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Exploiting a simple, expressive logic based
on relations to describe designs and automate
their analysis.

| BY DANIEL JACKSON

Alloy:

A Language and
Tool for Exploring
Software Designs

ALLOY Is A language and a toolkit for exploring the kinds
of structures that arise in many software designs. This
article aims to give readers a flavor of Alloy in action, and
some examples of its applications to date, thus giving a
sense of how it can be used in software design work.

Software involves structures of many sorts:
architectures, database schemas, network topologies,
ontologies, and so on. When designing a software
system, you need to be able to express the structures
essential to the design and to check that they have the
properties you expect.

You can express a structure by sketching it on a
napkin. That’s a good start, but it’s limited. Informal
representations give inconsistent interpretations, and
they cannot be analyzed mechanically. So people have
turned to formal notations that define structure and
behavior precisely and objectively, and that can exploit
the power of computation.
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By using formality early in develop-
ment, you can minimize the costs of
ambiguity and get feedback on your
work by running analyses. The most
popular approach to advocate this is
agile development, in which the formal
representation is code in a traditional
programming language and the analy-
sis is conventional unit testing.

As alanguage for exploring designs,
however, code is imperfect. It’s verbose
and often indirect, and it does not al-
low partial descriptions in which some
details are left to be resolved later. And
testing, as a way to analyze designs,
leaves much to be desired. It’s notori-
ously incomplete and burdensome,
since you need to write test cases ex-
plicitly. And it’s very difficult to use
code to articulate design without get-
ting mired in low-level details (such as
the choice of data representations).

An alternative, which has been ex-
plored since the 1970s, is to use a de-
sign language built not on convention-
al machine instructions but on logic.
Partiality is free because rather than
listing each step of a computation, you
write a logical constraint saying what’s
true after, and that constraint can say
as little or as much as you please. To
analyze such a language, you use spe-
cialized algorithms such as model
checkers or satisfiability solvers (more
on these later). This usually requires
much less effort than testing, since you

key insights

m Using a simple logic of relations, Alloy
lets you model software designs that
involve complex, evolving structures.

m Alloy’s tool uses SAT technology to
simulate designs and find subtle flaws,
and has been used in a wide variety
of applications from networking and
security to critical systems.

m A key advantage of logical modeling is that
you can construct a design incrementally,
in an agile way, representing and
analyzing only an essential subset of
the behavioral contraints.

m Alloy is complementary to a class
of tools called model checkers, and
is a valuable addition to the software
designer’s toolkit.
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only need to express the property you
want to check rather than a large col-
lection of test cases. And the analysis is
much more complete than testing, be-
cause it effectively covers all (or almost
all) test cases that you could have writ-
ten by hand.

What Came Before: Theorem
Provers and Model Checkers

To understand Alloy, it helps to know
a bit about the context in which it was
developed and the tools that existed at
the time.

Theorem provers are mechanical aids
for constructing mathematical proofs.
To apply a theorem prover to a software
design problem, you formulate some
intended property of the design, and
then attempt to prove the theorem that
the property follows from the design.
Theorem provers tend to provide very
rich logics, so they can usually express
any property the designer might want,
at least about states and state transi-
tions—more dynamic properties can
require a temporal logic that theorem
provers don’t typically support directly.
Also, because they generate mathemat-
ical proofs, which can be checked by

tools that are smaller and simpler than
the tool that finds the proof, you can be
confident the analysis is sound.

On the down side, the combination
of an expressive logic and sound proof
means that finding proofs cannot gen-
erally be automated. Theorem provers
usually require considerable effort and
expertise from the user, often orders
of magnitude greater than the effort
of constructing a formal design in the
first place. Moreover, failure to find a
proof does not mean that a proof does
not exist, and theorem provers don’t
provide counterexamples that explain
concretely why a theorem is not valid.
So theorem provers are not so useful
when the intended property does not
hold—which unfortunately is the com-
mon case in design work.

Model checkers revolutionized de-
sign analysis by providing exactly the
features theorem provers lacked. They
offer push-button automation, requir-
ing the user to give only the design and
property to be checked. They allow
dynamic properties to be expressed
(through temporal logics), and gener-
ate counterexamples when properties
do not hold. Model checkers work by

exploring the space of possible states
of a system, and if that space is large,
they may require considerable compu-
tational resources (or may fail to termi-
nate). The so-called “state explosion”
problem arises because model check-
ers are often used to analyze designs
involving components that run in par-
allel, resulting in an overall state space
that grows exponentially with the num-
ber of components.

Alloy was inspired by the successes
and limitations of model checkers.
For designs involving parallelism and
simple state (comprising Boolean
variables, bounded integers, enumer-
ations and fixed-size arrays), model
checkers were ideal. They could eas-
ily find subtle synchronization bugs
that appeared only in rare scenarios
that involved long traces with mul-
tiple context switches, and therefore
eluded testing.

For hardware designs, model check-
ers were often a good match. But for
software designs they were less ideal.
Although some software design
problems involve this kind of synchro-
nization, often the complexity arises
from the structure of the state itself. Early
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model checkers (such as SMV?) had limit-
ed expressiveness in this regard, and did
not support rich structures such as trees,
lists, tables, and graphs.

Explicit state model checkers, such
as SPIN, and later Java Pathfinder,*”
allowed designs with rich state to be
modeled, but, despite providing sup-
port for temporal properties, gave little
help for expressing structural ones. To
express reachability (for example, that
two social media users are connected
by some path of friend edges), you
would typically need to code an explicit
search, which would have to be execut-
ed at every point at which the property
was needed. Also, explicit state model
checkers have limited support for par-
tiality (since the model checker would
have to conduct a costly search through
possible next states to find one satisfy-
ing the constraints).

Particularly difficult for all model
checkers are the kinds of designs that
involve a configuration of elements in a
graph or tree structure. Many network
protocols are designed to work irre-
spective of the initial configuration (or
of the configuration as it evolves), and
exposing a flaw often involves not only
finding a behavior that breaks a prop-
erty but also finding a configuration in
which to execute it.

Even the few model checkers that
can express rich structures are gener-
ally not up to this task. Enumerating
possible configurations is not feasi-
ble, because the number of configu-
rations grows super-exponentially: if
there are n nodes, there are 2" ways
to connect them.

Alloy’s Innovations

Alloy offered a new kind of design lan-
guage and analysis that was made pos-
sible by three innovations:

Relational logic. Alloy uses the same
logic for describing designs and prop-
erties. This logic combines the for-all
and exists-some quantifiers of first-
order logic with the operators of set
theory and relational calculus.

The idea of modeling software de-
signs with sets and relations had been
pioneered in the Z language.®? Alloy
incorporated much of the power of Z,
while simplifying the logic to make it
more tractable.

Alloy allows only first-order struc-
tures, thus ruling out, for example,
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sets of sets and relations over sets. This
changes how designs are modeled, but
not what can be modeled; after all, re-
lational databases have flourished de-
spite being first order.

Taking advantage of this restriction,
Alloy’s operators are defined in a very
general way so that most expressions
can be written with just a few opera-
tors. The key operator is relational join,
which in conventional mathematics
only applies to binary relations, but in
Alloy works on relations of any arity. By
using a dot to represent the join opera-
tor, Alloy lets you write dereferencing
expressions as you would in an object-
oriented programming language, but
gives these expressions a simple math-
ematical interpretation. So, as in Java,
given an employee e, a relation dept
that maps employees to departments,
and a relation manager that maps de-
partments to their managers, e.dept.
manager would give the manager of
e’s department. But unlike in Java, the
expression will also work if e is a set of
employees, or if dept can map an em-
ployee to multiple departments, giving
the expected result—the set of manag-
ers of the set of departments that the
employees e belong to. The expression
dept.manager is well defined too, mean-
ing the relation that maps employees
to their managers. You can also navi-
gate backward—writing manager.m for
the department(s) that e manages.

(A note for readers interested in
language design: This flexibility is
achieved by treating all values as rela-
tions—a set being a relation with one
column, and a scalar being a set with
one element—and defining a join op-
erator that applies uniformly over a
pair of relations, irrespective of their
arity. In contrast, other languages tend
to have multiple operators, implicit
coercions, or overloading to accommo-
date variants that Alloy unifies.)

Alloy was influenced also by model-
ing languages such as UML. Like the
class diagrams of UML, Alloy makes it
easy to describe a universe of objects as
a classification tree, with each relation
defined over nodes in this tree. Alloy’s
dot operator was inspired in part by the
navigational expressions of the Object
Constraint Language®* (OCL) of UML,
but by defining the dot as relational
join, Alloy dramatically simplifies the
semantics of navigation.



Small scope analysis. Even plain
first-order logic (without relational op-
erators) is not decidable. This means
that no algorithm can exist that could
analyze a software design written com-
pletely in a language like Alloy. So some-
thing has to give. You could make the
language decidable, but that would
cripple its expressive power and make
it unable to express even the most basic
properties of structures (although excit-
ing progress has been made recently in
applying decidable fragments of first-
order logic to certain problems®). You
could give up on automation, and re-
quire help from the user, but this elimi-
nates most of the benefit of an analysis
tool—analysis is no longer a reward for
constructing a design model, but a ma-
jor extra investment beyond modeling.

The other option is to somehow
limit the analysis. Prior to Alloy, two
approaches were popular. Abstraction
reduces the analysis to a finite number
of cases by introducing abstract values
that each corresponds to an entire set
of real values. This often results in false
positives that are difficult to interpret.
In practice, picking the right abstrac-
tion calls for considerable ingenuity.
Simulation picks a finite number of cas-
es, usually by random sampling, but it
covers such a small part of the state
space that subtle flaws elude detection.

Alloy offered a new approach: run-
ning all small tests. The designer spec-
ifies a scope that bounds each of the
types in the specification. A scope of
five, for example, would include tests
involving at most five elements of each
type: five network nodes, five packets,
five identifiers, and so on.

The rationale for this is the small
scope hypothesis, which asserts that
most bugs can be demonstrated with
small counterexamples. If you test for
all small counterexamples, you are
likely to find any bug. Many Alloy case
studies have confirmed the hypothesis
by performing an analysis in a variety
of scopes and showing, retrospectively,
that a small scope would have sufficed
to find all the bugs discovered.

Translation to SAT. Even with small
scopes, the state space of an Alloy
model is fiendishly large. The state
comprises a collection of variables
whose values are relations. Just one bi-
nary relation in a scope of five has 5 x
5 =25 possible edges, and thus 2*° pos-

sible values. A very small design might
have five such relations, giving (2*)
possible states—about 10% states.
Even checking a billion cases per sec-
ond, such an analysis would take many
times the age of the universe.

Alloy therefore does not perform an
explicit search, but instead translates
the design problem to a satisfiability
problem whose variables are not rela-
tions but simple bits. By flipping bits
individually, a satisfiability (SAT) solver
can usually find a solution (if there is
one) or show that none exists by exam-
ining only a tiny portion of the space.

Alloy’s analysis tool is essentially a
compiler to SAT, which allows it to ex-
ploit the latest advances in SAT solvers.
The success of SAT solvers has been a
remarkable story in computer science—
theoreticians had shown that SAT was
inherently intractable, but it turned out
that most of the cases that appeared in
practice could be solved efficiently. So
SAT went from being the archetypal in-
soluble problem used to demonstrate
the infeasibility of other problems to
being a soluble problem that other prob-
lems could be translated to. Alloy also
applies a variety of tactics to reduce the
problem prior to solving, most notably
adding symmetry breaking constraints
that save the SAT solver from consider-
ing cases equivalent to one another.

Example: Modeling Origins

To see Alloy in action, let’s explore the
design of an origin-tracking mechanism
for Web browsers. The model shown
here is a toy version of a real model that
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exposed several serious flaws in brows-
er security.! While it cuts corners and
is unrealistic in some respects, it does
capture the spirit and style of the origi-
nal model, and is fairly representative of
how Alloy is often used.

For those unfamiliar with browser
security, cross-site request forgery
(CSRF) is a pernicious and subtle at-
tack in which a malicious script run-
ning in a page the user has loaded
makes a hidden and unwanted re-
quest to a website for which the user
is already authenticated. This may
happen either because the user was
enticed to load a page from a mali-
cious server, or because a supposedly
safe server was the subject of a cross-
site scripting attack, and served a page
containing a malicious script. Such a
script can issue any request the user
can issue; one of the first CSRF vulner-
abilities to be discovered, for example,
allowed an attacker to change the de-
livery address for the user’s account
in a DVD rental site. What makes
CSRF particularly insidious is that the
browser sends authentication creden-
tials stored as cookies spontaneously
when a request is issued, whether that
request is made explicitly by the user
or programmatically by a script.

One way to counter CSRF is to track
the origins of all responses received
from servers. In this example, the
browser would mark the malicious
script as originating at the malicious or
compromised server. The subsequent
request made by that script to the rental
site server—the target of the attack—

Figure 1. Structure declarations.

1 abstract sig EndPoint { }

sig Server extends EndPoint {
causes: set HTTPEvent

NownN

5 sig Client extends EndPoint { }
6 abstract sig HTTPEvent {

7 from, to, origin: EndPoint
8 ]

9 sig Request extends HTTPEvent {
10 response: lone Response

12 sig Response extends HTTPEvent {
13  embeds: set Request
14}

15 sig Redirect extends Response {
16
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Figure 2. Data model from declarations.
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would be labeled as having this other
origin. The target server can be configured
so it only accepts requests that originate
directly from the user (for example, by
the user entering the URL for the request
in the address bar), or from the target
server itself (for example, from a script
embedded in a page it previously sent).
As always, the devil is in the details, and
we shall see that a plausible design of
this mechanism turns out to be flawed.

Some features to look out for in this
model, which distinguish Alloy from
many other approaches, include:

» A rich structure of objects, classifi-
cation, and relationships;

» Constraints in a simple logic that
exploits the relations and sets of the
structure, avoiding the kind of low-lev-
el structures (arrays and indices espe-
cially) that are often required in model
checkers;

» Capturing dynamic behavior with-
out any need for a built-in notion of
time or state;

» Intended properties to check ex-
pressed in the same language as the
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from origin to

model itself; and,

» An abstract style of modeling that
includes only those aspects essential to
the problem at hand.

We start by declaring a collection of
signatures (as illustrated in Figure 1).
A signature introduces a set of objects
and some fields that relate them to oth-
er objects. So Server, for example, will
represent the set of server nodes, and
has a field causes that associates each
server with the set of HTTP events that
it causes.

Keywords (or their omission) indi-
cate the multiplicity of the relations
between objects: thus each HTTP event
has exactly one from endpoint, one to
endpoint, and one origin endpoint (line
7); each request has at most one re-
sponse (line 10, with lone being read as
“less than or equal to one”); and each
response embeds any number of re-
quests (line 13).

Mathematically speaking, objects
are just atomic identifiers without any
internal structure. The causes relation
includes tuples of the form (s, e) where
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the value of s is some atomic identifier
representing a server object, and the
value of e is some atomic identifier rep-
resenting an event.

Fields are declared in signatures to
allow a kind of object-oriented mind-
set. Alloy supports this by resolving field
names contextually (so that field names
need not be globally unique), and by al-
lowing “signature facts” (not used here)
that are implicitly scoped over the ele-
ments of a signature and their fields.
But don’t be misled into thinking there
is some kind of fancy object semantics
here. The signature structure is only a
convenience, and just introduces a set
and some relations.

The extends keyword defines one
signature as a subset of another. An
abstract signature has no elements
that do not belong to a child signa-
ture, and the extensions of a signature
are disjoint. So the declarations of
EndPoint, Server, and Client imply the
set of endpoints is partitioned into
servers and clients: no server is also a
client, and there is no endpoint that
is neither client nor server. A relation
defined over a set applies over its sub-
sets too, so the declaration of from, for
example, which says that every HTTP
event is from a single endpoint, implies
the same is true for every request and
response. (Alloy is best viewed as un-
typed. It turns out that conventional
programming language types are far
too restrictive for a modeling lan-
guage. Alloy thus allows expressions
such as HTTPEvent.response, denoting
the set of responses to any events, but
its type checker rejects an expression
such as Request.embeds that always
denotes an empty set.'?)

The Alloy Analyzer can generate a
graphical representation of the sets
and relations from the signature decla-
rations (see Figure 2); this is just an al-
ternative view and involves no analysis.

Moving to the substance of what the
model actually means:

» The from and to fields are just the
source and destination of the event’s
packet.

» For a response r, the expression
rembeds denotes a set of requests that
are embedded as JavaScript in the re-
sponse; when that response is loaded
into the browser, the requests are ex-
ecuted spontaneously.

» A Redirect is a special kind of re-



sponse that indicates that a resource
has moved, and spontaneously issues
arequest to a different server; this sec-
ond request is modeled as an embed-
ded request in the redirect response.

» The origin of an event is a notion
computed by the browser as a means of
preventing cross-site attacks. As we will
see later, the idea is that a server may
choose to reject an event unless it origi-
nated at that server or at a browser.

» The cause of an event is not part
of the actual state of the mechanism.
It is introduced in order to express the
essential design property: that an evil
server cannot cause a client to send a
request to a good server.

Now let’s look at the constraints
(as shown in Figure 3). If there were
no constraints, any behavior would be
possible; adding constraints restricts
the behavior to include only those that
are intended by design.

The constraints are grouped into
separate named facts to make the mod-
el more understandable:

» The Directions fact contains two
constraints. The first says that every re-
quest is from, and every response is to,
a client; the second says that every re-
quest is to, and every response is from,
a server. These kinds of constraints can
be written in many ways. Here I have
chosen to use expressions denoting
sets of endpoints—for example, Re-
quest.from for the set of endpoints that
requests are from, but could just as
well have written a constraint like:

fromin
Request -> Client + Response -> Server

to say the from relation maps requests
to clients and responses to servers. Or
in a more familiar but less succinct
style, we could have used quantifiers:

all r: Request | r.from in Client
all r: Response | r.from in Server

(constraining only the range of the re-
lations, which is sufficient in this case
since the declarations already con-
strain their domains).

» The RequestResponse fact defines
some basic properties of how re-
quests and responses work: that every
response is associated with exactly
one request (line 22); that every re-
sponse is to the endpoint its request

was from, and from the endpoint its
request was to (line 23); and that a
request cannot be embedded in a re-
sponse to itself (line 24). Two expres-
sions in these constraints merit ex-
planation. The expression response.r
exploits the flexibility of the join op-
erator to navigate backward from the
response r to the request it responds
to; it could equivalently be written
r~response using the transpose op-
erator ~. The expression r.A(response.
embeds) starts with the request r, and
then applies to it one or more naviga-
tions (using the closure operator #) of
following the response and mbeds re-
lations, as if we had written instead
the infinite expression

r.response.embeds

+ r.response.embeds
.response.embeds

+ r.response.embeds
.response.embeds
.response.embeds

+..

defining the requests embedded in the
response to r, the requests embedded
in the response to the requests em-
bedded in the response to r, and so on.
(Equivalently, r.Ap is the set of nodes
reachable from r in the graph whose
edges correspond to the relation p.)

» The Causality fact defines the
causes relation. It says that an event
is caused by a server if and only if it is
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from that server, or is embedded in a
response that the server causes.

» The Origin fact describes the ori-
gin-tracking mechanism. Each con-
straint defines the origin of a differ-
ent kind of HTTP event. The first (line
31) says that every embedded request
e has the same origin as the response
r that it is embedded in. The second
(line 32) defines the origin of a re-
sponse: it says if the response is a redi-
rect, it has the same origin as the orig-
inal request, and otherwise its origin
is the server that the response came
from. The third (line 33) handles a re-
quest that is not embedded: its origin
is the endpoint it comes from (which
will usually be the browser).

Finally, EnforceOrigins is a predicate
that can be applied to a server, indicat-
ing that it chooses to enforce the origin
header, allowing incoming requests
only if they originate at that server, or
at the client that sent the request.

With all this in place—the struc-
ture of endpoints and messages, the
rules about how origins are computed
and used, and the definition of causal-
ity—we can define a design property to
check (as illustrated in Figure 4).

The keyword check introduces a
command that can be executed. This
command instructs the Alloy Analyzer
to search for a refutation for the given
constraint. In this case, the constraint
asserts the nonexistence of a cross-
site request forgery attack; refuting

Figure 3. Fact and predicate declarations.

17 fact Directions {

18 Request.from + Response.to in Client

19 Request.to + Response.from in Server

20

21 fact RequestResponse {

22 all r: Response | one response.r

23 allr: Response | r.to = response.r.from and r.from = response.r.to

24 allr: Request | r not in r.A(response.embeds)

25 }

26 fact Causality {

27 all e: HTTPEvent, s: Server | e in s.causes iff

28 e.from = s or some r: Response | e in rembeds and r in s.causes
29 }

30 fact Origin {

31 all r: Response, e: r.embeds | e.origin = r.origin

32 all r: Response | r.origin = (r in Redirect implies response.r.origin else r.from)
83 allr: Request | ne embeds.r implies r.origin in r.from

34 1

35 pred EnforceOrigins (s: Server) {

36 all r: Request | r.to = s implies r.origin = r.to or r.origin = r.from

37
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Figure 4. Check command.

38 check {

39 no good, bad: Server {

40 good.EnforceOrigins

41 no r: Request | r.to = bad and r.origin in Client

42 some r: Request | r.to = good and r in bad.causes
43

44 Yfor5

Figure 5. Counterexample for check of
Figure 4.

Reqgl
from: Client Server0
origin: Client ($good)
to: Server0 ($good)

embeds
Reg0
from: Client Serverl
origin: ServerQ ($good) ($bad)
to: Serverl (Sbad)

response

causes

Req2
($r)
from: Client
origin: Server0 ($good)
to: ServerO (Sgood)

this will show that the origin mecha-
nism is not designed correctly, and an
attack is possible.

The constraint says that there are no
two servers, good and bad, such that the
good server enforces the origin header
(line 40), there are no requests sent di-
rectly to the bad server that originate
in the client (line 41), and yet there is
some request to the good server that
was caused by the bad server (line 42).

Analysis Results: Finding Bugs

The Alloy Analyzer finds a counterex-
ample (see Figure 5) almost instanta-
neously—in 30ms on my 2012 MacBook
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Figure 6. A bogus counterexample.

Server
($bad, $good)

causes

causes

response

embeds

Req
($r)
from: Client
origin: Server ($had, $good)
to: Server ($bad, $good)

(with a 2.6GHz i7 processor and 16GB
of RAM).

The counterexample can be dis-
played in various ways—as text, a table,
or a graph whose appearance can be
customized. I've chosen the graph op-
tion, and have selected which objects
are to appear as nodes (just the events
and the servers), which relations are to
appear as edges (those between events,
and causes), and I've picked colors for
the sets and relations. I have also cho-
sen to use the Skolem constants (wit-
nesses that the analyzer finds for the
quantified variables) good and bad to
label the servers.

Reading the graph from the top,
looking just at the large rectangles
representing the HTTP events, we see
a request (Regl) was sent from a cli-
ent to the good server. The response
(Resp) embeds a request (ReqO) that is
sent to the bad server; this is a cross-
site request, which will not be rejected
because the bad server accepts incom-
ing requests irrespective of origin. The
bad server’s response is to send a redi-
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rect whose embedded request (Req2) is
received by the good server. (Note that
the numbering of objects is arbitrary:
Reql actually happens before Req0.)

Looking at the server nodes and the
events they cause, we see that, as expect-
ed, the good server caused the response
to the first request, and the bad server
caused the redirect and its subsequent
embedded request. The problem is the
mismatch between cause and origin in
the last request (Reqg2): we can see that it
was caused by the bad server, but it was
labeled as originating at the good serv-
er. In other words, the origin tracking
design is allowing a cross-site request
forgery by incorrectly identifying the
origin of the request in the redirect.

The solution to this problem turns
out to be non-trivial. Updating the ori-
gin header after each redirect would
fail for websites that offer open redirec-
tion; a better solution is to list a chain
of endpoints in the origin header."

Agile Modeling

As mentioned earlier, our model is rep-
resentative of many Alloy models. But
the way I presented it was potentially
misleading. In practice, users of Alloy
don’t construct a model in its entirety
and then check its properties. Instead,
they proceed in a more agile way, grow-
ing the model and simulating and
checking it as they go.

Take, for example, the constraint on
line 24 of Figure 3. Initially, I had not
actually noticed the need for this con-
straint. But when I ran the check for
the first time (without this constraint),
the analyzer presented me with coun-
terexamples such as the one shown in
Figure 6, in which the response to a re-
quest is the very response in which the
request is embedded!

One way to build a model exploiting
Alloy’s ability to express and analyze
very partial models is to add one con-
straint at a time, exploring its effect.
You do not need a property to check;
you can just ask for an instance of the
model satisfying all the constraints.

Doing this even before any explicit
constraints have been included is very
helpful. You can run just the data mod-
el by itself and see a series of instances
that satisfy the constraints implicit
in the declarations. Often doing this
alone exposes some interesting issues.
In this case, the first few instances in-



clude examples with no HTTP events,
and with requests and responses that
are disconnected.

To get more representative in-
stances, you can specify an additional
constraint to be satisfied. For example,
the command

run (some response)

will show instances in which the re-
sponse relation has some tuples. The
first one generated (Figure 7) shows
a request with a response that is a re-
direct from the same source as the
request, and sent to an endpoint that
is also its origin, and it includes an
orphaned redirect unrelated to any re-
quest! These anomalies immediately
suggest enrichments of the model.

When we developed Alloy, we un-
derestimated the value of this kind of
simulation. As we experimented with
Alloy, however, we came to realize
how helpful it is to have a tool that can
generate provocative examples. These
examples invariably expose basic mis-
understandings, not only about what'’s
being modeled but also about which
properties matter. It’s essential that
Alloy provides this simulation for free:
in particular, you do not need to for-
mulate anything like a test case, which
would defeat the whole point.

Growing a model in a declarative
language like Alloy is very different
from growing a program in a conven-
tional programming language. A pro-
gram starts with no behaviors at all,
and as you add code, new behaviors
become possible. With Alloy, it’s the
opposite. The empty model, since it
lacks any constraints, allows every pos-
sible behavior; as you add constraints,
behaviors are eliminated.

This allows a powerful style of in-
cremental development in which you
only add constraints that are abso-
lutely essential for the task at hand—
whether that is eliminating patho-
logical cases or ensuring a design
property holds.

Typically a model includes both
a description of the mechanism be-
ing designed and some assumptions
about the environment in which it op-
erates. Our example model does not
separate these rigorously, but where
brevity is not such a pressing concern,
itwould be wise to do so. We could sep-

Like the class
diagrams of UML,
Alloy makes it easy
to describe

a universe

of objects as

a classification tree,
with each relation
defined over

nodes in this tree.
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arate, for example, the constraints that
model the setting and checking of the
origin field from those that describe
what kinds of requests and responses
are possible.

Obviously, the less you assume
about the environment, the better,
since every assumption you make is a
risk (as it may turn out to be untrue).
In our model, for example, we do not
require every request to have a re-
sponse. It would be easy to do—just
change the declaration of response
in line 10 of Figure 1 by dropping the
lone keyword—but would only make
the result of the analysis less general.
Likewise, the less you constrain the
mechanism, the better. Allowing mul-
tiple behaviors gives implementation
freedom, which is especially impor-
tant in a distributed setting.

Simulation matters for a more
profound reason. Verification—that
is, checking properties—is often
overrated in its ability to prevent
failure. As Christopher Alexander
explains,* designed artifacts usually
fail to meet their purposes not be-
cause specifications are violated but
because specifications are unknown.
The “unknown unknowns” of a soft-
ware design are invariably discovered
when the design is finally deployed,
but can often be exposed earlier by
simulation, especially in the hands
of an imaginative designer.

Verification, in contrast, is too nar-
rowly focused to produce such discover-
ies. Thisis not to say property checking
is not useful—it’s especially valuable
when a property can be assured with
high confidence using a tool such as
Alloy or a model checker or theorem
prover (rather than by testing). But
its value is always contingent on the
sufficiency of the property itself, and

Figure 7. A simulated instance.

Req
from: Clientl
origin: ClientO

to: Clientl

response
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techniques that help you explore prop-
erties have an important role to play.

Uses of Alloy

Hundreds of papers have reported on
applications of Alloy in a wide variety
of settings. Here are some examples
to give a better idea of how Alloy has
been used:

Critical systems. A team at the Uni-
versity of Washington constructed a
dependability case'® for a neutron radio-
therapyinstallation. The team devised an
ingenious technique for verifying prop-
erties of code against specifications us-
ing lightweight, pluggable checkers.
The end-to-end dependability case
was assembled in Alloy from the code
specifications, properties of the equip-
ment and environment, and the ex-
pected properties, and then checked
using the Alloy Analyzer. The analysis
found several safety-critical flaws in
the latest version of the control soft-
ware, which the researchers were able
to correct prior to its deployment. For
a full description, see a recent research
report® and additional information on
the project’s website.*

Network protocols. Pamela Zave, a
researcher at AT&T, has been using Al-
loy for manyyears to construct and ana-
lyze models of networking as well as
for designing a new unifying network
architecture. In a major case study,
she analyzed Chord, a distributed hash
table for peer-to-peer applications. The
original paper on Chord**—one of the
most widely cited papers in computer
science—notes that an innovation of
Chord was its relative simplicity, and
consequently the confidence users
can have in its correctness. By model-
ing and analyzing the protocol in Al-
loy, Zave showed that the Chord pro-
tocol was not, in fact, correct, and she
was able to develop a fixed version that
maintains its simplicity and elegance
while guaranteeing correct behav-
ior.”® Zave also used the explicit model
checker SPIN' in this work, and wrote
an insightful article explaining the rela-
tive merits of the two tools, and how she
used them in tandem.*

Web security. The demonstration ex-
ample of this article is drawn from
a real study performed by a research
group at UC Berkeley and Stanford.' The
group constructed a library of Alloy
models to capture various aspects of

As we experimented
with Alloy,

we came to realize
how helpful

itis to have

a tool that can
generate
provocative
examples.
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Web security mechanisms, and then
analyzed five different mechanisms,
including: WebAuth, a Web-based au-
thentication protocol based on Ker-
beros deployed at several universities
including Stanford; HTML5 forms;
the Cross-Origin Resource Sharing
protocol; and proposed designs for
using the referrer header and the ori-
gin header to foil cross-site attacks
(of which the last is the basis for the
example here). The base library was
written in 2,000 lines of Alloy; the vari-
ous mechanisms required between 20
and 214 extra lines; and every bug was
found within two minutes and a scope
of 8. Two previously known vulnerabil-
ities were confirmed by the analysis,
and three new ones discovered.

Memory models. John Wickerson
and his colleagues have shown that
four common tasks in the design of
memory models—generating confor-
mance tests, comparing two memory
models, checking compiler optimiza-
tions, and checking compiler map-
pings—can all be framed as constraint
satisfaction problems in Alloy.** They
were able to reproduce automatically
several results for C11 (the memory
model introduced in 2011 for C and
C++) and common compiler optimiza-
tions associated with it, for the mem-
ory models of the IBM Power and Intel
x86 chips, and for compiler mappings
from OpenCL to AMD-style GPUs.
They then used their technique to de-
velop and check a new memory model
for Nvidia GPUs.

Code verification. Alloy can also be
used to verify code by translating the
body of a function into Alloy, and ask-
ing it to find a behavior of the func-
tion that violates its specification.
Greg Dennis built a tool called Forge
that wraps Alloy so it can be applied
directly to Java code annotated with
JML specifications. In a case study
application,' he checked a variety of
implementations of the Java collec-
tions list interface, and found bugs
in one (a GNU Trove implementa-
tion). Dennis also applied his tool
to KOA, an electronic voting system
used in the Netherlands that was an-
notated with JML specifications and
had previously been analyzed with
a theorem-proving tool, and found
several functions that did not satisfy
their specifications.™



Civil engineering. In one of the
more innovative applications of Alloy,
John Baugh and his colleagues have
been applying Alloy to problems in
large-scale physical simulation. They
designed an extension to ADCIRC—
an ocean circulation model widely
used by the U.S. Army Corps of Engi-
neers and others for simulating hur-
ricane storm surge—that introduces a
notion of subdomains to allow more
localized computation of changes
(and thus reduced overall computa-
tional effort). Their extension, which
has been incorporated into the of-
ficial ADCIRC release, was modeled
and verified in Alloy.”

Alloy as a backend. Because Alloy
offers a small and expressive logic,
along with a powerful analyzer, it has
been exploited as a backend in many
different tools. Developers have often
used Alloy’s own engine, Kodkod,*
directly, rather than the API of Alloy
itself, because it offers a simpler pro-
grammatic interface with the ability
to set bounds on relations, improv-
ing performance. Jasmin Blanchette’s
Nitpick tool,® for example, uses Kod-
kod to find counterexamples in Isa-
belle/HOL, saving the user the trouble
of trying to prove a theorem that is not
true, and the Margrave tool*® analyzes
firewall configurations. Last year, a
team from Princeton and Nvidia built
a tool that uses Alloy to synthesize se-
curity attacks that exploit the Spectre
and Meltdown vulnerabilities.*

Teaching. Alloy has been widely
taught in undergraduate and gradu-
ate courses for many years. At the Uni-
versity of Minho in Portugal, Alcino
Cunha teaches an annual course on
formal methods using Alloy, and has
developed a Web interface to present
students with Alloy exercises (which
are then automatically checked). At
Brown University, Tim Nelson teaches
Logic for Systems, which uses Alloy
for modeling and analysis of system
designs, and has become one of the
most popular undergraduate classes.
Because the Alloy language is very
close to a pure relational logic, it has
also been popular in the teaching of
discrete mathematics, for example, in
a course that Charles Wallace teaches
at Michigan Technological Univer-
sity*® and appearing as a chapter in a
popular textbook.'®

Alloy Extensions
Many extensions to Alloy—both to
the language and to the tool—have
been created. These offer a variety of
improvements in expressiveness, per-
formance, and usability. For the most
part, these extensions have been mu-
tually incompatible, but a new open
source effort is now working to consoli-
date them. There are too many efforts
to include here, so I focus on represen-
tatives of the main classes.
Higher-order solving. The Alloy Ana-
lyzer’'s constraint-solving mechanism
cannot handle formulas with universal
quantifications over relations—that
is, problems that reduce to “find some
relation P such that for every relation
Q...” This is exactly the form that many
synthesis problems take, in which the
relation P represents a structure to be
synthesized, such as the abstract syn-
tax tree of a program, and the relation
Qrepresents the state space over which
certain behaviors are to be verified. Al-
loy*** is an extension of Alloy that can
solve such formulas, by generalizing a
tactic known as counterexample-guid-
ed inductive synthesis that has been
widely used in synthesis engines.
Temporal logic. Alloy has no built-in
notion of time or dynamic behavior.
On the one hand, this is an asset, be-
cause it keeps the language simple,
and allows it to be used very flexibly.
I exploited this in the example model
here, where the flow of time is cap-
tured in the response relation that
maps each request to its response. By
adding a signature for state, Alloy sup-
ports the specification style common
in languages such as B, VDM, and Z;
and by adding a signature for events,
Alloy allows analysis over traces that
can be visualized as a series of snap-
shots. On the other hand, it would
often be preferable to have dynamic
features built into the language. Elec-
trum® extends Alloy with a keyword
var to indicate that a signature or field
has a time-varying value, and with
the quantifiers of linear temporal
logic (which fit elegantly with Alloy’s
traditional quantifiers). DynAlloy*
offers similar functionality, but us-
ing dynamic logic instead, and is the
basis of an impressive code analysis
tool called TACO* that outperforms
Forge (mentioned earlier) by employ-
ing domain-specific optimizations.
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No extension of Alloy, however, has yet
addressed the problem of combining
Alloy’s capacity for structural analysis
with the ability of traditional model
checkers to explore long traces, so Al-
loy analyses are still typically limited to
short traces.

Instance generation. The result of
an Alloy analysis is not one but an
entire set of solutions to a constraint-
solving problem, each of which rep-
resents either a positive example of
a scenario, or a negative example,
showing how the design fails to meet
some property. The order in which
these appear is somewhat arbitrary,
being determined both by how the
problem is encoded and the tactics
of the backend SAT solver. Since SAT
solvers tend to try false before true
values, the instances generated tend
to be small ones—with few nodes and
edges. This is often desirable, but is
not always ideal. Various extensions
to the Alloy Analyzer provide more
control over the order in which in-
stances appear. Aluminum?® presents
only minimal scenarios in which ev-
ery relation tuple is needed to satisfy
the constraints, and lets the user add
new tuples, automatically compen-
sating with a (minimal) set of addi-
tional tuples required for consistency.
Amalgam?® lets users ask about the
provenance of an instance, indicating
which sub formula is responsible for
requiring (or forbidding) a particular
tuple in the instance. Another exten-
sion* of the Alloy Analyzer generates
minimal and maximal instances, and
choosing a next instance that is as
close to, or as far away from, the cur-
rent instance as possible.

Better numerics. Alloy handles nu-
merical operations by treating num-
bers as bit strings. This has the ad-
vantage of fitting into the SAT solving
paradigm smoothly, and it allows a
good repertoire of integer operations.
But the analysis scales poorly, making
Alloy unsuitable for heavily numeric
applications. The finite scopes of Alloy
can also be an issue when a designer
would like numbers to be unbounded.
A possible solution is to replace the
SAT backend with an SMT backend
instead. This is challenging because
SMT solvers have not traditionally
supported relational operators. Nev-
ertheless, a team at the University of
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Iowa has recently extended CVC4, a
leading SMT solver, with a theory of
finite relations, and has promisingly
demonstrated its application to some
Alloy problems.*

Configurations. Many Alloy models
contain two loosely coupled parts,
one defining a configuration (say of a
network) and the other the behavior
(say of sending packets). By iterating
through configurations and analyzing
each independently, one can often
dramatically reduce analysis time.*
In some applications, a configuration
is already fully or partially known, and
the goal is to complete the instance—
in which case searching for the con-
figuration is a wasted effort. Kodkod,
Alloy’s engine, allows the explicit def-
inition of a “partial instance” to sup-
port this, but in Alloy itself, this no-
tion is not well supported (and relies
on a heuristic for extracting partial
instances from formulas in a certain
form). Researchers have therefore
proposed a language extension® to
allow partial instances to be defined
directly in Alloy itself.

How to Try Alloy

The Alloy Analyzer® is a free down-
load available for Mac, Windows,
and Linux. The Alloy book'¢ provides
a gentle introduction to relational
logic and to the Alloy language, gives
many examples of Alloy models, and
includes a reference manual and a
comparison to other languages (both
of which are available on the book’s
website!’). The Alloy community
answers questions tagged with the
keyword alloy on StackOverflow, and
hostsadiscussion forum.®> Avariety of
tutorials for learning Alloy are avail-
able online too, as well as blog posts
with illustrative case studies and
examples (for example, Kriens®
and Wayne*?). The model used in
this article is available (along with
its visualization theme) in the Alloy
community’s model repository.*

Acknowledgments

I am very grateful to David Chemouil,
Alcino Cunha, Peter Kriens, Shriram
Krishnamurthi, Jay Parlar, Emina Tor-
lak, Hillel Wayne, Pamela Zave, and
the anonymous reviewers, whose sug-
gestions improved this article greatly;
to Moshe Vardi, who encouraged me

76 COMMUNICATIONS OF THE ACM

to write it; and to Devdatta Akhawe,
Adam Barth, Peifung E. Lam, John
Mitchell, and Dawn Song, whose work
formed the basis of the example used
in the article. Thank you also to the
many members of the Alloy communi-
ty who have contributed to Alloy over
the years.

References

1. Akhawe, D., Barth, A, Lam, P.E., Mitchell, J. and Song,
D. Towards a formal foundation of Web security. In
Proceedings of the 23 IEEE Computer Security
Foundations Symp. Edinburgh, 2010, 290-304.

2. Alexander, C. Notes on the Synthesis of Form. Harvard

University Press, 1964.

Alloy Tools; http://alloytools.org.

Alloy Models repository; https://github.com/

AlloyTools/models

5. Alloy discussion forum; https://groups.google.com/
forum/#!forum/alloytools

6. Barth, A., Jackson, C., and Mitchell, J.C. Robust
defenses for cross-site request forgery. In
Proceedings of the 15" ACM Conf. on Computer and
Communications Security. ACM, 2008, 75-88.

7. Baugh, J. and Altuntas, A. Formal methods and finite
element analysis of hurricane storm surge: A case
study in software verification. Science of Computer
Programming 158 (2018), 100-121.

8. Blanchette, J. and Nipkow, T. Nitpick: A
counterexample generator for higher-order logic
based on a relational model finder. In Proceedings of
the 1% Intern.Conf. Interactive Theorem Proving. M.
Kaufmann and L.C. Paulson, eds. LNCS 6172 (2010).
Springer, 131-146.

9. Burch, J.R, Clarke, E.M,, McMillan, K.L., Dill, D.L. and
Hwang, L.J. Symbolic model checking: 10 states and
beyond. In Proceedings of the 5" Annual Symp. Logic
in Computer Science. (Philadelphia, PA, USA, June
4-7,1990), 428-439.

10. Dennis, G., Chang, F. and Jackson, D. Modular
verification of code with SAT. In Proceedings of
the Intern. Symp. Software Testing and Analysis.
(Portland, ME, July 2006).

11. Dennis, G., Yessenov, K. and Jackson, D. Bounded
verification of voting software. In Proceedings of the
204 TFIP Working Conf. Verified Software: Theories,
Tools, and Experiments. (Toronto, Canada, Oct. 2008).

12. Edwards, J., Jackson, D. and Torlak, E. A type system
for object models. In Proceedings of the 12" ACM
SIGSOFT Intern. Symp. Foundations of Software
Engineering (Newport Beach, CA, USA, Oct. 31— Nov.
6,2004), 189-199.

13. Galeotti, J.P, Rosner, N., Lopez Pombo, C.G. and Frias,
M.F. TACO: Efficient SAT-based bounded verification
using symmetry breaking and tight bounds. IEEE
Trans. Softw. Eng. 39, 9 (Sept.2013), 1283-1307.

14. Holzmann, G.J. The Spin Model Checker: Primer and
Reference Manual, Addison Wesley, 2003.

15. Huth, M. and Ryan, M. Logic in Computer Science:
Modeling and Reasoning about Systems. Cambridge
University Press, 2004.

16. Jackson, D. Software Abstractions. MIT Press, Second
edition, 2012.

17. Jackson, D. Software Abstractions; http://
softwareabstractions.org.

18. Jackson, D., Thomas, M. and Millett, L.I. eds. Software
For Dependable Systems: Sufficient Evidence?
Committee on Certifiably Dependable Software
Systems, Computer Science and Telecommunications
Board, Division on Engineering and Physical Sciences.
National Research Council of the National Academies.
The National Academies Press, Washington, D.C., 2007.

19. Kriens, P. JPMS, The Sequel; http://aqute.
biz/2017/06/14/jpms-the-sequel.html

20. Macedo, N., Brunel, J., Chemouil, D., Cunha, A. and
Kuperberg, D. Lightweight specification and analysis
of dynamic systems with rich configurations. In
Proceedings of the 24" ACM SIGSOFT Intern. Symp.
Foundations of Software Engineering (Seattle, WA,
USA, 2016), 373-383.

21. Macedo, N., Cunha, A. and Guimaraes, T. Exploring
scenario exploration. Fundamental Approaches to
Software Engineering. A. Egyed and I. Schaefer, eds.
Lecture Notes in Computer Science 9033. Springer,
Berlin, Heidelberg.

22. Macedo, N., Cunha, A. and Pessoa, E. Exploiting partial

H»w

SEPTEMBER 2019 | VOL.62 | NO.9

knowledge for efficient model analysis. In Proceedings
of the 15" Intern. Symp. Automated Technology for
Verification and Analysis. Springer, 2017, 344-362.

23. Meng, B., Reynolds, A., Tinelli, C., and Barrett,

C. Relational Constraint Solving in SMT. In
Proceedings of the 26" Intern. Conf. Automated
Deduction. (Gothenburg, Sweden, 2017) L. de
Moura, ed. Springer.

24, Milicevic, A., Near, J.P., Kang E. and Jackson, D. Alloy*:
A general-purpose higher-order relational constraint
solver. Formal Methods in System Design, 2017, 1-32.

25. Montaghami, V. and Rayside, D. Extending alloy with
partial instances. In Proceedings of the 3 Intern.
Conf. Abstract State Machines, Alloy, B, VDM, and Z.
2012,122-135.

26. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K. and

Krishnamurthi, S. The Margrave tool for firewall

analysis. In Proceedings of the 24" USENIX Large

Installation System Administration Conference (San

Jose, CA, 2010).

Nelson, T., Danas, N., Dougherty, D.J., and

Krishnamurthi, S. The Power of Why and Why Not:

Enriching Scenario Exploration with Provenance.

Joint European Software Engineering Conference and

ACM SIGSOFT Symposium on the Foundations of

Software Engineering, 2017.

28. Nelson, T, Saghafi, S., Dougherty, D.J., Fisler, K., and
Krishnamurthi, S. Aluminum: Principled scenario
exploration through minimality. In Proceedings of the
Intern. Conf. Software Engineering, 2013.

29. Padon, O, Losa, G., Sagiv, M. and Shoham S. Paxos
made EPR: Decidable reasoning about distributed
protocols. In Proceedings of the OOPSLA 2017
(Vancouver, 2017).

. Pernsteiner, S. et al. Investigating safety of a
radiotherapy machine using system models with
pluggable checkers. Computer Aided Verification
LNCS 9780. Springer.

Regis, G. et al. DynAlloy Analyzer: A tool for the
specification and analysis of Alloy models with
dynamic behaviour. In Proceedings of the 11" Joint
Meeting on Foundations of Software Engineering. ACM,
New York, NY, 2017, 969-973.

Spivey, J.M. The Z Notation: A Reference Manual (2™
ed.), Prentice Hall, 1992.

33. Stoica, L. et al. Chord: A scalable peer-to-peer lookup
protocol for Internet applications. IEEE/ACM Trans.
Networking 11,1 (2003), 17-32.

34. Torlak, E. and Jackson, D. Kodkod: A relational model

finder. In Proceedings of the 13" Intern. Conf. Tools

and Algorithms for the Construction and Analysis of

Systems (Braga, Portugal, 2007), 632-647.

Trippel, C., Lustig, D. and Martonosi, M.

MeltdownPrime and SpectrePrime: Automatically

Synthesized Attacks Exploiting Invalidation-Based

Coherence Protocols. Feb. 2018; arX- iv:1802.03802.

36. University of Washington. PLSE Neutrons;
http:neutrons.uwplse.org/

37. Visser, W,, Havelund, K., Brat, G., Park, S.J. and Lerda,
F. Model checking programs. Automated Software
Engineering J. 10, 2 (Apr. 2003).

38. Wallace, C. Learning Discrete Structures Interactively
with Alloy. In Proceedings of the 49 ACM Tech.
Symp. Computer Science Education (Baltimore, MD,
Feb. 21-24, 2018), 1051-1051.

39. Warmer, J.B. and Kleppe, A.G. The Object Constraint
Language: Precise Modeling with UML. Addison-
Wesley, 1999.

40. Wayne, H. Personal blog; https://www.hillel-wayne.com

41. Wickerson, J, Batty, M., Sorensen, T. and

Constantinides, G.A. Automatically comparing

memory consistency models. In Proceedings of the

44" ACM SIGPLAN Symp. Principles of Programming

Languages (Paris, France, 2017), 190-204.

Zave, P. A practical comparison of Alloy and Spin.

Formal Aspects of Computing 27 (2015), 239-253.

43. Zave, P. Reasoning about identifier spaces: How
to make Chord correct. IEEE Trans. Software
Engineering 43,12 (Dec. 2017), 1144-1156.

2

~

3

o

3

=

3

N

3

a1

4

N

Daniel Jackson is a professor of computer science and
Associate Director of the Computer Science and Artificial
Intelligence Laboratory at the Massachusetts Institute of
Technology, Cambridge, MA, USA.

© 2019 ACM 0001-0782/19/9



