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Abstract— This work presents a generalization of classical
factor analysis (FA). Each of M channels carries measurements
that share factors with all other channels, but also contains
factors that are unique to the channel. Furthermore, each channel
carries an additive noise whose covariance is diagonal, as is
usual in factor analysis, but is otherwise unknown. This leads
to a problem of multi-channel factor analysis with a specially
structured covariance model consisting of shared low-rank com-
ponents, unique low-rank components, and diagonal components.
Under a multivariate normal model for the factors and the noises,
a maximum likelihood (ML) method is presented for identifying
the covariance model, thereby recovering the loading matrices
and factors for the shared and unique components in each of
the M MIMO channels. The method consists of a three-step
cyclic alternating optimization. Two of the steps have closed-
form solutions, and the other is an Expectation-Maximization
(EM) step. Numerical results demonstrate the performance of the
proposed algorithm and its application passive radar application.

Index Terms— Detection, expectation-maximization (EM) al-
gorithm, factor analysis (FA), maximum likelihood (ML), multi-
channel factor analysis (MFA), multiple-input multiple-output
(MIMO) channels, multivariate normal (MVN) model, passive
radar.

I. INTRODUCTION

Classical factor analysis (FA) was pioneered by Spearman
in his seminal paper [1]. Spearman and others applied FA
to problems in psychology, and especially to the analysis of
the correlation of children’s scores across different academic
subjects. Later, with the work of Lawley, Anderson, and
others [2]–[4], a more rigorous approach was developed, which
made FA a well-established technique in multivariate statistics.
FA now finds many applications in science and engineering.

D. Ramı́rez is with the Department of Signal Theory and Commu-
nications, University Carlos III of Madrid, Leganés, Spain and with
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For instance, in the field of array signal processing, FA has
been applied to radio astronomy [5], [6], cognitive radio [7],
direction-of-arrival estimation [8]–[10], modal analysis [11],
[12], and detection or source enumeration [13]–[16].

In the classical FA model, measurements in a single MIMO
channel are modeled as a set of unknown factors scaling
the modes of an unknown factor loading matrix, plus a
multivariate normal noise of unknown, but diagonal, covari-
ance. The factors are typically treated as multivariate normal,
with identity covariance, so that the net effect is to posit a
multivariate normal measurement with a structured covariance
consisting of an unknown low-rank component to account
for the factor loadings plus an unknown diagonal matrix to
account for the additive noise. Thus, in second-order FA, the
problem is to estimate a low-rank plus diagonal covariance
matrix from several multivariate observations. This model has
been recently extended in [17] to consider more complicated
covariance structures, i.e., not diagonal, but this structure needs
to be sparse and known. Common estimation approaches for
the FA model are based on the maximum likelihood (ML)
criterion. Unfortunately, even under the Gaussian assumption,
the maximization problem has no closed-form solution and
numerical methods must be employed. A convergent numerical
procedure for obtaining the maximum likelihood estimates
was first given by Joreskog [18], [19] (cf. Chapter 9 in
[3]). Other optimization approaches have been investigated
for this problem, ranging from steepest descent [4] and al-
ternating optimization methods [7], [20], [21], to Expectation-
Maximization algorithms [22], [23].

The problem of FA analysis has been extended to multiple
channels of multivariate observations. To the best of our
knowledge, the first generalization was developed by Tucker
[24], where he proposed the so-called inter-battery FA. In
this work, the observations of two channels are composed
by linear combinations of common factors and independent
noises without a particular covariance structure. Additionally,
he derived an estimation algorithm based on the least squares
(LS) criterion, which was later related to canonical correlation
analysis (CCA) by Browne [25]. The works in [26], [27]
extend the inter-battery FA model to more than two channels.

The recent work in [17] also proposes a different gen-
eralization of FA to several channels, which assumes that
the factors at each channel are independent, but the noise
covariance matrix is common. Moreover, the number of factors
in each channel may be different. A different generalization
is presented in [28], and termed group factor analysis (GFA).
In GFA, the factors may be common to all channels or to a
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subset of them. Other work related to multi-channel factor
analysis includes the parallel factor (PARAFAC) analysis
model [29] and independent vector analysis (IVA) [30]. Our
model for the channel covariance differs significantly from
the channel covariance in the PARAFAC model [29]. The
multiple channels (i.e., the third dimension in the three-way
array) of PARAFAC are obtained from displaced but otherwise
identical subarrays, which induces a shift-invariant structure in
the loading matrices of the common factors. Further, the noise
covariance model in [29] is white. Our model is different is
several aspects, namely, we never have rotational invariance,
we have both common and unique (or channel-specific) fac-
tors, and our model for the noise covariance is diagonal with
unknown variances. The standard model in independent vector
analysis (IVA) accounts for the dependence of a set of common
sources or factors observed through several mixing matrices,
but it does not consider channel specific factors or spatially
correlated noises [30].

This paper extends the inter-battery FA model to more
than two channels and to noise covariance structures that
account for additive noise and unique channel factors, which
are missing in the original inter-battery analysis of Tucker.
This new model is particularly relevant for passive radar since
it accounts for leakage of a reference channel transmission
into the surveillance channel [21].

The iterative procedure to obtain the maximum likelihood
estimates of the multi-channel FA model developed in this
paper bears resemblance to ML estimation in the FA model,
where there also does not exist a closed-form solution. The
iterative procedure consists of three steps. In the first step, a
closed-form solution for the loading matrices of the common
factors is found. In the second step, one iteration of an EM
algorithm returns an estimate of the loading matrices for
the uncommon factors. The third step returns a closed-form
solution for the estimate of the diagonal noise covariance
matrices. We prove that this algorithm converges to a local
maximum of the likelihood and demonstrate its performance
on several illustrative problems.

A. Outline

The outline of this paper is as follows: Section II summa-
rizes the classical FA model, as well as an ML estimation
procedure based on an alternating optimization approach.
A brief introduction to inter-battery FA and the proposed
generalization are presented in Section III. This section also
describes the ML estimation of the unknown parameters. The
alternating optimization ML algorithm is derived in Section
III-B. Finally, in Section IV the performance of the proposed
method is illustrated by means of numerical simulations, and
the main conclusions are summarized in Section V.

B. Notation

In this paper, matrices are denoted by bold-faced upper
case letters, bold-faced lower case letters are denoted by
column vectors, and scalars are denoted by light-face lower
case letters. The superscript (·)T denotes transpose, and the
determinant, Frobenius norm and trace of a matrix A are

denoted det(A), ‖A‖F and tr(A), respectively. A real matrix
of dimension M × N is denoted A ∈ RM×N , and x ∈
RM indicates that x is a real vector of dimension M . The
notation x ∼ NM (µ,R) indicates that x is an M -dimensional
Gaussian random vector of mean µ and covariance matrix
R and E[·] represents the expectation operator. The identity
matrix of size L × L is IL, 0M×N denotes the zero matrix
of the dimension M × N . We use A1/2 to denote the sym-
metric square root matrix of the symmetric matrix A. Finally,
diag(A) constructs a diagonal matrix from the diagonal of A,
the operator blkdiag denotes block diagonal concatenation of
matrices, and δ[n] denotes the Kronecker delta.

II. CLASSICAL FA

In single-channel (or classical) factor analysis (FA) [2]–[4],
the real-valued observations x ∈ Rn are modeled as1

x = Hf + e, (1)

where f ∈ Rp contains the p factors, and H ∈ Rn×p is the
factor loading matrix; p is usually much smaller than n. The
n-dimensional noise vector e is typically assumed zero mean,
Gaussian distributed and its components are independent, i.e.,
e ∼ Nn(0,Σ), where the covariance matrix Σ is diagonal.
In classical FA the factors f are assumed to be zero-mean
Gaussian with identity covariance. As a consequence, the
measurements x are zero-mean Gaussian with an n × n
covariance matrix

R = HHT + Σ. (2)

That is, the covariance matrix is a non-negative definite rank-
p matrix plus a diagonal covariance Σ = diag(σ2

1 , . . . , σ
2
n).

The FA model implies that, conditioned on the factors, the
observations are uncorrelated, and hence the common factors
explain all the dependence structure among the observations.

The invariances of this model determine the identifiability
of this second-order model. The covariance model of (1) is
invariant to the transformation H −→ HQγ, f −→ γ−1QT f ,
where Q is any orthogonal matrix, and γ 6= 0. The model
is therefore unique only up to equivalence class of frames
H, denoted by the subspace 〈H〉, which is a point on a
Grassmannian manifold of dimension p. Moreover, any es-
timation procedure provides unique solutions only when the
number of factors p is sufficiently small in comparison to
the dimension of the ambient space. A model is said to be
generically identified if we can find a unique FA factorization
as in (2) for almost every pair of matrices (H,Σ) viewed as
points in a parameter space of dimension (np+ n) [31]. The
non-identifiable models therefore should live in a set of zero
Lebesgue measure. According to this definition, it was proven
in [32] that a necessary and sufficient condition for a FA model
to be generically identified is

(n− p)2 − (n+ p) > 0. (3)

1To simplify the exposition, the case of real-valued channels is consid-
ered throughout this work, but its extension to the complex-valued case is
straightforward.
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Other definitions of identifiability are possible. In [17], a
model is considered identifiable if the corresponding Fisher
information matrix is nonsingular. Using this definition, it
is shown in [17] that (3) is a necessary (but not sufficient)
condition for the uniqueness of the solution.

A. ML estimation in the FA model
Maximum likelihood is the most common principle for

estimation in factor analysis. However, since it is not possible
to find the ML estimates of (H,Σ) in closed form, solutions
based on iterative procedures have been typically proposed.
These include numerical procedures by Joreskog based on
first-order or second-order derivatives [18], [19], alternat-
ing optimization methods [7], [20], [21], and Expectation-
Maximization type algorithms [20], [22], [23].

In our experience, alternating optimization methods are
preferable for moderate-size problems. For instance, the al-
ternating optimization approach in [21] operates as follows.
It starts with the likelihood function for N observations,
x[1], . . . ,x[N ], which is to be maximized with respect to the
factor loading matrix H and the diagonal noise covariance
matrix Σ.

The likelihood of the observations is

l(H,Σ) =
1

(2π)
nN/2

detN/2(R)
exp

[
−N

2
tr(R−1S)

]
, (4)

where

S =
1

N

N∑
n=1

x[n]xT [n], (5)

is the sample covariance matrix. The ML estimation problem
can be re-formulated as

maximize
H,Σ

L (H,Σ) , (6)

where the objective function is

L (H,Σ) = − log det(HHT + Σ)− tr
[
(HHT + Σ)−1S

]
.

There is no closed-form solution to the problem (6), but it
is possible to find a local maximum of likelihood by assuming
Σ known and maximizing with respect to H, then assuming
H known and maximizing with respect to Σ, etc. Concretely,
defining the noise-whitened sample covariance matrix

S̃ = Σ̂−1/2SΣ̂−1/2, (7)

and its eigenvalue decomposition

S̃ = W̃ diag
(
λ̃1, . . . , λ̃n

)
W̃T , (8)

with λ̃i ≥ λ̃i+1, the ML estimate of H is [21]

Ĥ = Σ̂1/2W̃D̃1/2Q, (9)

where Σ̂ is the previous estimate of Σ, D̃ =

diag
(
d̃1, . . . , d̃p, 0, . . . , 0

)
, with d̃i = max(λ̃i − 1, 0),

and Q is any orthogonal matrix. Now, given the above
estimate of H, Ĥ, the ML estimate of Σ is [21]

Σ̂ = diag
(
S− ĤĤT

)
. (10)

Since each step of the above procedure may not decrease
the value of the cost function, this alternating algorithm is
ensured to attain a local maximum of the likelihood.
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Fig. 1: Diagram of the proposed multi-channel factor analysis
model for M = 3 channels. The observations are represented
by xi; The loading matrices for the common factors f and for
the unique factors fi are depicted by Hi (blue) and Gi (green),
respectively; ei is the channel noise, for i = 1, . . . ,M .

III. MULTI-CHANNEL FACTOR ANALYSIS

The first generalization of FA to more than one channel was
introduced by Tucker in the fifties [24]. This generalization,
known as inter-battery FA, aims at extracting factors f com-
mon to two sets of variables (or batteries), and is based on the
generative model

x1 = H1f + e1,
x2 = H2f + e2,

(11)

where the covariance matrices of the noise vectors does not
have any further structure besides being arbitrary positive
definite matrices. In the work of Tucker, a solution is proposed
based on a least squares (LS) criterion, which results in the
singular value decomposition (SVD) of the sample cross-
correlation matrix between the two data sets. Interestingly, a
few decades later, Browne presented a connection between the
inter-battery FA and canonical correlation analysis (CCA) in
[25]. The extension of the inter-battery FA model to more than
two channels was developed in [26], [27].

We propose the following generalization of inter-battery FA
analysis. We consider M ≥ 2 channels with noise covariance
matrices that have further structure to account for the existence
in each channel of a factor component that is unique to the
channel. The generative model is

xi = Hif + Gifi + ei, i = 1, . . . ,M, (12)

where Hi ∈ Rni×p is the loading matrix in channel i for the
common factors f and Gi ∈ Rni×pi is the loading matrix
in channel i for the unique factors fi; ei ∼ Nni

(0,Σi) is
the noise in channel i. This model is illustrated in Fig. 1 for
M = 3. The noise covariance matrices, Σi, are diagonal and
the noises at different channels are uncorrelated: E[eie

T
j ] =

Σiδ[i−j]. Moreover, common and specific factors are uncorre-
lated: E[f fTi ] = 0p×pi

,∀i, and E[fif
T
j ] = 0pi×pj

, for i 6= j.
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In this multi-channel generative model, the common factors
explain the inter-channel dependence structure, whereas the
unique factors explain the intra-channel dependence structure.
Further, conditioned on both the common and unique factors,
the multi-channel observations are uncorrelated. This structure
makes our model different from other multi-channel models
assumed in PARAFAC [29], IVA [30] or multiset CCA [33],
[34].

As with classical FA, only the subspaces 〈H〉 and 〈Gi〉 can
be identified. Thus, without loss of generality, we consider the
factors to be normalized as follows: E[f fT ] = Ip, E[fif

T
i ] =

Ipi
.
Assuming a multivariate normal model for common and

uncommon factors, the composite vector x = [xT
1 · · ·xT

M ]T is
distributed as Nn(0,R) with a structured covariance matrix
that is

R = HHT + E. (13)

Here, the composite loading matrix is H = [HT
1 · · ·HT

M ]T ∈
Rn×p, with n =

∑M
i=1 ni. The common-factors-plus-noise

covariance matrix is

E = GGT + Σ, (14)

where the composite loading matrix for the uncommon factors
and the composite noise covariance matrix are, respectively,

G = blkdiag[G1,G2, . . . ,GM ] (15)

and

Σ = blkdiag[Σ1,Σ2, . . . ,ΣM ]. (16)

In these equations, Gi ∈ Rni×pi and Σi ∈ Rni×ni .
As in single-channel FA, the identification of a MFA model

is not unique without a constraint on the number of parameters
to be identified. In the following, we present a necessary
condition on the largest number of common and specific
factors that yield a unique solution. To do so, we need to count
how many knowns and unknowns the model has. The number
of knowns is given by the number of different elements of the
sample covariance matrix, which are n(n+ 1)/2. The number
of unknowns is slightly more involved to compute. Let us start
with the number of unknowns in Ei, which are those of the
classical FA model, i.e., ni+nipi−pi(pi−1)/2. Finally, since
the number of unknowns in HHT are np − p(p − 1)/2, for
the solution to be unique it is required that

n(n+ 1)

2
− np+

p(p− 1)

2

−
M∑
i=1

(
ni + nipi −

pi(pi − 1)

2

)
> 0. (17)

Additionally, after removing the common factors each single-
channel FA model must be also identifiable, which adds the
following conditions

(ni − pi)2 − (ni + pi) > 0, i = 1, . . . ,M. (18)

A. ML estimation in the MFA model

In this section, we present the ML estimation of the
unknown parameters in the MFA model. In particular, as-
suming that N observations of each channel are available,
xi[1], . . . ,xi[N ], i = 1, . . . ,M , the goal is to estimate the
composite common-factor loading matrix H, the composite
channel-specific loading matrix G, and the composite diagonal
noise covariance matrix Σ that maximize the likelihood.
Hence, the ML estimates of H,G, and Σ are obtained by
solving the maximization problem

maximize
H,G,Σ

L (H,G,Σ) , (19)

where the objective function is

L (H,G,Σ) = − log det(R)− tr
(
R−1S

)
, (20)

with R given in (13) and the sample covariance matrix given
in (5) with the vector of multi-channel observations x[n] =
[xT

1 [n] · · ·xT
M [n]]T .

The maximization problem in (19) does not have a closed-
form solution. In this work, we propose therefore to use
an alternating optimization approach, as described in the
following section.

B. Alternating Optimization Algorithm

We propose a cyclic alternating-optimization algorithm for
maximizing the log-likelihood function in (20). The procedure
applies three steps in a cyclic fashion. At each of the three
steps, a subset of variables is optimized while the remaining
variables are fixed at previously estimated values. The fixed
parameters in each step are denoted with a hat, whereas the
parameters to be optimized are denoted without a hat. That
is, L(H, Ĝ, Σ̂) is the objective function for fixed values of G
and Σ.

a) Step 1: Estimation of H: The first step of the proposed
method consists in estimating H, assuming that G and Σ are
fixed. Thus, the optimization problem is

(P1) maximize
H

L
(
H, Ĝ, Σ̂

)
. (21)

With Σ̂ and Ĝ fixed at their previously estimated values, Ê =
ĜĜT + Σ̂ is fixed. The whitened sample covariance matrix
and its eigenvalue decomposition are

S̃ = Ê−1/2SÊ−1/2 = W̃Λ̃W̃T (22)

where Λ̃ = diag(λ̃1, . . . , λ̃n) with λ̃i ≥ λ̃i+1.
From the original result of Anderson [35], the ML estimate

of H is
Ĥ = Ê1/2W̃D̃1/2Q, (23)

where Q is an arbitrary orthogonal matrix and D̃ =
diag (d1, . . . , dp, 0, . . . , 0), with di = max(λ̃i − 1, 0) and p
the number of common factors. A consequence of this result
is that the value of HHT that maximizes the likelihood is

ĤĤT = Ê1/2W̃D̃W̃T Ê1/2.
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b) Step 2: Estimation of G: In this step the channel-
specific loading matrices, Gi, for fixed H and Σ, are esti-
mated. The optimization problem is

(P2) maximize
G

L
(
Ĥ,G, Σ̂

)
. (24)

There is no closed-form solution to (P2). Thus, we propose
to apply an EM approach that is guaranteed to improve like-
lihood. Interestingly, we will show that the EM step amounts
to removing the loading matrix for the common factors Ĥ
from the corresponding block in the diagonal of the sample
covariance. Then apply Anderson’s result [35].

Here is the idea. After marginalization with respect to the
Gaussian factors f , the second-order MVN model for the mea-
surement x is x ∼ Nn(0,HHT + GGT + Σ). The problem
is to find joint ML estimates for H,G,Σ in this model. We
might say we started with the joint distribution for {X, f}, with
X = [x[1], . . . ,x[N ]] normally distributed, conditioned on f ,
and f normal. The distribution of f is conjugate with respect
to the conditional distribution of X, so the marginalization of
the joint distribution of {X, f} is easy, producing the second-
order normal distribution Nn(0,HHT + GGT + Σ). But the
maximization of the likelihood in this second-order model with
respect to G is intractable, even in an alternating maximization
with H and Σ fixed at their most recent estimates.

So, we replace the model Nn(0,HHT + GGT + Σ)
with the conditional first-order model Nn(Hf ,GGT + Σ),
treating f as an unmeasured random effect, and proceed with
an EM algorithm in this first-order model to actually find
the Ĝ that maximizes likelihood in the second-order model
x ∼ Nn(0,HHT + GGT + Σ), for fixed {H,Σ}.

To this end, let us begin by writing the log-likelihood
function in (24) as

L (G) =
N∑

n=1

log p (x[n]|G) (25)

where we have omitted the notational dependence on Ĥ and
Σ̂, which are considered fixed in this step, and the equality
is up to constant terms that do not modify the optimization
problem. Let us denote the estimate of the loading matrix
for the unique factors obtained in the previous iteration as
Ĝ = blkdiag[Ĝ1, . . . , ĜM ]. The factors f [n] are considered
unmeasured random effects, or hidden data, so the augmented
data is (x[n], f [n]) [20], [22], [23]. For this choice of the
augmented data set, in the E-step of the algorithm we get
a lower-bound on L (G) as

L (G) ≥ Q(G, Ĝ) + const., (26)

where

Q(G, Ĝ) =

N∑
n=1

E [log p (x[n]|f [n],G)] . (27)

The conditional distribution of x[n] given f [n] is

x[n]|f [n] ∼ Nn

(
Ĥf [n],Ψ

)
, (28)

where we have defined Ψ = GGT +Σ̂. Then, the expectation
in (27) becomes (up to constant terms)

E [log p (x[k]|f [k],G)] = −1

2
log det (Ψ)−1

2
x[n]TΨ−1x[n]

+ x[n]TΨ−1Hf̂ [n]− 1

2
tr
(
ĤTΨ−1ĤC[n]

)
, (29)

where
f̂ [n] = E [f [n]|x[n]] = Wx[n], (30)

is the expected value of the factors, which is the minimum
mean squared estimator (MMSE) of f [n] given x[n], and

C[n] = E
[
f [n]f [n]T |x[n]

]
=
(
I + ĤT Ê−1Ĥ

)−1
+ Wx[n]xT [n]WT , (31)

is the second order moment of the factors given the observa-
tions. In (30) and (31) the MMSE matrix W is

W = ĤT
(
ĤĤT + Ê

)−1
, (32)

where
Ê = ĜĜT + Σ̂. (33)

Plugging now (30) and (31) into (27) yields

Q(G, Ĝ) = −N
2

log det (Ψ)

− N

2
tr
[
Ψ−1

((
I− 2ĤW

)
S + ĤC̄ĤT

)]
, (34)

where

C̄ =
1

N

N∑
n=1

C[n] =
(
I + ĤT Ê−1Ĥ

)−1
+ WSWT .

Exploiting the block-diagonal structure of Ψ, Q(G, Ĝ) can
be written as

Q(G, Ĝ) = −N
2

M∑
i=1

[
log det

(
GiG

T
i + Σ̂i

)
+ tr

((
GiG

T
i + Σ̂i

)−1
Ti

)]
, (35)

where Ti is the ith block of the appropriate dimensions in the
diagonal of

T =
(
I− 2ĤW

)
S + ĤC̄ĤT . (36)

The following Lemma allows a further simplification of the
expected log-likelihood function.

Lemma 1: The matrices T =
(
I− 2ĤW

)
S+ĤC̄ĤT and

P = S− ĤĤT are identical.
Proof: Using (23), T can be written as

T = Ê1/2Ŵ∆ŴT Ê1/2, (37)

where
∆ = diag

(
δ1, . . . , δp, λ̃p+1, . . . , λ̃n

)
, (38)
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with δj = min(λ̃j , 1). On the other hand, substituting ĤĤT =
Ê1/2W̃D̃W̃T Ê1/2 into P = S− ĤĤT , we obtain

P = Ê1/2Ŵ
(
Λ̃− D̃

)
ŴT Ê1/2

= Ê1/2Ŵ∆ŴT Ê1/2 = T, (39)

which proves the lemma.

From this result, we finally find that the expected log-
likelihood function can be written as

Q(G, Ĝ) = −N
2

M∑
i=1

log det
(
GiG

T
i + Σ̂i

)
+ tr

[(
GiG

T
i + Σ̂i

)−1
Pi

]
, (40)

and
Pi = Si − ĤiĤ

T
i (41)

where Si is the sample covariance matrix of the ith channel
and Ĥi is the (fixed) loading matrix for the common factors
derived in the previous step.

The interesting point from this derivation is that in the
maximization step, the problem can be decoupled into M
standard FA problems. To obtain the low-rank component of
Si − ĤiĤ

T
i that models the loading matrix for the unique

factors we proceed as follows. The whitened version of Pi is
defined as P̃i = Σ̂

−1/2
i PiΣ̂

−1/2
i , where Σ̂i is the fixed noise

covariance matrix of the ith channel. Using the eigenvalue
decomposition of P̃i, which is given by

P̃i = W̃iΛ̃iW̃
T
i , (42)

where Λ̃i = diag(λ̃i,1, . . . , λ̃i,ni
) with λ̃i,j ≥ λ̃i,j+1, the

value of Gi that optimizes the likelihood is found from the
fundamental result of Anderson [35]:

Ĝi = Σ̂
1/2
i W̃iD̃

1/2
i Qi. (43)

The matrix Qi is an arbitrary orthogonal matrix and D̃i =
diag (di,1, . . . , di,pi , 0, . . . , 0), with di,j = max(λ̃i,j − 1, 0)
and pi the number of specific factors in the ith channel.

c) Step 3: Estimation of Σ: The last step of the proposed
algorithm is to estimate Σ as the solution to the optimization
problem

(P3) maximize
Σ

L
(
Ĥ, Ĝ,Σ

)
. (44)

To solve (P3) we take the constrained gradient of
L(Ĥ, Ĝ,Σ) with respect to Σ, a gradient that takes into
account the diagonal structure of Σ. This gradient can be
found in [4], and is given by

diag
[
R−1 (R− S) R−1

]
. (45)

Now, setting (45) equal to zero, the ML estimate of Σ is the
solution to

diag
[
Σ−1 (R− S) Σ−1

]
= 0, (46)

where we have applied the matrix inversion lemma to R.

Algorithm 1 ML-MFA algorithm.

1: Initialize: k = 0, Σ̂(0) = In and Ĝ
(0)
i = 0ni×pi

2: repeat
3: k = k + 1
4: Step 1: Estimate Ĥ(k) according to (23)
5: Cancel out the effect of the common factors using (41)
6: Step 2: Estimate Ĝ

(k)
i following (43)

7: Step 3: Estimate Σ̂
(k)
i as in (48)

8: until convergence

The solution is

Σ̂ = diag
(
S− ĤĤT − ĜĜT

)
, (47)

or, equivalently,

Σ̂i = diag
(
Pi − ĜiĜ

T
i

)
. (48)

The non-negativity of the diagonal elements of Σ has not
been imposed. However, taking into account the solution for
Ĝ, it is easy to show that the elements of Σ̂i are positive.

C. Initialization and convergence

This algorithm for ML multi-channel Factor Analysis, or
ML-MFA, is initialized at Σ̂(0) = In and Ĝ

(0)
i = 0ni×pi ,

respectively. A smarter initialization of Σ, which could achieve
faster convergence for small signal-to-noise ratios [4], is
Σ̂(0) = diag (S). Then, the ML-MFA algorithm is presented
in Algorithm 1.

In the theorem to follow, Theorem 1, we prove the con-
vergence of the proposed algorithm to a local maximum of
(19).

Theorem 1: Denote by

{Θ̂(k)} = {Ĥ(k), Ĝ(k), Σ̂(k)} (49)

the sequence of solutions generated by Algorithm 1. This
sequence converges to a stationary point Θ̂∗ of (19). That is,
the algorithm converges to a local maximum of the second-
order MVN likelihood function of (19).

Proof: It is easy to see that Problems (P1) and (P3)
have closed-form solutions that do not decrease the value of
the likelihood function. Moreover, [36] shows that, under mild
conditions, a step of the EM algorithm does not decrease
the likelihood. Then, since the set of structured covariance
matrices given by (13) with finite trace is closed and bounded,
and the likelihood function is bounded above, the sequence
{Θ̂(k)} converges to a limit point Θ̂∗, which is a stationary
point of (19).

IV. NUMERICAL RESULTS

A. Demonstrating convergence

In the first example, we demonstrate the convergence of the
proposed alternating optimization method by considering M =
3 channels of dimensions n1 = 20, n2 = 15, and n3 = 10.
The number of observations is N = 100, and the number of
common and unique factors are, respectively, p = 2 and p1 =
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Fig. 2: Convergence of the ML-MFA algorithm.

4, p2 = 3, and p3 = 2. Moreover, the power ratio explained by
the common, unique, and noise components for the ith channel
with respect to the total power are given by

ηc = tr(HiH
T
i )/ tr(Ri) = 0.3, (50)

ηs = tr(GiG
T
i )/ tr(Ri) = 0.3, (51)

ηn = tr(Σi)/ tr(Ri) = 0.4, (52)

where Ri is the covariance matrix of the ith channel:

Ri = HiH
T
i + GiG

T
i + Σi. (53)

Note, that for simplicity, the power ratios for all channels are
identical. It is straightforward to extend the model to unequal
power ratios.

The results for this example are shown in Figure 2, where
the convergence curves for 15 runs of the proposed method
are plotted. The loading and covariance matrices are randomly
generated. That is, the model is different in each run. Conse-
quently the value of likelihood achieved varies from run-to-
run.

B. Estimating the common and unique factors

In the second example, the identification of the composite
covariance matrix for all channels is used in uncoupled MMSE
estimates of common and unique factors:

f̂ [n] = ĤT R̂−1x[n], (54)

f̂i[n] = ĜT
i R̂−1i xi[n], (55)

where R̂i is the ith block of R̂. The results are shown in Figure
3 for an experiment with p = pi = 1 factors, which are now
AR(1) signals,2 and N = 1000. The remaining parameters
of the measurement model are those in the previous example.
Note that in this example p = pi = 1 factors are considered
to avoid the subspace ambiguity, which is now reduced only
to a sign change. As can be seen in Figure 3, the estimated
factors in this scenario are nearly identical to the true factors.

2The temporal correlation induced by the AR(1) model is only used for
visualization purposes and not exploited in the estimation algorithm, which
still considers independent and identically distributed observations.
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Fig. 3: Estimated and true factors.

C. Mean-squared error of the estimated covariance model

The next example compares the performance of the MFA
method and the group factor analysis (GFA) model proposed
in [28]. GFA learns a structured sparse FA model so that the
factor loading matrix is group-wise sparse. Sparsity in GFA is
enforced by assuming independent gamma distributions as the
precision parameter of the prior distribution for the elements
of the loading matrix, and approximate inference is performed
using the mean-field variational approximation. A final point to
mention is that, while MFA needs an estimate of the number of
common and unique factors, GFA only needs to know the total
number of factors, and the variational optimization procedure
finds the most adequate group-wise sparse structure for the
multi-channel loading matrix. As a figure of merit, we use the
normalized mean-squared error in the estimate of R, which is
defined as

NMSE = E


∥∥∥R− R̂

∥∥∥2
F

‖R‖2F

 ,
estimated by averaging 1000 Monte Carlo trials for each value
of N .

We generate data according to the proposed MFA model
with M = 3 channels of dimensions n1 = 20, n2 = 15, and
n3 = 10. The number of common factors is p = 2 and the
number of unique factors in each channel are p1 = 4, p2 = 3,
and p3 = 2. The power ratios are

ηc = 0.3, ηs = 0.3, ηn = 0.4.

Fig. 4 shows the NMSE for the MFA and the GFA models
as a function of the sample size N . For the MFA we use the
correct number of common and unique factors, while for the
GFA we use the correct number of total factors p+ p1 + p2 +
p3 = 11. As Fig. 4 shows, the gain obtained by enforcing the
right sparsity structure in the composite loading matrix (cf.
Fig. 1) increases with the number of samples.

This is admittedly a rigged experiment, as the measurements
are generated from a model matched to the MFA structure
assuming that the exact number of common factors, p, and
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Fig. 4: NMSE in the estimate of R for the MFA and GFA
models.

the exact number of unique factors, pi, are known. In the
next example we evaluate the NMSE performance of MFA
and GFA against mismatched models. Let us recall that the
true number of common factors is p = 2, and the unique
factors for the 3 channels are p1 = 4, p2 = 3, and p3 = 2,
respectively. Fig. 5a shows that the performance of MFA is
rather insensitive to an overestimation of either the number
of common or unique factors. However, MFA is sensitive to
underestimation of the number of unique factors. The GFA
model experiences a similar behavior, as Fig. 5b shows: it is
robust against an overestimation of the total number of factors
present in the true model, but sensitive to under-estimation of
the number of factors. In fact, this example suggests that GFA
is more sensitive to model order underestimation than is MFA.

D. Application to Passive Radar

A passive radar is equipped with both surveillance and
reference antenna arrays [37]. The detection problem is to test
H1 : target present vs H0 : target absent:

H1 :

{
x1[n] = H1f [n] + G1f1[n] + e1[n],

x2[n] = H2f [n] + G2f2[n] + e2[n],

H0 :

{
x1[n] = G1f1[n] + e1[n],

x2[n] = H2f [n] + G2f2[n] + e2[n].

(56)

Here, x1[n] and x2[n] are respectively the surveillance and
reference observations, f [n] is the unknown signal transmitted
by the opportunistic illuminators, and H1 and H2 correspond
to the channels between the illuminators and the surveillance
and reference antennas. The factor f [n] is common when
there is a target present to reflect the direct path signal, and
the scanning surveillance channel comes into synchrony with
the reference channel. The factors f1[n] and f2[n], and their
channels G1 and G2, model the local interference at the
surveillance and reference antenna arrays. Local interference
in the surveillance channel models the direct path signal to
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−20

−15

−10

−5

N

N
M

SE
(d

B
)

MFA (p = 2, p1 = 4, p2 = 3, p3 = 2)
MFA (p = p1 = p2 = p3 = 2)
MFA (p = 2, p1 = p2 = p3 = 6)
MFA (p = 3, p1 = 4, p2 = 3, p3 = 2)

(a)

200 400 600 800 1,000

−20

−15

−10

−5

N

N
M

SE
(d

B
)

GFA (Num. tot. factors = 8)
GFA (Num. tot. factors = 11)
GFA (Num. tot. factors = 20)
GFA (Num. tot. factors = 30)

(b)

Fig. 5: Robustness of a) MFA and b) GFA against mismatched
models.

the surveillance channel, and local interference in the refer-
ence channel allows for the modeling of multipath from the
transmitter. We assume that the number of common and unique
factors is known, which is not unrealistic for this application.

In [21], the model in (56) has been studied under differ-
ent assumptions on the composite covariance matrix for the
surveillance and direct channels. One of these assumptions is
that there is no channel specific interference in the surveillance
and reference channels, and that the covariances for the noises
e1 and e2 are positive definite, but not diagonal. In this case,
[21] derived the generalized likelihood ratio test (GLRT),

T (x[1], . . . ,x[N ]) =

p∏
i=1

1

1− k2i
H1

≷
H0

η, (57)

where η is a properly selected threshold and ki is the ith
canonical correlation between the surveillance and reference
channels. That is, ki is the ith singular value of C =

S
−1/2
11 S12S

−1/2
22 , with Sij the ijth block of S. The statistic

may be termed a coherence statistic, as C is a coherence ma-
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trix. The statistic 1− 1/T makes the coherence interpretation
more clear:

1− 1/T = 1−
p∏

i=1

(1− k2i ). (58)

Let us compare the GLRT in (57) with the GLRT statistic
for the problem (56)

G (x[1], . . . ,x[N ]) =

max
H1,H2,G,Σ

l(H1,H2,G,Σ)

max
H2,G,Σ

l(H2,G,Σ)

H1

≷
H0

η.

(59)
Here l(·) is the Gaussian likelihood function. The maximiza-
tion in the numerator is identical to that in Section III and we
can therefore solve it using the ML-MFA algorithm. Under
H0, the measurement model is

x1[n] = G1f1[n] + e1[n],
x2[n] = H2f [n] + G2f2[n] + e2[n],

(60)

which is equivalent to two (independent) FA problems. Thus,
the computation of the generalized likelihood under the null
hypothesis H0 may be carried out by solving two FA problems
as in Section II.

To evaluate the performance of the statistics G and T , let
us construct the following experiment. The noise covariance
matrices are generated as Σi = diag(σ2

i,1, . . . , σ
2
i,ni

) with σ2
i,j

uniformly distributed between 0 and 1, and the elements of
the common and uncommon loading matrices are generated
as independent complex normals with zero mean and unit
variance; the common loading matrices are scaled to achieve
the desired SINR. The surveillance and reference channels are
both equipped with ni = 10 antennas, the number of antennas
at the illuminator is p = 3, the interferers have both pi = 1
antenna, and the number of available samples is N = 200.
The results for this scenario are shown in Figure 6. This
figure shows the probability of missed detection (pm) for fixed
probability of false alarm pfa = 10−3 and varying signal-to-
interference-plus-noise ratio (SINR), which is defined as

SINR (dB) = 10 log10

(
tr(HiH

H
i )

tr(GiGH
i + Σi)

)
. (61)

As we can see, the proposed detector of (59) outperforms the
detector T of (57) because it exploits the additional structure
induced by the low-rank interferers, which is to say the statistic
G is matched to the measurement model and the statistic T is
mismatched.

V. CONCLUSIONS

This paper reports an extension to factor analysis (FA) for
several MIMO channels that share factors and also contain
unique factors. One important application of these results is
to the problem of target detection in passive radar. Compared
to other multi-channel generalizations of FA, such as inter-
battery FA, the model proposed in this paper allows for shared
and unique factors in each channel. The net of this model is
to produce a multivariate Gaussian distribution for the set of
MIMO channels in which a composite covariance matrix is
structured in a very special way. The maximum likelihood
problem is to identify this structured covariance matrix from

−20 −19 −18 −17 −16 −15 −14 −13
10−4
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100

SINR (dB)

p
m

T (x[1], . . . ,x[N ])

G (x[1], . . . ,x[N ])

Fig. 6: Probability of missed detection (pm) for varying SINR
and fixed probability of false alarm pfa = 10−3.

a sequence of multi-channel measurements. Since there is
no closed form solution, we report an iterative algorithm,
consisting of a sequence of three steps, all of which increase
the log-likelihood function. The performance of the algorithm
is demonstrated with numerical experiments on illustrative
problems. In the theory developed here, the number of factors
must be known for each channel, suggesting further refine-
ments for order determinations in each channel.
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