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Promotiontimecureratemodelwith

nonparametricformofcovariateeffects

TianleiChenandPangDu∗

Survivaldatawithacuredportionarecommonlyseeninclinicaltrials. Motivatedfromabiologicalinterpretation

ofcancer metastasis,promotiontimecure modelisapopularalternativetothe mixturecurerate modelfor

analyzingsuchdata.Theexistingpromotioncure modelsallassumearestrictiveparametricformofcovariate

effects, whichcanbeincorrectlyspecifiedespeciallyattheexploratorystage.Inthispaper, weproposea

nonparametricapproachtomodelingthecovariateeffectsundertheframeworkofpromotiontimecuremodel.The

covariateeffectfunctionisestimatedbysmoothingsplinesviatheoptimizationofapenalizedprofilelikelihood.

Point-wiseintervalestimatesarealsoderivedfromtheBayesianinterpretationofthepenalizedprofilelikelihood.

Asymptoticconvergenceratesareestablishedfortheproposedestimates.Simulationsshowexcellentperformance

oftheproposednonparametricmethodwhichisthenappliedtoamelanomastudy.Copyrightc2016John Wiley

&Sons,Ltd.

Keywords: Confidenceintervals,Convergencerates,Nonparametriccovariateeffects,Promotiontime

curemodel,SmoothingsplineANOVA.

1.Introduction

Insomelifetimestudies,thepopulationunderconsiderationconsistsofsusceptibleandnon-susceptibleindividuals.All

susceptiblesubjectswouldeventuallyexperiencethefailureifthereisnocensoring,whilenon-susceptiblesubjectsare

notatriskofdevelopingsucheventsandcanberegardedas“cured”.Examplesincludecancerstudieswithlong-term

survivors,smokingstudieswithpermanentquitters,employmentstudieswithlong-termemployees.Thecommonfocus

ofthesestudiesisontheassessmentofcovariateeffectsontheprobabilityofbeingcuredandthefailuretimedistribution

ofthesusceptibleindividuals.

LetxbeavectorofcovariatesthatthedistributionoffailuretimeTmaydependon.Mostmodelsforcureratedatacan

belooselyputintotwocategories.Onecategoryisthetwo-componentmixturecuremodels,wherethedistributionofTis

assumedtobeamixtureoftwocomponentsandhaveasurvivalfunctionS (t|x)=π(x)S(t|x)+1−π(x),withπ(x)

andS(t|x)beingrespectivelytheproportionandthesurvivalfunctionofsusceptiblesubjects.Examplescanbefoundin

somerecentpapers[1,2,3,4,5]andthereferenceswithin.
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Thefocusofthispaperisontheothercategoryofmodels,namelythepromotiontimecuremodels.Inthesemodels,

thepopulationsurvivalfunctionisassumedtohavetheform

S (t|x)=exp{−θ(x)F(t)}, (1)

whereFisanunknowndistributionofanonnegativerandomvariableandθ>0canbemodeledasθ(x)toincorporate

thecovariatex.Notethatthecureproportionin(1)isS (∞)=e x .Thistypeofmodelfirstappearedin[6]and

[7]whoalsonotedthatmodel(1)providedanaturalwaytoextendtheproportionalhazardsregressionmodel.[8]gave

abiologicalinterpretationoftheform(1)andproposedaBayesiananalysismethodwithθ(x)=exp(x β)forsome

unknownparametervectorβ.Theyalsopointedouta mathematicalconnectionbetween(1)andthetwo-component

mixturecuremodels.[9]consideredamoregeneralformofmodelS (t|x)=G (θ(x)F(t)),whereG ,asγvaries,

offersmoretransformationoptionsthantheexponentialonein(1).However,θ(x)isstillassumedtohaveaparametric

formg(x β)foraknownandstrictlypositivelinkfunctiong.Asreviewedin[10],thepromotiontimecuremodelhasa

coupleofadvantagesoverthestandardmixturecuremodel:(i)Itisnaturallyconnectedtotheproportionalhazardsmodel,

allowingforextensionstoawideclassofhazardregressionmodels.(ii)Insomesettingsthemodelcanbeinterpretedin

termsofbiologicallymeaningfulparameters.

Theexistingpromotiontimecure modelshaveacommonlimitationinthattheyall modelcovariateeffectsina

parametricformwhosevalidityisgenerallynotjustifiedinpractice.Thestrictparametricassumptioncanbeparticularly

problematicattheexploratorystageofastudy.Thiscallsformoreflexiblenonparametricmodelingofcovariateeffects.

Undertheframeworkofa mixturecure model,[5]proposea methodwherebothπ(x)andS(t|x)areestimatedby

nonparametricsmoothingsplineANOVAmodels.However,theirnonparametricapproachcannotbedirectlytransferred

tothepromotiontimecuremodelsetting.Forexample,theirpenalizedEMalgorithmwon’tapplyheresincethecure

statusisassumedknownhereandhavingitinthelikelihooddoesn’tsimplifythecomputation.Andtheirasymptotic

theoryinvolvesonlysplinefunctionestimatesoftwofunctions,π(·)andS(·|x).Inourmodel(1),thereisalsoanuisance

parameterF(t),whichisestimatedbydiscretizingintostepsandhastobeanalyzedseparatelyfromthesplinefunction

estimateofθ(x).

Asfarasweknow,ourmethodisthefirstpromotiontimecureratemodelwithanonparametricformofcovariate

effects.Itoffersthewell-neededflexibilityespeciallynecessaryattheexploratorystageofdataanalysis.Asdemonstrated

byourapplication,themethodcanindeedidentifytrendsthatmaybemissedbytraditionalmodelswithalinearformof

covariateeffects.Ourdevelopmentincludesapenalizedprofilelikelihoodestimationprocedureviasmoothingsplines,a

reliableinferenceprocedureinvolvingpoint-wiseconfidenceintervals,andarigorouslyprovedconsistencytheory.The

simulationsandtheapplicationtoamelanomastudyoffernumericevidencesoftheexcellentperformanceofourmethod.

Therestofthearticleislaidoutasfollows.Section2elaboratestheproposedmethod,withmodelsetupin§2.1,an

introductiontosmoothingsplinesin§2.2,penalizedprofilelikelihoodestimationin§2.3,point-wiseconfidenceintervals

in§2.4,andasymptotictheoryin§2.5.Section3containsnumericalstudiesincludingsimulationsandanapplicationtoa

melanomastudy.DiscussioninSection4concludesthepaper.

2. Methods

2.1. Model

Let(t,δ,x)betheobserveddatafortheithsubject,i=1,...,n.Heretistheobservedlifetimetimefortheith

subject,δisanindicatorwithδ=1forobservedfailuresandδ=0forcensoredsubjects,andx arethecovariates.

Following[9],weassumethatthefollow-uptimeforacuredsubjectisinfiniteandthusdistinguishable,andthatonly

thesusceptiblesubjectscanexperiencecensoring.Inpractice,thisisachievedbychoosingacurethresholdsuchthat
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allcensoredobservationsbeyondthethresholdaretreatedast=∞ (i.e.,observedtobecured)andallobservations

lowerthanthethresholdaretreatedast<∞ (i.e.,besusceptible).Acommonchoiceofthisthresholdisthelargest

observedfailuretimeinthedata;see,e.g.,[9]and[11].OursensitivityanalysisinSection3.1indicatesthatthischoiceof

thresholdisreasonablyrobust.Therefore,unlessspecifiedotherwisewewilluseitinallthedataanalysisinthepaper.Let

η(x)=log{θ(x)}.Assumingindependentandnon-informativecensoringforsusceptiblesubjects,theobservedlikelihood

functioncanbewrittenas

l (η(·),F(·))∝ [exp{−e xi F(t)}e xi f(t)]i[exp{−e xi F(t)}] i i

[exp{−e xi }] i , (2)

wheref(·)istheprobabilitydensityfunctioncorrespondingtoF.Thenourestimator(̂η,F̂)isdefinedastheminimizer

of

−
1

n
log{l (η(·),F(·))}+λJ(η), (3)

whereJistheroughnesspenaltyonηandλ>0isthesmoothingparameter.Theminimizationwithrespecttoηis

performedonareproducingkernelHilbertspaceHoffunctions.

2.2.Smoothingsplineestimation

Smoothingsplineswillbeusedtoestimatethecovariateeffectfunctionη(x)in(3).Thisnonparametricwayofestimating

ηdistinguishesusfromtherestoftheliteratureonpromotioncureratemodelswherealinearformofcovariateeffect,

η(x)=x β,isoftenused.Therefore,inthissectionwegiveashortgenericreviewofthesmoothingsplineestimation

procedurederivedfromapenalizedlikelihoodlike(3).

Givenstochasticdata“generated”accordingtoanunknown“pattern”functiong,thesmoothingsplineestimateof

g isdefinedasthe minimizerofthepenalizedlikelihood(PL):L(g|data)+ J(g).HereL(g),usuallythenegative

loglikelihood,measuresthegoodness-of-fitofg,J(g),theroughnesspenalty,measuresthesmoothnessofg,andthe

smoothingparameterλ(>0)controlsthetradeoff.TheminimizationofaPLiscarriedoutinareproducingkernelHilbert

space(RKHS)offunctions.RKHSprovidesatheoreticalbasisforsmoothingsplineANOVA(SSANOVA)modeland

unifiedframeworkformodelingvariousdata.Foramultivariateg,itcanbedecomposedintomaineffectsandinteractions

similartotheclassicalANOVAdecomposition.ThroughproperspecificationsofgandJ(g)inavarietyofproblem

settings,thePLyieldsnonparametricmodelsforGaussianandnon-Gaussianregression,probabilitydensityestimation,

hazardrateestimation,etc.See[12]forexamples.Inthispaper,weusecubicandtensorproductcubicsmoothingsplines

forestimationwhosedetailedconfigurationsinvolvingreproducingkernelHilbertspacesaregivenbelow. Moreoptions

areavailableinChapter2of[12].

LetH={η:J(η)<∞} beaRKHSonthedomainX ofcovariate,whereJisasquareseminorminHwithafinite

dimensionalnullspaceN ={η:J(η)=0}⊂H.LetR(·,·)bethereproducingkernel(RK)ofHsuchthatRisanon-

negativedefinitefunctionsatisfying R(x,·),f(·)=f(x),∀f∈H,where·,·istheinnerproductinH;theRKR(·,·)

andthespace(H,·,·)determineeachotheruniquely.Typically, ·,·=J(·,·)+J̃(·,·),whereJ(·,·)isthesemiinner

productassociatedwithJ(·)andJ̃(·,·)isaninnerproductinthenullspaceN whenrestrictedtherein.Thereexistsa

tensorsumdecompositionH=N ⊕H ,wherethespaceH hasJ(η)asitssquarenormandanRKR satisfying

J(R (x,·),f(·))=f(x),∀f∈H .See,e.g.,Section2.1of[12].

Thefollowingexamplesgivetheconfigurationsforthecasesofaunivariatecontinuousxandabivariatexwithone

componentcontinuousandtheotherdiscrete. Whenthecovariatexhasmoredimensions,onecansimplyincorporate

thembyexpandingthetensorproductinExample2.2.Alsonotethattherangeofacontinuousvariableistakentobe[0,1]

hereonlyforthesimplificationofnotation.Foravariableresidingonageneralcompactinterval[a,b],atransformation
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of(·−a)/(b−a)canbringthevariabletotherangeof[0,1].

Example2.1(CubicSpline) Withoutlossofgeneralityassume X=[0,1]foraunivariatex.AchoiceofJ(η)is

(η)dx,whichyieldsthepopularcubicsplines.IftheinnerproductinN is( fdx)( gdx)+( fdx)( gdx),

thenH =H N ={η: ηdx= ηdx=0,J(η)<∞} andthereproducingkernelR (x,x)=k(x)k(x)−

k(|x −x|),wherek(x)=B (x)/ν!arescaledBernoullipolynomialsforx∈[0,1].ThenullspaceN hasabasis

{1,k(x)}ofm =2functions,wherek(x)=x−0.5forx∈[0,1].SeeSection2.3.3of[12].✷

Example2.2(TensorProductSpline) Considerabivariatevariable x=(z,u), wherez∈Z=[0,1]anduisa

categoricalvariablewithllevels.

Wefirstlookatthefunctionspacecorrespondingtou,whichwouldalsobethespacecorrespondingtoHinExample2.1

ifU weretheonlycovariate.NotethatthedomainofuisU={1,...,l}.FunctionsonUareessentiallyvectorsin

R,sotheRKHSH =R. Whenuisanominalvariable,thatis,itslevelsarenotordered,let̄η= η(u)/l.

EquippedwiththeroughnesspenaltyJ (η)= [η(u)−η̄]andinnerproductf,g = f(u)g(u),theRKHS

H decomposesas

H =H ⊕H ={η:η(1)=···=η(l)}⊕ η: η(u)=0

withreproducingkernelsR (u,u)=1/l,R (u,u)=I
1 2

−1/l.

Ontheotherhand,theconstructioninExample2.1givesadecompositionoftheRKHSH onthedomainZ

H = η: (η)dz<∞ =H ⊕H ⊕H

=span{1}⊕span{k(z)}⊕ η: ηdz= ηdz=0, (η)dz<∞ ,

withreproducingkernelsR (z,z)=1,R (z,z)=k(z)k(z),andR (z,z)=k(z)k(z)−k(|z−

z|).ThetensorproductofH andH yieldssixtensorsumtermsH =H ⊗H onZ×U,ν=00,01,1and

µ=0,1,withreproducingkernelsR (x,x)=R (z,z)R (u,u),wherex =(z,u).Thetwosubspaceswith

ν=00,01areofone-dimensioneachandcanbelumpedtogetherasthenullspaceN (thusm =2).Theotherfour

subspacesformH withthereproducingkernel

R =R +R +R +R ,

whereθ areasetofextrasmoothingparametersadjustingtherelativeweightsoftheroughnessofdifferentcomponents.

Forinterpretation,thesixsubspacesreadilydefineanANOVAdecomposition

η(z,u)=η +η(u)+η(z)+η (z,u)

forfunctionsonX,withη ∈H ⊗H beingtheconstantterm,η ∈H ⊗H theumaineffect,η ∈

{H ⊕H }⊗H thezmaineffect,andη ∈{H ⊕H }⊗H theinteraction.See,e.g.,Example2.7

of[12].✷

BytheRepresenterTheorem[13],althoughH isofinfinitedimensions,the minimizerofthePLinsomesettings

actuallyresidesinthefinitedimensionalsubspaceH ⊕span{R (x),...,R(x )},where{x,...,x }areobserved

valuesforxinthedataandsometimescalledthe“knots”forsmoothingsplines.Inmanyothersettings,theminimizerin

thissubspaceprovidesasufficientapproximationtotheminimizerinH [12].Furthermore,[14]showedthatinsteadof

havingnknots,thenumberofknotscanbereducedtotheorderofn withoutlosinganyefficiency.Theysuggested

using10n knotsinpractice,whichweshallfollowinourcomputation.
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2.3.Penalizedprofilelikelihoodestimation

Theoptimizationof(3)iscarriedoutinaprofiledfashion. WefirststudythecomputationofFthatminimizes(3)when

ηisfixed.Notethatduetoestimability,Fcanonlybeestimatedasastepfunctionmakingjumpsattheobservedfailure

timest.Ordertheobservedfailuretimestoobtaint <···<t ,whereN isthenumberofobservedfailuretimes.

DenotethecorrespondingjumpsizeofFatt byp ,j=1,...,N,andletF =
j i

p .ThenF,intermofits

jumpsizesp ,isobtainedfrom

minimize logp − I(t<∞)Fe xi , subjectto p =1.

Simplederivationyieldstherecursiveformula

1

p
=

1

p
−e x(i) −

(i) j (i+1)

e xj . (4)

Hence,from(4), wecantreat η,α≡p >0,andtheLagrange multiplierρintroducedbelowasindependent

parametersandp ,...,p asfunctionsofηandα. Wewantto minimize−log{l (η,α)}+λJ(η)underthe

constraint p =1,whichisequivalenttominimize

−
1

n
log{l (η,α)}+λJ(η)+ρ( p −1) (5)

withrespectto (η,α,ρ).Furthermore,thelikelihoodfunctionl dependsonηonlythroughitsevaluationat

thex.Sothe RepresenterTheoremin[13]sayŝη,asthe minimizerof(5), musthavetheexpressionη(x)=

dφ(x)+ cR (x,x)forsomecoefficientsd,...,d andc,...,c,whereφ(·),...,φ(·)formabasis

forthenullspaceofJandR (·,·)isthereproducingkernelinducedbyJ. Writeb=(d,...,d,c,...,c) and

ψ=(φ(·),...,φ(·),R(x,·),...,R(x ,·)).NotethatnowthepenaltyJ(η)=b Qb,whereQ=diag(O ,Q)

withO beingthem×msquarematrixofzerosandQ beingann×nmatrixwiththe(i,j)-thentryR (x,x).Then

theestimationof(η,α)reducestosolvingthefollowingscoreequationsforb,α,andρ.

0=
1

n
ψ(x )F +

∂

∂b
F exp ψ (x )b

+

(i) j (i+1)

ψ(x)F +
∂

∂b
F exp ψ (x)b −

1

p

∂

∂b
p − δψ(x)

− I(t=∞)ψ(x)exp ψ (x)b +2λQb+ρ
∂

∂b
p ,

0= exp ψ (x )b
∂

∂α
F +

(i) j (i+1)

exp ψ (x)b
∂

∂α
F (6)

−
1

p

∂

∂α
p +ρ

∂

∂α
p ,

0= p −1.

When λisfixed,theequationscanbesolvedbytheNewton-RaphsonalgorithmaftereliminatingtheLagrangemultiplier
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ρfromthefirsttwoequationsin(6),andthederivativesofp withrespecttobandαcanbecomputedusingtherecursive

formula(4).

Fortheselectionofλ,theclassicalwayistooptimizeascorederivedfromtheKullback-Leiblerdistancefollowingthe

sameprincipleasthewell-knowngeneralizedcrossvalidation(GCV);see,e.g.,[13]and[12].However,thisapproach

doesnotseemtoworkwellhereduetothecomplicationofhavingaextranuisanceparameterF.Soweresorttothe

standardK-foldcrossvalidationwithK=5tofindtheoptimalλthatminimizestheaverageloglikelihoodvalueson

testingdatasets.

2.4.Inference

Wenowderiveanintervalestimateof ηbasedonaBayesmodelinterpretationofthepenalizedlikelihood(3).The

intuitionistotreat(3)asthelogarithmofaposteriorlikelihoodwheretheroughnesspenaltyactslikeapriordistribution

onthefunctionparameterη,oressentiallyapriordistributiononthecoefficientvectorc.Thenourparameterestimates,

astheminimizerof(3),becometheposteriormodeaftertheuniformpriorsareassignedtodandα.Andtheirconfidence

intervalscanbederivedwhentheposteriordistributionisapproximatedbyaGaussiandistributionthroughaquadratic

approximationofthelogposteriorlikelihood.

Recall that η(x)= dφ(x)+ cR (x,x)=φ (x)d+ξ(x)c, where d=(d,...,d),c=

(c,...,c)andξ=(R (x,·),...,R(x,·)).AlsothepenaltyJ(η)=cQcwithQ beingann×nmatrixwith

the(i,j)-thentryR (x,x).Therefore(3)canbeviewedastheposteriorlikelihoodwhenoneassignstheuniformprior

todandα,andtheGaussianpriorN(0,(nλ) Q )toc,whereQ isthegeneralizedinverseofQ.Let(̂d,̂c,̂α)bethe

coefficientscorrespondingtotheminimizer(̂η,F̂)of(3)andrewrite(3)asPL(d,c,α)=−log{lobs(d,c,α)}+λcQc.

Then(̂d,̂c,̂α)becomestheposteriormodeandtheasymptoticcovarianceof(̂d,̂c,̂α)canbecalculatedas

H=






−
2

d dT
PL(̂d,̂c,̂α) −

2

d cT
PL(̂d,̂c,̂α) −

2

d PL(̂d,̂c,̂α)

−
2

cdT
PL(̂d,̂c,̂α) −

2

ccT
PL(̂d,̂c,̂α) −

2

c PL(̂d,̂c,̂α)

−
2

dT
PL(̂d,̂c,̂α) −

2

cT
PL(̂d,̂c,̂α) −

2

PL(̂d,̂c,̂α)






Foranyx, wecanconstructthe100(1−α)%confidenceintervalofη(x)asη̂(x)±z s(x), wherez is

the(1−α/2)-quantileofthestandardnormaldistributionands(x)isthestandarderrorfunctionwiths(x)=

(φ (x),ξ(x),0)H (φ (x),ξ(x),0).

2.5.AsymptoticProperties

Inthissection,wewillpresenttheconvergenceratesofourfunctionestimatesηaswellastheconsistencyoftheparameter

estimateF.ItstechnicalproofisintheWebAppendixA.Letη(x)andF bethetrueparameters,andrbetheconstant

associatedwithHthatmeasuresthesmoothnesslevelenforcedbythefunctionspace.Atypicalvalueforris2mwhen

order-msplinesareusedformodelingη.Thenwehavethefollowingtheorem.

Theorem2.1Under Conditions A1-A6, we have η−η =O(n ) and sup |F(t)−F(t)|=

O(n ),where ·istheL-norm.

Notethatthisistheoptimalconvergencerateofsplineestimateswhensplinesoforderr/2areusedfortheestimationof

η.AlsonotethattheresultforFcanberefinedtohavea
√
n-rateandasymptoticnormalityusingthetechniqueinSection

21.5of[15].ButwechoosenottopursuesuchrefinementsinceF isconsideredanuisanceparameterhere.
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3. NumericalStudies

3.1.Simulations

3.1.1.EstimationandinferenceperformanceInthissectionwepresentsomesimulationstodemonstratetheperformance

oftheproposedpromotiontimecuremodel. Weshallpresentmostoftheresultsintermsofthecovariateeffectfunction

η(x).Notethatthepromotioncureratemodelin(1)indicatesthatthecureproportionandthehazardratefunctionare

respectivelyexp{−e }andf(t)e .Clearlythecureproportionisstrictlydecreasingandthehazardratefunctionis

strictlyincreasingwithrespecttoη.Therefore,thetrendoftheηfunctionoverthecovariatexisdirectlytransferrableto

thecureproportion(intheoppositedirection)andthehazardratefunction.

Togeneratefailuretimesaccordingtothepromotiontimecure model(1), wesetη(x)=0.1{10x (1−x)+

10x(1−x) }andF(t)=1−exp(−t),thedistributionfunctionoftheexponentialdistribution withrate1.The

covariatextookvaluesonanequally-spacedgridofsizenovertheinterval[0,1]. Weconsideredtwototalsamplesizes

n=400and800.Inbothcases,censoringtimesweregeneratedfromuniformdistributionswithparameterstunedtoyield

anoverallcensoringratearound50%.Thesechoicesyieldedlargestobservedfailuretimesaround3.0inoursimulated

data.Onehundreddatareplicatesweregeneratedforeachsamplesizesetting.Foreachdatareplicate,wecomputedthe

estimatesforηandF,aswellasthe95%point-wiseconfidenceintervalsofη(x)onanequally-spacedgridofsize200

on[0,1].

Figure1showsthesimulationresultsforthetwototalsamplesizesn=400 and800. Wecanseethatthe mean

functionestimatesareclosetothetruefunctionηandtheaveragepoint-wiseconfidencesintervals matchwellwith

theempiricalquantiles.Furthermore,asthesamplesizeincreasesfrom400to800,themeanfunctionestimatebecomes

moreaccurateandtheconfidenceintervalsgetnarrower.Theempiricalcoveragesaregenerallyokay,withslightunder-

coveragearoundtheareaswherethetrueηfunctionhashighcurvatures.Thisisreasonablesincehighercurvaturemeans

moredifficultyinaccurateestimation,aphenomenonexposedinnumerousliteraturesonvariousnonparametricsmooth

estimationproblems;see,e.g.,[16].Onepossibleremedyfortheunder-coverageistoplacemoreknotsintheareasof

highcurvaturesandanothermorerigorousremedywouldbetoextendthelocalasymptoticinferencetheoryin[17]for

smoothingsplineregressiontoourscenarioofpromotioncureratemodel.Butthenumericalimplementationoftheformer

canbetrickyandthetheoreticalderivationforthelatterisveryhard.ThestepfunctionestimatesofthefunctionF(t)also

appeartobeprettygood.Inconclusion,ourestimationandinferenceproceduresreallyworkwellinthesimulations.

3.1.2.SensitivityofcurethresholdTheproposedmethodrequiresthespecificationofacurethresholdsuchthatsubjects

survivedbeyondthethresholdareclaimedascured.Thethresholdweuseinthepaperisthelargestobservedfailuretime,

followingthesuggestionsintheliterature[9,11].Inthissection,weperformsomesensitivityanalysisonthischoice

ofthreshold.Thedatagenerationprocesseswerethesameasintheprevioussectionwithn=400.Notethatthelargest

observedfailuretimesinoursimulateddatawerearound3.0.Alsoathresholdsmallerthanthelargestfailuretimeisnot

areasonablechoice.Sowecreatedthreemorethresholdsbyrespectivelyadding0.5,1and1.5toourchoiceofthreshold,

thelargestobservedfailuretime.Foreachchoiceofthreshold,weappliedtheproposedpromotiontimecuremodelto

100datareplicates.Figure2plottedtheestimatesofηandFforthefourcurethresholds.Asexpectedtheestimateofη

increasedandtheestimateofFdecreasedasthecurethresholdincreased.However,theincreaseanddecreasewereboth

mildindicatingthattheestimatesarenottoosensitivetothechoiceofcurethresholdsolongasitiswithinareasonable

range.

3.1.3. ComparisonwithmixturecuremodelTwo-componentmixturecureratemodelandpromotiontimecuremodel

aretwopopularchoicesforcureratedataanalysis.Hence,inthissectionwepresentsomesimulationcomparisons

betweenourproposedpromotiontimecuremodelwiththenonparametricmixturecureratemodelin[5]. Weconsidered

twoscenarioswiththetrue modelbeingrespectivelypromotiontimecure modeland mixturecurerate model.For

Statist.Med.2016,001–10 Copyright c2016John Wiley&Sons,Ltd. www.sim.org 7
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theformerscenario,thetruefunctionsηandF werethesameasthoseinSection3.1.1.Forthelatterscenariowe

adoptedasimulationsettingin[5].Specifically,thedataweregeneratedfromthemixturecureratemodelS (t|x)=

π(x)S(t|x)+1−π(x)withxfromaequally-spacedgridovertherange[−0.4,0.4],π(x)=0.1722+0.7sin{2(x+0.6)}

andh(t|x)=2.5t {1+0.5sin(2πx)} ,whereh(t|x)isthehazardratefunctioncorrespondingtoS(t|x). Weused

n=400 and100datareplicatesforeachscenario.NotethatS (t|x)=exp{−e F(t)}forpromotiontimecure

model.Thereforetocomparetheestimationperformancesofthetwo methods,wecomputedforeachdatareplicate

themeansquarederrors MSE=n {̂S (t|x)−S (t|x)} forbothmethods.Figure3showsthebox-plotsof

these MSEsunderthescenariosoftwodifferenttruemodels.Notethatthe MSEsinthetwoplotsarenotcomparable

sincetheywerecalculatedfromdifferenttruemodels,thatis,thetruesurvivalfunctionsusedinthetwosetsof MSEs

werecompletelydifferent.Fromthetwoplots,onecanonlyconcludethattherightmodelwillproduceasmaller MSE.

Therefore,neitherofthemodelscanbeconsideredbetterthantheother.Inpractice,itiswisetoapplybothmodelsand

lookforcommontrendsincovariateeffects.

3.2.Applicationtomelanomacancerdata

WenowapplytheproposedmethodtoadatasetdownloadedfromtheSurveillanceEpidemiologyandEndResults(SEER)

(www.seer.cancer.gov)databasereleasedin2008.Thedatasetselectedatotalof635whitepatientsfromthenineregistered

metropolitanareaswhometthefollowingcriteria:(1)melanomawastheirfirstcancerdiagnosis,(2)thecancerstagewas

classifiedaslocalorregional,and(3)thepatientonlyreceivedtheroutinetreatmentsincludingsurgeryandradiotherapy.

NotethatthedataintheSEERweremostlycollectedfromobservationalstudies,meaningthatthetreatmentswerenot

randomlyassignedinthestudies.Henceitwasnotfeasibletoassessthetreatmenteffectandweactuallyhadtorestrict

ouranalysiswithinonetreatmentgroupincriterion3toremovetheinfluenceofthetreatmenteffecthere.Thefailuretime

ofinterestwastimefromdiagnosisofmelanomatodeathfrommelanoma.Aquestionofinterestwaswhethersurvival

orcurefractionsdifferedinthisdatasetbygender,tumorsizeandage.Thecovariateswereageatdiagnosis(range:5to

101years),gender(MorF)andtumorsize(BigorSmall).Amongthe635observations,therewere233observedfailures

rangingfrom1to129months.Thecensoringtimesrangedfrom1to226months,with118ofthemlargerthan129

months.InFigure4wealsoplottedtheKaplan-Meierestimatesforpatientsyoungerthan55yearsold,patientsatleast

55yearsold,andallthepatients,ignoringtheothercovariateinformation.TheseKaplan-Meiercurvesallshowedaclear

plateauattheendoftheobservationinterval.Thissuggeststhepossiblepresenceofasubpopulationofcuredsubjectsin

thedataascommonlyseeninmelanomastudiesandjustifiesthatacureratedataanalysisisappropriatehere.

Weappliedtheproposedpromotiontimecuremodeltothemelanomadatawiththecovariate x=(age,gender,size).

Forη,weestimateditbytensorproductsmoothingsplineswithallthemaineffectsandinteractions,similartothetensor

productsplinesinExample2.2butwithonemorecategoricalvariable.Followingthesuggestionsintheliterature[9,11],

wechosethelargestfailuretime(129months)inthedataasthecurethresholdsuchthatanysubjectswhowerecensored

beyondthethresholdweretreatedasbeingcured.Toassessthesensitivityofthischoice,wealsoconductedtheanalysis

withthreemoredifferentthresholds:139months,149months,and159months.Thesefourcurethresholdsrespectively

yielded118,105,87,and70curedpatients.Figure5plottedthefunctionestimatesofηandFforthesefourdifferent

curethresholds.Alsoplottedwerethepoint-wiseconfidenceintervalsforthefunctionηofthefourpatientgroupswhen

thecurethresholdwas129months.Asdemonstratedinthesensitivitysimulations,anincreaseofthecurethresholdonly

causedaslightincreaseintheestimateofηandaslightdecreaseintheestimateofF.Hencewedrawallourfollowing

conclusionsbasedontheanalysisresultswiththecurethresholdof129months.

Recallagainthatthecureproportionandthehazardratefunctionarerespectivelyexp{−e }andf(t)e .The

functionηforthreeofthefourpatientgroupsshowedapproximatelylinearincreasingtrendsagainstage,whichmeanta

double-exponentiallydecayingtrendofthecureproportionandanexponentiallyincreasinghazardrateagainstage.The

trendsofbothmalegroupsaresimilarwiththebigsizetumormalegroupgenerallyhavingahighervalueofη,orasmaller

cureproportionandahigherhazardrate.Thesmallsizetumorfemalegroupshowedamuchsteeperincreasingtrendofη,
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oramuchfasterdecayingtrendofcureproportionandamuchsteeperincreasingtrendofhazardrate,overagethanthe

malegroups.Theexceptionofthefourgroups,thebigtumorfemalegroup,showedastrongnonlineartrendwhichslightly

decreasedoverageatthebeginningandthenbounceduparoundage60.Thisnonlinearfitalsohighlightsamajorbenefit

ofournonparametricmodelingofηsincethetraditionallinearmodelingofηwouldmostlikelymissthisinteresting

revelation.Aversionoftheanalysisresultsareplottedascureratefunctionandsurvivalfunctionestimatesinthe Web

AppendixB.Itisalsointerestingtocomparetheanalysisresultswiththosein[5]whereamixturecureratemodelwith

splineestimatednonparametriccomponentswasused. Wecanseethatthegeneralincreasing/decreasingtrendsofcure

proportionandhazardrateagainstagewerewellmatchedamongallfourpatientgroupsbetweenthesetwononparametric

methods.

4. Discussion

Inthispaper,wehavedevelopedaversionofpromotiontimecureratemodelwherethecovariateeffectsaremodeledina

nonparametricform.Asdemonstratedinourapplication,thisofferstheflexibilitythatisoftennecessaryattheexploratory

stageofdataanalysis.Aquickextensionoftheworkcanbetheincorporationofamorecomplicatedtransformation

functionGthantheexponentialfunctionconsideredhere.Itcansurelyoffermoreflexibilitytothemodel.Ournewmethod

alsocomplementstheearlierworkof[5]byofferingareliablenonparametricexploratorytoolforanalyzingcureratedata

undertheframeworkofpromotiontime.Itinheritsalltheadvantagesofpromotiontimecure modelagainst mixture

curemodel,namelyanaturalconnectiontotheproportionalhazardsmodelandasetofmorebiologicallymeaningful

parameters.However,asdemonstratedinthesimulationsneithermodelcanreplacetheother.Inpracticebothmodels

shouldbefittedtoseekinterpretablecommontrendsincovariateeffects.

Onepotentiallimitationwehavenoticedofthenewmethodisthatthepoint-wiseconfidenceintervalcoveragedrops

quicklyasthesamplesizebecomessmallerthan100-200.Hencecautionisneededwhenapplyingtheproposedmethod,

especiallythepoint-wiseconfidenceintervals,tocureratedatawithasmallsamplesize.

Atlastwewouldliketosuggestageneralguidanceonthechoicesofmodelswhencureratedataanalysisisrelevant.

Cureratemodelsarebynomeanssomethingappropriateforeverysurvivaldataset.Tobequalifiedforsuchkindof

analysis,there mustbestrongclinicalevidenceofhighproportionofcureforthediseaseandastatisticalroutineof

reviewingtheKaplan-Meiersurvivalcurveestimatesmustbeperformedtolookforearlyplateausthatlastlongafterthe

lastobservedfailure.Onceacureproportionisjustified,itisbettertofirsttrysomecureratemodelswithnonparametric

covariateeffects,suchasthemethodsin[5]andthispaper,duetotheirflexiblemodelassumptions.Iftheestimatesfrom

thesenonparametricmodelsareapproximatelylinear,acureratemodelwithlinearcovariateeffectcanbeapplied,which

canoftenresultinmorepowerfulinferencewhenthetruemodelisapproximatelylinear.Thechoicebetweenmixturecure

ratemodelandpromotiontimecuremodel,however,islikelytobecasebycase.Thetheoreticalcomparisonbetweenthem

surelymeritsfurtherresearch.Asensitivityanalysisisstronglyrecommendedwhenamanuallyselectedcurethresholdis

requiredforfittingacureratemodel.Thisistosafeguardthescenariowhenalargenumberofcensoringtimesarebeyond

thelargestobservedfailuretimebutnottoofarawayfromit.Inotherwords,thefollow-uptimeshouldbelongenoughto

claimtheappropriatenessofanycureratedataanalysis.
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Figure1.Simulationplotsforestimationandinference:leftframesforn=400 andrightframesforn=800.Topframes:thetrueηfunction(dash-dottedlines),themean

functionestimates(solidlines),theaveragesof95%point-wiseCIs(dashedlines),andtheempirical2.5%and97.5%percentilesofpoint-wisefunctionestimates(dottedlines).

Middleframes:empiricalpoint-wisecoveragesoftheCIsfor η(x);curvesshowingthemagnitudeofthecurvatureofthetrueηfunction.Bottomframes:Thestepfunction

estimates(solidlines)ofthedistributionfunctionF(dashedlines)forarandomlyselecteddatareplicate.
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Figure2.Simulationplotsforthresholdsensitivity.Leftframe:thetrueηfunction(solidblack),themeanestimatesofηwithcurethresholdequaltolargestfailuretime+0

(middleblackdashed),+0.5(reddashed),+1(greendashed),and+1.5(purpledashed),andtheaveragesof95%point-wiseCIs(topandbottomblackdashedlines)whencure

thresholdwasthelargestfailuretime.Rightframe:thetrueFfunction(solidblack)andtheestimatesofFfromarandomsamplewithcurethresholdequaltolargestfailuretime

+0(blackdashed),+0.5(reddotted),+1(greendot-dashed),and+1.5
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“Promotion”standsfortheestimatesfromtheproposedpromotiontimecuremodel.Leftframe:Truemodelwasmixturecureratemodel;Rightframe:Truemodelwaspromotion

timecuremodel.
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Figure5.Topandmiddleframes:Plotsofηestimatesforthefourpatientgroupsinmelanomadata;solidlines:estimatesofηforcurethresholdsequaltothelargestfailure

time+0 (black),+10 months(red),+20 months(green),and+30 months(purple);dashedlines:95%point-wiseCIsofηforcurethresholdequaltothelargestfailuretime.

Bottomframe:PlotoftheestimatesforfunctionF(t)forcurethresholdsequaltothelargestfailuretime+0(black),+10months(red),+20months(green),and+30months

(purple).
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