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GASP Codes for Secure Distributed
Matrix Multiplication

Rafael G. L. D’Oliveira , Salim El Rouayheb, Member, IEEE, and David Karpuk

Abstract— We consider the problem of secure distributed
matrix multiplication (SDMM) in which a user wishes to compute
the product of two matrices with the assistance of honest but
curious servers. We construct polynomial codes for SDMM by
studying a combinatorial problem on a special type of addition
table, which we call the degree table. The codes are based
on arithmetic progressions, and are thus named GASP (Gap
Additive Secure Polynomial) Codes. GASP Codes are shown to
outperform all previously known polynomial codes for secure
distributed matrix multiplication in terms of download rate.

Index Terms— Data privacy, distributed computing, security.

I. INTRODUCTION

WE CONSIDER the problem of secure distributed matrix
multiplication (SDMM), in which a user has two matri-

ces A and B and wishes to compute their product AB with
the assistance of N servers, without leaking any information
about A or B to any server. We assume that all servers are
honest and responsive, but that they are curious, in that any
T of them may collude to try to deduce information about
either A or B.

When considering the problem of SDMM from an
information-theoretic perspective, the primary performance
metric used in the literature is that of the download rate, or
simply rate, which we denote by R. In our scenario, the user
queries the servers to perform various matrix mulitplications,
and the servers respond with answers that the user can use to
piece together the final desired result AB. In this admittedly
heuristic description, the rate R is the ratio of the size of the
desired result AB (in bits) to the total amount of information
(in bits) the user downloads to obtain the answers from the
servers. The goal is to construct a SDMM scheme with rate
R as large as possible.
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The problem of constructing polynomial codes for SDMM
can be summarized as follows. We partition the matrices A
and B as follows:

A =

⎡
⎢⎣

A1

...
AK

⎤
⎥⎦ , B =

�
B1 · · · BL

	
, (1)

so that AB =

⎡
⎢⎣

A1B1 · · · A1BL

...
. . .

...
AKB1 · · · AKBL

⎤
⎥⎦ , (2)

making sure that all products AkB� are well-defined and of the
same size. Clearly, computing the product AB is equivalent to
computing all subproducts AkB�. One then constructs a poly-
nomial h(x) whose coefficients encode the submatrices AkB�,
and has N servers compute evaluations h(a1), . . . , h(aN ). The
polynomial h is constructed so that every T -subset of evalua-
tions reveals no information about A or B, but so that the user
can reconstruct all of AB given all N evaluations. This follows
the general mantra of evaluation codes and, in particular,
polynomial codes as originally introduced in [8] and [9].

One can view the parameters K and L as controlling the
complexity of the matrix multiplication operations the servers
must perform. Imagine a scenario in which one may hire
as many servers N as one wants to assist in the SDMM
computation, but the computational capacity of each server
is limited. In this scenario, one may have fixed values of K
and L, and then maximizing the rate R becomes a question
of minimizing N . This is the general perspective we adopt in
the SDMM problem.

A. Related Work

Let A and B be partitioned as in (1), and consider the
problem of SDMM with N servers and T -security. In [1],
a distributed matrix multiplication scheme is presented for the
case K = L which achieves a download rate of

R1 =
K2

(K + T )2
, (3)

or equivalently,

R1 =


�√
N − T

�
2


�√
N − T

�
+ T


2 . (4)

In [2], this is improved to

R2 =
KL

(K + T )(L + 1) − 1
, (5)
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where the polynomial code uses N = (K + T )(L + 1) − 1
servers. Given some fixed N and T , the authors of [2] then
find a near-optimal solution to the problem of finding K and L
such that (K+T )(L+1)−1 ≤ N and that the rate R2 as above
is maximized. In [5], the authors study the case of T = 1 and
obtain a download rate of R = KL/(KL + K + L), which
is the rate of [2] in this case. As far as the present authors
are aware, [1], [2], [5] are the only works currently in the
literature which study SDMM from the information-theoretic
perspective.

We distinguish the SDMM problem from the case where
only one of the matrices must be kept secure. In this case,
one can use methods like Shamir’s secret sharing [3] or
Staircase codes [4], if one is also interested in straggler
mitigation.

Polynomial codes were originally introduced in [8] in a
slightly different setting, namely to mitigate stragglers in
distributed matrix multiplication. This work was followed up
by [9] which studied fundamental limits of this problem,
introduced a generalization of polynomial codes known as
entangled polynomial codes, and applied similar ideas to other
problems in distributed computing. In [10], the authors develop
MatDot and PolyDot codes for distributed matrix multiplica-
tion with stragglers, and show that while the communication
cost is higher than that of the polynomial codes of [8],
the recovery threshold, defined to be the minimum number
of workers which need to respond to guarantee successful
decoding, is much smaller than that of [8]. The MatDot
codes of [10] were then applied to the problem of nearest
neighbor estimation in [11]. More fundamental questions
about the trade-off in computation cost and communication
cost in distributed computing were previously addressed in
[12]. However, the polynomial codes in these aforementioned
works are not designed to ensure security, making them not
applicable to settings where there are privacy concerns related
to the data being used. This type of setting could range from
training neural networks on personal devices to computations
on medical data, where legislation requires that certain privacy
conditions are met.

Another line of work is Lagrange Coded Computing, a poly-
nomial coding strategy introduced in [6] to mitigate stragglers
and adversaries in distributed polynomial coded computation.
The results in [6] focus on minimizing the number of required
servers for the computation subject to privacy, robustness, and
polynomial degree constraints. However, applying the ideas
of [6] to the current scenario yields only one-sided privacy,
wherein either A or B is kept private, but not both. More
related to the current work is that of Private Polynomial Com-
putation [7], which does provide two-sided privacy, but focuses
on generic strategies which work for all polynomials of a
given degree, rather than polynomial coding strategies tailored
for the problem of matrix multiplication. Lastly, it seems that
concerns related to data partitioning and block length make
the results of the present paper (and generally results on
using polynomnial codes for SDMM) incomparable with those
of [6] or [7].

TABLE I

THE DOWNLOAD RATE OF GASP CODES

B. Main Contribution

The main contributions of this work are as follows.

• In Section II we introduce our polynomial code GASP
via an explicit example, in order to demonstrate all of the
subtleties of the scheme construction. In Section III we
formalize the notion of a polynomial code and introduce
basic definitions.

• In Section IV we introduce the key notion of this paper,
the degree table of a polynomial code. We prove, in The-
orem 1, that to every degree table corresponds a secure
distributed matrix multiplication scheme.

• In Section V, we present a secure distributed matrix mul-
tiplication scheme, GASPbig. We show that GASPbig out-
performs, for almost all parameters, all previously known
schemes in the literature, in terms of the download rate.

• In Section VI, we present a secure distributed matrix
multiplication scheme, GASPsmall. We show that
GASPsmall outperforms GASPbig when T < min{K, L}.

• In Section VII, we present a secure distributed
matrix multiplication scheme, GASP, by combining
both GASPsmall and GASPbig. GASP outperforms all
previously known schemes, for almost all parameters,
in terms of the download rate.
The rate of GASP, for L ≤ K , is given in Table I. For
K < L, the rate is given by interchanging K and L.

We plot in Fig. 1 the rates obtained by GASP against those
obtained by the polynomial code SDMM strategies of [1],
[2]. Before launching into the construction of GASP, let us
offer some intuitive explanation as to the large improvement
in rate offered by GASP over [1], [2]. The polynomial codes
of [1], [2], as well as those of the current work, all have the
user decode the necessary blocks of AB by interpolating a
polynomial h(x), and obtaining the AkB� as coefficients of
this polynomial. The rate of all three strategies is completely
determined by how many evaluations h(x) requires to be
interpolated completely, as this is the number of servers
employed by the user. The strategies of [1], [2] force every
coefficient of h(x) to be potentially non-zero, and therefore
interpolating h(x) requires deg(h(x)) + 1 evaluations. In
contrast, GASP codes purposefully rig up h(x) so that it has
as many zero coefficients as possible, and that the user knows
where these zero coefficients are located. This allows the user
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Fig. 1. Comparison of the Polynomial Code GASP with that of [1] and [2]. We plot the rate of the schemes for K = 20 and L = 20 on the left, and
K = 10 and L = 20 on the right.

to interpolate h(x) with substantially fewer than the expected
number deg(h(x)) + 1 of evaluations. While the polynomials
h(x) from the current work and those of [1], [2] have different
degrees for the same parameters K , L, and T , this extra
flexibility still allows us to generally use substantially fewer
servers than the polynomial codes of [1], [2].

II. MOTIVATING EXAMPLE: K = L = 3 AND T = 2
We begin our scheme description with the following exam-

ple, which we present in as much detail as possible to
showcase the essential ingredients of the scheme. In this
example a user wishes to multiply two matrices A and B
over a finite field Fq , which are selected independently and
uniformly at random from their respective ambient spaces. The
user partitions the matrices as:

A =

⎡
⎣A1

A2

A3

⎤
⎦ , B =

�
B1 B2 B3

	
so that all products AkB� are well-defined and of the same
size. The product AB is given by

AB =

⎡
⎣A1B1 A1B2 A1B3

A2B1 A2B2 A2B3

A3B1 A3B2 A3B3

⎤
⎦

We construct a scheme which computes each term AkB�, and
therefore all of AB, via polynomial interpolation. The scheme
is private against any T = 2 servers colluding to deduce the
identities of A and B, and uses a total of N = 18 servers.

Let R1 and R2 be two matrices picked independently and
uniformly at random with entries in Fq, both of size equal to
the Ak. Similarly, pick S1 and S2 independently and uniformly
at random of size equal to that of the B�. Define polynomials

f(x) = A1x
α1 + A2x

α2 + A3x
α3 + R1x

α4 + R2x
α5

g(x) = B1x
β1 + B2x

β2 + B3x
β3 + S1x

β4 + S2x
β5

where the αk and β� are natural numbers that will be deter-
mined shortly.

As in [1], we will recover the products AkB� by interpo-
lating the product h(x) = f(x)g(x). Specifically, for some
evaluation points an ∈ Fq, we will send f(an) and g(an)
to server n = 1, . . . , N , who then responds with h(an) =
f(an)g(an). These evaluations will suffice to interpolate all of
h(x). In particular, we will be able to retrieve the coefficients
of h(x), which in turn will allow us to decode all the AkB�.

The product h(x) = f(x)g(x) is given by

h(x) =
�

1≤k,�≤3

AkB�x
αk+β� +

�
1≤k≤3
4≤�≤5

AkS�x
αk+β�+

�
4≤k≤5
1≤�≤3

B�Rkxαk+β� +
�

4≤k,�≤5

RkS�x
αk+β�

We wish to assign the exponents αk and β� to guarantee decod-
ability. Consider the following condition on the exponents:

αk + β� �= αk′ + β�′ ,

for all (k, �) ∈ [3] × [3] and all (k′, �′) ∈ [5] × [5] such that
(k, �) �= (k′, �′). That is, all of the exponents corresponding
to the terms we wish to decode must be distinct from all
the other exponents appearing in h(x). This guarantees that
each product AkB� appears as the unique coefficient of a
unique power of x. The immediate goal is to minimize the
number of distinct powers of x appearing in h(x), subject
to the above condition. This will allow us to minimize the
number of servers used by the scheme, thereby maximizing
the rate.

The problem of assigning the αk and β� can alternately be
phrased as the following combinatorial problem. Consider the
following addition table:

β1 β2 β3 β4 β5

α1 α1 + β1 α1 + β2 α1 + β3 α1 + β4 α1 + β5

α2 α2 + β1 α2 + β2 α2 + β3 α2 + β4 α2 + β5

α3 α3 + β1 α3 + β2 α3 + β3 α3 + β4 α3 + β5

α4 α4 + β1 α4 + β2 α4 + β3 α4 + β4 α4 + β5

α5 α5 + β1 α5 + β2 α5 + β3 α5 + β4 α5 + β5
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We call this table the degree table since it encodes the degrees
that appear in h(x) = f(x)g(x). With this in mind, we wish
to pick αk, β� ∈ N such that every term in the upper-left
3 × 3 block is distinct from every other number in the table.
Outside this block, we wish to minimize the number of distinct
integers that appear, in order to minimize the number of non-
zero coefficients of h(x) and therefore the number of required
evaluation points.

Consider the assignment

α1 = 0, α2 = 1, α3 = 2, α4 = 9, α5 = 12

and
β1 = 0, β2 = 3, β3 = 6, β4 = 9, β5 = 10,

for which the degree table becomes

β1 = 0 β2 = 3 β3 = 6 β4 = 9 β5 = 10

α1 = 0 0 3 6 9 10
α2 = 1 1 4 7 10 11
α3 = 2 2 5 8 11 12

α4 = 9 9 12 15 18 19
α5 = 12 12 15 18 21 22

which satisfies our decodability condition. Concretely,
the polynomial h(x) is now of the form

h(x) = A1B1+ · · ·+A3B3 x8+C9x
9+C10x

10+C11x
11+

+C12x
12 +C15x

15 +C18x
18 +C19x

19 +C21x
21 +C22x

22

which has N = 18 potentially non-zero coefficients. Here each
Cj is a sum of products of matrices where each summand has
either Rk or S� as a factor, and thus their precise nature is
not important for decoding. We now show that over a suitable
field Fq, we can find N = 18 evaluation points an which
suffice to interpolate h(x), even though deg(h(x)) = 22. This
difference is subtle but crucial: the user knows exactly which
coefficients of h(x) are zero, and can thus interpolate the entire
polynomial with fewer than the deg(h(x)) + 1 evaluations
one would normally need. This is in stark contrast with the
strategies of [1], [2], where f(x) and g(x) are constructed so
that every coefficient of h(x) is non-zero (though for the same
parameters K , L, and T , the polynomials h(x) from [1], [2]
are of a different degree than the h(x) we obtain).

Let J be the set of exponents which occur in the above
expression for h(x), that is,

J = {0, . . . , 8, 9, 10, 11, 12, 15, 18, 19, 21, 22}

so that |J | = 18. We wish to find an evaluation vector
a = (a1, . . . , aN ) ∈ F

N
q such that the 18 × 18 generalized

Vandermonde matrix

GV (a,J ) =
�
aj

n

	
, 1 ≤ n ≤ 18, j ∈ J

is invertible. One can easily check that for q = 29, the assign-
ment an = n (mod 29) for n = 1, . . . , 18 results in
det(GV (a,J )) = 20 �= 0 (mod 29). Thus the coefficients of
h(x), in particular the AkB�, are uniquely decodable in the
current scheme.

It is perhaps not obvious that the scheme we have described
satisfies the 2-privacy condition. Let us show that this is indeed

the case. As in Example 1 in [1], the 2-privacy condition will
be satisfied provided that the matrices

Pn,m =
�
a9

n a12
n

a9
m a12

m

�
, Qn,m =

�
a9

n a10
n

a9
m a10

m

�
are invertible for any pair 1 ≤ n �= m ≤ 18. We compute

det(Qn,m) = a9
na9

m(am − an)

and
det(Pn,m) = a9

na9
m(a3

m − a3
n).

Thus, provided that a3
n �= a3

m for all n �= m, and none of
the an are zero, these matrices will all be invertible. However,
we have gcd(3, q−1) = 1, thus the map x �→ x3 is a bijection
from F29 to itself. Thus an �= am implies that a3

n �= a3
m for

all n �= m, and we see that the determinants of the above
matrices are all non-zero and hence the 2-privacy condition is
satisfied.

For K = L = 3 and T = 2, let R1 denote the download
rate of [2] and R2 that of [1]. We have

R1 =
K2

(K + T )(K + 1) − 1
=

9
19

and

R2 =
K2

(K + T )2
=

9
25

whereas the scheme we have presented above improves on
these constructions to achieve a rate of

R =
K2

K2 + 2K + T 2 + T − 3
=

9
18

=
1
2
.

While this improvement in this example is marginal, we will
see later that for large parameters we achieve significant gains
over the polynomial codes of [1], [2].

III. POLYNOMIAL CODES

Let A and B be matrices over a finite field Fq, selected
by a user independently and uniformly at random from the
set of all matrices of their respective sizes, and partitioned
as in equation (1) so that all products AkB� are well-defined
and of the same size. Then AB is the block matrix AB =
(AkB�)1≤k≤K,1≤�≤L. A polynomial code is a tool for com-
puting the product AB in a distributed manner, by computing
each block AkB�. Formally, we define a polynomial code as
follows.

Definition 1: The polynomial code PC(K, L, T, N, α, β)
consists of the following data:
(i) positive integers K , L, T , and N ,

(ii) α = (α1, . . . , αK+T ) ∈ N
K+T , and

(iii) β = (β1, . . . , βL+T ) ∈ N
L+T .

A polynomial code PC(K, L, T, N, α, β) is used to securely
compute the product AB as follows. A user chooses T
matrices Rt over Fq of the same size as the Ak independently
and uniformly at random, and T matrices St of the same size
as the B� independently and uniformly at random. They define
polynomials f(x) and g(x) by

f(x) =
K�

k=1

Akxαk +
T�

t=1

Rtx
αK+t
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and

g(x) =
L�

�=1

B�x
β� +

T�
t=1

Stx
βL+t

and let
h(x) = f(x)g(x). (6)

Given N servers, a user chooses evaluation points
a1, . . . , aN ∈ Fqr in some finite extension Fqr of Fq. They
then send f(an) and g(an) to server n = 1, . . . , N , who com-
putes the product f(an)g(an) = h(an) and transmits it back
to the user. The user then interpolates the polynomial h(x)
given all of the evaluations h(an), and attempts to recover
all products AkB� from the coefficients of h(x). We omit the
evaluation vector a from the notation PC(K, L, T, N, α, β)
because as we will shortly show, it does not really affect any
important analysis of the polynomial code.

Definition 2: A polynomial code PC(K, L, T, N, α, β) is
decodable and T -secure if there exists some evaluation vector
a = (a1, . . . , aN ) ∈ F

N
qr for some r > 0 such that for any A

and B as above, the following two conditions hold.
(i) (Decodability) All products AkB� for k = 1, . . . , K

and � = 1, . . . , L are completely determined by the
evaluations h(an) for n = 1, . . . , N .

(ii) (T -security) For any T -tuple {n1, . . . , nT } ⊆ [N ],
we have

I(f(an1), g(an1), . . . , f(anT ), g(anT ); A, B) = 0.

where I(·; ·) denotes mutual information between two
random variables.

Definition 3: Suppose that the polynomial code
PC(K, L, T, N, α, β) is decodable and T -secure. The
download rate, or simply the rate, of this polynomial code is
defined to be

R =
KL

N
.

Given parameters K , L, and T , the goal of polynomial cod-
ing is to construct a decodable and T -secure polynomial code
PC(K, L, T, α, β) with download rate as large as possible.
This is equivalent to minimizing the number of servers N ,
or equivalently, the number of evaluation points needed by
the code.

IV. DEGREE TABLE

In this section we relate the construction of polynomial
codes for SDMM with a certain combinatorial problem. This
connection will guide our constructions and aid us in proving
that our polynomial codes are decodable and T -secure.

Definition 4: Let α ∈ N
K+T and β ∈ N

L+T . The outer
sum α ⊕ β ∈ N

(K+T )×(L+T ) of α and β is defined to be the
matrix

α ⊕ β =

⎡
⎢⎣

α1 + β1 · · · α1 + βL+T

...
. . .

...
αK+T + β1 · · · αK+T + βL+T

⎤
⎥⎦ .

Definition 5: Let α ∈ N
K+T and β ∈ N

L+T . We say that
the outer sum α⊕β is decodable and T -secure if the following
two conditions hold:

(i) (Decodability) (α ⊕ β)k,� �= (α ⊕ β)k′,�′ for all (k, �) ∈
[K] × [L] and all (k′, �′) ∈ [K + T ] × [L + T ].

(ii) (T -security) αK+t �= αK+t′ and βL+t �= βL+t′ for every
t �= t′ ∈ [T ].

Constructing α and β so that α ⊕ β is decodable and
T -secure can be realized as the following combinatorial prob-
lem, displayed in Table II. The condition of decodability from
Definition 5 simply states that each αk + β� in the red block
must be distinct from every other entry in α⊕β. The condition
of T -security states that all αK+t in the green block must
be pairwise distinct, and all βL+t in the blue block must be
pairwise distinct. We refer to this table as the degree table.

Definition 6: Let A be a matrix with entries in N. We define
the terms of A to be the set

t(A) = {n ∈ N : ∃(i, j), Aij = n}.

The next lemma and theorem allow us to reduce the con-
struction of Polynomial Codes for SDMM to the combinatorial
problem of constructing α and β such that the degree table,
α⊕ β, is decodable and T -secure. The proof of the lemma is
straightforward and thus omitted.

Lemma 1: Consider the polynomial code
PC(K, L, T, N, α, β), with associated polynomials

f(x) =
K�

k=1

Akxαk and g(x) =
L�

�=1

B�x
β� .

Then we can express the product h(x) of f(x) and g(x) as

h(x) = f(x)g(x) =
�
j∈J

Cjx
j (7)

for some matrices Cj , where J = t(α ⊕ β).
Thus, the terms in the outer sum α ⊕ β correspond to the

terms in the polynomial h(x) = f(x)g(x). Because of this,
we refer to the table representation of α ⊕ β in Table II as
the degree table of the polynomial code PC(K, L, T, N, α, β).
The following theorem allows us to reduce the construction of
polynomial codes to the construction of degree tables which
are decodable and T -secure.

Theorem 1: Let PC(K, L, T, N, α, β) be a polynomial
code, where N = | t(α ⊕ β)|. Suppose that the degree table,
α ⊕ β, satisfies the decodability and T -security conditions of
Definition 5. Then the polynomial code PC(K, L, T, N, α, β)
is decodable and T -secure.

Proof: The proof is an application of the Schwarz-Zippel
Lemma. One finds sufficient conditions for decodability and
T -security that reduce to the simultaneous non-vanishing of
2
�
N
T

�
+ 1 determinants. One can find a point a ∈ F

N
qr for

some r > 0 at which none of these polynomials is zero. We
relegate a detailed proof to the Appendix.

Thanks to Theorem 1, constructing a polynomial code
scheme for secure distributed matrix multiplication can be
done by constructing α and β such that the degree table, α⊕β,
is decodable and T -secure. For this reason, the visualization
in Table II is extremely useful, both as a guide for constructing
polynomial codes for SDMM and as a method for calculating
the corresponding download rate. In this context, maximizing
the download rate is equivalent to minimizing | t(α ⊕ β)|,
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TABLE II

THE COMBINATORIAL PROBLEM OF CONSTRUCTING α AND β SO THAT α ⊕ β IS DECODABLE AND T -SECURE

TABLE III

THE DEGREE TABLE, α ⊕ β , FOR THE VECTORS α AND β AS PER (8)

the number of distinct integers in the degree table shown
in Table II, subject to decodability and T -security.

Remark 1: Suppose that the degree table, α⊕ β, is decod-
able and T -secure, and let K be an algebraic closure of
Fq. One can show that the set of all a = (a1, . . . , aN )
such that PC(K, L, T, N, α, β) is decodable and T -secure is a
Zariski open subset of K

N . In practice, this means that given
K, L, T, α, β, if we choose a ∈ F

N
qr uniformly at random, then

the probability that the polynomial code PC(K, L, T, N, α, β)
is decodable and T -secure goes to 1 as r → ∞. Thus, finding
such evaluation vectors is not a difficult task.

V. POLYNOMIAL CODE FOR BIG T

In this section, we construct a polynomial code, GASPbig,
which has better rate than all previous schemes in the litera-
ture. The scheme construction chooses α and β to attempt to
minimize the number of distinct integers in the degree table,
α⊕β. The scheme construction proceeds by choosing αk and
β� to belong to certain arithmetic progressions, and minimizes
the number of terms in the lower-right T × T block of the
degree table, α ⊕ β, shown in Table III.

Definition 7: Given K , L, and T , define the polynomial
code GASPbig as follows. Let α and β be given by

αk =
�

k − 1 if 1 ≤ k ≤ K
KL + t − 1 if k = K + t, 1 ≤ t ≤ T

, (8)

β� =
�

K(� − 1) if 1 ≤ � ≤ L
KL + t − 1 if � = L + t, 1 ≤ t ≤ T

(9)

if L ≤ K and

α� =
�

K(� − 1) if 1 ≤ � ≤ L
KL + t − 1 if � = L + t, 1 ≤ t ≤ T

, (10)

βk =
�

k − 1 if 1 ≤ k ≤ K
KL + t − 1 if k = K + t, 1 ≤ t ≤ T

(11)

if K < L.
Lastly, define N = | t(α⊕ β)|. Then GASPbig is defined to

be the polynomial code PC(K, L, T, N, α, β).

A. Decodability and T -Security

Theorem 2: The polynomial code GASPbig is decodable
and T -secure.

Proof: We show that α ⊕ β is decodable and T -secure,
and the result then follows from Theorem 1. If L ≤ K , then
α and β are as in (8). Suppose that k ∈ [K] and � ∈ [L],
so that αk +β� = k−1+K(�−1). As k and � range over all
of [K] and [L], respectively, each such number gives a unique
integer in the interval [0, KL− 1]. As every other term in the
outer sum α ⊕ β is greater than or equal to KL, we see that
the decodability condition of Definition 5 is satisfied. As for
T -security, it is clear that all αK+t for t ∈ [T ] are distinct,
and all βL+t for t ∈ [T ] are distinct. Therefore the T -security
condition of Definition 5 is satisfied. If K < L then the same
argument holds by interchanging α and β.

B. Download Rate

To compute the number of terms in the degree table of
GASPbig, we divide the table into four regions.

• Upper Left: UL = {(α ⊕ β)ij : 1 ≤ i ≤ K, 1 ≤ j ≤ L}.
• Upper Right: UR = {(α ⊕ β)ij : 1 ≤ i ≤ K, L + 1 ≤

j ≤ L + T }.
• Lower Left: LL = {(α⊕ β)ij : K +1 ≤ i ≤ K +T, 1 ≤

j ≤ L}.
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• Lower Right: LR = {(α ⊕ β)ij : K + 1 ≤ i ≤ K +
T, L + 1 ≤ j ≤ L + T }.

Then, we compute the number of terms in each of these
regions and use the inclusion-exclusion principle to obtain the
number of terms in the whole table.

Theorem 3: Let N = | t(α ⊕ β)|, where α and β are as in
Definition 7. Then N is given by

N =
�

(K + T )(L + 1) − 1 if T < K
2KL + 2T − 1 if T ≥ K

(12)

if L ≤ K , and

N =
�

(L + T )(K + 1) − 1 if T < L
2KL + 2T − 1 if T ≥ L

(13)

if K < L.
Consequently, the polynomial code GASPbig(K, L, T ) has

rate R = KL/N , where N is as in (12) or (13).
Proof: The degree table, α ⊕ β, is shown in Table III.

We first prove for the case where L ≤ K . We denote by
[A : B] the set of all integers in the interval [A, B]. We can
describe the terms of the four blocks of α ⊕ β as follows:

t(UL) = [0 : KL − 1]
t(UR) = [KL : KL + K + T − 2]

t(LL) =
L−1�
�=0

[KL + K(� − 1) : KL + K(� − 1) + T − 1]

t(LR) = [2KL : 2KL + 2T − 2] (14)

The sizes of these sets is given by

| t(UL)| = KL

| t(UR)| = K + T − 1

| t(LL)| =
�

LT if T ≤ K
KL − K + T if T ≥ K

| t(LR)| = 2T − 1 (15)

Since the largest term in UL is smaller than any term on the
other blocks, t(UL) is disjoint from the terms of the other
blocks. One then observes that the pairwise intersections of
the sets of terms of the blocks are given by

t(UR) ∩ t(LL) =
�

[K : K + T − 1] if L = 1
I1 if L ≥ 2

t(LL) ∩ t(LR) = [2KL : 2KL − K + T − 1]
t(UR) ∩ t(LR) = [2KL : KL + K + T − 2], (16)

where I1 = [KL : KL+T −1]∪[KL+K : KL+K+T−2].
The sizes of these pairwise intersections are now calculated
to be

| t(UR) ∩ t(LL)| =

⎧⎨
⎩

T if L = 1
2T − 1 if L ≥ 2, T ≤ K
K + T − 1 if L ≥ 2, T ≥ K

| t(LL) ∩ t(LR)| =
�

0 T ≤ K
T − K T ≥ K

| t(UR) ∩ t(LR)| =
�

0 T ≤ K(L − 1) + 1
I2 T ≥ K(L − 1) + 1 ,

where I2 = T −(K(L−1)+1). Finally, the triple intersection
is given by

t(UR) ∩ t(LL) ∩ t(LR) =
[2KL : min{2KL− K + T − 1, KL + K + T − 2}]

We have 2KL−K +T −1 ≤ KL+K +T −2 if and only
if L = 1. One now computes that

|∩ | =

⎧⎪⎪⎨
⎪⎪⎩

0 if L = 1, T ≤ K
T − K if L = 1, T ≥ K
0 if L ≥ 2, T ≤ K(L − 1) + 1
T−(K(L−1)+1) if L ≥ 2, T ≥ K(L − 1) + 1

where ∩ = t(UR) ∩ t(LL) ∩ t(LR).
We can now compute N = | t(α ⊕ β)| by using the

inclusion-exclusion principle, as

N = | t(α ⊕ β)| = | t(UL)| + | t(UR)| + | t(LL)| + | t(LR)|
− | t(UR) ∩ t(LL)| − | t(LL) ∩ t(LR)|
− | t(UR) ∩ t(LR)|
+ | t(UR) ∩ t(LR) ∩ t(LL)|.

For K < L, the proof is analogous by interchanging α
and β.

Remark 2: If we take K = L = 1, then the polynomial
code GASPbig(1, 1, T ) uses N = 2T +1 servers. Thus for any
N we can construct a polynomial code for any T ≤

�
N−1

2

�
,

which is the same range of allowable T as in [2].

C. Performance

We now compare GASPbig with the polynomial codes
of [1] and [2]. Indeed, we show that it outperforms them
for most parameters. To do this it suffices, because of
(5), to show that N , as defined in Theorem 3, is smaller
than (K + T )(L + 1) − 1.

Theorem 4: Let N be defined as in Theorem 3. Then, N ≤
(K + T )(L + 1) − 1.

Proof: Suppose L ≤ K . Then N is as in (12). We will
analyze each case.

• If T < K: then (K + T )(L + 1) − 1 = N .
• If T ≥ K: then 0 ≤ (L − 1)(T − K) = ((K + T )(L +

1) − 1) − (2KL + 2T − 1).
Thus, (K + T )(L + 1) − 1 ≥ 2KL + 2T − 1 = N .

The result for K < L follows by switching the roles of K
and L in the above calculation.

VI. POLYNOMIAL CODE FOR SMALL T

In this section, we construct a polynomial code GASPsmall

which outperforms GASPbig when T < min{K, L}. This is
done by choosing the αk and β� to lie in certain arithmetic
progressions so that the columns of the upper-right block of
α ⊕ β, shown in Table IV, overlap as much as possible, and
similarly for the columns of the lower-left block. For T small
relative to K and L, these two blocks are much bigger than the
lower-right block, which the scheme construction essentially
ignores.
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Fig. 2. Comparison of the Polynomial Code GASPbig with that of [2]. We plot the rate of both schemes for K = L = 20 on the left, and K = 10, L = 20
on the right.

TABLE IV

THE DEGREE TABLE, α ⊕ β , OF THE VECTORS α AND β AS PER DEFINITION 8

Definition 8: Given K , L, and T , define the polynomial
code GASPsmall as follows. Let α and β be given by

αk =
�

k − 1 if 1 ≤ k ≤ K
KL + K(t − 1) if k = K + t, 1 ≤ t ≤ T

, (17)

β� =
�

K(� − 1) if 1 ≤ � ≤ L
KL + t − 1 if � = L + t, 1 ≤ t ≤ T.

(18)

if K ≤ L, and

α� =
�

K(� − 1) if 1 ≤ � ≤ L
KL + t − 1 if � = L + t, 1 ≤ t ≤ T.

, (19)

βk =
�

k − 1 if 1 ≤ k ≤ K
KL + K(t − 1) if k = K + t, 1 ≤ t ≤ T

(20)

if L < K .
Lastly, define N = | t(α ⊕ β)|. Then GASPsmall is defined

to be the polynomial code PC(K, L, T, N, α, β).
The example in Section II is exactly the polynomial code
GASPsmall when K = L = 3 and T = 2. In what follows we
show that GASPsmall is decodable and T -secure, and compute
its download rate. Throughout this section, α and β will be as
in Definition 8.

A. Decodability and T -Security

Theorem 5: The polynomial code GASPsmall(K, L, T ) is
decodable and T -secure.

Proof: Analogous to Theorem 2.

B. Download Rate

We now find the download rate of GASPsmall by computing
N = | t(α ⊕ β)|.

Theorem 6: Let N = | t(α ⊕ β)|, where α and β are as in
Definition 8. Then N is given by

N =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2K + T 2 if L = 1, T < K
KT + K + T if L = 1, T ≥ K
KL + K + L if L ≥ 2, 1 = T < K
I1 if L ≥ 2, 2 ≤ T < K
I2 if L ≥ 2, K ≤ T ≤ K(L − 1) + 1
I3 if L ≥ 2, K(L − 1) + 1 ≤ T

(21)
if K ≤ L, and

N =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2L + T 2 if K = 1, T < L
LT + L + T if K = 1, T ≥ L
KL + K + L if K ≥ 2, 1 = T < L
I1 if K ≥ 2, 2 ≤ T < L
I4 if K ≥ 2, L ≤ T ≤ L(K − 1) + 1
I5 if K ≥ 2, L(K − 1) + 1 ≤ T

(22)
if L < K , where

I1 = KL + K + L + T 2 + T − 3,

I2 = KL + KT + L + 2T − 3 −
�

T − 2
K

�
,

I3 = 2KL + KT − K + T,
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Fig. 3. Comparison between GASPsmall and GASPbig. We plot the rate of both schemes for K = 20 and L = 20 on the left, and K = 20 and L = 10 on
the right. As shown, GASPsmall outperforms GASPbig for T < max{K, L}.

I4 = KL + LT + K + 2T − 3 −
�

T − 2
L

�
,

I5 = 2KL + LT − L + T.

Consequently, the polynomial code GASPsmall has rate
R = KL/N , where N is as in (21) or (22).

Proof: The proof is in Appendix B.
Remark 3: The above construction for small T is from

where the name GASP (Gap Additive Secure Polynomial) is
derived. The construction allows for gaps in the degrees of
monomials appearing as summands of h(x), as was observed
in the example in Section II. Allowing for these gaps gives
one more flexibility in how the vectors α and β are chosen to
attempt to minimize N = | t(α⊕β)|. Note that for very large
T , the inequality T ≥ K(L− 1)+1 has forced the outer sum
α⊕β to contain every integer from 0 to 2KL+(K+1)(T−1),
with no gaps.

C. Performance

We now show that GASPsmall outperforms GASPbig when
T < min{K, L}.

Theorem 7: Let T < min{K, L}. Then Nsmall ≤ Nbig.
Proof: We will analyze each case.

• If T = 1: then Nbig = KL + K + L = Nsmall.
• If T ≥ 2: then 0 ≤ (T + 1)(T − 1) − T 2 + 2 ≤ L(T −

1) − T 2 + 2 = Nbig − Nsmall.
Thus, Nbig ≥ Nsmall.

VII. COMBINING BOTH SCHEMES

In this section, we construct a polynomial, GASP, by com-
bining both GASPsmall and GASPbig. By construction, GASP
has a better rate than all previous schemes.

Definition 9: Given K , L, and T , we define the polynomial
code GASP to be

GASP =
�

GASPsmall if T < min{K, L}
GASPbig if T ≥ min{K, L}. (23)

Theorem 8: For L ≤ K , the polynomial code GASP has
rate,

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KL

KL + K + L
if 1 = T < L ≤ K

KL

KL + K + L + T 2 + T − 3
if 2 ≤ T < L ≤ K

KL

(K + T )(L + 1) − 1
if L ≤ T < K

KL

2KL + 2T − 1
if L ≤ K ≤ T

For K < L, the rate is given by interchanging K and L.
Proof: Follows immediately from Theorems 3, 6, and 7.

A. Fixed Computation Load

We now compare the rate of GASP with those of [1] and
[2] when K and L are fixed. Throughout this section, we let

R1 =
K2

(K + T )2
and R2 =

KL

(K + T )(L + 1) − 1
. (24)

Here R1 and R2 are the rates of the polynomial codes in [1]
and [2], respectively.

B. Fixed Number of Workers

To deepen the comparison with [2], we plot the download
rates R and R2 as functions of the total number N of servers
and the security level T . For GASP and the polynomial code
of [2], given some N and T , we must calculate a K and L
for which the expression for the required number of servers is
less than the given N , and which ideally maximizes the rate
function. In [2, Theorem 1], the authors propose the solution

L̂ = max

�
1,

�
−3

2
+

�
1
4

+
N

T

 !
, K̂ =

�
N + 1
L̂ + 1

− T

�

(25)
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Fig. 4. Comparison of the Polynomial Code GASP with that of [1] and [2]. We plot the rate of the schemes for K = 20 and L = 20 on the left, and
K = 10 and L = 20 on the right.

Fig. 5. The rate of GASP and of the the polynomial code of [2], as a
function of the level of security T , for N = 50 servers. The optimal rate of
GASP for a given N and T was computed by finding a solution to (26) by
brute force.

which, for a given N and T , is shown to satisfy (K̂ + T )
(L̂ + 1) − 1 ≤ N and nearly maximize the rate function R1.

For a given N and T , optimizing the rate of GASP presents
one with the following optimization problem:

max
K,L

Rmax =
KL

min{Nsmall, Nbig}
subject to min{Nsmall, Nbig} ≤ N (26)

Due to the complicated nature of the expressions for Nsmall

and Nbig, we will not attempt to solve this optimization
problem analytically. Instead, for the purposes of the present
comparison with [2], we simply solve (26) by brute force for
each specific value of N and T .

In Fig. 5 we plot the download rate of GASP versus the
download rate of the polynomial code of [2], for N = 50 and
N = 100 servers. The optimal values of K and L for GASP
were computed by solving (26) by brute force. The values of
K and L for the scheme of [2] were those of (25).

The apparent equality in rate of the two schemes outside
of the ‘small T ’ regime can be explained as follows. One
can show easily that when T > N/6 we have L̂ = 1, and
hence the rate from [2] is given by R2 = K̂

2K̂+2T−1
, where

K̂ =
�

N+1
2 − T

�
. Now the rate of GASP in this regime is

that of GASPbig, so R = KL
2KL+2T−1 . Optimizing the rate of

GASPbig for fixed N is now simply a matter of picking the
optimal value of KL. Whatever this optimal value happens to
be, it only depends on the product KL and not the individual
values of K and L. So when optimizing the rate of GASPbig

for fixed N and T , one is free to set L = 1 without loss of
generality. The rates of the GASPbig and the scheme of [2] are
then easily seen to agree.

APPENDIX

A. Proof of Theorem 1

We will require the following definition throughout the
proof of Theorem 1.

Definition 10: Let Fq be a finite field, let a =
(a1, . . . , aN ) ∈ F

N
q , and let J be a set of non-negative integers

of size |J | = N . We define the Generalized Vandermonde
Matrix GV (a,J ) ∈ F

N×N
q to be

GV (a,J ) =
�
aj

n

	
, 1 ≤ n ≤ N, j ∈ J .

Note that if J = {0, 1, . . . , N − 1} and the an are all chosen
distinct, then GV (a,J ) is the familiar N × N Vandermonde
matrix associated with the an, and is invertible if and only if
the an are distinct.

We begin proving Theorem 1 by stating the following useful
Lemma. For all practical purposes, this reduces checking
decodability and T -security to checking polynomial condi-
tions. We say a matrix has the MDS property if every maximal
minor has non-zero determinant. Equivalently, the matrix is the
generator matrix of an MDS code.

Lemma 2: Let PC(K, L, T, α, β) be a polynomial code,
such that α⊕β is decodable and T -secure. Suppose that there
is an evaluation vector a = (a1, . . . , aN ) ∈ F

N
qr such that the

following properties hold:
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(i) (Decodability) The Generalized Vandermonde Matrix
GV (a,J ) is invertible.

(ii) (T -privacy) The T × N matrices

P =
�
a

αK+t
n

	
and Q =

"
a

βL+t
n

#
,

where 1 ≤ t ≤ T and 1 ≤ n ≤ N , have the MDS
property.

Then PC(K, L, T, α, β) is decodable and T -secure.
Proof: Since the matrix GV (a,J ) is invertible, the poly-

nomial h(x) =
$

j∈J Cjx
j can be interpolated from the

evaluations h(an), for n = 1, . . . , N . Thus the user can
recover all of the coefficients of h(x). By the decodability
condition of the outer sum α ⊕ β, the user can then recover
all products AkB�.

The argument for T -privacy is familiar and follows the proof
of T -security in Equation (28) in the proof of Theorem 2 in
[1]. One shows that, given the above condition, any T -tuple of
matrices f(an1), . . . , f(anT ) is uniform random on the space
of all T -tuples of matrices of the appropriate size, and is
independent of A. The same argument works for B.

Let us now finish the proof of Theorem 1. Let X =
(X1, . . . , XN ) be a vector of variables and consider the
polynomial

D(X) = det(GV (X,J )). (27)

Additionally, if T = {n1, . . . , nT } ⊆ [N ] is any set of size
T , define

PT (X) = det
�
X

αK+t
nt

	
and QT (X) = det

"
X

βL+t
nt

#
.

(28)

By Lemma 2, it suffices to find an evaluation vector a ∈ F
N
qr

such that D(a) �= 0, PT (a) �= 0, and QT (a) �= 0 for all T ⊆
[N ] of size T . By the assumption that α⊕β is decodable and
T -secure, none of the polynomials D(X), PT (X), and QT (X)
are zero, and all have degree bounded by J :=

$
j∈J j.

Now consider a finite extension Fqr of Fq and a subset

G ⊆ Fqr of size G >


2
�
N
T

�
+ 1



J . Sample each entry an

of a uniformly at random from G. Let E be the union of
the events D(a) = 0, PT (a) = 0, and QT (a) = 0 for all
T ⊆ [N ] of size T . To finish the proof, it suffices to show
that Pr(E) < 1. By the union bound and the Schwarz-Zippel
Lemma, we have

Pr(E) ≤ Pr(D(a) = 0) +
�

T ⊆[N ]
|T |=T

Pr(PT (a) = 0)+

�
T ⊆[N ]
|T |=T

Pr(QT (a) = 0) ≤
%

2
%

N

T

&
+ 1

&
J

G
< 1.

This completes the proof of the Theorem. �

B. Proof of Theorem 6.

The degree table, α ⊕ β, is is shown in Table IV. We first
prove for the case where L ≤ K . As in section V-B, we let
UL, UR, LL, and LR be the upper-left, upper-right, lower-left,
and lower-right blocks, respectively, of α ⊕ β. We first count

the number in each block, and then study the intersections of
the blocks.

It will be convenient to adopt the following notation. For
integers A, B, and C, let [A : B | C] be the set of all multiples
of C in the interval [A, B]. If A = DC is a multiple of C,
we have

|[DC : B | C]| =
%�

B

C

�
− D + 1

&+

where x+ = max{x, 0}. If C = 1 then we write [A : B]
instead of [A : B | 1], so that [A : B] denotes all the integers
in the interval [A, B].

The sets t(UL), t(UR), t(LL), and t(LR) are given by

t(UL) = [0 : KL − 1]
t(UR) = [KL : KL + K + T − 2]
t(LL) = [KL : 2KL + K(T − 2) | K]

t(LR) =
T�

t=1

[2KL + K(t − 1) : 2KL + K(t − 1) + T − 1]

(29)

From these expressions, one can count the sizes of the above
sets to be

| t(UL)| = KL

| t(UR)| = K + T − 1
| t(LL)| = L + T − 1

| t(LR)| =
�

T 2 if T < K
KT − K + T if T ≥ K

(30)

To understand the last expression above, note that the intervals
in the union expression for t(LR) consist of all integers from
2KL to 2KL + (K + 1)(T − 1) exactly when T ≥ K .

As for intersections, clearly t(UL) intersects none of the sets
of terms from the other blocks. Thus it suffices to understand
the pairwise intersections among the other three blocks, and
the triple intersection of the other three blocks. Two of these
pairwise intersections and their sizes are easily understood:

| t(UR) ∩ t(LL)| = [KL : KL + K + T − 2 | K],

| t(UR) ∩ t(LL)| =
�

T − 2
K

�
+ 2,

| t(LL) ∩ t(LR)| = [2KL : 2KL + K(T − 2) | K],
| t(LL) ∩ t(LR)| = T − 1 (31)

Understanding the intersection t(UR) ∩ t(LR) is a bit more
subtle, and we break the problem into two cases. If T ≥ K ,
then t(LR) = [2KL : 2KL+(K+1)(T−1)]. Since t(UR) =
[KL : KL+K+T −2], we see that t(UR)∩t(LR) = [2KL :
KL + K + T − 2]. In the case T < K we have 2KL >
KL + K + T − 2 and thus the intersection is empty, unless
L = 1, in which case t(UR) ∩ t(LR) = [2K : 2K + T − 2].
It follows that

| t(UR)∩t(LR)|=

⎧⎨
⎩

T − 1 if T <K, L=1
0 if T <K, L≥2
(T−(K(L−1)+1))+ if T ≥ K

(32)
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It remains to count the size of the triple intersection. First
suppose that T < K , which we break into two subcases:
(i) L = 1 and (ii) L ≥ 2. If L = 1 and T = 1, then
the triple intersection is empty, but if T > 1 then all three
blocks intersect in the lone terms 2K . If L ≥ 2, then the
triple intersection is again empty by the above paragraph.
Now suppose that T ≥ K . In this case the intersection is
the set [2KL : KL + K + T − 2 | K], which has size��

T−2
K

�
− L + 2

�+
. We therefore have

|∩ | =

⎧⎪⎪⎨
⎪⎪⎩

0 if L = 1, 1 = T < K
1 if L = 1, 2 ≤ T < K
0 if L ≥ 2, T < K��

T−2
K

�
− L + 2

�+
if T ≥ K

(33)

where ∩ = t(UR) ∩ t(LR) ∩ t(LL).
We can now compute N = | t(α ⊕ β)| by using the

inclusion-exclusion principle, as

N = | t(α ⊕ β)| = | t(UL)| + | t(UR)| + | t(LL)| + | t(LR)|
− | t(UR) ∩ t(LL)| − | t(LL) ∩ t(LR)|
− | t(UR) ∩ t(LR)|
+ | t(UR) ∩ t(LR) ∩ t(LL)|.

The above computation is straightforward given that we have
already calculated the sizes of each of the individual sets. The
only subtlety in deriving the formula (21) for N arises in the
case that L ≥ 2 and K(L−1)+1 ≤ T . In this case, one uses
the fact that

T − K(L − 1) + 1 ≥ 0 ⇔
�

T − 2
K

�
− L + 2 ≥ 0.

From this equivalence and equations (32) and (33) one can
use inclusion-exclusion to compute the value of N .

For K < L, the proof is analogous by interchanging
α and β.

This completes the proof of the Theorem.

C. Note on the Communication Rate

The results in this paper were presented in terms of the
download rate, not accounting for the upload rate and, there-
fore, the total communication rate of the scheme. This was
done since the previous literature on this subject, [1], [2],
and [5], all used the download rate as their measure of
performance. We will now see that both the download rate
and the upload rate for polynomial codes both depend on the
number, N , of servers.

Let A ∈ F
r×s
q and B ∈ F

s×t
q . As in (1), partition them as

follows:

A =

⎡
⎢⎣

A1

...
AK

⎤
⎥⎦ , B =

�
B1 · · · BL

	
,

so that

AB =

⎡
⎢⎣

A1B1 · · · A1BL

...
. . .

...
AKB1 · · · AKBL

⎤
⎥⎦ .

Thus, each Ai ∈ F
r
K ×s
q and each Bi ∈ F

s× t
L

q . The random
matrices will also belong, respectively, to these spaces.

Using a polynomial code a user will send a linear combi-
nation of the A’s and R’s and another one of the B’s and S’s
to each server, requiring an upload of rs/K + st/L symbols
per server, for a total upload cost of N(rs/K+st/L) symbols.
Each server will then multiply the two matrices they received
and send the user a matrix of dimensions r/K×t/L, for a total
download cost of Nrt/KL. Thus, under our framework, min-
imizing the download, upload, or total communication costs
are all equivalent to minimizing the number of servers, N .

A more thorough analysis on the communication and com-
putational costs in SDMM can be found in [13].

Let us conclude by briefly discussing the difference in total
communication cost between GASP and the scheme of [2].
As we saw in Section VII-B, for fixed N and T satisfying
T > N/6 the download rates of these schemes are the same.
The scheme of [2] achieves this rate by setting L = 1, while
GASP achieves this rate by calculating the optimal value of
KL, and choosing any values of K and L that yield this
product. For fixed values of N , T , and KL, minimizing the
communication cost is equivalent to minimizing the upload
cost N(rs/K + st/L). This is accomplished by choosing
K and L to be as close to each other as possible, which
GASP allows for. In contrast, the scheme of [2] which sets
L = 1 ends up maximizing the upload cost subject to the
given conditions. For example, when N = 20 and T = 6,
the scheme of [2] sets K = 4 and L = 1, while GASP sets
K = L = 2. This results in a 20% decrease in upload cost
when r = s = t.
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