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Abstract. We establish existence of Stein kernels for probability measures on R
d satisfying a Poincaré inequality, and obtain

bounds on the Stein discrepancy of such measures. Applications to quantitative central limit theorems are discussed, including a
new central limit theorem in the Kantorovich–Wasserstein distance W2 with optimal rate and dependence on the dimension. As
a byproduct, we obtain a stable version of an estimate of the Poincaré constant of probability measures under a second moment
constraint. The results extend more generally to the setting of converse weighted Poincaré inequalities. The proof is based on
simple arguments of functional analysis.

Further, we establish two general properties enjoyed by the Stein discrepancy, holding whenever a Stein kernel exists: Stein
discrepancy is strictly decreasing along the CLT, and it controls the third moments of a random vector.

Résumé. Nous prouvons l’existence de noyaux de Stein pour les mesures de probabilités sur R
d satisfaisant une inégalité de

Poincaré, et obtenons des bornes sur la discrépance de Stein de telles mesures. Des applications au théorème central limite sont
données, dont une nouvelle borne sur la vitesse de convergence en distance de Kantorovitch–Wasserstein W2 avec un taux et une
dépendance en la dimension optimales. Comme corollaire, nous obtenons une version quantitative d’une borne sur la constante
de Poincaré de mesures de probabilités satisfaisant une contrainte sur le moment d’ordre 2. Les résultats sont plus généralement
valides dans le cadre de mesures vérifiant une inégalité de Poincaré à poids inversée. La preuve est basée sur des arguments simples
d’analyse fonctionnelle.

De plus, nous démontrons deux propriétés générales sur la discrépance de Stein, valide dès lors qu’un noyau de Stein existe : la
discrépance de Stein est strictement décroissante le long du TCL, et elle contrôle le moment d’ordre 3 d’un vecteur aléatoire.
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1. Introduction

What is known as Stein’s method is a vast array of concepts and techniques for proving quantitative convergence of
sequences of random variables to some limit. These ideas originated in the work of Stein [49,50], and have found many
applications in the study of quantitative central limit theorems, Poisson and geometric approximation, concentration
of measure, random matrix theory and free probability. We refer to the survey [47] for an overview of the topic.

In this work, we shall be interested in one particular concept used in this setting: Stein kernels (also known as Stein
factors) and their use in proving quantitative central limit theorems. To this end, let ν be a probability measure on R

d .
A matrix-valued function τν : Rd −→Md(R) is said to be a Stein kernel for ν (with respect to the standard Gaussian
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measure γ on R
d ) if for any smooth test function ϕ taking values in R

d , we have

∫

x · ϕ dν =
∫

〈τν,∇ϕ〉HS dν, (1)

where 〈·, ·〉HS stands for the usual Hilbert–Schmidt scalar product on Md(R). For applications, it generally suffices
to consider the restricted class of test functions ϕ satisfying

∫

(|ϕ|2 + ‖∇ϕ‖2
HS) dν < ∞, in which case both integrals

in (1) are well-defined as soon as τν ∈ L2(ν), provided ν has finite second moments. We shall adopt this convention
throughout.

In parts of the literature, the notion of Stein kernel is replaced by the relation

∫

x · ∇ϕ dν =
∫

〈τν,Hessϕ〉HS dν (2)

for all smooth real-valued functions ϕ. This notion is slightly weaker compared to (1) since it only requires test
functions that are gradients, but for some applications it still suffices. Our results will hold for either definition, but
we shall adopt the stronger notion (1) throughout since the improvement comes for free.

The motivation behind the definition is that, since the Gaussian measure is the only probability distribution satis-
fying the integration by parts formula

∫

x · ϕ dγ =
∫

div(ϕ) dγ , (3)

one can take the identity matrix, denoted by Id, as a Stein kernel if and only if the measure ν is equal to γ . In this
way, the Stein kernel can be seen as a measure of how far ν is from being a standard Gaussian measure in terms of
how much it violates the integration by parts formula (3). Those kernels appear implicitly in many works on Stein’s
method, and have recently been the topic of more direct investigations [1,35,42–44].

The question of when a Stein kernel exists for a particular measure ν is a nontrivial one, and only a few results are
known along this direction. In dimension one, it suffices to have mean zero and a density with connected support to
ensure existence. Indeed, if ν has a density p that does not vanish on the (possibly infinite) interval (a, b), then the
Stein kernel τν is unique up to sets of measure zero, and is given by

τν(x) := 1

p(x)

∫ ∞

x

yp(y)dy. (4)

In general, however, Stein kernels are not necessarily unique when they exist. A more detailed study of the one-
dimensional case and its generalizations to non-Gaussian reference measures can be found in [36].

In higher dimension, existence of Stein kernels has been previously studied using the tools of Malliavin calculus
[41]. In particular, if a random variable can be realized as the image of a Gaussian random variable by a C∞ function
with derivatives of at most polynomial growth, then a Stein kernel exists. Another explicit formula for one-dimensional
random variables that arise as smooth functions of some Gaussian vector was also obtained in [23]. However, given a
probability distribution, it may be difficult to find such a smooth function. For example, Brenier’s theorem in optimal
transport [20] tells us that under fairly general assumptions there exists a map sending a Gaussian random variable
onto the distribution considered, but in general it is not smooth enough to apply the arguments of [41].

Our main results are roughly divided into two categories: sufficient conditions for existence of Stein kernels in
arbitrary dimension, and general bounds on the so-called Stein discrepancy which hold whenever a Stein kernel
exists. Specifically, we first show that if ν satisfies a Poincaré inequality, or more generally a converse weighted
Poincaré inequality, then a Stein kernel exists. This affirmatively answers a question raised in [44]. In doing so, we
obtain bounds on the associated Stein discrepancy for measures satisfying a Poincaré inequality. These estimates are
dimension-free and depend only on the second moment and the Poincaré constant. We further establish two properties
enjoyed by Stein discrepancy that hold in general, whenever a Stein kernel exists. First, like entropy and Fisher
information, Stein discrepancy is monotone along the CLT. Second, Stein discrepancy is bounded from below by the
skewness of a random vector.
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These results lead to optimal rates of convergence in the multidimensional central limit theorem in Wasserstein
distance W2, as well as entropic CLTs, with suboptimal rate. Our main estimate can also be reformulated as a quanti-
tative improvement of the fact that among all isotropic measures, the standard Gaussian measure has the best Poincaré
constant.

2. On existence of Stein kernels

Let ν be a probability measure on R
d . Henceforth, we make the following assumption:

Assumption. The measure ν is absolutely continuous with respect to the Lebesgue measure, and has finite second
moment, i.e.

∫

|x|2 dν < ∞.

We shall work in the Sobolev space W 1,2
ν of vector valued functions, which we define as as the closure of

the set of all smooth vector-valued functions f : Rd −→ R
d in L2(ν), with respect to the usual Sobolev norm

∫

(|f |2 + ‖∇f ‖2
HS) dν. We also define its restriction to the set of (vector-valued) functions with average zero

W
1,2
ν,0 := W 1,2

ν ∩ {f :
∫

f dν = 0}.

Definition 2.1. A function τν : Rd −→ Md(R) is a Stein kernel for ν if for any ϕ ∈ W 1,2
ν equation (1) holds. The

Stein discrepancy is defined as

S(ν|γ )2 := inf
∫

‖τν − Id‖2
HS dν,

where the infimum is taken over all Stein kernels of ν, and takes value +∞ if no Stein kernel exists.

One of the main applications of Stein kernels is that bounds on the Stein discrepancy can be used to obtain rates of
convergence in the central limit theorem, as discussed in Section 4.

We now introduce the functional inequalities we shall use as criteria for existence of Stein kernels.

Definition 2.2. A probability measure ν is said to satisfy a Poincaré inequality with constant Cp if for any locally
lipschitz function f ∈ L2(ν) we have

Varν(f ) ≤ Cp

∫

|∇f |2 dν.

A measure satisfying a Poincaré inequality is also said to have spectral gap. The terminology comes from the fact that
C−1

p is a lower bound on the smallest positive eigenvalue of the operator −�+∇H ·∇ in L2(ν), where H = − log dν
dx

.
There is a vast literature on Poincaré inequalities, with many examples and abstract results giving sufficient con-

ditions for one to hold. In particular, the class of measures satisfying a Poincaré inequality is stable under bounded
perturbations and tensor products, and it contains the set of all log-concave probability measures. A more general
sufficient condition for a measure with density e−V to have spectral gap is

∃a ∈ (0,1),R ≥ 0, c > 0 such that a
∣

∣∇V (x)
∣

∣

2 − �V (x) ≥ c ∀|x| ≥ R,

which was obtained in [5]. We refer to [6] for more background on Poincaré inequalities.
We shall also consider a more general type of functional inequalities:

Definition 2.3. A probability measure ν is said to satisfy a converse weighted Poincaré inequality with weight ω :
R−→R

∗
+ if, for any locally lipschitz f ∈ L2(ν), we have

inf
c∈R

∫

(f − c)2ωdν ≤
∫

|∇f |2 dν.
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This definition originates from [11], and was further studied in [22]. Such inequalities are related to measure
concentration for heavy-tailed distributions. We could incorporate a constant in front of the Dirichlet form in the
definition, but we have chosen to absorb it into the weight to reduce notations, so that a Poincaré inequality with
constant Cp corresponds to a converse weighted Poincaré inequality with constant weight C−1

p .

2.1. Finite Poincaré constant ensures existence of a Stein kernel

Our main result of this section is that a (converse weighted) Poincaré inequality ensures existence of a Stein kernel,
and moreover that the Poincaré constant controls the Stein discrepancy. Stated more precisely,

Theorem 2.4. Assume that ν is centered (i.e. has mean zero) and satisfies a converse weighted Poincaré inequality

with weight ω, such that
∫

|x|2ω−1 dν < ∞. There exists a unique function g ∈ W
1,2
ν,0 such that τν = ∇g is a Stein

kernel for ν. Moreover,

∫

‖τν‖2
HS dν ≤

∫

|x|2ω−1 dν. (5)

As a consequence, if ν is centered and satisfies a Poincaré inequality with constant Cp , the above result applies and

∫

‖τν‖2
HS dν ≤ Cp

∫

|x|2 dν (6)

so that the Stein discrepancy satisfies

S(ν|γ )2 ≤ (Cp − 2)

∫

|x|2 dν + d.

The centering assumption on ν is necessary for the theorem to hold. Indeed, a necessary condition for existence of
a Stein kernel is that ν is centered, seen by taking ϕ = 1 in the defining equation (1).

In most situations, we shall be using the above bounds for measures satisfying a Poincaré inequality and with
second moment normalized with respect to dimension (e.g., as is the case for isotropic measures):

Corollary 2.5. Let ν be a centered probability measure on R
d satisfying a Poincaré inequality with constant Cp ,

normalized so that
∫

|x|2 dν = d . Then

S(ν|γ )2 ≤ d(Cp − 1).

A few remarks are in order:

• The standard Gaussian measure γ has Poincaré constant Cp = 1, so the above estimates dictate S(γ |γ ) = 0, as
desired.

• Stein discrepancy is additive on product measures, but the Poincaré constant is not. That is, for measures νi on R
di ,

i = 1,2, we have S(ν1 ⊗ ν2|γd1+d2)
2 = S(ν1|γd1)

2 + S(ν2|γd2)
2, whereas Cp(ν1 ⊗ ν2) = maxi Cp(νi). Thus, our

estimates are dimension-free in nature.
• A converse weighted Poincaré inequality is not necessary for existence of a Stein kernel. In dimension one, the

formula (4) works in more general situations. We will see another multi-dimensional example further on.

Proof of Theorem 2.4. The result follows from an application of the Lax–Milgram theorem [34]. Indeed,
∫

〈∇f,∇h〉HS dν is a continuous bi-linear functional on W
1,2
ν,0 × W

1,2
ν,0 , and dominates the weighted Sobolev norm

inf
�c∈Rd

∫

(ω|f − c|2 + |∇f |2) dν for non-constant functions by the assumption that ν satisfies a converse weighted

Poincaré inequality. Finally, f −→
∫

f · x dν is a continuous linear form on W
1,2
ν,0 since for any constant vector
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�c = (c1, . . . , cd) ∈R
d , the centering assumption and Cauchy–Schwarz imply

∫

x · f dν =
∫

x · (f − �c) dν

≤
(∫

ω−1|x|2 dν

)1/2(∫

ω
∑

|fi − ci |2 dν

)1/2

.

Taking infimum over �c and applying the converse weighted Poincaré inequality gives

∫

x · f dν ≤
(∫

ω−1|x|2 dν

)1/2(∫

|∇f |2 dν

)1/2

. (7)

Hence the Lax–Milgram theorem ensures there exists a unique g ∈ W
1,2
ν,0 such that

∫

〈∇g,∇f 〉HS dν =
∫

x · f dν (8)

for any f ∈ W
1,2
ν,0 . In particular, ∇g is a Stein kernel.

We now establish (5). Starting with (8) and applying (7) (with f = g in both cases),

−1

2

∫

‖∇g‖2
HS dν = 1

2

∫

‖∇g‖2
HS dν −

∫

x · g dν

≥ 1

2

∫

‖∇g‖2
HS dν −

(∫

ω|g|2 dν

)1/2(∫

|x|2ω−1 dν

)1/2

≥ −1

2

∫

ω−1|x|2 dν,

where the last inequality follows from the converse weighted Poincaré inequality for ν, together with the elementary
inequality

1

2
a2 − ab ≥ −1

2
b2 for a, b ∈ R. (9)

�

Remark 2.1. As defined in the above proof, we observe that the function g is a minimizer of the functional J (f ) :=
1
2

∫

‖∇f ‖2
HS dν −

∫

x · f dν, with domain W
1,2
ν,0 . Indeed, for any f ∈ W

1,2
ν,0 , identity (8) together with the Cauchy–

Schwarz inequality and (9) give

J (f ) = 1

2

∫

‖∇f ‖2
HS dν −

∫

x · f dν

= 1

2

∫

‖∇f ‖2
HS dν −

∫

〈∇g,∇f 〉HS dν

≥ −1

2

∫

‖∇g‖2
HS dν.

Applying again (8) with f = g yields J (g) = − 1
2

∫

‖∇g‖2
HS dν, so we conclude J (f ) ≥ J (g) and hence g is a

minimizer as claimed.
As it turns out, if g ∈ W

1,2
ν,0 is a minimizer of J , then ∇g is a Stein Kernel for ν, even if ν does not satisfy

a (converse weighted) Poincaré inequality. To see this, consider a perturbation in the direction h ∈ W
1,2
ν,0 , which
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gives:

0 ≤ J (g + εh) − J (g)

= ε

(∫

〈∇g,∇h〉HS dν −
∫

x · hdν

)

+ ε2

2

∫

‖∇h‖2
HS dν.

Letting ε ↓ 0 shows that
∫

〈∇g,∇h〉HS dν ≥
∫

x · hdν. Replacing h by −h gives the reverse inequality.
Hence, a sufficient condition for existence of a Stein kernel is that the functional J has a minimum. Stated another

way, there exists a finite constant C > 0 such that

(∫

x · f dν

)2

≤ C

∫

‖∇f ‖2
HS dν ∀f ∈ W

1,2
ν,0 , (10)

and moreover, equality is attained for some nonzero function g. This should be compared against the definition of the
Poincaré inequality.

Converse weighted Poincaré inequalities have been established for a large class of heavy-tailed probability distri-
butions via Lyapunov function techniques in [22]. Here are some examples from [11,22]:

Corollary 2.6. Stein kernels exist for the following probability distributions on R
d :

(i) Generalized Cauchy distributions νβ(dx) := Z−1(1 + |x|2)−β for β > max((d + 4)/2, d);
(ii) Probability measures of the form ν(dx) = Z−1e−V (x)p with V convex and p > 0, as soon as

∫

|x|2+2(1−p) dν < ∞. In particular, subexponential distributions with density proportional to e−|x|p with p ∈ (0,1).

Note that these examples typically do not satisfy a classical Poincaré inequality.
Of course, there exist probability measures that satisfy condition (10) without satisfying a (converse weighted)

Poincaré inequality. For example, if we consider two disjoint closed annuli C1 and C2 that are centered around the
origin, then the uniform probability measure on C1 ∪ C2 does not satisfy a converse weighted Poincaré inequality, yet
it does satisfy (10).

We conclude this section by noting that, as pointed out in [35], for log-concave probability measures (which always
satisfy a Poincaré inequality [5]) there is a reverse version of our inequality:

Proposition 2.7. Let ν be a centered log-concave measure. Then for some numerical constant C,

Cp ≤ C
(

1 + S(ν|γ )2).

This statement, combined with our main result, tells us that for log-concave measures, controlling the Stein dis-
crepancy and controlling the Poincaré constant are equivalent. At first glance, the above estimate does not capture the
dimension-free nature of the Poincaré constant. This may be an unavoidable downside of such bounds, since if we
consider a measure of the form ν = γd−1 ⊗ ν̃ both sides have the same behavior, as the Poincaré constant is at least as
bad as that of the projection along the worst direction.

As mentioned in [35], Proposition 2.7 is obtained by combining the moment bound of Theorem 2.8 in [35] and
Milman’s results on obtaining estimates on Poincaré constants of log-concave measures by the worst variance of
1-Lipschitz functions [40].

2.2. Extension to non-Gaussian reference measures

Theorem 2.4 also generalizes to Stein kernels with non-Gaussian reference measures. Such an extension is natural in
the framework of the generator approach to Stein’s method, where an integration by parts formula for a given measure
is obtained by finding a Markov generator that leaves the considered measure invariant. This approach was pioneered
in [9,30]. Stein’s method for the approximation of non-Gaussian reference measures has had some successful applica-
tions in the study of convergence of Markov Chain Monte Carlo algorithms [29] and for generalizations of the fourth
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moment theorem [4]. The Gaussian functional inequalities of [35] were also extended to a class of non-Gaussian
measures, using arguments from Bakry–Émery calculus.

We can extend Theorem 2.4 to the situation where the Gaussian measure is replaced by a general reference measure
μ = e−V dx, where V : Rd → R is a smooth function. In this situation, a Stein kernel of a measure ν with respect to
μ is defined by the relation

∫

∇V · ϕ dν =
∫

〈τν,∇ϕ〉HS dν ∀ϕ ∈ W 1,2
ν . (11)

Applying the same arguments as for the Gaussian case, we obtain

Theorem 2.8. Let μ = e−V dx, where V : Rd → R is smooth. Assume that ν satisfies a Poincaré inequality with

constant Cp , that
∫

∇V dν = 0 and that
∫

|∇V |2 dν < ∞. Then there exists a Stein kernel for ν, relative to μ, of the

form τν = ∇g for some g ∈ W 1,2
ν . Moreover, we have the bound

∫

‖τν‖2
HS dν ≤ Cp

∫

|∇V |2 dν. (12)

Note that for polynomial potentials V , the finiteness of
∫

|∇V |2 dν automatically follows from the Poincaré in-
equality. As in the previous section, this result can easily be generalized to cover measures satisfying a converse
weighted Poincaré inequality.

3. General bounds on the Stein discrepancy

3.1. Stein discrepancy controls skewness

In the previous section, it was shown that in presence of a suitable Poincaré inequality, the Stein discrepancy is
controlled from above by second moments. Here, we establish a complementary lower bound on the Stein discrepancy
in terms of skewness:

Theorem 3.1. Let X = (X1,X2, . . . ,Xd) have law ν. If ν is isotropic with finite fourth moment, then

S(ν|γ )2 ≥ 1

9

d
∑

i=1

∣

∣E
[

X3
i

]∣

∣

2
.

Proof. First, we shall reduce the problem to the one-dimensional case. Let τ be a Stein factor for ν. Then τ i(x) :=
E[τii(X)|Xi = x] is a Stein kernel for Xi . Moreover, we have

S(ν|γ )2 =
∫

∑

1≤i,j≤d

|τi,j − δi,j |2 dν

≥
∫ d

∑

i=1

|τi,i − 1|2 dν ≥
d

∑

i=1

E
[∣

∣τ i(Xi) − 1
∣

∣

2] ≥
d

∑

i=1

S(νi |γi)
2,

where νi is the law of Xi and γi is the ith marginal of γ . Hence it is enough to prove the theorem when d = 1.
Now let X be a real-valued random variable with mean zero and unit variance, and let νn be the law of the stan-

dardized sum 1√
n

∑n
i=1Xi , where the Xi ’s are independent copies of X. Then

S(ν|γ )2 ≥ nS(νn|γ )2 (13)

for any n ≥ 1 (see for example Section 2.5 in [35] and Theorem 3.2 in the next section). Moreover, it was estab-
lished in [35] that the Stein discrepancy is always larger than the Wasserstein distance W2 to the standard Gaussian
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measure. Hence S(νn|γ )2 ≥ W2(νn, γ )2 for all n ≥ 1. Finally, Rio established in [46] that under our assumptions,√
nW2(νn, γ ) −→ 1

3 |E[X3]|, which concludes the proof. �

3.2. Strict monotonicity of the Stein discrepancy in the CLT

Monotonicity of information measures along the CLT have a long history, going back to Shannon’s conjecture on
the monotonicity of the entropy, which was eventually resolved in [3]. More specifically, if Sn = 1√

n

∑n
i=1 Xi , where

X1, . . . ,Xn are i.i.d. isotropic random vectors, then both the entropy and Fisher information of Sn with respect to the
standard Gaussian measure are non-increasing in n. Following Artstein, Ball, Barthe and Naor’s proof of this fact,
several generalizations and alternative proofs have been discovered [25,37–39,48,52].

Since Stein discrepancy relates to both Fisher information and entropy in various ways [35], it is natural to con-
jecture that it also is non-increasing along the CLT. It turns out that this is indeed the case and, in fact, it is strictly
decreasing. The following generalizes (13) along these lines:

Theorem 3.2. Let ν be an isotropic probability measure on R
d , and let νn denote the law of Sn = 1√

n

∑n
i=1 Xi , where

X1, . . . ,Xn are i.i.d. with law ν. Then

S(νn|γ )2 ≤ m

n
S(νm|γ )2, 1 ≤ m ≤ n.

Proof. For m ≥ 1, let τm denote a Stein kernel associated with Sm. We may assume that such a τm exists, since if it
does not, the claim is trivial. We shall first show that for all n ≥ m, the function

τn(sn) = E
[

τm(Sm)|Sn = sn
]

(14)

is a valid Stein kernel for Sn. This identity was noted in more general terms in [35] for the Stein kernel definition (2),

but it is straightforward to verify that it also holds for our stronger definition (1). Indeed, for sn =
√

m
n
sm + s̃, any

smooth function ϕ evaluated on sn may also be considered as a smooth function of sm for each fixed s̃. So, the chain
rule directly yields

∇smϕ(sn) =
√

m

n
∇snϕ(sn).

Therefore, starting with linearity of expectation and defining S̃ := Sn −
√

m
n
Sm, we may write

E
〈

Sn, ϕ(Sn)
〉

=
√

n

m
E

〈

Sm, ϕ(Sn)
〉

=
√

n

m
E

[

E
[〈

Sm, ϕ(Sn)
〉

|S̃
]]

=
√

n

m
E

[

E
[〈

τm(Sm),∇smϕ(Sn)
〉

HS|S̃
]]

= E
[〈

τm(Sm),∇snϕ(Sn)
〉

HS

]

= E
〈

E
[

τm(Sm)|Sn

]

,∇ϕ(Sn)
〉

HS,

establishing (14) is a valid Stein kernel.
Following [25], if a function ϑ : Rd → R satisfies Eϑ(Sm) = 0, then

E
[∣

∣E
[

ϑ(Sm)|Sn

]∣

∣

2] ≤ m

n
E

[∣

∣ϑ(Sm)
∣

∣

2]
, 1 ≤ m ≤ n. (15)
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This inequality is due to Dembo, Kagan and Shepp [28]; see also Kamath and Nair [33]. Now, E[τm(Sm)] = Id, so a
direct application of (15) to the coordinates of τm − Id yields

E
∥

∥τn(Sn) − Id
∥

∥

2
HS = E

[∥

∥E
[

τm(Sm) − Id |Sn

]∥

∥

2
HS

]

≤ m

n
E

∥

∥τm(Sm) − Id
∥

∥

2
HS.

Taking the infimum over all valid Stein kernels τm, τn finishes the proof. �

Remark 3.1. The same result holds if (2) is adopted as the definition of a Stein kernel.

4. Applications

4.1. Quantitative central limit theorems

We shall now discuss some applications of the bounds to quantitative central limit theorems in Wasserstein distance
W2, which is defined as

W2(μ, ν)2 := inf
π

∫

|x − y|2 dπ(x, y),

where the infimum is taken over all couplings π of the probability measures μ and ν. We refer the reader to the
textbook [53] for more information about Wasserstein distances and optimal transport.

Theorem 4.1. Let X1, . . . ,Xn be independent centered, isotropic random variables. Assume that the law of Xi satis-

fies a Poincaré inequality with constant Ci , and let νn be the law of 1√
n

∑n
i=1Xi . Then

W2(νn, γ )2 ≤ d

n2

n
∑

i=1

(Ci − 1).

In particular, if the Xi are i.i.d., and their law ν is centered, isotropic and satisfies a Poincaré inequality with constant

Cp , then

W2(νn, γ )2 ≤ d(Cp − 1)

n
.

We remark that the rate W2(νn, γ ) = O(1/
√

n) in the CLT for i.i.d. random variables is known to be optimal in
general. Moreover, the dependence on the dimension is sharp, since it cannot be improved for product measures. To
our knowledge, this seems to be the first result with sharp dependence on both the dimension and on n for W2 and
with assumptions satisfied by a large class of probability measures. A similar result can be obtained with converse
weighted Poincaré inequalities, with the same sharp rate but a less explicit prefactor.

In the i.i.d. case, there are several similar results already present in the literature. In dimension one, a more general
result has been obtained by Rio in [45,46], where a finite fourth moment suffices. He also obtained convergence in
stronger transport distances when the random variable has a finite exponential moment, which is a weaker assump-
tion than our use of a Poincaré inequality. The proofs rely on an explicit representation of transport maps involving
the repartition function of ν, which is unavailable in higher dimensions. Subsequently, Bobkov [12] combined opti-
mal rates in the entropic CLT [15] with Talagrand’s inequality to conclude O(1/

√
n) convergence of W2(νn, γ ) in

dimension one, but left open the problem in higher dimensions.
In the multidimensional setting, Zhai [55] has recently established that for random variables in dimension d , we

have W2(νn, γ ) ≤ 5
√

dβ(1+logn)√
n

, under the boundedness assumption |X| ≤ β almost surely. His assumptions are not

directly comparable with ours, since bounded random variables do not necessarily satisfy a Poincaré inequality, while
there are many examples of unbounded random variables that do satisfy one. However, it is true that every bounded
random variable regularized via convolution with a Gaussian measure of arbitrarily small variance does satisfy a



786 T. A. Courtade, M. Fathi and A. Pananjady

Poincaré inequality [10], which suggests that Zhai’s result may potentially be improved to have optimal dependence
on both dimension and n. Unfortunately, the bounds on the Poincaré constant obtained in [10] are exponential in β , so
it is not clear whether Zhai’s result may be recovered from our own via this route. In situations where both estimates
apply, the bound in the present work will typically be smaller. For example, for high-dimensional product measures,
the Poincaré constant is independent of the dimension, while β would be of order of

√
d . Moreover, we eliminate the

extra logn factor. It may be relevant to point out that both our assumptions and those of [55] fit in the framework of
random variables with a finite exponential moment.

Also in higher dimensions, Bonis showed in [16] that, under the moment constraint E‖X‖2+m < ∞ for m ∈ [0,2],
we have the asymptotic rate W2(νn, γ ) = O(n−1/2+(2−m)/4). However, in the case m = 2, the prefactor (which does
not appear explicitly in Bonis’ work) seems to have a suboptimal dependence on the dimension d [17].

In dimension 1, and for log-concave measures in higher dimension, the works [7,8,32] can be used to obtain a sharp
rate of convergence in relative entropy when a Poincaré inequality holds, which implies convergence in W2. In those
results however the prefactor depends on the entropy of the random variable.

Finally, in dimension 1, [21] combined Stein’s method and variational inequalities related to the Poincaré inequality
to give a (nonquantitative) proof of the classical CLT, as well as establishing inequalities relating total variation
distance and Fisher information.

Proof of Theorem 4.1. The proof hinges on the fact that

τ̄n(x) := E

[

1

n

n
∑

i=1

τi(Xi)

∣

∣

∣

1√
n

n
∑

i=1

Xi = x

]

is a Stein kernel for the law of 1√
n

∑n
i=1Xi , where τi is a Stein kernel for the law of Xi . In the i.i.d. case, we already

proved this fact in the proof of Theorem 3.2, and the proof in the non-identicaly distributed case is exactly the same.
As a consequence, using the fact that conditional expectation is an L2-projection,

W2(νn, γ )2 ≤ S(νn)
2 ≤

∫

|τ̄n − Id |2 dνn

≤ 1

n2

n
∑

i,j=1

∫

〈

τi(xi) − Id, τj (xj ) − Id
〉

dνi(xi) dνj (xj )

= 1

n2

n
∑

i=1

∫

∣

∣τi(xi) − Id
∣

∣

2
dνi(xi)

≤ d

n2

n
∑

i=1

(Ci − 1),

where the last bound is obtained by applying Theorem 2.4. This concludes the proof. �

4.2. Entropy bounds

Let Hγ (ν) :=
∫

dν log dν
dγ

denote the entropy of ν relative to γ and Iγ (ν) :=
∫

|∇ logf |2 dγ denote the relative Fisher
information. The HSI inequality of [35] states that

Hγ (ν) ≤ S(ν)2

2
log

(

1 + Iγ (ν)

S(ν)2

)

.

As a consequence, we also have the following rate of convergence in the entropic CLT:
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Proposition 4.2. Assume that ν satisfies a Poincaré inequality with constant Cp , and satisfies the Fisher information

bound Iγ (ν) ≤ αd . Then we have

Hγ (νn) ≤ d(Cp − 1)

2n
log

(

1 + αn

(Cp − 1)

)

.

Convergence to the Gaussian measure in entropy is strictly stronger than convergence in W2, due to Talagrand’s
inequality [51]. The choice of scaling in the dimension for the upper bound on the Fisher information reflects the
fact that for product measures, it is of order d . In dimension one, the actual rate of convergence in the entropic CLT
is asymptotically 1/n under a fourth moment condition [14], and non-asymptotically 1/n if the entropy of a single
random variable is bounded [15] (with a prefactor that is exponential in the entropy). When the Poincaré inequality
holds a non-asymptotic rate was obtained in [2,7], and extended to multi-dimensional random vectors having log-
concave density in [8]. Related results in dimension one were obtained in [32].

4.3. Fisher information bounds

In this section, we shall combine our main estimate with results of [44] to obtain bounds on the Fisher information of
a sum of independent random variables, to which we add a small Gaussian noise. To this end, recall that the Fisher
information of ν relative to γ is defined as Iγ (ν) :=

∫

|∇ logf |2 dγ , where f = dν
dγ

. After applying Theorem V.3 in
[44], we get

Proposition 4.3. Let (Xi) be a collection of independent centered isotropic random variables in R
d with Poincaré

constants Ci . Let Wn :=
√

1 − tZ +
√

t√
n

∑n
i=1Xi , where Z is a standard Gaussian random variable independent of

the Xi . If νt
n denotes the law of Wn, then

Iγ

(

νt
n

)

≤ t2

n2(1 − t)

n
∑

i=1

(Ci − 1)d.

In particular, if the Xi satisfy a Poincaré inequality with same constant Cp , then

Iγ

(

νt
n

)

≤ t2(Cp − 1)d

n(1 − t)
.

Due to Cramer’s law [26], weak convergence of νt
n to γ is equivalent to convergence of 1√

n

∑n
i=1Xi . Unfortunately,

Cramer’s law is unstable in general [13], so we cannot directly deduce quantitative closeness of X to a Gaussian if
X + Z is close to Gaussian for a general random variable X (although the counterexamples of [13] do not seem to
satisfy a Poincaré inequality, so it may be that under such an extra assumption Cramer’s law would be stable).

Rates of convergence in Fisher information of order O(n−1) in dimension one when the information of a single
variable is finite and under a Poincaré inequality have been obtained in [32]. In higher dimension, a quantitative
bound on the difference between Fisher informations of ν1 and ν2 was obtained in [31], but does not readily lead to a
quantitative central limit theorem.

Remark 4.1. Instead of using the results of [44], it is possible to derive upper bounds on Iγ (νt
n) by W2(νn, γ )2 using

the gradient flow structure of the Ornstein–Uhlenbeck flow, as done for example in Theorem 24.16 of [54], and apply
our bounds on the rate of convergence in W2 distance to obtain the same result.

4.4. Stability of the Poincaré constant under a second moment constraint

Combined with the previously mentioned fact that Stein discrepancy controls W2 distance to γ , Corollary 2.5 implies
the following estimate:
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Theorem 4.4. Let ν be a centered probability measure on R
d , normalized so that

∫

|x|2 dν = d . Then its Poincaré

constant Cp satisfies

Cp ≥ 1 + W2(ν, γ )2

d
.

This estimate is a quantitative reinforcement of the fact that among all probability measures with the same second
moment, the Gaussian has the best Poincaré constant. More generally, it is a reinforcement of the fact that, given a
sequence of centered measures (νn) with

∫

|x|2 dνn = d , if their Poincaré constants converge to 1, then νn weakly
converges to the standard Gaussian [18]. Once again, we note that this estimate depends optimally in the dimension.
This characterization was established in dimension 1 in [18], and extended to the multi-dimensional setting and to
infinitely-divisible distributions in [24], also using variational methods.

In a different direction, De Philippis and Figalli [27] recently showed a similar quantitative stability result among a
different class of measures: for densities that are of the form e−V γ with V convex, the Gaussian has the worst Poincaré
constant, and we have a deficit of the form 1 − Cp ≤ ε =⇒ W1(ν, γ ) ≤ C(d,α)| log ε|−1/4+α for any α > 0, for ε

small enough. Our results are not directly comparable, since they concern completely different classes of measures.
We just note that the dependence in ε in the result of [27] is not expected to be sharp. Indeed, in dimension one they
show that W1(ν, γ ) ≤ Cε. In spirit, this question is also similar to the stability problem for the Szegö–Weinberger
inequality, that was solved in [19].

Finally, we observe that Theorem 2.4 leads to the more general analogous result for measures satisfying a con-
verse weighted Poincaré inequality. Although it is easily seen that such inequalities are stable under log-bounded
transformations of the measure [22], the following appears to be the first quantitative stability result along these lines:

Theorem 4.5. Let ν be a centered probability measure on R
d , normalized so that

∫

|x|2 dν = d . If ν satisfies a

converse weighted Poincaré inequality with weight function ω, then

1

d

∫

|x|2ω−1 dν ≥ 1 + W2(ν, γ )2

d
.

Of course, Theorem 4.4 coincides with the special case where ω = C−1
p .

Acknowledgements

This work benefited from support from the France-Berkeley fund, and ANR-11-LABX-0040-CIMI within the program
ANR-11-IDEX-0002-02. M.F. was partly supported by NSF FRG grant DMS-1361122 and Project EFI (ANR-17-
CE40-0030) of the French National Research Agency (ANR). T.C. and A.P. were supported in part by NSF Grants
CCF-1528132 and CCF-0939370 (Center for Science of Information). We thank Thomas Bonis, Thomas Gallouët,
Michel Ledoux and Ivan Nourdin for their advice and comments, and the anonymous referee for remarks that helped
improve this manuscript.

References

[1] H. Airault, P. Malliavin and F. Viens. Stokes formula on the Wiener space and n-dimensional Nourdin–Peccati analysis. J. Funct. Anal. 258

(5) (2010) 1763–1783. MR2566319
[2] S. Artstein, K. Ball, F. Barthe and A. Naor. On the rate of convergence in the entropic central limit theorem. Probab. Theory Related Fields

129 (2004) 381–390. MR2128238
[3] S. Artstein, K. Ball, F. Barthe and A. Naor. Solution of Shannon’s problem on the monotonicity of entropy. J. Amer. Math. Soc. 17 (2004)

975–982. MR2083473
[4] E. Azmoodeh, S. Campese and G. Poly. Fourth moment theorems for Markov diffusion generators. J. Funct. Anal. 266 (4) (2013) 2341–2359.

MR3150163
[5] D. Bakry, F. Barthe, P. Cattiaux and A. Guillin. A simple proof of the Poincaré inequality in a large class of probability measures including

log-concave cases. Electron. Commun. Probab. 13 (2008) 60–66. MR2386063
[6] D. Bakry, I. Gentil and M. Ledoux. Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften

348. Springer, Cham, 2014. MR3155209



Existence of Stein kernels under a spectral gap 789

[7] K. Ball, F. Barthe and A. Naor. Entropy jumps in the presence of a spectral gap. Duke Math. J. 119 (1) (2003) 41–63. MR1991646
[8] K. Ball and V. H. Nguyen. Entropy jumps for isotropic log-concave random vectors and spectral gap. Studia Math. 213 (1) (2012) 81–96.

MR3024048
[9] A. D. Barbour. Stein’s method for diffusion approximations. Probab. Theory Related Fields 84 (3) (1990) 297–322. MR1035659

[10] J. B. Bardet, N. Gozlan, F. Malrieu and P. A. Zitt. Functional inequalities for Gaussian convolutions of compactly supported measures: Explicit
bounds and dimension dependence. Bernoulli 24 (1) (2018) 333–353. MR3706760

[11] S. Bobkov and M. Ledoux. Weighted Poincaré-type inequalities for Cauchy and other convex measures. Ann. Probab. 37 (2009) 403–427.
MR2510011

[12] S. G. Bobkov. Entropic approach to E. Rio’s central limit theorem for W2 transport distance. Statist. Probab. Lett. 83 (7) (2013) 1644–1648.
MR3062276

[13] S. G. Bobkov, G. P. Chistyakov and F. Gotze. Entropic instability of Cramer’s characterization of the normal law. In Selected Works of Willem

van Zwet 231–242. Sel. Works Probab. Stat. Springer, New York, 2012. MR2918082
[14] S. G. Bobkov, G. P. Chistyakov and F. Götze. Rate of convergence and Edgeworth-type expansion in the entropic central limit theorem. Ann.

Probab. 41 (4) (2013) 2479–2512. MR3112923
[15] S. G. Bobkov, G. P. Chistyakov and F. Götze. Berry–Esseen bounds in the entropic central limit theorem. Probab. Theory Related Fields 159

(2014) 435–478. MR3230000
[16] T. Bonis. Rates in the Central Limit Theorem and diffusion approximation via Stein’s Method. Arxiv preprint, 2016.
[17] T. Bonis. Personal communication.
[18] A. A. Borovkov and S. A. Utev. On an inequality and a related characterisation of the normal distribution. Theory Probab. Appl. 28 (1984)

219–228. MR0700206
[19] L. Brasco and A. Pratelli. Sharp stability of some spectral inequalities. Geom. Funct. Anal. 22 (1) (2012) 107–135. MR2899684
[20] Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (4) (1991) 375–417.

MR1100809
[21] T. Cacoullos, V. Papathanasiou and S. A. Utev. Variational inequalities with examples and an application to the central limit theorem. Ann.

Probab. 22 (03) (1994) 1607–1618. MR1303658
[22] P. Cattiaux, N. Gozlan, A. Guillin and C. Roberto. Functional inequalities for heavy tails distributions and application to isoperimetry.

Electron. J. Probab. 15 (2010) 346–385. MR2609591
[23] S. Chatterjee. Fluctuations of eigenvalues and second order Poincaré inequalities. Probab. Theory Related Fields 143 (2009) 1–40.

MR2449121
[24] L. H. Y. Chen and J. Lou. Characterization of probability distributions by Poincaré-type inequalities. Ann. Inst. Henri Poincaré Probab. Stat.

23 (1) (1987) 91–110. MR0877386
[25] T. A. Courtade. Monotonicity of entropy and Fisher information: A quick proof via maximal correlation. Commun. Inf. Syst. 16 (2) (2016)

111–115. MR3638565
[26] H. Cramér. Ueber eine Eigenschaft der normalen Verteilungsfunktion. Math. Z. 41 (1936) 405–414. MR1545629
[27] G. De Philippis and A. Figalli. Rigidity and stability of Caffarelli’s log-concave perturbation theorem. Nonlinear Anal. 154 (2017) 59–70.

MR3614644
[28] A. Dembo, A. Kagan and L. A. Shepp. Remarks on the maximum correlation coefficient. Bernoulli 7 (2) (2001) 343–350. MR1828509
[29] P. Diaconis. Stein’s method for Markov chains: First examples. IMS Lecture Notes Monogr. Ser. 46 (2004) 26–41. MR2118601
[30] F. Götze. On the rate of convergence in the multivariate CLT. Ann. Probab. 19 (1991) 724–739. MR1106283
[31] O. Johnson. Information Theory and the Central Limit Theorem, 8. Imperial College Press, London, 2004. MR2109042
[32] O. Johnson and A. Barron. Fisher information inequalities and the central limit theorem. Probab. Theory Related Fields 129 (3) (2004)

391–409. MR2128239
[33] S. Kamath and C. Nair. The strong data processing constant for sums of iid random variables. In Proceedings of the 2015 IEEE International

Symposium on Information Theory, Hong Kong, 2015.
[34] P. D. Lax and A. N. Milgram. Parabolic equations. In Contributions to the Theory of Partial Differential Equations 167–190. Annals of

Mathematics Studies 33. Princeton University Press, Princeton, NJ, 1954. MR0067317
[35] M. Ledoux, I. Nourdin and G. Peccati. Stein’s method, logarithmic Sobolev and transport inequalities. Geom. Funct. Anal. 25 (2015) 256–306.

MR3320893
[36] C. Ley, G. Reinert and Y. Swan. Approximate computation of expectations: A canonical Stein operator. Probability Surveys (2017). To

appear.
[37] M. Madiman and A. R. Barron. The monotonicity of information in the central limit theorem and entropy power inequalities. In Proceedings

of the 2006 IEEE International Symposium on Information Theory, Seattle, Washington, 2006. MR2319376
[38] M. Madiman and A. R. Barron. Generalized entropy power inequalities and monotonicity properties of information. IEEE Trans. Inform.

Theory 53 (7) (2007) 2317–2329. MR2319376
[39] M. Madiman and F. Ghassemi. The entropy power of a sum is fractionally superadditive. In Proceedings of the 2009 IEEE International

Symposium on Information Theory, Seoul, Korea, 2009.
[40] E. Milman. On the role of convexity in isoperimetry, spectral gap and concentration. Invent. Math. 177 (2009) 1–43. MR2507637
[41] I. Nourdin and G. Peccati. Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality. Cambridge Tracts in

Mathematics. Cambridge University Press, Cambridge, 2012. MR2962301
[42] I. Nourdin, G. Peccati and A. Réveillac. Multivariate normal approximation using Stein’s method and Malliavin calculus. Ann. Inst. Henri

Poincaré Probab. Stat. 46 (1) (2010) 45–58. MR2641769
[43] I. Nourdin, G. Peccati and Y. Swan. Entropy and the fourth moment phenomenon. J. Funct. Anal. 266 (5) (2014) 3170–3207. MR3158721



790 T. A. Courtade, M. Fathi and A. Pananjady

[44] I. Nourdin, G. Peccati and Y. Swan. Integration by parts and representation of information functionals. In Proceedings of the 2014 IEEE

International Symposium on Information Theory (ISIT) 2217–2221. Honolulu, HI, 2014.
[45] E. Rio. Upper bounds for minimal distances in the central limit theorem. Ann. Inst. Henri Poincaré Probab. Stat. 45 (3) (2009) 802–817.

MR2548505
[46] E. Rio. Asymptotic constants for minimal distance in the central limit theorem. Electron. Commun. Probab. 16 (9) (2011) 96–103.

MR2772388
[47] N. Ross. Fundamentals of Stein’s method. Probab. Surv. 8 (2011) 210–293. MR2861132
[48] D. Shlyakhtenko. Shannon’s monotonicity problem for free and classical entropy. Proc. Natl. Acad. Sci. USA 104 (39) (2007) 15254–15258.

MR2346565
[49] C. Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings

of the Sixth Berkeley Symposium on Mathematical Statistics and Probability 583–602. Univ. California, Berkeley, CA, 1970/1971. Vol. II:

Probability Theory. Univ. California Press, Berkeley, CA, 1972. MR0402873
[50] C. Stein. Approximate Computation of Expectations. Institute of Mathematical Statistics Lecture Notes – Monograph Series 7. Institute of

Mathematical Statistics, Hayward, CA, 1986. MR0882007
[51] M. Talagrand. Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6 (1996) 587–600. MR1392331
[52] A. M. Tulino and S. Verdú. Monotonic decrease of the non-Gaussianness of the sum of independent random variables: A simple proof. IEEE

Trans. Inform. Theory 52 (9) (2006) 4295–4297. MR2298559
[53] C. Villani. Topics in Optimal Transportation. Graduate Studies in Mathematics 58, 2003. MR1964483
[54] C. Villani. Optimal Transport, Old and New. Grundlehren der Mathematischen Wissenschaften 338, 2009. MR2459454
[55] A. Zhai. A multivariate CLT in Wasserstein distance with near optimal convergence rate. Probab. Theory Related Fields 170 (3–4) (2018)

821–845. MR3773801


	Introduction
	On existence of Stein kernels
	Finite Poincaré constant ensures existence of a Stein kernel
	Extension to non-Gaussian reference measures

	General bounds on the Stein discrepancy
	Stein discrepancy controls skewness
	Strict monotonicity of the Stein discrepancy in the CLT

	Applications
	Quantitative central limit theorems
	Entropy bounds
	Fisher information bounds
	Stability of the Poincaré constant under a second moment constraint

	Acknowledgements
	References

