
0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2988506, IEEE
Transactions on Communications

1

Minimizing Latency for Secure Coded Computing
Using Secret Sharing via Staircase Codes

Rawad Bitar, Member, IEEE, Parimal Parag, Member, IEEE, Salim El Rouayheb, Member, IEEE

Abstract—We consider the setting of a Master server, M,
who possesses confidential data and wants to run intensive
computations on it, as part of a machine learning algorithm
for example. The Master wants to distribute these compu-
tations to untrusted workers who volunteered to help with
this task. However, the data must be kept private in an
information theoretic sense. Some of the workers may be
stragglers, e.g., slow or busy. We are interested in reducing
the delays experienced by the Master. We focus on linear
computations as an essential operation in many iterative
algorithms. We propose a solution based on new codes,
called Staircase codes, introduced previously by two of the
authors. Staircase codes allow flexibility in the number of
stragglers up to a given maximum, and universally achieve
the information theoretic limit on the download cost by
the Master, leading to latency reduction. We find upper
and lower bounds on the Master’s mean waiting time. We
derive the distribution of the Master’s waiting time, and
its mean, for systems with up to two stragglers. We show
that Staircase codes always outperform existing solutions
based on classical secret sharing codes. We validate our
results with extensive implementation on Amazon EC2.

I. INTRODUCTION

We consider the setting of distributed computing in
which a server M, referred to as Master, possesses confi-
dential data (e.g., personal, genomic or medical data) and
wants to perform intensive computations on it. M wants
to divide these computations into smaller computational
tasks and distribute them to n untrusted worker machines
that can perform these smaller tasks in parallel. The
workers then return their results to the Master, who can
process them to obtain the result of its original task.

R. Bitar and S. El Rouayheb are with the ECE department of
Rutgers University. P. Parag is with the ECE department of the Indian
Institute of Science.

Emails: rawad.bitar@rutgers.edu, parimal@iisc.ac.in,
salim.elrouayheb@rutgers.edu.

Part of the work was presented at ISIT, 2017 [1]. Proofs omitted
from this manuscript can be found in [2].

The work of the first and last authors was supported in part
by NSF Grants CCF 1817635 and CNS 1801630 and by ARL
Grant W911NF-17-1-0032. The work of the second author was
supported in part by the Science and Engineering Research Board
(SERB) under Grant No. DSTO-1677, the Department of Telecom-
munications, Government of India, under Grant DOTC-0001, the
Robert Bosch Center for Cyber-Physical Systems, the Centre for
Networked Intelligence (a Cisco CSR initiative) of the Indian Institute
of Science, Bangalore. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the funding agencies.

In this paper, we are interested in applications in
which the worker machines do not belong to the same
system or cluster as the Master. Rather, the workers are
online computing machines that can be hired or can
volunteer to help the Master in its computations, e.g.,
crowdsourcing platforms like the SETI@home [3] and
folding@home [4] projects. The additional constraint,
which we worry about here, is that the workers cannot
be trusted with the sensitive data, which must remain
hidden from them. Privacy could be achieved using fully
homomorphic encryption that allows computing over en-
crypted data. However, homomorphic encryption incurs
high computation and storage overheads [5], which may
not be feasible in certain applications.

We propose information theoretic security to achieve
the privacy requirement. Information theoretic security is
typically used to provide privacy with no constraints on
the computational power of the adversary (compromised
workers). Our main motivation for information theoretic
security is the low complexity of the resulting schemes
(compared to homomorphic encryption). The assumption
that we have to make here is a limit on the number of
workers colluding against the Master.

We focus on linear computations (matrix multiplica-
tion) since they form a building block of many iterative
algorithms, such as principal component analysis, sup-
port vector machines and other gradient-descent based
algorithms [6], [7]. The workers introduce random delays
due to the difference of their workloads or network
congestion. This causes the Master to wait for the slow-
est workers, referred to as stragglers in the distributed
computing community [8], [9]. Our goal is to reduce the
aggregate delay experienced by the Master.

Privacy can be achieved by encoding the data, with
random keys, using linear secret sharing codes [10] as
illustrated in Example 1. However, these codes are not
specifically designed to minimize latency as we will
highlight later.

Example 1. Let the matrix A denote the data set owned
by M and let x be a given vector. M wants to compute Ax.
Suppose that M gets the help of 3 workers out of which at
most 1 may be a straggler. M generates a random matrix
R of same dimensions as A with entries drawn over the
same alphabet as the entries of A. M encodes A and R
into 3 shares S1 = R, S2 = R + A and S3 = R + 2A

Authorized licensed use limited to: Rutgers University. Downloaded on July 08,2020 at 19:41:48 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2988506, IEEE
Transactions on Communications

2

Master

M Encoding

Randomness

W2

W1

W3

A

Data

S1

S2

S
3

R

Workers

(a) The Master M encodes its data A with a random matrix R
into 3 secret shares S1, S2, S3. Any two shares can decode
A. For example, S1 = R, S2 = A+R, and S3 = A+ 2R. M
sends the share Si to worker Wi. The randomness R is used
to ensure privacy.

M

S2

W2

S1

W1

S3

W3

x

x

x

S1x

S2x

S3x

(b) To compute Ax, M sends x to all the workers. Each
worker Wi computes Six and sends the result to M. M

can decode Ax after receiving any two responses, e.g.,
Ax = S2x− S1x = (A+R)x−Rx.

Fig. 1: Secure distributed matrix multiplication with 3 workers. The Master encodes its data using a linear secret
sharing code, e.g., Shamir’s codes (given in the caption) [11], [12] or Staircase codes (given in Table I) [13], [14].
Decoding Ax follows from the linearity of the code.

S1 S2 S3

A1 +A2 +R1 A1 + 2A2 + 4R1 A1 + 3A2 + 4R1
R1 +R2 R1 + 2R2 R1 + 3R2

TABLE I: The shares sent by M to each worker when
using Staircase codes. In this example, each share is
divided into two sub-shares. The operations shown are
in GF (5).

using a secret sharing scheme [11], [12]. M sends share
Si to worker Wi (Figure 1a) and then sends x to all the
workers. Each worker computes Six and sends it back
to M (Figure 1b). M can decode Ax after receiving any 2
responses. For instance, if the first two workers respond,
M can obtain Ax = S2x−S1x. No information about A
is revealed to the workers, because A is one-time padded
by R.

In the previous example, even if there were no strag-
glers, M still has to wait for the full responses of two
workers, and the response of the third one will not
be used for decoding. In addition, M always has to
decode Rx in order to decode Ax. Hence, more delays
are incurred by spending communication and computa-
tion resources on decoding Rx, which is only needed
for privacy. We overcome those limitations by using
Staircase codes introduced in [13], [14] which do not
always require decoding Rx. Thus, possibly reducing the
computation load at the workers and the communication
cost at the Master. In addition, Staircase codes allow
more flexibility in the number of responses needed for
decoding Ax, as explained in the next example.

Example 2 (Staircase codes). Consider the same setting
as Example 1. Instead of using a classical secret sharing
code, M now encodes A and R using the Staircase
code given in Table I. The Staircase code requires M

to divide the matrices A and R into A =
[
A1 A2

]T
and R =

[
R1 R2

]T . In this setting, M sends two sub-

shares to each worker, hence each task consists of 2
sub-tasks. The Master sends x to all the workers. Each
worker multiplies the sub-shares by x (going from top
to bottom) and sends each multiplication back to M

independently. Now, M has two possibilities for decoding:
1) M receives the first sub-task from all the workers,
i.e., receives (A1 + A2 + R1)x, (A1 + 2A2 + 4R1)x
and (A1 + 3A2 + 4R1)x and decodes Ax which is the
concatenation of A1x and A2x. Note that here M decodes
only R1x and does not need to decode R2x. 2) M receives
all the sub-tasks from any 2 workers and decodes Ax.
Here M has to decode R1x and R2x. Note that if M

uses the first three sub-shares, it only decodes half of
Rx, i.e., R1x, and does not need to decode R2x. This
allows the master to save on communication cost. After
receiving enough sub-tasks, the Master sends a message
to the workers instructing them to stop computing the
remaining sub-tasks. One can check that no information
about A is revealed to the workers, because each sub-
share is padded by a random matrix.

A. Contributions

To the extent of our knowledge, this paper is the first
work to analyze latency for private distributed coded
computing under the presence of stragglers. We consider
the distributed computing setting described above in
which we require the workers to learn no information
(in an information theoretic sense) about the Master’s
data. We study the waiting time of the Master caused
by delays of the workers. We follow the literature, e.g.,
[6], [15], and model the service time at the workers as
a shifted exponential random variable. This service time
includes upload time, computation time and download
time, i.e., computation and network latency. Finding
codes that minimize the delay at the Master is still
an open problem in general. In this work, we take

Authorized licensed use limited to: Rutgers University. Downloaded on July 08,2020 at 19:41:48 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2988506, IEEE
Transactions on Communications

3

the download communication cost as a proxy for delay
when designing the coding schemes. More precisely,
we study the performance of the recently introduced
Staircase codes [13], [14] that achieve the information
theoretic limit on download cost [16] and compare them
to classical secret sharing codes. The encoding and
decoding at the Master add delays that are proportional
to inverting a k × k matrix and multiplying this inverse
by a vector of length k. The encoding and decoding
complexities are of order O(k log k) when the generator
matrix is a Vandermonde matrix. However, since the
codes mentioned in this paper have same encoding and
decoding complexities, we do not account for those
delays in our latency analysis. Therefore, our delay
analysis (and comparison to Staircase codes) is the same
for codes that requires a threshold on the number of
stragglers, such as [17], [18], and for classical secret
sharing schemes.

Before we state our contributions, we introduce some
necessary notations. We denote by n the number of
workers available to help the Master, k denote the
minimum number of non stragglers and z the maximum
number of colluding workers. We refer to such secure
distributed computing system by an (n, k, z) system. We
make the following contributions:

1) General bounds for systems with any number of
stragglers: We derive an upper and a lower bound
on the Master’s mean waiting time when using
Staircase codes (Theorem 1). Moreover, we derive
the exact distribution of the Master’s waiting time
when using Staircase codes, in an integral form
(Theorem 4). Using the upper bound, we compare
the performance of Staircase codes to classical
secret sharing codes and characterize the savings
obtained by Staircase codes. We show that Staircase
codes always outperform classical secret sharing
codes.

2) Exact characterization for systems with up to 2
stragglers: We use the integral expression of Theo-
rem 4 to find the exact distribution of the Master’s
waiting time for systems with up to n− k = 1 and
up to n−k = 2 stragglers (Corollary 5). Moreover,
we derive the exact expressions of the Master’s
mean waiting time for these systems (Theorem 2)
and use these expressions to show the tightness of
our upper bound.

3) Simulations and validation: We ran extensive MAT-
LAB simulations for different system parameters.
Our main observation is that the upper bound, based
on Jensen’s inequality, is a good approximation of
the mean waiting time. Furthermore, we validate our

results with extensive implementation on Amazon
EC2 clusters. The savings obtained on EC2 clusters
are within the range of the values predicted by the
theoretical model. To give an example, for n = 4
workers, large data and high traffic regime, our
implementation shows 59% (Figure 4a) savings in
the mean waiting time while the theoretical model
predicts 66% savings (Figure 3a).

B. Related work

The problem of stragglers has been identified and
studied by the distributed computing community, see
e.g., [8], [9], [19], [20]. Recently, there has been a
growing research interest in studying codes for straggler
mitigation and delay minimization in distributed systems
with no secrecy constraints. The early body of work
focused on minimizing latency of content download in
distributed storage systems, see e.g., [15], [21]–[23] and
later the focus has shifted to using codes for straggler
mitigation in distributed computing, see e.g., [6], [7],
[24]–[29].

Secure multiparty computation [30] can be used in
this setting to provide privacy. However, the methods
there are generic and not tailored to matrix multiplica-
tion and therefore do not have efficient communication
cost and flexible straggler mitigation. The work that
is closest to ours is [10] that studies the problem of
distributively multiplying two private matrices under
information theoretic privacy constraints using classical
secret sharing codes. Subsequently to our initial result
that have appeared in [1], several other works have
studied different variants of this problem. In particular,
[17], [18], [31]–[36] studied the problem of distributively
multiplying two private matrices and [37]–[39] studied
the problem of running private distributed machine learn-
ing algorithm in the presence of stragglers. In terms of
delay analysis, all these works use schemes that assume
a threshold on the number of stragglers and have similar
delays as classical secret sharing schemes. However, the
schemes used to multiply two private matrices require the
master to use codes for both matrices which results in
more tradeoffs between encoding complexity, straggler
tolerance, upload cost and download cost see [18] for
example.

In general, privacy in distributed computing is studied
separately, mostly in the computer science community.
Our work can also be related to the work on privacy-
preserving algorithms, e.g., [40]–[43]. However, the pri-
vacy constraint in this line of work is computational
privacy, and the proposed algorithms are not designed
for straggler mitigation.

Authorized licensed use limited to: Rutgers University. Downloaded on July 08,2020 at 19:41:48 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2988506, IEEE
Transactions on Communications

4

C. Organization

The paper is organized as follows. We formalize
the problem and define the model in Section II. In
Section III, we present and discuss our main results.
We describe the construction of Staircase codes in Sec-
tion IV. In Sections V and VI, we study the prob-
ability distribution of the Master’s waiting time and
derive bounds on the mean waiting time. We show,
in Section VII, that the (random) number of workers
that minimizes the waiting time is concentrated around
its average. We evaluate the performance of Staircase
codes via simulation in Section VIII. In Section IX,
we give a representative sample of our implementation
on Amazon EC2 clusters and compare them to our
theoretical findings. We conclude the paper in Section X.

II. SYSTEM MODEL

We consider a Master server M which wants to perform
intensive computations on confidential data represented
by an m × ` matrix A (typically m >> `). M divides
these computations into smaller computational tasks and
assigns them to n workers Wi, i = 1, . . . , n, that can
perform these tasks in parallel. The division is horizontal,
i.e., each worker gets a given number of rows of A with
all their corresponding columns.

a) Computations model: We focus on linear com-
putations. The motivation is that a building block in
several iterative machine learning algorithms, such as
gradient descent, is the multiplication of A by a sequence
of ` × 1 attribute vectors x1,x2, In the sequel, we
focus on the multiplication Ax with one attribute vector
x.

b) Workers model: The workers have the following
properties: 1) The workers incur random delays while
executing the task assigned to them by M resulting in
what is known as the straggler problem [6], [8], [9].
2) Up to z, z < k, workers can collude, i.e., at most z
workers can share with each other the data they receive
from M. The threshold z could be thought of as a desired
level of security. This has implications on the privacy
constraint described later.

c) General scheme: M encodes A, using random-
ness, into n shares Si sent to worker Wi, i = 1, . . . , n.
Any k or more shares can decode A, and any collection
of z workers obtain zero information about A. For any
set B ⊆ {1, . . . , n}, let SB = {Si, i ∈ B} denote the
collection of shares given to worker Wi for all i ∈ B.
The previous requirements can be expressed as,

H(A|SB) = 0, ∀B ⊆ {1, . . . , n} s.t. |B| ≥ k,
H(A|SZ) = H(A), ∀Z ⊆ {1, . . . , n} s.t. |Z| ≤ z.

At each iteration, the Master sends x to all the workers.
Then, each worker computes Six and sends it back to the
Master. In the case where the share Si consists of sub-
shares, each worker multiplies the sub-shares by x and
sends the result back to the master independently. Since
the scheme and the computations are linear, the Master
can decode Ax after receiving enough responses. After
receiving enough responses the master sends a stop mes-
sage to the workers instructing them to stop computing
on the remaining sub-shares. We refer to such scheme
as an (n, k, z) system. We note that our scheme can be
generalized to the cases where the attribute vectors x
contain information about A, and therefore need to be
hidden from the workers. We describe the generalization
of our scheme to such case in [2, Appendix].

d) Encoding: We consider classical secret sharing
codes [11], [12] and universal Staircase codes [13], [14].
We describe their properties that are necessary for the
delay analysis. Secret sharing codes require the division
of A into k − z row blocks each of dimension m

k−z × `
and encodes them into n shares of identical dimension.
Any k shares can decode A. Similarly, Staircase codes
encode A into n shares of m

(k−z) × ` each with the
additional requirement that each share is divided into
b = LCM{k − z + 1, . . . , n − z} sub-shares, where
LCM{a, b, c} denotes the least common multiple of a,
b and c. Decoding A requires a fraction αdb sub-shares,
αd , (k−z)

(d−z) , from any of the d shares, d ∈ {k, . . . , n}.
We provide a detailed explanation on the construction of
Staircase codes in Section IV. We show that Staircase
codes outperform classical codes in terms of incurred
delays.

e) Delay model: Let TA be the random variable
representing the time spent to compute Ax at one worker.
We assume a mother runtime distribution FTA

(t) that
is shifted exponential with rate λ and a constant shift
c. This is a popular model for modeling service time
in a compute cluster [6], [15], and primarily motivated
by its analytical tractability. Furthermore, the shifted
exponential distribution captures the two parts of the
service completion time: the constant part of the task-
dependent service time at each server, and the stochastic-
ity in service due to uncorrelated background processes
at each server. For each i ∈ {1, . . . , n}, we let Ti denote
the time spent by worker Wi to execute its task. Due to
the encoding, each task given to a worker is k− z times
smaller than A, or Ti = TA

(k−z) . It follows that FTi
is a

scaled distribution of FTA
. That is, for t ≥ c/(k − z),

FTi
(t) , FTA

((k − z)t) = 1− e−λ(k−z)(t−
c

k−z). (1)

We assume that the Ti’s, i = 1, . . . , n, are independent
and identically distributed (iid). For an (n, k, z) system

Authorized licensed use limited to: Rutgers University. Downloaded on July 08,2020 at 19:41:48 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2988506, IEEE
Transactions on Communications

5

E[TSC] ≥ c

n− z
+ max
d∈{k,...,n}

k−1∑
i=0

(
n

i

) i∑
j=0

(
i

j

)
2(−1)j

λ (2(n− i+ j)(d− z) + (n− d)(n− d+ 1))
. (6)

E [TSC(k + 1, k, z)] =
c

k − z + 1
+

1

λ

k+1∑
i=1

(−1)i
(
k + 1

i

) i exp
(
−λc
k−z

)
(k − z)i+ 1

− 1

(k − z + 1)i

 . (7)

E[TSC(k + 2, k, z)] = E[TSC(k + 2, k + 1, z)] +

k+2∑
i=2

(−1)i

λ

(
k + 2

i

)(
i

2

)exp
(
− 4λc
k−z

)
(k − z)i+ 4

−
2 exp

(
− 3λc
k−z

)
(k − z)i+ 3

 . (8)

using Staircase codes, we assume that Ti is evenly
distributed among the sub-tasks1. That is, the time spent
by a worker Wi on one sub-task is equal to Ti/b, and the
time spent on bαd = bk−zd−z sub-tasks is αdTi.

Let T(i) be the ith order statistic of the Ti’s and
TSC(n, k, z) be the time the Master waits until it can
decode Ax. If the aggregate wait is due to d workers
each finishing αd fraction of its b sub-tasks, then the
Master’s waiting time is αdT(d). We can write

TSC(n, k, z) = min
d∈{k,...,n}

{
αdT(d)

}
. (2)

It is useful for our analysis to look at Ti as the sum of
an exponential random variable T ′i and a constant offset,
i.e. Ti = T ′i + c/(k − z), where T ′i ∼ exp (λ(k − z)).

From this interpretation, it is easy to verify that the dth

order statistic T(d) of (T1, T2, . . . , Tn) can be expressed
as

T(d) = T ′(d) + c/(k − z),

where T ′(d) is the dth order statistic of n iid exponential
random variables with rate λ(k − z). Therefore, we can
write the Master’s waiting time for Staircase codes as

TSC(n, k, z) = min
d∈{k,...,n}

{
αd

(
T ′(d) +

c

k − z

)}
. (3)

For an (n, k, z) system using classical secret sharing
codes, the Master’s waiting time TSS(n, k, z) is equal
to the time spent by the fastest k workers to finish their
individual tasks. Hence, we can write

TSS(n, k, z) = T(k). (4)

1Therefore, we make two assumptions on the service time of the
workers: (1) the distribution of service times at each worker is iid, (2)
at each worker, the service time of a sub-task is proportional to the
fraction of the total task at the worker. Accordingly, the parameters
of the sub-task distribution (shift c and mean 1/λ) vary linearly with
the sub-task size. We observe that the service time of sub-tasks of the
task computed at a given worker are proportional to their fractional
size, and therefore are not independent. These assumptions make the
problem more amenable to theoretical analysis. In Section IX, we
compare our model to traces obtained from Amazon cloud and show
that our model provides insightful engineering guidelines.

We drop the (n, k, z) notation from TSC(n, k, z) and
TSS(n, k, z) when the system parameters are clear from
the context.

III. OUR RESULTS

Our results characterize the delay performance of
secure coded computing when using Staircase codes and
compare it to classical secret sharing codes. The perfor-
mance of Staircase codes is reflected in the Master’s
waiting time TSC. Towards our goal, we establish in
Theorem 1 general bounds on the Master’s mean waiting
time E[TSC(n, k, z)] when using Staircase codes for all
(n, k, z) systems, under the shifted exponential delay
model.

Theorem 1 (Bounds on the Master’s mean waiting
time E[TSC]). Let Hn be the nth harmonic sum defined
as Hn ,

∑n
i=1

1
i , with the notation H0 , 0. The

mean waiting time of the Master E[TSC] for an (n, k, z)
Staircase coded system is upper bounded by

E[TSC] ≤ min
d∈{k,...,n}

(
Hn −Hn−d
λ(d− z)

+
c

d− z

)
. (5)

The lower bounded is given in (6).

We derive in Section VI a general integral expression
(19) leading to the CDF FTSC(t) of TSC, the waiting time
of the Master for all (n, k, z) systems. Using the general
integral expression, we derive the exact expression of the
CDF FTSC(t) for systems with n = k+ 1 and n = k+ 2
as stated in the next theorem.

Theorem 2 (Exact expression of E[TSC] for systems with
up to 2 stragglers). The mean waiting time of the Master
for (k+ 1, k, z) and (k+ 2, k, z) systems is given in (7)
and (8), respectively.

To give insights into the theoretical bounds above, we
compare in Figure 2a bounds (5) and (6) for the case of
n = k + 2 to the exact expression in (8). We see that
the upper bound in (5) is closer to the actual value and

Authorized licensed use limited to: Rutgers University. Downloaded on July 08,2020 at 19:41:48 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2988506, IEEE
Transactions on Communications

6

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Number of workers n

M
ea

n
w

ai
tin

g
tim

e

Upper bound in (6)
Mean waiting time in (8)
Lower bound in (5)

(a) Systems with fixed n− k = 2.

0 20 40 60 80
0

0.1

0.2

0.3

0.4

Number of workers n

M
ea

n
w

ai
tin

g
tim

e

Upper bound in (6)
Staircase codes
Classical codes
Lower bound in (5)

(b) Systems with fixed k/n = 1/2.

0 20 40 60 80 100
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Number of workers n

Pe
rc

en
ta

ge
of

tim
e

sa
vi

ng
s k/n = 1/2

k/n = 1/4

k/n = 1/5

(c) Savings: systems with fixed k/n.

Fig. 2: Theoretical upper and lower bounds for systems with rate of the exponential random variable λ = 1,
shift c = 1 and no colluding workers, i.e., z = 1. Figure 2a compares the bounds derived in Theorem 1 to the
theoretical mean waiting time for (k + 2, k, 1) derived in Corollary 2. Observe that the upper bound in (5) is a
good approximation of the mean waiting time in (8). Figure 2b compares the bounds in (5) and (6) to the simulated
mean waiting time for (n, k, z) systems with fixed rate k/n = 1/2. We obtain the mean waiting time by averaging
over 10000 iterations for each value of n. Figure 2c compares the upper bound in (5) to the mean waiting time of
classical secret sharing in (9). The savings are computed as the normalized difference between the waiting time of
Staircase codes and classical secret sharing codes, i.e., (E[TSS]− E[TSC]) /E[TSS].

the gap between the two bounds closes as n increases.
We also establish the comparison for fixed rate regimes,
in particular rate k/n = 1/2. Since here n ≥ k + 2, we
compare in Figure 2b the bounds to numerical results
obtained by simulation and observe the same behavior as
before. We also plot in the same figure the mean waiting
time for classical secret sharing codes obtained from (4)
and given by

E[TSS] =
Hn −Hn−k
λ(k − z)

+
c

k − z
. (9)

This allows to verify that Staircase codes always outper-
form classical secret sharing codes. In Figure 2c, we plot
the lower bound on the relative savings brought by Stair-
case codes for systems with rate k/n = 1/2, 1/4, 1/5.
For instance, for rate 1/4, the savings are lower bounded
by 40% for large n. We supplement our theoretical
results in Section VIII with an extensive array of sim-
ulations in addition to measurement results obtained by
implementation on Amazon EC2 clusters. The savings
obtained in the implementation on Amazon cloud are
within the savings predicted by the theoretical model.

IV. STAIRCASE CODES

We briefly explain the encoding and decoding of
Staircase codes. Let A be an m×` matrix with elements
drawn uniformly at random from a finite alphabet, e.g.,
a finite field2 GF (q). An (n, k, z) Universal3 Staircase
code [13], [14] allows the Master to encode A into n

2The computation can be carried over the reals by using unbiased
quantization as in [38] and references within.

3We only describe Universal Staircase codes [14] and shall refer
to them as Staircase codes.

MSC =


D2

. . . Dh−1
D1 Rh

S R3
. . .

R2 0R1 0
. . .

0

 . staircase
structure

M1 M2 M3 . . . Mh

TABLE II: The structure of the matrix MSC that contains
the secret and keys in the universal Staircase code
construction [14].

shares and distribute them to n workers. In addition
to privacy against any z colluding workers, Staircase
codes enjoy the secret reconstruction with minimum
communication cost property. The Master can reconstruct
the secret by contacting any set of d, k ≤ d ≤ n,
workers and downloading a part of their shares. The
information theoretic lower bound on the amount of
information downloaded from each worker is referred
to as communication cost CC(d) and is given [16] by

CC(d) =
k − z
d− z

. (10)

Encoding: Let V be an n × n Vandermonde matrix
defined over GF (q), q ≥ n. Let MSC be the matrix
defined in Table II and detailed next. The encoding of
Staircase codes consists of multiplying V by MSC to
obtain the matrix C = VMSC. The n rows of C form
the n shares.

To construct the matrix M defined in Table II, an
(n, k, z) Staircase code requires dividing the data matrix

Authorized licensed use limited to: Rutgers University. Downloaded on July 08,2020 at 19:41:48 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2988506, IEEE
Transactions on Communications

7

A into b(k−z) matrices A1, . . . , A(k−z)b each of dimen-
sion4 m/b(k−z)×`, where b = LCM{k+1, . . . , n−z}.
Let d1 = n, d2 = n− 1, . . . , dh = k denote the number
of workers contacted by the Master, with h = n−k+ 1.
Let bi , di − z for i = 1, . . . , h. The data matrices
are arranged in a b1m/(k − z)b × `(k − z)b/b1 matrix
S. To ensure secrecy, the construction uses zb matrices
R1, . . . , Rzb of dimension m/b(k − z) × ` each and
with elements drawn independently and uniformly at
random from GF (q). The random matrices R1, . . . , Rzb
are partitioned into h matrices Ri, i = 1, . . . , h, each of
dimension zm/(k− z)b× `(k− z)b/bibi−1 with b0 = 1.
The matrix MSC is the concatenation of h matrices Mi,
i = 1, . . . , h. Each matrix Mi consists of the bi sub-
tasks downloaded by the Master when decoding from di
workers, i.e., when there are n− di stragglers.

The elements appearing in each matrix Dj are the
elements of the (n− j + 1)th row of

[
M1 M2 . . .Mj

]
rearranged to obtain the dimension of Dj as mbj+1/(k−
z)b × `(k − z)b/bjbj+1 for j = 1, . . . , h − 1. The 0’s
are the all zero matrices used to complete the Mi’s to
nm(k − z)b rows.

The structure of the matrix MSC, called Staircase
structure, allows the Master to decode the secret and
achieve optimal communication and read overheads CO
and RO for all d, k ≤ d ≤ n.
Decoding: The Master contacts any di workers, i =
1, . . . , h and downloads

[
M1 . . . Mi

]
from each con-

tacted worker. The Master is guaranteed [14, Theorem 2]
to decode the secret.

In the setting of secure distributed computing, the
Master encodes A and sends the n shares to the workers.
To compute Ax, M sends x to the workers and waits
for the first d, k ≤ d ≤ n, workers to send part of
their shares multiplied by x. Since the multiplication is
linear, the Master can decode Ax and part of the random
matrices Rix, i = 1, . . . , zb.

V. BOUNDS ON THE MASTER’S MEAN WAITING TIME

FOR ALL (n, k, z) SYSTEMS

We derive an upper and a lower bound on the Mas-
ter’s mean waiting time E[TSC(n, k, z)] for all (n, k, z)
systems, i.e., we prove Theorem 1.

A. Proof of the upper bound on the mean waiting time

Proof: We use Jensen’s inequality to upper bound
the mean waiting time E[TSC]. Since min is a convex

4If the number of rows in A is not divisible by b, one can use zero
padding or the representation of A in a smaller field GF (q1) such
that q = qb1.

function, we can use Jensen’s inequality to upper bound
the mean waiting time,

E[TSC] = E
[

min
d∈{k,...,n}

{
αdT

′
(d) +

c

d− z

}]
≤ min

d∈{k,...,n}

{
αdE

[
T ′(d)

]
+

c

d− z

}
. (11)

We need the following theorem in order to derive an
exact expression of the mean of the dth order statistic of
n iid exponential random variables.

Theorem (Renyi [44]). The dth order statistic T ′(d) of
n iid exponential random variables T ′i is equal to the
following random variable in the distribution

T ′(d) ,
d∑
j=1

T ′j
n− j + 1

.

Using Renyi’s theorem, the mean of the dth order
statistic E

[
T ′(d)

]
can be written as

E[T ′(d)] = E[T ′j]

d−1∑
j=0

1

n− j
=
Hn −Hn−d
λ(k − z)

. (12)

From equations (11) and (12), the mean waiting time is
upper bounded by

E[TSC] ≤ min
d∈{k,...,n}

{
Hn −Hn−d
λ(d− z)

+
c

d− z

}
.

We give an intuitive behavior of the upper bound.
The harmonic number can be approximated by Hn ≈
log(n) + γ, where γ ≈ 0.577218 is called the Euler-
Mascheroni constant. Alternatively, we can use the upper
and lower bounds log(n) < Hn < log(n + 1) on the
Harmonic number Hn, to upper bound the mean waiting
time

E[TSC] < min {Ψ1,Ψ2} ,

Ψ1 , min
d∈{k,...,n−1}

{
1

λ(d− z)
log

(
n+ 1

n− d

)
+

c

d− z

}
,

Ψ2 ,
1

λ(n− z)
log (n+ 1) +

c

n− z
.

B. Proof of the lower bound on the mean waiting time

Proof: Recall that TSC = min{αdT(d) : d ∈
{k, . . . , n}} = min{αdT ′(d) +

c

d− z
: d ∈ {k, . . . , n}}.

Since the minimum of the sum is greater than the sum of
the minimums, we can lower bound the waiting time TSC

Authorized licensed use limited to: Rutgers University. Downloaded on July 08,2020 at 19:41:48 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2988506, IEEE
Transactions on Communications

8

n∏
j=d+1

Pr

{
T ′j

n− j + 1
>

t

(k − z)

}
= F̄

 n∑
j=d+1

(n− j + 1)t

 = F̄

(
(n− d)(n− d+ 1)t

2

)
. (14)

Pr (Cd(t)) =

k−1∑
i=0

(
n

i

) i∑
j=0

(
i

j

)
(−1)jF̄

(
t(n− i+ j)(d− z) + t(n− d)(n− d+ 1)/2

)
. (17)

E[T ′SC] =

∫ ∞
0

Pr
{
T ′SC > t

}
dt ≥

∫ ∞
0

max
d∈{k,...,n}

Pr(Cd(t))dt ≥ max
d∈{k,...,n}

∫ ∞
0

Pr(Cd(t))dt. (18)

in terms of residual waiting time T ′SC , min{αdT ′(d) :

d ∈ {k, . . . , n}}, as

TSC = min
d∈{k,...,n}

{αdT ′(d) +
c

d− z
} ≥ T ′SC +

c

(n− z)
.

Since the mean of a continuous random variable can be
computed by integrating the tail probability, we lower
bound E[T ′SC] by lower bounding the tail probability of
T ′SC exceeding any threshold value t. We observe that
T ′SC is greater than t, if and only if the dth order statistic
T ′(d)’s is greater than t

αd
for each d ∈ {k, . . . , n}. That

is,

{T ′SC > t} =

n⋂
d=k

{
T ′(d) >

t

αd

}
.

Recall that tα−1d (k − z) = t(d − z) is increasing in d,
and so is T ′(d). For the residual service times T ′1, . . . , T

′
n,

we consider Cd(t) defined as the following set{
T ′(k) >

t

αd

} n⋂
i=d+1

{
T ′(i) − T

′
(i−1) >

t

αi
− t

αi−1

}
.

For each d ∈ {k, . . . , n}, we observe that Cd(t) ⊆
{T ′SC > t} since {T ′(k) > tα−1d } ⊆ ∩

d
j=k{T ′(j) > tα−1j }.

It follows that, Pr {T ′SC > t} ≥ maxd∈{k,...,n} Pr(Cd(t)).
Next, we evaluate Pr(Cd(t)) explicitly. To this end, we
first observe that αj−1−αj−1−1 = (k − z)−1 identically
for each j ∈ {1, . . . , n}. Further, we apply Renyi’s
theorem and independence of residual times T ′i s to write

Pr (Cd(t)) = Pr

{
T ′(k) >

t

αd

}
n∏

j=d+1

Pr

{
T ′j

n− j + 1
>

t

(k − z)

}
. (13)

In the following, we would use F (t) = 1−e−λt for t ≥ 0
to represent the cumulative distribution function (CDF)
and F̄ (t) = 1−F (t) to represent the complementary cu-
mulative distribution function (CCDF), of an exponential
random variable with rate λ. It follows that the CCDF for

the residual service time T ′j is Pr{T ′j > t} = F̄ ((k−z)t).
Utilizing the exponential form, we can write (14).

From definition, it follows that αk = 1. Further, the
kth order statistic of n residual service times exceeds a
threshold if and only if at most k − 1 different residual
service times are less than the threshold, c.f., Lemma 3.
That is,

Pr
{
T ′(k) > t

}
=

k−1∑
i=0

(
n

i

)
F ((k − z)t)i F̄ ((k − z)t)n−i .

(15)

Since F (t) = 1 − F̄ (t), using the binomial expansion,
we have

F ((k − z)t)i =

i∑
j=0

(
i

j

)
(−1)jF̄ ((k − z)t)j . (16)

Exploiting the exponential form of F̄ (t), aggregating
results from (14), (15) and (16), we can re-write (13)
as (17). The proof follows from the integral

∫∞
0 e−xtdt =

1
x , the linearity of integrals, and the lower bound (18).

Lemma 3. Marginal complementary distribution of
dth order statistic T ′(d) of n iid random variables
(T ′1, . . . , T

′
n) with common distribution fT ′(t) is given

by

Pr{T ′(d) > t} =

d−1∑
i=0

(
n

i

)
FT ′(t)F̄T ′(t)

n−i.

We note the cumulative distribution function (CDF)
of f by FT ′(t) , fT ′(T

′ < t) and the complementary
cumulative distribution function (CCDF) of f by F̄ ,
fT ′(T

′ > t) = 1− FT ′(t).
Proof: The dth order statistic is greater than t, if

and only if at most d− 1 out of n iid random variables
(T1, . . . , Tn) can be less than t, and the rest are greater
than t.

Authorized licensed use limited to: Rutgers University. Downloaded on July 08,2020 at 19:41:48 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2988506, IEEE
Transactions on Communications

9

FTSC (t) = 1− n!

∫
(yk,...,yn)∈A(t)

FT ′(yk)
k−1

(k − 1)!
dFT ′(yk) . . . dFT ′(yn) for t > 0. (19)

FTSC(k+1,k,z)(t) = FT ′(tk+1)
k+1 + FT ′(tk)

kF̄T ′(tk+1)(k + 1). (20)

FTSC(k+2,k,z)(t) = FT ′(tk+2)
k+2 + (k + 2)F̄T ′(tk+2)

[
FT ′(tk+1)

k+1 + (k + 1)FT ′(tk)
k(F̄T ′(tk+1)−

1

2
F̄T ′(tk+2))

]
.

(21)

Pr{TSC > t} =

∫
y∈Â(t)

dFT ′(1),...,T ′(n)
(y) = n!

∫ ∞
tn

· · ·
∫ yk+1

tk

n∏
i=k

dFT ′(yi)

(∫ yk

0
· · ·
∫ y2

0

k−1∏
i=1

dFT ′(yi)

)
. (22)

VI. DISTRIBUTION OF THE MASTER’S WAITING TIME

FOR ALL (n, k, z) SYSTEMS

Now we are ready to derive an integral expression for
the probability distribution of TSC, the Master’s waiting
time when using Staircase codes.

Theorem 4 (Integral expression leading to FTSC(t)).
The distribution of the Master’s waiting time TSC of an
(n, k, z) system using Staircase codes is given in (19).

We denote the residual service time at each worker
Wi, i = 1, . . . , n, by the random variable T ′i = Ti− c

k−z ,
and the associated distribution by F (yi) , FT ′(yi) =
1−exp(−λyi) for yi > 0. For i = k, . . . , n, we define ti
as ti , max

{(
i−z
k−z

)(
t− c

i−z
)
, 0
}

. We denote by A(t)

the set of ordered variables (yk, . . . , yn) defined as

{0 ≤ yk ≤ yk+1 ≤ · · · ≤ yn : tk < yk, . . . , tn < yn}.
We apply Theorem 4 to get the mean waiting time of

the Master and the exact distribution of the waiting time
for systems with n = k+1 and n = k+2 in Theorem 2
and Corollary 5, respectively.

Corollary 5 (Exact expression of FTSC(t) for systems
with up to 2 stragglers). The distribution of the Master’s
waiting time for (k + 1, k, z) and (k + 2, k, z) systems
is given in (20) and (21), respectively. Both distributions
are defined for t > 0, and FT ′(t) , 1−exp(−λ(k−z)t).

We omit the proof of Corollary 5 since it follows from
simply integrating (19) and defer the proof of Theorem 2
to the technical report [2].

Proof of Theorem 4: Let T ′i denote the residual
service time of worker i with the offset c

k−z . The
sequence (T ′1, . . . , T

′
n) of residual service times of n

workers is assumed to be iid and distributed exponen-
tially with rate λ(k−z) with the tail-distribution function
F̄T ′(t) , e−λ(k−z)t for t > 0.

Since the common distribution of residual service
times is absolutely continuous with respect to the
Lebesgue measure, the corresponding probability den-
sity exists and is denoted by fT ′(t) = dFT ′(t)/dt =

λ(k − z)e−λ(k−z)t for t > 0. Further, we know that
the order statistics (T ′(1), . . . , T

′
(n)) of residual times

(T ′1, . . . , T
′
n) is identical for all their n! permutations.

Hence, for any 0 ≤ y1 ≤ . . . ≤ yn, we can write
fT ′(1),...,T ′(n)

(y1, . . . , yn) = n!fT ′1,...,T ′n(y1, . . . , yn) =

n!
∏n
i=1 fT ′(yi). The product form of joint density fol-

lows from the independence of the residual service times.
In terms of αj = k−z

j−z , the order statistics of residual
times T ′(j), and the offset c

k−z , we can write

{TSC > t} =

n⋂
j=k

{
T ′(j) >

t

αj
− c

j − z

}
.

For each k ≤ j ≤ n, we define tj ,

max
{

t
αj
− c

j−z , 0
}
, yn+1 ,∞, and Â(t) , ∩n+1

j=k{tj <
yj ≤ yj+1} ∩k−1j=1 {0 ≤ yj ≤ yj+1}. In terms of tj , yn+1

and Â(t), we can write the tail distribution as in (22).
First, we compute the integral with respect to ordered

non-negative real variables (y1, . . . , yk−1) over the re-
gion Bk−1 , ∩k−1j=1{0 ≤ yj ≤ yj+1}, a projection
of Â(t) on (k − 1) dimensional space spanned by
(y1, . . . , yk−1).

Claim 6. For each k > 1, we have

Ik ,
∫
Bk−1

dFT ′(yk−1) . . . dFT ′(y1)

=

∫ yk

0
· · ·
∫ y2

0

k−1∏
i=1

dFT ′(yi) =
FT ′(yk)

k−1

(k − 1)!
.

Since the projection of Â(t) on (n − k + 1) dimen-
sional space spanned by (yk, . . . , yn) is equal to A(t),
it follows that the integration of the first part is equal
to n!

∫
(yk,...,yn)∈A(t) dFT ′(yn) . . . dFT ′(yk), giving us the

result.

VII. INTERPLAY BETWEEN CODE DESIGN AND

LATENCY

Universal Staircase codes allows the master to decode
Ax from any random number d of workers, k ≤ d ≤ n.

Authorized licensed use limited to: Rutgers University. Downloaded on July 08,2020 at 19:41:48 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2988506, IEEE
Transactions on Communications

10

0 20 40 60 80 100
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Number of workers n

Pe
rc

en
ta

ge
of

tim
e

sa
vi

ng
s

Simulation for k/n = 1/2

Simulation for k/n = 1/4

Bound in (24) for k/n = 1/2

Bound in (24) for k/n = 1/4

(a) Savings for λc = 100.

0 20 40 60 80 100
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Number of workers n

Pe
rc

en
ta

ge
of

tim
e

sa
vi

ng
s Simulation for k/n = 1/2

Simulation for k/n = 1/4

Bound in (24) for k/n = 1/2

Bound in (24) for k/n = 1/4

(b) Savings for λc = 1.

0 20 40 60 80 100
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Number of workers n

Pe
rc

en
ta

ge
of

tim
e

sa
vi

ng
s Simulation for k/n = 1/2

Simulation for k/n = 1/4

Bound in (24) for k/n = 1/2

Bound in (24) for k/n = 1/4

(c) Savings for λc = 0.001.

Fig. 3: Savings for the fixed rate regime, k/n = 1/2 and 1/4. The lower bound on the savings of Staircase codes
obtained from (24) is compared to the numerical values obtained by simulations. We consider systems with no
colluding workers, i.e., z = 1, we fix λ = 1 and vary c. For instance, for systems with rate k/n = 1/2 and
λc = 100 Staircase codes can provide up to 66% reduction in the mean waiting time.

The downside is that the universal construction requires a
large number of sub-tasks b = LCM{k−z+1, . . . , n−z}.
In many applications, there may be an overhead associ-
ated with excessive divisions into sub-tasks. We show
that we can reduce the number of sub-tasks at the
expense of a small increase of the Master’s waiting
time. Using the so-called ∆-Universal Staircase codes
[14] reduces the number of sub-tasks at the expense
of limiting the Master to a set ∆ ⊆ {k, . . . , n} of
number of workers allowing the Master to decode Ax. In
other words, the Master can decode Ax by downloading
enough information from any d workers, d ∈ ∆. The
number of sub-tasks assigned to each worker is reduced
from b = LCM{k−z+1, . . . , n−z} to the least common
multiple of all di ∈ ∆. It remains to prove that d is
concentrated around its mean. Hence, restricting d to an
interval ∆ centered around its mean, leads to a reduction
in the Master’s waiting time.

Next, we prove that the number of workers d that
minimize the waiting time is concentrated around its
average.

Lemma 7. For an (n, k, z) system, the probability dis-
tribution of the distance between d and its average is

Pr{|d− E[d]| > t} ≤ 2e−2t
2/n(n−k)2 .

We prove Lemma 7 by showing that the number of
workers d that first finish the aggregate computation
is concentrated around its mean, using McDiarmid’s
inequality. Recall that d : Rn+ → {k, . . . , n} is a function
of the compute times T1, . . . , Tn.

d(T1, . . . , Tn) , arg min

{
k − z
i− z

T(i) : i ∈ {k, . . . , n}
}
.

Claim 8. The number of workers d that minimize the
waiting time is a bounded difference function of compute
times with constants (n−k, . . . , n−k). That is, for each

i ∈ [n] taking t, ti ∈ Rn+ such that tj = tij for each
j ∈ [n] \ {i} and ti 6= tii,

sup{|g(t)− g(ti)| : t, ti ∈ Rn+} ≤ n− k. (23)

The claim follows from the fact that d ∈ {k, . . . , n}.
Therefore, we can apply the McDiarmid’s inequality to
obtain the concentration bound on d.

VIII. SIMULATIONS

We use the normalized difference between the mean
waiting time of Staircase codes and classical secret
sharing codes as a performance metric for Staircase
codes. We refer to this metric as the savings. Using the
result of Theorem 1, we can get a lower and an upper
bound on the savings brought by Staircase codes. The
lower bound on the savings is given in (24).

1−E[TSC]

E[TSS]
≥ 1− min

d∈{k,...,n}

{
(k − z)(λc+Hn −Hn−d)

(d− z)(λc+Hn −Hn−k)

}
.

(24)
To get an idea of the actual savings and the tightness

of the bound in (24), we ran numerical simulations of the
mean waiting time induced by the use of Staircase codes.
By looking at (24), we notice that the bound depends on
λ and c only through5 λc (our simulations show that the
actual savings also have a strong dependency on λc).
Therefore, we consider three cases for λc : large values
of λc (λc = 100), medium values of λc (λc = 1) and
small values of λc (λc = 0.001). We ran the simulations
for two regimes:
• Fixed rate k/n: the plots can be seen in Figure 3.

We deduce from the plots that the lower bound is
tighter for large values of λc. Moreover, the savings
increase with the decrease of the rate k/n and the
increase of λc. Note that for large values of λc, the
lower bound in (24) converges to 1− k/n.

5Note that for c = 0 we go to the exponential model and the
savings would depend only on λ.

Authorized licensed use limited to: Rutgers University. Downloaded on July 08,2020 at 19:41:48 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2988506, IEEE
Transactions on Communications

11

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

avg = 0.5071

avg = 1.2409

Time t (sec)

Pr
(w

ai
tin

g
tim

e
≥

t)

Staircase
Classical

(a) (n, k, z) = (4, 2, 1).

0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

avg = 0.3087 avg = 0.5337

Time t (sec)

Pr
(w

ai
tin

g
tim

e
≥

t)

Staircase
Classical

(b) (n, k, z) = (10, 5, 1).

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

avg = 0.2663
avg = 0.3912

Time t (sec)

Pr
(w

ai
tin

g
tim

e
≥

t)

Staircase
Classical

(c) (n, k, z) = (20, 10, 1).

Fig. 4: Empirical complementary CDF of the Master’s waiting time (and its average) observed on Amazon EC2
clusters for systems with rate k/n = 1/2. The data matrix A is a 378000 × 250 matrix with entries generated
uniformly at random from {1, . . . , 255}. Staircase codes bring 59% reduction in the mean waiting time for n = 4.
Those numbers were obtained by repeating the multiplication process 1000 times.

• Fixed number of parities n−k: We deduce from the
plots that similarly to the fixed rate regime the lower
bound is tight for large values of λc and that the
savings increase with the increase of the number of
parities n−k and with the increase of λc. However,
we observe that the savings vanish asymptotically
with n in this regime. Due to space constraints, the
plots are omitted and can be found in [2].

IX. IMPLEMENTATION AND VALIDATION OF THE

THEORETICAL MODEL

We describe a representative sample of our imple-
mentation on Amazon EC2 clusters and discuss our
observations. We present traces for systems with fixed
rate k/n = 1/2 (Figure 4). We noticed that the straggler
behavior, and therefore the savings, can depend on the
date and time of the implementation. We refer interested
readers to [2] where we highlight this dependence by
presenting traces of one system implemented at different
date and times.

Discussion on the theoretical model: Before giving the
details, we summarize our findings. We observe that the
savings of the system on EC2 can surpass the numerical
values resulting from our theoretical model in Section II
for large sizes of the matrix A. However, for small sizes
of A, the savings in practice can be less.

The difference between the theoretical results and the
implementations can be attributed to several reasons.
First, in our model we assume in (2) that the total
service time of a task does not change when divided
into b sub-tasks, each requiring the same service time.
Whereas, our implementation on Amazon shows that
the download time decreases faster than linearly with
the size of the sub-task for large sub-tasks. Second, for
small sub-tasks, we noticed an additional overhead of
sending the results of multiple sub-tasks. This overhead
becomes non-negligible when the task is small. Third, we

have assumed a homogeneous setting where all workers
have the same behavior which is not always the case in
practice.

Despite these differences, our adopted theoretical
model is more amenable to theoretical analysis and
provides insightful engineering guiding principles.

We present the implementation of (4, 2, 1), (10, 5, 1)
and (20, 10, 1) systems on Amazon EC2 clusters. We use
M4.large EC2 instances [45] from Amazon web services
(AWS) for our implementation. We assign the Master’s
job to an instance located in Virginia and the workers job
to instances located in Ohio. We plot in Figures 4a, 4b
and 4c the empirical complementary CDF of the Master’s
waiting time for Staircase codes and classical secret shar-
ing codes for (4, 2, 1), (10, 5, 1) and (20, 10, 1) systems,
respectively. The average savings brought by Staircase
codes are 59%, 42% and 32% for systems with n = 4,
n = 10 and n = 20 workers, respectively. Note that
for this set of implementation, the Master’s data A is
a matrix of size 378000 × 250 with entries generated
uniformly at random from {1, . . . , 255}. We run 1000
multiplications of A by a randomly generated vector
x. In the technical report [2] we present the trace of a
(4, 2, 1) system implemented at different dates and times
on Amazon EC2 clusters.

X. CONCLUSION AND OPEN PROBLEMS

We consider the problem of secure coded computing.
We propose the use of a new family of secret sharing
codes called Staircase codes that reduces the delays
caused by stragglers. We show that Staircase codes
always lead to smaller waiting time compared to classical
secret sharing codes, e.g., Shamir secret sharing codes.
The reason behind reducing the delays is that Staircase
codes allow flexibility in the number of stragglers up to a
given maximum, and universally achieve the information
theoretic limit on the download cost by the Master,

Authorized licensed use limited to: Rutgers University. Downloaded on July 08,2020 at 19:41:48 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2988506, IEEE
Transactions on Communications

12

leading to latency reduction. We consider the shifted ex-
ponential model for the workers’s response time. In our
analysis, we find upper and lower bounds on the Master’s
mean waiting time. We characterize the distribution of
the Master’s waiting time, and its mean, for systems with
n = k − 1 and n = k − 2. Moreover, we derive an
expression that can give the exact distribution, and the
mean, of the waiting time of the Master. We supplement
our theoretical study with extensive implementation on
Amazon EC2 clusters.

While Staircase codes reduce the Master’s waiting
time by minimizing the download cost, they are not
designed to minimize latency. The problem of designing
codes that minimize the latency remains open in general.
Another open problem, which we leave for future work,
is when malicious workers corrupt the results sent to the
Master.

REFERENCES

[1] R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for
secure distributed computing,” in IEEE International Sympo-
sium on Information Theory (ISIT), pp. 2900–2904, June 2017.

[2] R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency
for secure coded computing using secret sharing via staircase
codes,” arXiv preprint, vol. abs/1802.02640, 2018.

[3] https://setiathome.berkeley.edu.
[4] https://foldingathome.stanford.edu.
[5] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homo-

morphic encryption from (standard) LWE,” SIAM Journal on
Computing, vol. 43, no. 2, pp. 831–871, 2014.

[6] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ram-
chandran, “Speeding up distributed machine learning using
codes,” IEEE Transactions on Information Theory, vol. 64,
no. 3, pp. 1514–1529, 2017.

[7] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing
large linear transforms distributedly using coded short dot
products,” in 29th Annual Conference on Neural Information
Processing Systems (NIPS), pp. 2092–2100, 2016.

[8] J. Dean and S. Ghemawat, “Mapreduce: simplified data pro-
cessing on large clusters,” Communications of the ACM, vol. 51,
no. 1, pp. 107–113, 2008.

[9] J. Dean and L. A. Barroso, “The tail at scale,” Communications
of the ACM, vol. 56, no. 2, pp. 74–80, 2013.

[10] M. J. Atallah and K. B. Frikken, “Securely outsourcing linear
algebra computations,” in Proceedings of the 5th ACM Sympo-
sium on Information, Computer and Communications Security,
ASIACCS ’10, (New York, NY, USA), pp. 48–59, ACM, 2010.

[11] A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612–613, 1979.

[12] R. J. McEliece and D. V. Sarwate, “On sharing secrets and
Reed-Solomon codes,” Communications of the ACM, vol. 24,
no. 9, pp. 583–584, 1981.

[13] R. Bitar and S. El Rouayheb, “Staircase codes for secret
sharing with optimal communication and read overheads,” in
IEEE International Symposium on Information Theory (ISIT),
pp. 1396–1400, July 2016.

[14] R. Bitar and S. El Rouayheb, “Staircase codes for secret
sharing with optimal communication and read overheads,” IEEE
Transactions on Information Theory, vol. PP, no. 99, pp. 1–1,
2017.

[15] G. Liang and U. C. Kozat, “TOFEC: Achieving optimal
throughput-delay trade-off of cloud storage using erasure
codes,” in IEEE International Conference on Computer Com-
munications, 2014.

[16] W. Huang, M. Langberg, J. Kliewer, and J. Bruck, “Com-
munication efficient secret sharing,” IEEE Transactions on
Information Theory, vol. 62, pp. 7195–7206, Dec 2016.

[17] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mit-
igation in distributed matrix multiplication: Fundamental limits
and optimal coding,” in 2018 IEEE International Symposium
on Information Theory (ISIT), pp. 2022–2026, IEEE, 2018.

[18] Z. Jia and S. A. Jafar, “Cross subspace alignment codes for
coded distributed batch matrix multiplication,” arXiv preprint
arXiv:1909.13873, 2019.

[19] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
A. Senior, P. Tucker, K. Yang, Q. V. Le, et al., “Large scale
distributed deep networks,” in Advances in neural information
processing systems, pp. 1223–1231, 2012.

[20] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz,
“Revisiting distributed synchronous SGD,” arXiv preprint
arXiv:1604.00981, 2016.

[21] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codes
can reduce queueing delay in data centers,” in IEEE Interna-
tional Symposium on Information Theory (ISIT), 2012.

[22] G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content down-
load,” in 50th Annual Allerton Conference on Communication,
Control, and Computing, 2012.

[23] S. Kadhe, E. Soljanin, and A. Sprintson, “Analyzing the
download time of availability codes,” in IEEE International
Symposium on Information Theory (ISIT), 2015.

[24] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis,
“Gradient coding,” in 29th Conference on Neural Information
Processing Systems (NIPS), 2016.

[25] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified
coding framework for distributed computing with straggling
servers,” in Globecom Workshops (GC Wkshps), pp. 1–6, IEEE,
2016.

[26] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A
fundamental tradeoff between computation and communication
in distributed computing,” IEEE Transactions on Information
Theory, vol. 64, no. 1, pp. 109–128, 2018.

[27] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving
distributed gradient descent using Reed-Solomon codes,” in
IEEE International Symposium on Information Theory (ISIT),
pp. 2027–2031, 2018.

[28] S. Dutta, V. Cadambe, and P. Grover, “Coded convolution
for parallel and distributed computing within a deadline,” in
IEEE International Symposium on Information Theory (ISIT),
pp. 2403–2407, 2017.

[29] Y. Yang, P. Grover, and S. Kar, “Computing linear transfor-
mations with unreliable components,” IEEE Transactions on
Information Theory, 2017.

[30] R. Cramer, I. B. Damgård, and J. B. Nielsen, Secure Multiparty
Computation and Secret Sharing. New York, NY, USA:
Cambridge University Press, 1st ed., 2015.

[31] R. G. D’Oliveira, S. El Rouayheb, and D. Karpuk, “Gasp codes
for secure distributed matrix multiplication,” in IEEE Inter-
national Symposium on Information Theory (ISIT), pp. 1107–
1111, IEEE, 2019.

[32] W.-T. Chang and R. Tandon, “On the capacity of secure
distributed matrix multiplication,” in IEEE Global Communi-
cations Conference (GLOBECOM), pp. 1–6, IEEE, 2018.

[33] J. Kakar, S. Ebadifar, and A. Sezgin, “Rate-efficiency and
straggler-robustness through partition in distributed two-sided
secure matrix computation,” arXiv preprint arXiv:1810.13006,
2018.

Authorized licensed use limited to: Rutgers University. Downloaded on July 08,2020 at 19:41:48 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2988506, IEEE
Transactions on Communications

13

[34] H. Yang and J. Lee, “Secure distributed computing with strag-
gling servers using polynomial codes,” IEEE Transactions on
Information Forensics and Security, vol. 14, no. 1, pp. 141–150,
2018.

[35] J. Kakar, A. Khristoforov, S. Ebadifar, and A. Sezgin, “Uplink-
downlink tradeoff in secure distributed matrix multiplication,”
arXiv preprint arXiv:1910.13849, 2019.

[36] W.-T. Chang and R. Tandon, “On the upload versus download
cost for secure and private matrix multiplication,” arXiv preprint
arXiv:1906.10684, 2019.

[37] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and
S. A. Avestimehr, “Lagrange coded computing: Optimal design
for resiliency, security, and privacy,” in The 22nd International
Conference on Artificial Intelligence and Statistics (AISTATS),
pp. 1215–1225, 2019.

[38] J. So, B. Guler, A. S. Avestimehr, and P. Mohassel, “Cod-
edPrivateML: A fast and privacy-preserving framework for
distributed machine learning,” arXiv preprint arXiv:1902.00641,
2019.

[39] Q. Yu and A. S. Avestimehr, “Harmonic coding: An optimal
linear code for privacy-preserving gradient-type computation,”
arXiv preprint arXiv:1904.13206, 2019.

[40] H. Takabi, E. Hesamifard, and M. Ghasemi, “Privacy preserving
multi-party machine learning with homomorphic encryption,”
in 29th Annual Conference on Neural Information Processing
Systems (NIPS), 2016.

[41] R. Hall, S. E. Fienberg, and Y. Nardi, “Secure multiple lin-
ear regression based on homomorphic encryption,” Journal of
Official Statistics, vol. 27, no. 4, p. 669, 2011.

[42] L. Kamm, D. Bogdanov, S. Laur, and J. Vilo, “A new way to
protect privacy in large-scale genome-wide association studies,”
Bioinformatics, vol. 29, no. 7, pp. 886–893, 2013.

[43] S. Gade and N. H. Vaidya, “Private learning on networks: Part
II,” arXiv preprint arXiv:1703.09185, 2017.

[44] A. Rényi, “On the theory of order statistics,” Acta Mathematica
Academiae Scientiarum Hungarica, vol. 4, no. 3-4, pp. 191–
231, 1953.

[45] https://aws.amazon.com/ec2.

Rawad Bitar (S’10-M’20) is currently a post-
doctoral researcher at the Technical University
of Munich. He received the Diploma degree
in computer and communication engineering
from the Lebanese University, Faculty of En-
gineering, Roumieh, Lebanon in 2013 and the
M.S. degree from the Lebanese University,
Doctoral school, Tripoli, Lebanon in 2014. He
received his Ph.D. degree in electrical engi-

neering from Rutgers University, New Jersey, in 2020. His research
interests are in the broad area of information theory and coding theory
with a focus on coding for information theoretically secure distributed
systems with application to machine learning.

Parimal Parag (S’04-M’11) is an assistant
professor in the ECE department at Indian
Institute of Science. Prior to that, he was a
senior system engineer (R&D) at Assia Inc.
in Redwood City (2011-2014). He received a
Ph.D. degree from the Texas A&M University
in 2011, the M.Tech. and B.Tech. degrees
in 2004 from IIT Madras, all in electrical
engineering. His research interests lie in the

design and analysis of large scale distributed systems. He was a co-
author of the 2018 IEEE ISIT student best paper, and a recipient
of the 2017 early career award from the Science and Engineering
Research Board.

Salim El Rouayheb (S’07-M’09) is currently
an assistant professor in the ECE department
at Rutgers University, New Jersey. He is the
recipient of the NSF career award. He received
the Diploma degree in electrical engineering
from the Lebanese University, Faculty of En-
gineering, Roumieh, Lebanon, in 2002, and
the M.S. degree from the American University
of Beirut, Lebanon, in 2004. He received the

Ph.D. degree in electrical engineering from Texas A&M University,
College Station, in 2009. He was a postdoctoral research fellow
at UC Berkeley (2010-2011) and a research scholar at Princeton
University (2012-2013). He was an assistant professor in the ECE
department at the Illinois Institute of Technology (2013-2017). His
research interests are in the broad area of information theory and
coding theory with a focus on network coding, coding for distributed
storage and information theoretic security.

Authorized licensed use limited to: Rutgers University. Downloaded on July 08,2020 at 19:41:48 UTC from IEEE Xplore. Restrictions apply.

