4 to
be determined below satisfying

d
< ©)
i=1

In other words, our construction implies € has independent
components, with the i-th coordinate §; uniform on the interval
[—€i/2,¢€;/2]. The interval lengths will, in general, be chosen
to exploit the structure of the design matrix M.

We now describe our construction of the sequence
(€i)i=1,2,...,d- We start with the simple case, in which the
matrix M does not have full (column) rank. In this case, there
exists an eigenvalue A\, (M " M) = 0. For this index k, we set
€ = 20, 1 = 1,2,...,d, where §;; is the Kronecker delta
function. Now, we may bound

E[|0 - 0]|3 > Var(6x — 0)

(;) i€2h(9k*ék) @ Le%(ak\ék)

— 2me — 2me

_ L enen-21(0000) (;) L onn—21x:00)
2me — 2me

@ 2

o me

where (a) follows from the max-entropy property of gaussians;
(b) follows since conditioning reduces entropy: (0 — ;) >
h(kaék |9k) = h(0 \ék); (c) follows from the data processing
inequality since 6 — X — 0}, forms a Markov chain; and
(d) follows since ) ~ Unif(—1,1) and I(X;0;) = 0, since
7 is supported in the kernel of M by construction.
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Having shown the minimax risk is lower bounded by a
constant when M does not have full (column) rank, we assume
henceforth that M has full rank.

Note that under our assumptions, the pair (X, 6) has a joint
distribution, and therefore so does the pair (X, 6;). Consistent
with the previously introduced notation, we write Zx (6;) to
denote the Fisher information of X drawn according to the
conditional law of X given ;. With this notation in hand,
the next lemma provides a comparison between the expected
Fisher information conditioned on a single component 6; of
the parameter 6 and the i-th diagonal entry of the expected
Fisher information matrix conditioned for parameter 6.

Lemma 9. When the components of parameter 0 ~ 1, 6 € R?
are independent and X ~ f(-;0) is generated by the GLM (2),
we have

E[Zx(0)),;, >EZIx(0;) i=1,2,...,d.

Proof. The desired estimate is obtained by observing
2

(35 1(x:0))

0. X))
(E[f(X;0)]6;, X))*

o <ai@E[f(X;9)\9i,X])2
(E[f(X;0)]6;, X))*

w | (E[a 0

=REZx(6;).

In the above, (a) is due to Cauchy-Schwarz. Indeed, let 7;
and 7)) denote the marginal laws of #; and 6("), respectively.
Using independence of #; and §(), note that

(5 rx:0)

f(X;0)?

0 ¢12:0))
= /lR /X /R . WCIW(“(G(“)dA(@dm(Gi)
Juis 2 0)dn ) (69))
- /]R/X ( T 7 0 )
(B[ £ sx:0]0.x])°
(E[£(X;0)]6;, X])*

9

where the last line follows since
x— E[f(X;0)|60;, X = z] :/ f(w;g)dﬂ.(i)(e(i))
Rd—l

is the density (w.r.t. A) of X given 6;.

Equality (b) follows from independence between 6; and (%)
and the Leibniz integral rule. Application of the latter can be
justified by the assumed regularity of ® and compactness of
B4(1). O

Next, fix ¢; > 0. Since 6; ~ Unif(—¢;/2,¢;/2) has log-
concave distribution, and the GLM (2) satisfies Assumption 2
(a consequence of Assumption 1 and the Leibniz integral rule,
justified by regularity of ®), we can apply Lemmas 8 and 9
to conclude

62h(6i|éi) > e2h(0:)—21(X;6,)

> e2h(0:) =29 (Var(6:)-EIx (6:))

N E?ef2¢<ﬁE[IX(0))]ii>' 10

Note that the last inequality used the identities Var(6;) = 1%
and h(6;) = log(e;), holding by construction.

Next, recall the following well-known identities associated
with exponential families of the form we consider.

Lemma 10 ([8, Page 29]). Fix m and 6, and consider a
density f(x;0) = h(x)exp (W) with respect to
A A random observation X ~ f(-;0) has mean ®'((m,0))
and variance s(c) - ®"({m, 6)).

Combining the above with our assumption that ®” < L, we
have for any § € R¢,

[Zx(0))ii = Ex~y(0) (869 log f(X; 9))

= ( Ex~r0) Z @/((m;. 6)))
_ 5210) jzi:l (M2 Var(X;))

< 8(10_) X: (M, L)

_S(LU)[JMTM]W an

Putting (10) and (11) together, we conclude for any choice
of ¢, >0,

) 2 L
2h(0;16:) ~ 2 oo (S = T ) |
e > €; exp [ 0] (12 s(a)[ lii

2h(6:10:) —

12)

In case ¢; = 0, we have the trivial equality e
which is consistent with the RHS of (12) evaluated at ¢; = 0.
Hence, the estimate (12) holds for all ¢; > 0.

Summing (12) from ¢ = 1,2,...,d, for parameter 6 ~
T = Hle Unif(—¢;/2,¢;/2) and any measurable function 6

of X ~ f(+;6), we have the following lower bound on the
Bayesian L risk,
A~ d A
Ell0 — 0113 > ) _ Var(0; — 0;)
i=1

1 & ;
IR e TICAT S
> o Z
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L Ly 26 (L (07 ),
sre Dyt owe |20 (5510001 ) |
(13)

It remains to choose an appropriate sequence (€;)i=12....d
to obtain the desired lower bound. Toward this end, we
consider two cases:

Case 1: Tr((M ™M)~ £

In this case, we choose ¢ 1252 ([MTM]ii)71 for
i = 1,2,...,d. Note that by our assumption that M "M is
diagonal,

1) <

(o)"

s
2
i

d
> 2= 22 <,

so that (9) is satisfied. By an application of (13), we have

d

s e L
E||6 — 03 ZE exp[ 2¢ <12$(0_)[MTM]M,>:|
i=1
d
12 s(0) 1
T e L ; [MTM];

Case 2: Tr(MTM)™1) > %sé)-

This case is the more difficult of the two. We shall make
use of the following technical Lemma.

Lemma 11. Let (@i)i=1,2,....a be any positive sequence satisfy-

.....

ing 21 10, 1> 4. Then, there exists a non- negative sequence

2
(e,), 1,2,...d such that Zl €2 < 4and Z | E2em20(ciai) >
2e”

Proof. Without loss of generality, assume that a; > as
- > aq > 0. If a; < 1/4, then taking (€1, €2,...,€q)

v

(2,0,0,...,0), and noticing that ¢ is an increasing function,
we conclude
d
Zege—w(e?m) — fe200a1) > 4=20(1) 5 9p=2
i=1

Now, in the following we assume that a; > 1/4. Let ¢ denote
the largest integer k € {1, 2, ...,d} satisfying Zle a;t <4
By the assumption that Z a;' > 4, we know that there

i=1"

always exists such a ¢, and ¢ will satisfy ¢ < d. We set

{ o 12
€ = g
0

By definition, "¢ | 2 = Y>'_ a7t < 4 satisfies (9). This
procedure results in

d tq
2 . —
g 6126724)(6"(1’) =e? E —.
— 44
i=1

i=1

if1<i<t¢

, i=1,2,....d
otherwise T

(14)

If Zz 144
and (14) that Zi:l

L>9, we can 1mmedlate1y see from the above
e —2¢(6 a;) > 2¢2.

On the other hand, if 3X'_ a7’ < 2, this implies that

a;rll > 2. In this case, we simply take €11 = 2, and take

€; = 0 for i # t + 1. With this choice, we have

d

2
E €;e
i=1

The above discussion concludes the proof of Lemma 11. [

—2¢(eZa;) _ fe—20(art1) > 4e—20(2) _ 902,

By considering the values a; = 125(0) [MTM];;, Lemma
11 ensures the existence of (€;);=1 2,...,d satisfying (9) and,
together with (13), gives E||6 — é||§ Z 1. This completes the
proof of Theorem 3.

C. Remarks

A few remarks are in order. First, we note that the argument
in the previous subsection actually yields the stronger entropic
inequality,

1nfsup262h(0 i16:) 2 min (S(L) (MTM)™Y), )

0 O~m i—1

which improves Theorem 3 (seen by the max-entropy property
of gaussians). Here, the supremum is taken over all distribu-
tions 7 supported on the Lo ball B (1).

Second, we remark that our analysis is flexible enough
for generalizations to other forms of the GLM. For example,
consider observation X drawn from the density

o0 = [T [ty (2100~ )|

i=1 i(0)

Suppose Assumption 1 holds for each cumulant function
®, (e, ®/ < L for each ¢ = 1,...,n). Then, a slight
modification in (11) yields

L
(@)
where s*(0) = min;—y2 ., ;(0). Following (13) and the

same choice of (€;);=1,2, ..,¢ in Section II-B with the argument
s(c) replaced by s*(o), we obtain minimax lower bound

(S*g’)ﬂ((MTM)l) ,1> :

In the special case where s1(0) = ... = s,(0), the same
minimax lower bound as Theorem 3 is recovered.

[Zx(0)]i < [M T M];;

inf sup E||6 — 0|2 > min
0 0eBZ (1)
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