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Abstract—We establish a nonasymptotic lower bound on the L2

minimax risk for a class of generalized linear models. It is further
shown that the minimax risk for the canonical linear model
matches this lower bound up to a universal constant. Therefore,
the canonical linear model may be regarded as most favorable
among the considered class of generalized linear models (in
terms of minimax risk). The proof makes use of an information-
theoretic Bayesian Cramér-Rao bound for log-concave priors,
established by Aras et al. (2019).

I. INTRODUCTION AND MAIN RESULTS

As their name suggests, generalized linear models (GLMs)

are a flexible class of parametric statistical models that gener-

alize the class of linear models relating a random observation

X ∈ R
n to a parameter θ ∈ R

d via the linear relation

X = Mθ + Z, (1)

where M ∈ R
n×d is a known (fixed) design matrix, and

Z ∈ R
n is a random noise vector. For a univariate GLM in

canonical form with natural parameter η ∈ R, the density of

observation X ∈ R given η is expressed as the exponential

family

f(x; η) = h(x) exp

(
ηx− Φ(η)

s(σ)

)
,

for known functions h : X ⊆ R → [0,∞) (the base measure),

Φ : R → R (the cumulant function) and a scale parameter

s(σ) > 0. For this general class of models, the question of

central importance is how well one can estimate η from an

observation X ∼ f(·; η), where f(·; η) is understood to be

a density on a probability space (X ⊆ R,F) with respect

to a dominating σ-finite measure λ. This class of models

captures a wide variety of parametric models such as binomial,

Gaussian, Poisson, etc. As a specific example, we can take

X = {0, 1, 2, . . .} equipped with the counting measure λ.

For h(x) = 1/x!, Φ(t) = et and s(σ) = 1, the observation

X ∼ f(·; η) will be Poisson(eη).
In this paper, we restrict our attention to multivariate GLMs

of the form

f(x; θ) =

n∏

i=1

{
h(xi) exp

(
xi〈mi, θ〉 − Φ(〈mi, θ〉)

s(σ)

)}
, (2)

for a real parameter θ ∈ R
d and a fixed design matrix M ∈

R
n×d, with rows given by the vectors {mi}ni=1 ⊂ R

d. In

words, the above model assumes each Xi is drawn from the

same exponential family, with respective natural parameters

〈mi, θ〉, i = 1, 2, . . . , n. This captures the linear model (1)

in the usual case where the noise vector Z is assumed to be

standard normal on R
n, but is also flexible enough to capture

many other models of interest.

In terms of parameter estimation, a typical figure of merit

is the constrained L2 minimax risk, which corresponds to the

worst-case L2 estimation error, where θ is allowed to range

over a constrained set Θ. For our purposes, we take Θ equal

to the Euclidean ball in R
d, denoted B

d
2(1) := {v : v ∈

R
d, ‖v‖22 ≤ 1}, which is a common choice in applications.

More precisely, we make the following definition.

Definition 1. For the generalized linear model (2), we define

the associated minimax risk via

R∗(h,Φ,M, s(σ)) := inf
θ̂

sup
θ∈B

d

2
(1)

E‖θ − θ̂‖22,

where the expectation is over X ∼ f(·; θ), and the infimum is

over all Rd-valued estimators θ̂ (i.e., measurable functions of

the observation X).

Before we state our main results, we make the following

assumption throughout:

Assumption 1. We assume the cumulant function Φ : R → R

in (2) is twice-differentiable, with second derivative uniformly

bounded as Φ′′ ≤ L, for some L > 0.

Remark 2. This assumption is standard in the literature on

minimax estimation for GLMs, and is equivalent to the map

θ 7−→ EX∼f(·;θ)[X] being L-Lipschitz. See, for example, [1]–

[4].

Our first main result is a general lower bound on the

minimax risk for the class of GLMs introduced above.

Theorem 3. The L2 minimax risk for the class of models (2)

is lower bounded according to

R∗(h,Φ,M, s(σ)) & min

(
s(σ)

L
Tr

(
(M>M)−1

)
, 1

)
, (3)

where & denotes inequality, up to a universal constant.

Remark 4. In case M>M is not invertible, we adopt the

convention that Tr
(
(M>M)−1

)
= +∞. This situation occurs

when M is not full rank, in which case θ is not identifiable

in the null space of M and constant error is unavoidable.
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Remark 5. In fact, with minor modification, Theorem 3 holds

for the more general class of GLMs with observations drawn

from densities of the form

f(x; θ) =

n∏

i=1

{
hi(xi) exp

(
xi〈mi, θ〉 − Φi(〈mi, θ〉)

si(σ)

)}
.

See Section II-C for further remarks.

Remark 6. Since minimax risk is generally characterized

modulo universal constants, the statement (3) in terms of &

is sufficient for our purposes. However, a careful analysis of

our arguments reveals that & can be replaced with ≥ at the

expense of including a modest constant in the RHS of (3) (e.g.,

1/(πe3)).

Most interestingly, the minimax bound (3) holds uniformly

over the class of GLMs given by (2), and is of the correct

order for the canonical linear model (1). Indeed, under the

linear model X = LMθ + Z, where Z is standard Gaussian

with covariance σ2L · I and the design matrix M is full rank,

the maximum likelihood estimator (MLE) estimator θ̂MLE is

given by

θ̂MLE = L−1(M>M)−1M>X.

One can explicitly calculate the L2 error as

E‖θ − θ̂MLE‖22 = E‖θ − L−1(M>M)−1M>X‖22
=

1

L2
E‖(M>M)−1M>Z‖22

=
σ2

L
Tr((M>M)−1). (4)

The linear model in this case corresponds to h(x) =
e−x2/(2Lσ2), s(σ) = σ2, and Φ(t) = Lt2/2 in (2).

Comparing (4) to Theorem 3, we find that our minimax

lower bound is achieved (up to a universal constant) for

linear models of the above form. To summarize, we have the

following:

Corollary 7. Fix a design matrix M , scale parameter s(σ)
and L > 0. Among those generalized linear models in (2)

with Φ′′ ≤ L, linear models are most favorable in terms of

minimax risk. More precisely, among this class of models,

R∗(h,Φ,M, s(σ)) & R∗(e−(·)2/(2Ls(σ)), (·)2L/2,M, s(σ)).

Roughly speaking, the above asserts that linear models are

most favorable among a broad class of GLMs, giving this

paper its name.

A. Related Work

Perhaps most closely related to our work is that of

Abramovich and Grinshtein [1], albeit for a slightly differ-

ent setup. In particular, Abramovich and Grinshtein provide

minimax lower bounds for the Kullback-Leibler divergence

between the vector Mθ and any estimator M̂θ under a k-

sparse setting ‖θ‖0 ≤ k, with the parameter θ constrained to

have at most k non-zero entries. When the cumulant function

Φ is strongly convex with 0 < R ≤ Φ′′ ≤ L for some fixed

constants R,L, we can adapt the arguments of [1] to obtain

the following L2 minimax lower bound

inf
M̂θ

sup
θ∈B

d

2
(1)

‖Mθ − M̂θ‖22 &
ds(σ)R

L2
· λmin(M

>M)

λmax(M>M)
,

where M is assumed to be full rank and λmin and λmax denote

smallest and largest eigenvalues, respectively. The minimax

lower bound for estimating Mθ is not directly comparable

to our result, where the goal is estimation of θ. Neverthe-

less, using the operator norm inequality ‖M(θ − θ̂)‖22 ≤
λmax(M

>M)‖θ − θ̂‖22, we may conclude

inf
θ̂

sup
θ∈B

d

2
(1)

‖θ − θ̂‖22 &
ds(σ)R

L2
· λmin(M

>M)

λ2
max(M

>M)
.

A direct computation shows that (3) is sharper than the above

L2 minimax estimate since

d λmin(M
>M)

λ2
max(M

>M)
≤ d

λmax(M>M)
≤ Tr

((
M>M

)−1
)
.

As for a general theory, apart from the gaussian linear

model, the minimax estimator for the GLM does not have a

closed form, but the Maximum Likelihood Estimator (MLE)

can be approximated by iterative weighted linear regression

[5]. A variety of estimators such as aggregate estimators [6],

robust estimators [7] and GLM with Lasso [9] have been

proposed to solve different settings of the GLM. We refer

interested readers to [8] for the theory of GLMs.

Another line of related work explores models with stochastic

design matrix M . Duchi, Jordan and Wainwright [10] consider

inference of a parameter θ under privacy constraints. Negahban

et al. [3] and Loh et al. [4] provide consistency and conver-

gence rates for M-estimators in GLMs with low-dimensional

structure under high-dimensional scaling.

Separate from the minimax problems considered here,

model selection is another line of popular work. Model se-

lection in linear regression dates back to the seventies and has

regained popularity over the past decade, due to the increase in

need of data exploration for high dimensional data; see [11]–

[13] and many other works for the history. More recently, tools

in model selection for linear regression have been adapted for

the GLM; see [1] for a brief discussion.

B. Organization

The remainder of this paper is organized as follows. Pre-

liminaries for the derivation of our minimax lower bounds are

introduced in Section II-A. The proof of Theorem 3 is given

in Section II-B, with further remarks in Section II-C.

II. DERIVATION OF MINIMAX BOUND FOR THE GLM

The following notation is used throughout: upper-case let-

ters (e.g., X , Y ) denote random variables or matrices, and

lower-case letters (e.g., x, y) denote realizations of random

variables or vectors. We use subscript notation vi to denote the

i-th component of a vector v = (v1, v2, . . . , vd), and we define

the leave-one-out vector v(j) := (v1, . . . , vj−1, vj+1, . . . , vd).
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A. Preliminaries

In the general framework of parametric statistics, let

(X ,F , Pθ; θ ∈ R
d) be a dominated family of probability

measures on a measurable space (X ,F) with dominating σ-

finite measure λ. To each Pθ, we associate a density f(·; θ)
with respect to λ according to

dPθ(x) = f(x; θ)dλ(x). (5)

Assuming the maps θ 7−→ f(x; θ), x ∈ X , are differentiable,

the Fisher information matrix associated to observation X ∼
f(·; θ) and parameter θ ∈ R

d is defined as the matrix-valued

map θ 7−→ IX(θ) with components

[IX(θ)]ij = E

[
∂ log f(X; θ)

∂θi

∂ log f(X; θ)

∂θj

]
, θ ∈ R

d.

Here and throughout, log denotes the natural logarithm. The

following regularity assumption is standard when dealing with

Fisher information.

Assumption 2. The densities f(·; θ) are sufficiently regular

to permit the following exchange of integration and differen-

tiation: ∫

X

∇θf(x; θ)dλ(x) = 0; θ ∈ R
d. (6)

Here, ∇θ denotes the gradient with respect to θ.

While the Fisher information is one notion of information

that an observation X ∼ f(·; θ) reveals about the unknown

parameter θ, it also makes sense to consider the usual mu-

tual information I(X; θ) under the further assumption that θ
is distributed according to a known prior distribution π (a

probability measure on R
d). Recent results by the authors

together with Aras and Pananjady establish a quantitative

relation between these two notions of information [14]. To

state the result precisely, recall that a probability measure

dµ = e−V dx on R
d is said to be log-concave if the potential

V : Rd → R is a convex function.

Lemma 8 ( [14, Theorem 2]). Let θ ∼ π, where π is log-

concave on R
d, and given θ let X ∼ f(·; θ). If Assumption 2

holds, then

I(X; θ) ≤ d · φ
(
Tr (Cov(θ)) · Tr (E IX(θ))

d2

)
, (7)

where

φ(x) :=

{√
x if 0 ≤ x ≤ 1

1 + 1
2 log x if x ≥ 1.

As discussed extensively in [14], the above result is related

to the van Trees inequality [15], [16], and its entropic im-

provement due to Efroimovich [17]. The crucial feature of

(7) compared to these other results is that it does not depend

on the (information theorist’s version of) Fisher information

of the prior π, commonly denoted J (π). This is what is

gained via the assumption of log-concavity, and is important

for our analysis where we introduce (log-concave) priors with

arbitrarily large Fisher information.

B. Proof of Theorem 3

Recall that the design matrix M has as its rows {mi}ni=1 ⊂
R

d. Writing the matrix M in terms of its SVD M = UΣV >

and defining ui as the i-th column of the matrix U>, we have

〈mi, θ〉 = 〈Σui︸︷︷︸
m̄i

, V >θ︸︷︷︸
θ̄

〉 = 〈m̄i, θ̄〉, (8)

where we defined the variables m̄i := Σui and θ̄ := V >θ.

Since V is an orthogonal matrix by definition, it follows

by rotation invariance of the L2 ball B
d
2(1) that the esti-

mation problem can be equivalently formulated under the

reparametrization (θ,M) −→ (θ̄, M̄), where M̄ := MV =
UΣ. More specifically, the minimax risk for θ over the set of

estimators for estimating θ ∈ B
d
2(1) is equal to the minimax

risk for estimating θ̄ ∈ B
d
2(1). More precisely,

inf
θ̂

sup
θ∈B

d

2
(1)

E‖θ − θ̂‖22 = inf
ˆ̄θ

sup
θ̄∈B

d

2
(1)

E‖θ̄ − ˆ̄θ‖22.

As a result, we may assume without loss of generality that

M>M is a diagonal matrix.

By definition, minimax risk is lower bounded by the Bayes

risk, when θ is assumed to be distributed according to a

prior π, defined on the L2 ball B
d
2(1). Hence, our task is

to judiciously select a prior π that yields the desired lower

bound. Toward this end, we will let π be the uniform measure

on the rectangle
∏d

i=1[−εi/2, εi/2] for values (εi)i=1,2,...,d to

be determined below satisfying

d∑

i=1

ε2i ≤ 4. (9)

In other words, our construction implies θ has independent

components, with the i-th coordinate θi uniform on the interval

[−εi/2, εi/2]. The interval lengths will, in general, be chosen

to exploit the structure of the design matrix M .

We now describe our construction of the sequence

(εi)i=1,2,...,d. We start with the simple case, in which the

matrix M does not have full (column) rank. In this case, there

exists an eigenvalue λk(M
>M) = 0. For this index k, we set

εi = 2δik, i = 1, 2, . . . , d, where δij is the Kronecker delta

function. Now, we may bound

E‖θ − θ̂‖22 ≥ Var(θk − θ̂k)

(a)

≥ 1

2πe
e2h(θk−θ̂k)

(b)

≥ 1

2πe
e2h(θk|θ̂k)

=
1

2πe
e2h(θk)−2I(θ̂k;θk)

(c)

≥ 1

2πe
e2h(θk)−2I(X;θk)

(d)
=

2

πe

where (a) follows from the max-entropy property of gaussians;

(b) follows since conditioning reduces entropy: h(θk − θ̂k) ≥
h(θk−θ̂k|θ̂k) = h(θk|θ̂k); (c) follows from the data processing

inequality since θk → X → θ̂k forms a Markov chain; and

(d) follows since θk ∼ Unif(−1, 1) and I(X; θk) = 0, since

π is supported in the kernel of M by construction.
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Having shown the minimax risk is lower bounded by a

constant when M does not have full (column) rank, we assume

henceforth that M has full rank.

Note that under our assumptions, the pair (X, θ) has a joint

distribution, and therefore so does the pair (X, θi). Consistent

with the previously introduced notation, we write IX(θi) to

denote the Fisher information of X drawn according to the

conditional law of X given θi. With this notation in hand,

the next lemma provides a comparison between the expected

Fisher information conditioned on a single component θi of

the parameter θ and the i-th diagonal entry of the expected

Fisher information matrix conditioned for parameter θ.

Lemma 9. When the components of parameter θ ∼ π, θ ∈ R
d

are independent and X ∼ f(·; θ) is generated by the GLM (2),

we have

E [IX(θ)]ii ≥ E IX(θi) i = 1, 2, . . . , d.

Proof. The desired estimate is obtained by observing

E[IX(θ)]ii = E




(
∂
∂θi

f(X; θ)
)2

f(X; θ)2




(a)

≥ E




(
E

[
∂
∂θi

f(X; θ)
∣∣∣ θi, X

])2

(E [f(X; θ)| θi, X])
2




(b)
= E




(
∂
∂θi

E [f(X; θ)| θi, X]
)2

(E [f(X; θ)| θi, X])
2


 = E IX(θi).

In the above, (a) is due to Cauchy-Schwarz. Indeed, let πi

and π(i) denote the marginal laws of θi and θ(i), respectively.

Using independence of θi and θ(i), note that

E




(
∂
∂θi

f(X; θ)
)2

f(X; θ)2




=

∫

R

∫

X

∫

Rd−1

(
∂
∂θi

f(x; θ)
)2

f(x; θ)
dπ(i)(θ(i))dλ(x)dπi(θi)

≥
∫

R

∫

X

(∫
Rd−1

∂
∂θi

f(x; θ)dπ(i)(θ(i))
)2

∫
Rd−1 f(x; θ)dπ(i)(θ(i))

dλ(x)dπi(θi)

= E




(
E

[
∂
∂θi

f(X; θ)
∣∣∣ θi, X

])2

(E [f(X; θ)| θi, X])
2


 ,

where the last line follows since

x 7−→ E [f(X; θ)| θi, X = x] =

∫

Rd−1

f(x; θ)dπ(i)(θ(i))

is the density (w.r.t. λ) of X given θi.
Equality (b) follows from independence between θi and θ(i)

and the Leibniz integral rule. Application of the latter can be

justified by the assumed regularity of Φ and compactness of

B
d
2(1).

Next, fix εi > 0. Since θi ∼ Unif(−εi/2, εi/2) has log-

concave distribution, and the GLM (2) satisfies Assumption 2

(a consequence of Assumption 1 and the Leibniz integral rule,

justified by regularity of Φ), we can apply Lemmas 8 and 9

to conclude

e2h(θi|θ̂i) ≥ e2h(θi)−2I(X;θi)

≥ e2h(θi)−2φ(Var(θi)·E IX(θi))

≥ ε2i e
−2φ

(
ε
2
i

12
E [IX(θ))]

ii

)

. (10)

Note that the last inequality used the identities Var(θi) =
ε2
i

12
and h(θi) = log(εi), holding by construction.

Next, recall the following well-known identities associated

with exponential families of the form we consider.

Lemma 10 ( [8, Page 29]). Fix m and θ, and consider a

density f(x; θ) = h(x) exp
(

x〈m,θ〉−Φ(〈m,θ〉)
s(σ)

)
with respect to

λ. A random observation X ∼ f(·; θ) has mean Φ′(〈m, θ〉)
and variance s(σ) · Φ′′(〈m, θ〉).

Combining the above with our assumption that Φ′′ ≤ L, we

have for any θ ∈ R
d,

[IX(θ)]ii = EX∼f(·;θ)

(
∂

∂θi
log f(X; θ)

)2

=
1

s2(σ)
EX∼f(·;θ)




n∑

j=1

Mji (Xj − Φ′(〈mj , θ〉))




2

=
1

s2(σ)

n∑

j=1

(
M2

ji Var(Xj)
)

≤ 1

s(σ)

n∑

j=1

(
M2

ji L
)

=
L

s(σ)
[M>M ]ii. (11)

Putting (10) and (11) together, we conclude for any choice

of εi > 0,

e2h(θi|θ̂i) ≥ ε2i exp

[
−2φ

(
ε2i
12

L

s(σ)
[M>M ]ii

)]
. (12)

In case εi = 0, we have the trivial equality e2h(θi|θ̂i) = 0,

which is consistent with the RHS of (12) evaluated at εi = 0.

Hence, the estimate (12) holds for all εi ≥ 0.

Summing (12) from i = 1, 2, . . . , d, for parameter θ ∼
π =

∏d
i=1 Unif(−εi/2, εi/2) and any measurable function θ̂

of X ∼ f(·; θ), we have the following lower bound on the

Bayesian L2 risk,

E‖θ − θ̂‖22 ≥
d∑

i=1

Var(θi − θ̂i)

≥ 1

2πe

d∑

i=1

e2h(θi|θ̂i)
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≥ 1

2πe

d∑

i=1

ε2i exp

[
−2φ

(
ε2i
12

L

s(σ)
[M>M ]ii

)]
.

(13)

It remains to choose an appropriate sequence (εi)i=1,2,...,d

to obtain the desired lower bound. Toward this end, we

consider two cases:

Case 1: Tr((M>M)−1) ≤ 1
3

L
s(σ) .

In this case, we choose ε2i = 12 s(σ)
L

(
[M>M ]ii

)−1
for

i = 1, 2, . . . , d. Note that by our assumption that M>M is

diagonal,

d∑

i=1

ε2i = 12
s(σ)

L
Tr((M>M)−1) ≤ 4,

so that (9) is satisfied. By an application of (13), we have

E‖θ − θ̂‖22 &

d∑

i=1

ε2i exp

[
−2φ

(
ε2i
12

L

s(σ)
[M>M ]ii

)]

=
12

e2
s(σ)

L

d∑

i=1

1

[M>M ]ii

&
s(σ)

L
Tr((M>M)−1).

Case 2: Tr((M>M)−1) > 1
3

L
s(σ) .

This case is the more difficult of the two. We shall make

use of the following technical Lemma.

Lemma 11. Let (ai)i=1,2,...,d be any positive sequence satisfy-

ing
∑d

i=1 a
−1
i > 4. Then, there exists a non-negative sequence

(εi)i=1,2,...,d such that
∑d

i=1 ε
2
i ≤ 4 and

∑d
i=1 ε

2
i e

−2φ(ε2
i
ai) ≥

2e−2.

Proof. Without loss of generality, assume that a1 ≥ a2 ≥
· · · ≥ ad > 0. If a1 ≤ 1/4, then taking (ε1, ε2, . . . , εd) =
(2, 0, 0, . . . , 0), and noticing that φ is an increasing function,

we conclude

d∑

i=1

ε2i e
−2φ(ε2

i
a1) = 4e−2φ(4a1) ≥ 4e−2φ(1) > 2e−2.

Now, in the following we assume that a1 > 1/4. Let t denote

the largest integer k ∈ {1, 2, . . . , d} satisfying
∑k

i=1 a
−1
i ≤ 4.

By the assumption that
∑d

i=1 a
−1
i > 4, we know that there

always exists such a t, and t will satisfy t < d. We set

εi =

{
a
−1/2
i if 1 ≤ i ≤ t

0 otherwise
i = 1, 2, . . . , d. (14)

By definition,
∑d

i=1 ε
2
i =

∑t
i=1 a

−1
i ≤ 4 satisfies (9). This

procedure results in

d∑

i=1

ε2i e
−2φ(ε2

i
ai) = e−2

t∑

i=1

1

ai
.

If
∑t

i=1 a
−1
i ≥ 2, we can immediately see from the above

and (14) that
∑d

i=1 ε
2
i e

−2φ(ε2
i
ai) ≥ 2e−2.

On the other hand, if
∑t

i=1 a
−1
i < 2, this implies that

a−1
t+1 ≥ 2. In this case, we simply take εt+1 = 2, and take

εi = 0 for i 6= t+ 1. With this choice, we have

d∑

i=1

ε2i e
−2φ(ε2

i
ai) = 4e−2φ(4at+1) ≥ 4e−2φ(2) = 2e−2.

The above discussion concludes the proof of Lemma 11.

By considering the values ai = L
12s(σ) [M

>M ]ii, Lemma

11 ensures the existence of (εi)i=1,2,...,d satisfying (9) and,

together with (13), gives E‖θ − θ̂‖22 & 1. This completes the

proof of Theorem 3.

C. Remarks

A few remarks are in order. First, we note that the argument

in the previous subsection actually yields the stronger entropic

inequality,

inf
θ̂
sup
θ∼π

d∑

i=1

e2h(θi|θ̂i) & min

(
s(σ)

L
Tr

(
(M>M)−1

)
, 1

)

which improves Theorem 3 (seen by the max-entropy property

of gaussians). Here, the supremum is taken over all distribu-

tions π supported on the L2 ball Bd
2(1).

Second, we remark that our analysis is flexible enough

for generalizations to other forms of the GLM. For example,

consider observation X drawn from the density

f(x; θ) =
n∏

i=1

{
hi(xi) exp

(
xi〈mi, θ〉 − Φi(〈mi, θ〉)

si(σ)

)}
.

Suppose Assumption 1 holds for each cumulant function

Φi (i.e., Φ′′
i ≤ L for each i = 1, . . . , n). Then, a slight

modification in (11) yields

[IX(θ)]ii ≤
L

s∗(σ)
[M>M ]ii

where s∗(σ) = mini=1,2,...,n si(σ). Following (13) and the

same choice of (εi)i=1,2,...,d in Section II-B with the argument

s(σ) replaced by s∗(σ), we obtain minimax lower bound

inf
θ̂

sup
θ∈B

d

2
(1)

E‖θ − θ̂‖22 & min

(
s∗(σ)

L
Tr

(
(M>M)−1

)
, 1

)
.

In the special case where s1(σ) = . . . = sn(σ), the same

minimax lower bound as Theorem 3 is recovered.
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