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ALLOY IS A language and a toolkit for exploring the kinds 
of structures that arise in many software designs. This 
article aims to give readers a flavor of Alloy in action, and 
some examples of its applications to date, thus giving a 
sense of how it can be used in software design work.

Software involves structures of many sorts: 
architectures, database schemas, network topologies, 
ontologies, and so on. When designing a software 
system, you need to be able to express the structures 
essential to the design and to check that they have the 
properties you expect.

You can express a structure by sketching it on a 
napkin. That’s a good start, but it’s limited. Informal 
representations give inconsistent interpretations, and 
they cannot be analyzed mechanically. So people have 
turned to formal notations that define structure and 
behavior precisely and objectively, and that can exploit 
the power of computation.

By using formality early in develop-
ment, you can minimize the costs of 
ambiguity and get feedback on your 
work by running analyses. The most 
popular approach to advocate this is 
agile development, in which the formal 
representation is code in a traditional 
programming language and the analy-
sis is conventional unit testing.

As a language for exploring designs, 
however, code is imperfect. It’s verbose 
and often indirect, and it does not al-
low partial descriptions in which some 
details are left to be resolved later. And 
testing, as a way to analyze designs, 
leaves much to be desired. It’s notori-
ously incomplete and burdensome, 
since you need to write test cases ex-
plicitly. And it’s very difficult to use 
code to articulate design without get-
ting mired in low-level details (such as 
the choice of data representations).

An alternative, which has been ex-
plored since the 1970s, is to use a de-
sign language built not on convention-
al machine instructions but on logic. 
Partiality is free because rather than 
listing each step of a computation, you 
write a logical constraint saying what’s 
true after, and that constraint can say 
as little or as much as you please. To 
analyze such a language, you use spe-
cialized algorithms such as model 
checkers or satisfiability solvers (more 
on these later). This usually requires 
much less effort than testing, since you 
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only need to express the property you 
want to check rather than a large col-
lection of test cases. And the analysis is 
much more complete than testing, be-
cause it effectively covers all (or almost 
all) test cases that you could have writ-
ten by hand.

What Came Before: Theorem 
Provers and Model Checkers
To understand Alloy, it helps to know 
a bit about the context in which it was 
developed and the tools that existed at 
the time.

Theorem provers are mechanical aids 
for constructing mathematical proofs. 
To apply a theorem prover to a software 
design problem, you formulate some 
intended property of the design, and 
then attempt to prove the theorem that 
the property follows from the design. 
Theorem provers tend to provide very 
rich logics, so they can usually express 
any property the designer might want, 
at least about states and state transi-
tions—more dynamic properties can 
require a temporal logic that theorem 
provers don’t typically support directly. 
Also, because they generate mathemat-
ical proofs, which can be checked by 

tools that are smaller and simpler than 
the tool that finds the proof, you can be 
confident the analysis is sound.

On the down side, the combination 
of an expressive logic and sound proof 
means that finding proofs cannot gen-
erally be automated. Theorem provers 
usually require considerable effort and 
expertise from the user, often orders 
of magnitude greater than the effort 
of constructing a formal design in the 
first place. Moreover, failure to find a 
proof does not mean that a proof does 
not exist, and theorem provers don’t 
provide counterexamples that explain 
concretely why a theorem is not valid. 
So theorem provers are not so useful 
when the intended property does not 
hold—which unfortunately is the com-
mon case in design work.

Model checkers revolutionized de-
sign analysis by providing exactly the 
features theorem provers lacked. They 
offer push-button automation, requir-
ing the user to give only the design and 
property to be checked. They allow 
dynamic properties to be expressed 
(through temporal logics), and gener-
ate counterexamples when properties 
do not hold. Model checkers work by 

exploring the space of possible states 
of a system, and if that space is large, 
they may require considerable compu-
tational resources (or may fail to termi-
nate). The so-called “state explosion” 
problem arises because model check-
ers are often used to analyze designs 
involving components that run in par-
allel, resulting in an overall state space 
that grows exponentially with the num-
ber of components.

Alloy was inspired by the successes 
and limitations of model checkers. 
For designs involving parallelism and 
simple state (comprising Boolean 
variables, bounded integers, enumer-
ations and fixed-size arrays), model 
checkers were ideal. They could eas-
ily find subtle synchronization bugs 
that appeared only in rare scenarios 
that involved long traces with mul-
tiple context switches, and therefore 
eluded testing.

For hardware designs, model check-
ers were often a good match. But for 
software designs they were less ideal. 
Although some software design 
problems involve this kind of synchro-
nization, often the complexity arises 
from the structure of the state itself. Early 
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sets of sets and relations over sets. This 
changes how designs are modeled, but 
not what can be modeled; after all, re-
lational databases have flourished de-
spite being first order.

Taking advantage of this restriction, 
Alloy’s operators are defined in a very 
general way so that most expressions 
can be written with just a few opera-
tors. The key operator is relational join, 
which in conventional mathematics 
only applies to binary relations, but in 
Alloy works on relations of any arity. By 
using a dot to represent the join opera-
tor, Alloy lets you write dereferencing 
expressions as you would in an object-
oriented programming language, but 
gives these expressions a simple math-
ematical interpretation. So, as in Java, 
given an employee e, a relation dept 
that maps employees to departments, 
and a relation manager that maps de-
partments to their managers, e.dept.
manager would give the manager of 
e’s department. But unlike in Java, the 
expression will also work if e is a set of 
employees, or if dept can map an em-
ployee to multiple departments, giving 
the expected result—the set of manag-
ers of the set of departments that the 
employees e belong to. The expression 
dept.manager is well defined too, mean-
ing the relation that maps employees 
to their managers. You can also navi-
gate backward—writing manager.m for 
the department(s) that e manages.

(A note for readers interested in 
language design: This flexibility is 
achieved by treating all values as rela-
tions—a set being a relation with one 
column, and a scalar being a set with 
one element—and defining a join op-
erator that applies uniformly over a 
pair of relations, irrespective of their 
arity. In contrast, other languages tend 
to have multiple operators, implicit 
coercions, or overloading to accommo-
date variants that Alloy unifies.)

Alloy was influenced also by model-
ing languages such as UML. Like the 
class diagrams of UML, Alloy makes it 
easy to describe a universe of objects as 
a classification tree, with each relation 
defined over nodes in this tree. Alloy’s 
dot operator was inspired in part by the 
navigational expressions of the Object 
Constraint Language39 (OCL) of UML, 
but by defining the dot as relational 
join, Alloy dramatically simplifies the 
semantics of navigation.

model checkers (such as SMV9) had limit-
ed expressiveness in this regard, and did 
not support rich structures such as trees, 
lists, tables, and graphs.

Explicit state model checkers, such 
as SPIN,14 and later Java Pathfinder,37 
allowed designs with rich state to be 
modeled, but, despite providing sup-
port for temporal properties, gave little 
help for expressing structural ones. To 
express reachability (for example, that 
two social media users are connected 
by some path of friend edges), you 
would typically need to code an explicit 
search, which would have to be execut-
ed at every point at which the property 
was needed. Also, explicit state model 
checkers have limited support for par-
tiality (since the model checker would 
have to conduct a costly search through 
possible next states to find one satisfy-
ing the constraints).

Particularly difficult for all model 
checkers are the kinds of designs that 
involve a configuration of elements in a 
graph or tree structure. Many network 
protocols are designed to work irre-
spective of the initial configuration (or 
of the configuration as it evolves), and 
exposing a flaw often involves not only 
finding a behavior that breaks a prop-
erty but also finding a configuration in 
which to execute it.

Even the few model checkers that 
can express rich structures are gener-
ally not up to this task. Enumerating 
possible configurations is not feasi-
ble, because the number of configu-
rations grows super-exponentially: if 
there are n nodes, there are 2n×n ways 
to connect them.

Alloy’s Innovations
Alloy offered a new kind of design lan-
guage and analysis that was made pos-
sible by three innovations:

Relational logic. Alloy uses the same 
logic for describing designs and prop-
erties. This logic combines the for-all 
and exists-some quantifiers of first-
order logic with the operators of set 
theory and relational calculus.

The idea of modeling software de-
signs with sets and relations had been 
pioneered in the Z language.32 Alloy 
incorporated much of the power of Z, 
while simplifying the logic to make it 
more tractable.

Alloy allows only first-order struc-
tures, thus ruling out, for example, 

Alloy was inspired 
by the successes 
and limitations of 
model checkers.
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Figure 1. Structure declarations.

1     abstract sig EndPoint { } 

2     sig Server extends EndPoint {
3        causes: set HTTPEvent
4        } 

5     sig Client extends EndPoint { } 

6     abstract sig HTTPEvent {
7        from, to, origin: EndPoint
8        } 

9     sig Request extends HTTPEvent {
10      response: lone Response
11      }
 
12    sig Response extends HTTPEvent {
13       embeds: set Request
14       }

15    sig Redirect extends Response {
16       }

exposed several serious flaws in brows-
er security.1 While it cuts corners and 
is unrealistic in some respects, it does 
capture the spirit and style of the origi-
nal model, and is fairly representative of 
how Alloy is often used.

For those unfamiliar with browser 
security, cross-site request forgery 
(CSRF) is a pernicious and subtle at-
tack in which a malicious script run-
ning in a page the user has loaded 
makes a hidden and unwanted re-
quest to a website for which the user 
is already authenticated. This may 
happen either because the user was 
enticed to load a page from a mali-
cious server, or because a supposedly 
safe server was the subject of a cross-
site scripting attack, and served a page 
containing a malicious script. Such a 
script can issue any request the user 
can issue; one of the first CSRF vulner-
abilities to be discovered, for example, 
allowed an attacker to change the de-
livery address for the user’s account 
in a DVD rental site. What makes 
CSRF particularly insidious is that the 
browser sends authentication creden-
tials stored as cookies spontaneously 
when a request is issued, whether that 
request is made explicitly by the user 
or programmatically by a script.

One way to counter CSRF is to track 
the origins of all responses received 
from servers. In this example, the 
browser would mark the malicious 
script as originating at the malicious or 
compromised server. The subsequent 
request made by that script to the rental 
site server—the target of the attack—

Small scope analysis. Even plain 
first-order logic (without relational op-
erators) is not decidable. This means 
that no algorithm can exist that could 
analyze a software design written com-
pletely in a language like Alloy. So some-
thing has to give. You could make the 
language decidable, but that would 
cripple its expressive power and make 
it unable to express even the most basic 
properties of structures (although excit-
ing progress has been made recently in 
applying decidable fragments of first-
order logic to certain problems29). You 
could give up on automation, and re-
quire help from the user, but this elimi-
nates most of the benefit of an analysis 
tool—analysis is no longer a reward for 
constructing a design model, but a ma-
jor extra investment beyond modeling.

The other option is to somehow 
limit the analysis. Prior to Alloy, two 
approaches were popular. Abstraction 
reduces the analysis to a finite number 
of cases by introducing abstract values 
that each corresponds to an entire set 
of real values. This often results in false 
positives that are difficult to interpret. 
In practice, picking the right abstrac-
tion calls for considerable ingenuity. 
Simulation picks a finite number of cas-
es, usually by random sampling, but it 
covers such a small part of the state 
space that subtle flaws elude detection.

Alloy offered a new approach: run-
ning all small tests. The designer spec-
ifies a scope that bounds each of the 
types in the specification. A scope of 
five, for example, would include tests 
involving at most five elements of each 
type: five network nodes, five packets, 
five identifiers, and so on.

The rationale for this is the small 
scope hypothesis, which asserts that 
most bugs can be demonstrated with 
small counterexamples. If you test for 
all small counterexamples, you are 
likely to find any bug. Many Alloy case 
studies have confirmed the hypothesis 
by performing an analysis in a variety 
of scopes and showing, retrospectively, 
that a small scope would have sufficed 
to find all the bugs discovered.

Translation to SAT. Even with small 
scopes, the state space of an Alloy 
model is fiendishly large. The state 
comprises a collection of variables 
whose values are relations. Just one bi-
nary relation in a scope of five has 5 × 
5 = 25 possible edges, and thus 225 pos-

sible values. A very small design might 
have five such relations, giving (225)5 
possible states—about 1037 states. 
Even checking a billion cases per sec-
ond, such an analysis would take many 
times the age of the universe.

Alloy therefore does not perform an 
explicit search, but instead translates 
the design problem to a satisfiability 
problem whose variables are not rela-
tions but simple bits. By flipping bits 
individually, a satisfiability (SAT) solver 
can usually find a solution (if there is 
one) or show that none exists by exam-
ining only a tiny portion of the space.

Alloy’s analysis tool is essentially a 
compiler to SAT, which allows it to ex-
ploit the latest advances in SAT solvers. 
The success of SAT solvers has been a 
remarkable story in computer science—
theoreticians had shown that SAT was 
inherently intractable, but it turned out 
that most of the cases that appeared in 
practice could be solved efficiently. So 
SAT went from being the archetypal in-
soluble problem used to demonstrate 
the infeasibility of other problems to 
being a soluble problem that other prob-
lems could be translated to. Alloy also 
applies a variety of tactics to reduce the 
problem prior to solving, most notably 
adding symmetry breaking constraints 
that save the SAT solver from consider-
ing cases equivalent to one another.

Example: Modeling Origins
To see Alloy in action, let’s explore the 
design of an origin-tracking mechanism 
for Web browsers. The model shown 
here is a toy version of a real model that 
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model itself; and, 
˲˲ An abstract style of modeling that 

includes only those aspects essential to 
the problem at hand.

We start by declaring a collection of 
signatures (as illustrated in Figure 1). 
A signature introduces a set of objects 
and some fields that relate them to oth-
er objects. So Server, for example, will 
represent the set of server nodes, and 
has a field causes that associates each 
server with the set of HTTP events that 
it causes.

Keywords (or their omission) indi-
cate the multiplicity of the relations 
between objects: thus each HTTP event 
has exactly one from endpoint, one to 
endpoint, and one origin endpoint (line 
7); each request has at most one re-
sponse (line 10, with lone being read as 
“less than or equal to one”); and each 
response embeds any number of re-
quests (line 13).

Mathematically speaking, objects 
are just atomic identifiers without any 
internal structure. The causes relation 
includes tuples of the form (s, e) where 

the value of s is some atomic identifier 
representing a server object, and the 
value of e is some atomic identifier rep-
resenting an event.

Fields are declared in signatures to 
allow a kind of object-oriented mind-
set. Alloy supports this by resolving field 
names contextually (so that field names 
need not be globally unique), and by al-
lowing “signature facts” (not used here) 
that are implicitly scoped over the ele-
ments of a signature and their fields. 
But don’t be misled into thinking there 
is some kind of fancy object semantics 
here. The signature structure is only a 
convenience, and just introduces a set 
and some relations.

The extends keyword defines one 
signature as a subset of another. An 
abstract signature has no elements 
that do not belong to a child signa-
ture, and the extensions of a signature 
are disjoint. So the declarations of 
EndPoint, Server, and Client imply the 
set of endpoints is partitioned into 
servers and clients: no server is also a 
client, and there is no endpoint that 
is neither client nor server. A relation 
defined over a set applies over its sub-
sets too, so the declaration of from, for 
example, which says that every HTTP 
event is from a single endpoint, implies 
the same is true for every request and 
response. (Alloy is best viewed as un-
typed. It turns out that conventional 
programming language types are far 
too restrictive for a modeling lan-
guage. Alloy thus allows expressions 
such as HTTPEvent.response, denoting 
the set of responses to any events, but 
its type checker rejects an expression 
such as Request.embeds that always 
denotes an empty set.12)

The Alloy Analyzer can generate a 
graphical representation of the sets 
and relations from the signature decla-
rations (see Figure 2); this is just an al-
ternative view and involves no analysis.

Moving to the substance of what the 
model actually means:

˲˲ The from and to fields are just the 
source and destination of the event’s 
packet.

˲˲ For a response r, the expression 
r.embeds denotes a set of requests that 
are embedded as JavaScript in the re-
sponse; when that response is loaded 
into the browser, the requests are ex-
ecuted spontaneously.

˲˲ A Redirect is a special kind of re-

would be labeled as having this other 
origin. The target server can be configured 
so it only accepts requests that originate 
directly from the user (for example, by 
the user entering the URL for the request 
in the address bar), or from the target 
server itself (for example, from a script 
embedded in a page it previously sent). 
As always, the devil is in the details, and 
we shall see that a plausible design of 
this mechanism turns out to be flawed.

Some features to look out for in this 
model, which distinguish Alloy from 
many other approaches, include:

˲˲ A rich structure of objects, classifi-
cation, and relationships;

˲˲ Constraints in a simple logic that 
exploits the relations and sets of the 
structure, avoiding the kind of low-lev-
el structures (arrays and indices espe-
cially) that are often required in model 
checkers;

˲˲ Capturing dynamic behavior with-
out any need for a built-in notion of 
time or state;

˲˲ Intended properties to check ex-
pressed in the same language as the 

Figure 2. Data model from declarations.
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from that server, or is embedded in a 
response that the server causes.

˲˲ The Origin fact describes the ori-
gin-tracking mechanism. Each con-
straint defines the origin of a differ-
ent kind of HTTP event. The first (line 
31) says that every embedded request 
e has the same origin as the response 
r that it is embedded in. The second 
(line 32) defines the origin of a re-
sponse: it says if the response is a redi-
rect, it has the same origin as the orig-
inal request, and otherwise its origin 
is the server that the response came 
from. The third (line 33) handles a re-
quest that is not embedded: its origin 
is the endpoint it comes from (which 
will usually be the browser).

Finally, EnforceOrigins is a predicate 
that can be applied to a server, indicat-
ing that it chooses to enforce the origin 
header, allowing incoming requests 
only if they originate at that server, or 
at the client that sent the request.

With all this in place—the struc-
ture of endpoints and messages, the 
rules about how origins are computed 
and used, and the definition of causal-
ity—we can define a design property to 
check (as illustrated in Figure 4).

The keyword check introduces a 
command that can be executed. This 
command instructs the Alloy Analyzer 
to search for a refutation for the given 
constraint. In this case, the constraint 
asserts the nonexistence of a cross-
site request forgery attack; refuting 

sponse that indicates that a resource 
has moved, and spontaneously issues 
a request to a different server; this sec-
ond request is modeled as an embed-
ded request in the redirect response. 

˲˲ The origin of an event is a notion 
computed by the browser as a means of 
preventing cross-site attacks. As we will 
see later, the idea is that a server may 
choose to reject an event unless it origi-
nated at that server or at a browser.

˲˲ The cause of an event is not part 
of the actual state of the mechanism. 
It is introduced in order to express the 
essential design property: that an evil 
server cannot cause a client to send a 
request to a good server.

Now let’s look at the constraints 
(as shown in Figure 3). If there were 
no constraints, any behavior would be 
possible; adding constraints restricts 
the behavior to include only those that 
are intended by design.

The constraints are grouped into 
separate named facts to make the mod-
el more understandable:

˲˲ The Directions fact contains two 
constraints. The first says that every re-
quest is from, and every response is to, 
a client; the second says that every re-
quest is to, and every response is from, 
a server. These kinds of constraints can 
be written in many ways. Here I have 
chosen to use expressions denoting 
sets of endpoints—for example, Re-
quest.from for the set of endpoints that 
requests are from, but could just as 
well have written a constraint like:

from in
Request -> Client + Response -> Server

to say the from relation maps requests 
to clients and responses to servers. Or 
in a more familiar but less succinct 
style, we could have used quantifiers:

all r: Request | r.from in Client
all r: Response | r.from in Server

(constraining only the range of the re-
lations, which is sufficient in this case 
since the declarations already con-
strain their domains).

˲˲ The RequestResponse fact defines 
some basic properties of how re-
quests and responses work: that every 
response is associated with exactly 
one request (line 22); that every re-
sponse is to the endpoint its request 

was from, and from the endpoint its 
request was to (line 23); and that a 
request cannot be embedded in a re-
sponse to itself (line 24). Two expres-
sions in these constraints merit ex-
planation. The expression response.r 
exploits the flexibility of the join op-
erator to navigate backward from the 
response r to the request it responds 
to; it could equivalently be written 
r.~response using the transpose op-
erator ~. The expression r.^(response.
embeds) starts with the request r, and 
then applies to it one or more naviga-
tions (using the closure operator )̂ of 
following the response and mbeds re-
lations, as if we had written instead 
the infinite expression

r.response.embeds
+ r.response.embeds 
       .response.embeds
+ r.response.embeds 
        .response.embeds
        .response.embeds
+ …

defining the requests embedded in the 
response to r, the requests embedded 
in the response to the requests em-
bedded in the response to r, and so on. 
(Equivalently, r.̂ p is the set of nodes 
reachable from r in the graph whose 
edges correspond to the relation p.)

˲˲ The Causality fact defines the 
causes relation. It says that an event 
is caused by a server if and only if it is 

Figure 3. Fact and predicate declarations.

17   fact Directions {
18            Request.from + Response.to in Client
19            Request.to + Response.from in Server
20            }

21   fact RequestResponse {
22           all r: Response | one response.r
23           all r: Response | r.to = response.r.from and r.from = response.r.to
24           all r: Request | r not in r.^(response.embeds)
25            } 

26   fact Causality {
27            all e: HTTPEvent, s: Server | e in s.causes iff 
28                      e.from = s or some r: Response | e in r.embeds and r in s.causes
29            }

30   fact Origin {
31            all r: Response, e: r.embeds |  e.origin = r.origin
32            all r: Response | r.origin = (r in Redirect implies response.r.origin else r.from)
33            all r: Request | no embeds.r implies r.origin in r.from
34            }

35   pred EnforceOrigins (s: Server) {
36            all r: Request | r.to = s implies r.origin = r.to or r.origin = r.from
37            }
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(with a 2.6GHz i7 processor and 16GB 
of RAM).

The counterexample can be dis-
played in various ways—as text, a table, 
or a graph whose appearance can be 
customized. I’ve chosen the graph op-
tion, and have selected which objects 
are to appear as nodes (just the events 
and the servers), which relations are to 
appear as edges (those between events, 
and causes), and I’ve picked colors for 
the sets and relations. I have also cho-
sen to use the Skolem constants (wit-
nesses that the analyzer finds for the 
quantified variables) good and bad to 
label the servers.

Reading the graph from the top, 
looking just at the large rectangles 
representing the HTTP events, we see 
a request (Req1) was sent from a cli-
ent to the good server. The response 
(Resp) embeds a request (Req0) that is 
sent to the bad server; this is a cross-
site request, which will not be rejected 
because the bad server accepts incom-
ing requests irrespective of origin. The 
bad server’s response is to send a redi-

rect whose embedded request (Req2) is 
received by the good server. (Note that 
the numbering of objects is arbitrary: 
Req1 actually happens before Req0.)

Looking at the server nodes and the 
events they cause, we see that, as expect-
ed, the good server caused the response 
to the first request, and the bad server 
caused the redirect and its subsequent 
embedded request. The problem is the 
mismatch between cause and origin in 
the last request (Req2): we can see that it 
was caused by the bad server, but it was 
labeled as originating at the good serv-
er. In other words, the origin tracking 
design is allowing a cross-site request 
forgery by incorrectly identifying the 
origin of the request in the redirect.

The solution to this problem turns 
out to be non-trivial. Updating the ori-
gin header after each redirect would 
fail for websites that offer open redirec-
tion; a better solution is to list a chain 
of endpoints in the origin header.1

Agile Modeling
As mentioned earlier, our model is rep-
resentative of many Alloy models. But 
the way I presented it was potentially 
misleading. In practice, users of Alloy 
don’t construct a model in its entirety 
and then check its properties. Instead, 
they proceed in a more agile way, grow-
ing the model and simulating and 
checking it as they go.

Take, for example, the constraint on 
line 24 of Figure 3. Initially, I had not 
actually noticed the need for this con-
straint. But when I ran the check for 
the first time (without this constraint), 
the analyzer presented me with coun-
terexamples such as the one shown in 
Figure 6, in which the response to a re-
quest is the very response in which the 
request is embedded!

One way to build a model exploiting 
Alloy’s ability to express and analyze 
very partial models is to add one con-
straint at a time, exploring its effect. 
You do not need a property to check; 
you can just ask for an instance of the 
model satisfying all the constraints.

Doing this even before any explicit 
constraints have been included is very 
helpful. You can run just the data mod-
el by itself and see a series of instances 
that satisfy the constraints implicit 
in the declarations. Often doing this 
alone exposes some interesting issues. 
In this case, the first few instances in-

this will show that the origin mecha-
nism is not designed correctly, and an 
attack is possible.

The constraint says that there are no 
two servers, good and bad, such that the 
good server enforces the origin header 
(line 40), there are no requests sent di-
rectly to the bad server that originate 
in the client (line 41), and yet there is 
some request to the good server that 
was caused by the bad server (line 42).

Analysis Results: Finding Bugs
The Alloy Analyzer finds a counterex-
ample (see Figure 5) almost instanta-
neously—in 30ms on my 2012 MacBook 

Figure 4. Check command.

38   check {
39             no good, bad: Server {
40                       good.EnforceOrigins
41                       no r: Request | r.to = bad and r.origin in Client
42                       some r: Request | r.to = good and r in bad.causes
43              }
44   } for 5

Figure 5. Counterexample for check of 
Figure 4.

Req1
from: Client
origin: Client

to: Server0 ($good)

Resp
from: Server0 ($good)
origin: Server0 ($good)

to: Client

Req0
from: Client

origin: Server0 ($good)
to: Server1 ($bad)

Req2
($r)

from: Client
origin: Server0 ($good)

to: Server0 ($good)

Redirect
from: Server1 ($bad)

origin: Server0 ($good)
to: Client

Server1
($bad)

Server0
($good)

response

embeds

embeds

causes

response causes

causes

Figure 6. A bogus counterexample.

Server
($bad, $good)

Resp
from: Server ($bad, $good)
origin: Server ($bad, $good)

to: Client

Req
($r)

from: Client
origin: Server ($bad, $good)

to: Server ($bad, $good)

response

embeds

causes

causes
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arate, for example, the constraints that 
model the setting and checking of the 
origin field from those that describe 
what kinds of requests and responses 
are possible.

Obviously, the less you assume 
about the environment, the better, 
since every assumption you make is a 
risk (as it may turn out to be untrue). 
In our model, for example, we do not 
require every request to have a re-
sponse. It would be easy to do—just 
change the declaration of response 
in line 10 of Figure 1 by dropping the 
lone keyword—but would only make 
the result of the analysis less general. 
Likewise, the less you constrain the 
mechanism, the better. Allowing mul-
tiple behaviors gives implementation 
freedom, which is especially impor-
tant in a distributed setting.

Simulation matters for a more 
profound reason. Verification—that 
is, checking properties—is often 
overrated in its ability to prevent 
failure. As Christopher Alexander 
explains,2 designed artifacts usually 
fail to meet their purposes not be-
cause specifications are violated but 
because specifications are unknown. 
The “unknown unknowns” of a soft-
ware design are invariably discovered 
when the design is finally deployed, 
but can often be exposed earlier by 
simulation, especially in the hands 
of an imaginative designer.

Verification, in contrast, is too nar-
rowly focused to produce such discover-
ies. This is not to say property checking 
is not useful—it’s especially valuable 
when a property can be assured with 
high confidence using a tool such as 
Alloy or a model checker or theorem 
prover (rather than by testing). But 
its value is always contingent on the 
sufficiency of the property itself, and 

clude examples with no HTTP events, 
and with requests and responses that 
are disconnected.

To get more representative in-
stances, you can specify an additional 
constraint to be satisfied. For example, 
the command 

run (some response)

will show instances in which the re-
sponse relation has some tuples. The 
first one generated (Figure 7) shows 
a request with a response that is a re-
direct from the same source as the 
request, and sent to an endpoint that 
is also its origin, and it includes an 
orphaned redirect unrelated to any re-
quest! These anomalies immediately 
suggest enrichments of the model.

When we developed Alloy, we un-
derestimated the value of this kind of 
simulation. As we experimented with 
Alloy, however, we came to realize 
how helpful it is to have a tool that can 
generate provocative examples. These 
examples invariably expose basic mis-
understandings, not only about what’s 
being modeled but also about which 
properties matter. It’s essential that 
Alloy provides this simulation for free: 
in particular, you do not need to for-
mulate anything like a test case, which 
would defeat the whole point.

Growing a model in a declarative 
language like Alloy is very different 
from growing a program in a conven-
tional programming language. A pro-
gram starts with no behaviors at all, 
and as you add code, new behaviors 
become possible. With Alloy, it’s the 
opposite. The empty model, since it 
lacks any constraints, allows every pos-
sible behavior; as you add constraints, 
behaviors are eliminated.

This allows a powerful style of in-
cremental development in which you 
only add constraints that are abso-
lutely essential for the task at hand—
whether that is eliminating patho-
logical cases or ensuring a design 
property holds.

Typically a model includes both 
a description of the mechanism be-
ing designed and some assumptions 
about the environment in which it op-
erates. Our example model does not 
separate these rigorously, but where 
brevity is not such a pressing concern, 
it would be wise to do so. We could sep-

Like the class 
diagrams of UML, 
Alloy makes it easy 
to describe  
a universe  
of objects as  
a classification tree, 
with each relation 
defined over  
nodes in this tree.

Figure 7. A simulated instance.

Req
from: Client1
origin: Client0

to: Client1

Redirect1
from: Client1
origin: Client0

to: Client0

Redirect0
from: Client1
origin: Client0

to: Client0

response



74    COMMUNICATIONS OF THE ACM    |   SEPTEMBER 2019  |   VOL.  62  |   NO.  9

contributed articles

Web security mechanisms, and then 
analyzed five different mechanisms, 
including: WebAuth, a Web-based au-
thentication protocol based on Ker-
beros deployed at several universities 
including Stanford; HTML5 forms; 
the Cross-Origin Resource Sharing 
protocol; and proposed designs for 
using the referrer header and the ori-
gin header to foil cross-site attacks 
(of which the last is the basis for the 
example here). The base library was 
written in 2,000 lines of Alloy; the vari-
ous mechanisms required between 20 
and 214 extra lines; and every bug was 
found within two minutes and a scope 
of 8. Two previously known vulnerabil-
ities were confirmed by the analysis, 
and three new ones discovered.

Memory models. John Wickerson 
and his colleagues have shown that 
four common tasks in the design of 
memory models—generating confor-
mance tests, comparing two memory 
models, checking compiler optimiza-
tions, and checking compiler map-
pings—can all be framed as constraint 
satisfaction problems in Alloy.41 They 
were able to reproduce automatically 
several results for C11 (the memory 
model introduced in 2011 for C and 
C++) and common compiler optimiza-
tions associated with it, for the mem-
ory models of the IBM Power and Intel 
x86 chips, and for compiler mappings 
from OpenCL to AMD-style GPUs. 
They then used their technique to de-
velop and check a new memory model 
for Nvidia GPUs.

Code verification. Alloy can also be 
used to verify code by translating the 
body of a function into Alloy, and ask-
ing it to find a behavior of the func-
tion that violates its specification. 
Greg Dennis built a tool called Forge 
that wraps Alloy so it can be applied 
directly to Java code annotated with 
JML specifications. In a case study 
application,10 he checked a variety of 
implementations of the Java collec-
tions list interface, and found bugs 
in one (a GNU Trove implementa-
tion). Dennis also applied his tool 
to KOA, an electronic voting system 
used in the Netherlands that was an-
notated with JML specifications and 
had previously been analyzed with 
a theorem-proving tool, and found 
several functions that did not satisfy 
their specifications.11

techniques that help you explore prop-
erties have an important role to play.

Uses of Alloy
Hundreds of papers have reported on 
applications of Alloy in a wide variety 
of settings. Here are some examples 
to give a better idea of how Alloy has 
been used:

Critical systems. A team at the Uni-
versity of Washington constructed a 
dependability case18 for a neutron radio-
therapy installation. The team devised an 
ingenious technique for verifying prop-
erties of code against specifications us-
ing lightweight, pluggable checkers. 
The end-to-end dependability case 
was assembled in Alloy from the code 
specifications, properties of the equip-
ment and environment, and the ex-
pected properties, and then checked 
using the Alloy Analyzer. The analysis 
found several safety-critical flaws in 
the latest version of the control soft-
ware, which the researchers were able 
to correct prior to its deployment. For 
a full description, see a recent research 
report30 and additional information on 
the project’s website.36

Network protocols. Pamela Zave, a 
researcher at AT&T, has been using Al-
loy for many years to construct and ana-
lyze models of networking as well as 
for designing a new unifying network 
architecture. In a major case study, 
she analyzed Chord, a distributed hash 
table for peer-to-peer applications. The 
original paper on Chord33—one of the 
most widely cited papers in computer 
science—notes that an innovation of 
Chord was its relative simplicity, and 
consequently the confidence users 
can have in its correctness. By model-
ing and analyzing the protocol in Al-
loy, Zave showed that the Chord pro-
tocol was not, in fact, correct, and she 
was able to develop a fixed version that 
maintains its simplicity and elegance 
while guaranteeing correct behav-
ior.43 Zave also used the explicit model 
checker SPIN14 in this work, and wrote 
an insightful article explaining the rela-
tive merits of the two tools, and how she 
used them in tandem.42

Web security. The demonstration ex-
ample of this article is drawn from 
a real study performed by a research 
group at UC Berkeley and Stanford.1 The 
group constructed a library of Alloy 
models to capture various aspects of 

As we experimented  
with Alloy,  
we came to realize 
how helpful  
it is to have  
a tool that can  
generate 
provocative 
examples.
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No extension of Alloy, however, has yet 
addressed the problem of combining 
Alloy’s capacity for structural analysis 
with the ability of traditional model 
checkers to explore long traces, so Al-
loy analyses are still typically limited to 
short traces.

Instance generation. The result of 
an Alloy analysis is not one but an 
entire set of solutions to a constraint-
solving problem, each of which rep-
resents either a positive example of 
a scenario, or a negative example, 
showing how the design fails to meet 
some property. The order in which 
these appear is somewhat arbitrary, 
being determined both by how the 
problem is encoded and the tactics 
of the backend SAT solver. Since SAT 
solvers tend to try false before true 
values, the instances generated tend 
to be small ones—with few nodes and 
edges. This is often desirable, but is 
not always ideal. Various extensions 
to the Alloy Analyzer provide more 
control over the order in which in-
stances appear. Aluminum28 presents 
only minimal scenarios in which ev-
ery relation tuple is needed to satisfy 
the constraints, and lets the user add 
new tuples, automatically compen-
sating with a (minimal) set of addi-
tional tuples required for consistency. 
Amalgam27 lets users ask about the 
provenance of an instance, indicating 
which sub formula is responsible for 
requiring (or forbidding) a particular 
tuple in the instance. Another exten-
sion21 of the Alloy Analyzer generates 
minimal and maximal instances, and 
choosing a next instance that is as 
close to, or as far away from, the cur-
rent instance as possible.

Better numerics. Alloy handles nu-
merical operations by treating num-
bers as bit strings. This has the ad-
vantage of fitting into the SAT solving 
paradigm smoothly, and it allows a 
good repertoire of integer operations. 
But the analysis scales poorly, making 
Alloy unsuitable for heavily numeric 
applications. The finite scopes of Alloy 
can also be an issue when a designer 
would like numbers to be unbounded. 
A possible solution is to replace the 
SAT backend with an SMT backend 
instead. This is challenging because 
SMT solvers have not traditionally 
supported relational operators. Nev-
ertheless, a team at the University of 

Civil engineering. In one of the 
more innovative applications of Alloy, 
John Baugh and his colleagues have 
been applying Alloy to problems in 
large-scale physical simulation. They 
designed an extension to ADCIRC—
an ocean circulation model widely 
used by the U.S. Army Corps of Engi-
neers and others for simulating hur-
ricane storm surge—that introduces a 
notion of subdomains to allow more 
localized computation of changes 
(and thus reduced overall computa-
tional effort). Their extension, which 
has been incorporated into the of-
ficial ADCIRC release, was modeled 
and verified in Alloy.7

Alloy as a backend. Because Alloy 
offers a small and expressive logic, 
along with a powerful analyzer, it has 
been exploited as a backend in many 
different tools. Developers have often 
used Alloy’s own engine, Kodkod,34 
directly, rather than the API of Alloy 
itself, because it offers a simpler pro-
grammatic interface with the ability 
to set bounds on relations, improv-
ing performance. Jasmin Blanchette’s 
Nitpick tool,8 for example, uses Kod-
kod to find counterexamples in Isa-
belle/HOL, saving the user the trouble 
of trying to prove a theorem that is not 
true, and the Margrave tool26 analyzes 
firewall configurations. Last year, a 
team from Princeton and Nvidia built 
a tool that uses Alloy to synthesize se-
curity attacks that exploit the Spectre 
and Meltdown vulnerabilities.35

Teaching. Alloy has been widely 
taught in undergraduate and gradu-
ate courses for many years. At the Uni-
versity of Minho in Portugal, Alcino 
Cunha teaches an annual course on 
formal methods using Alloy, and has 
developed a Web interface to present 
students with Alloy exercises (which 
are then automatically checked). At 
Brown University, Tim Nelson teaches 
Logic for Systems, which uses Alloy 
for modeling and analysis of system 
designs, and has become one of the 
most popular undergraduate classes. 
Because the Alloy language is very 
close to a pure relational logic, it has 
also been popular in the teaching of 
discrete mathematics, for example, in 
a course that Charles Wallace teaches 
at Michigan Technological Univer-
sity38 and appearing as a chapter in a 
popular textbook.15

Alloy Extensions
Many extensions to Alloy—both to 
the language and to the tool—have 
been created. These offer a variety of 
improvements in expressiveness, per-
formance, and usability. For the most 
part, these extensions have been mu-
tually incompatible, but a new open 
source effort is now working to consoli-
date them. There are too many efforts 
to include here, so I focus on represen-
tatives of the main classes.

Higher-order solving. The Alloy Ana-
lyzer’s constraint-solving mechanism 
cannot handle formulas with universal 
quantifications over relations—that 
is, problems that reduce to “find some 
relation P such that for every relation 
Q …” This is exactly the form that many 
synthesis problems take, in which the 
relation P represents a structure to be 
synthesized, such as the abstract syn-
tax tree of a program, and the relation 
Q represents the state space over which 
certain behaviors are to be verified. Al-
loy*24 is an extension of Alloy that can 
solve such formulas, by generalizing a 
tactic known as counterexample-guid-
ed inductive synthesis that has been 
widely used in synthesis engines.

Temporal logic. Alloy has no built-in 
notion of time or dynamic behavior. 
On the one hand, this is an asset, be-
cause it keeps the language simple, 
and allows it to be used very flexibly. 
I exploited this in the example model 
here, where the flow of time is cap-
tured in the response relation that 
maps each request to its response. By 
adding a signature for state, Alloy sup-
ports the specification style common 
in languages such as B, VDM, and Z; 
and by adding a signature for events, 
Alloy allows analysis over traces that 
can be visualized as a series of snap-
shots. On the other hand, it would 
often be preferable to have dynamic 
features built into the language. Elec-
trum20 extends Alloy with a keyword 
var to indicate that a signature or field 
has a time-varying value, and with 
the quantifiers of linear temporal 
logic (which fit elegantly with Alloy’s 
traditional quantifiers). DynAlloy31 
offers similar functionality, but us-
ing dynamic logic instead, and is the 
basis of an impressive code analysis 
tool called TACO13 that outperforms 
Forge (mentioned earlier) by employ-
ing domain-specific optimizations. 
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to write it; and to Devdatta Akhawe, 
Adam Barth, Peifung E. Lam, John 
Mitchell, and Dawn Song, whose work 
formed the basis of the example used 
in the article. Thank you also to the 
many members of the Alloy communi-
ty who have contributed to Alloy over 
the years.	
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Iowa has recently extended CVC4, a 
leading SMT solver, with a theory of 
finite relations, and has promisingly 
demonstrated its application to some 
Alloy problems.23

Configurations. Many Alloy models 
contain two loosely coupled parts, 
one defining a configuration (say of a 
network) and the other the behavior 
(say of sending packets). By iterating 
through configurations and analyzing 
each independently, one can often 
dramatically reduce analysis time.22 
In some applications, a configuration 
is already fully or partially known, and 
the goal is to complete the instance—
in which case searching for the con-
figuration is a wasted effort. Kodkod, 
Alloy’s engine, allows the explicit def-
inition of a “partial instance” to sup-
port this, but in Alloy itself, this no-
tion is not well supported (and relies 
on a heuristic for extracting partial 
instances from formulas in a certain 
form). Researchers have therefore 
proposed a language extension25 to 
allow partial instances to be defined 
directly in Alloy itself.

How to Try Alloy
The Alloy Analyzer3 is a free down-
load available for Mac, Windows, 
and Linux. The Alloy book16 provides 
a gentle introduction to relational 
logic and to the Alloy language, gives 
many examples of Alloy models, and 
includes a reference manual and a 
comparison to other languages (both 
of which are available on the book’s 
website17). The Alloy community 
answers questions tagged with the 
keyword alloy on StackOverflow, and 
hosts a discussion forum.5 A variety of 
tutorials for learning Alloy are avail-
able online too, as well as blog posts 
with illustrative case studies and 
examples (for example, Kriens19 
and Wayne40). The model used in 
this article is available (along with 
its visualization theme) in the Alloy 
community’s model repository.4
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