GLOBAL WEAK SOLUTIONS TO THE RELATIVISTIC BGK
EQUATION

JUAN CALVO, PIERRE-EMMANUEL JABIN, AND JUAN SOLER

ABSTRACT. In this paper the global existence of weak solutions to the relativistic BGK
model for the relativistic Boltzmann equation is analyzed. The proof relies on the strong
compactness of the density, velocity and temperature under minimal assumptions on the
control of some moments of the initial condition together with the initial entropy.

1. INTRODUCTION

This paper deals with the study of weak solution of the relativistic BGK model, under
minimal hypothesis of boundedness of some moments and of the entropy associated with the
initial data, which allows to give a meaning to the non-linear term by means of averaging
lemmas.

Relativistic gases are composed of molecules moving at speeds comparable to the speed
of light. Those gases feature prominently in star dynamics, galaxy formation, free-electron
lasers, high energy particle beams, controlled thermonuclear fusion and other topics... We
refer for example to [5, 15, 18, 19, 25, 41, 44] and the references therein. The standard tool
to describe gas dynamics, be it classical, quantum or relativistic, is kinetic theory.

Historically, classical kinetic theory was developed earlier; the central object of the the-
ory is the so-called distribution function, a density over phase space describing the number
of Newtonian gas particles in an infinitesimal volume element about a given point in phase
space. Arguably the whole subject started with the early works of Maxwell and Boltz-
mann, who posed an evolution equation for the distribution function of a rarefied gas (the
celebrated Boltzmann equation, where dynamics are mainly driven by binary collisions)
together with the H-theorem about the relaxation to equilibrium. It also follows from the
theory that a gas locally close to equilibrium can be well described as a fluid. This fruitful
connection between classical kinetic theory and fluid dynamics has been established by var-
ious developments on the theory of hydrodynamic limits, see e.g. [14, 29, 51]. Furthermore,
this connection has inspired a whole chapter in computational fluid dynamics; the so-called
lattice Boltzmann schemes simulate a given fluid taking advantage of the fact that the fluid
can be described as some limit regime of a gas and therefore using some discrete realization
of Boltzmann’s equation. However, more often than not the computational implementation
of Boltzmann’s gas dynamics constitutes a delicate problem. One way out of it is given by
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the so-called model equations: kinetic equations that are conceptually simpler but never-
theless have some properties in common with Boltzmann’s equation, particularly some form
of the H-theorem and their behavior on the hydrodynamical regime.

Perhaps the most popular model equation is the one introduced by Bhatnagar, Gross,
Krook [11] and Welander [57], the BGK model for short (for other model equations see e.g.
[14]). The idea is to take into account just the global effect of fluid particle interactions.
This is done by means of a collision operator that replaces the complicated integral de-
scribing two-body interactions in Boltzmann’s equation by a relaxation operator depending
only on macroscopic quantities. This operator is constructed in such a way that mass,
momentum and energy conservation hold, together with an entropy dissipation property.
Despite the apparent simplicity of this representation, it is able to replicate most of the
basic hydrodynamics properties (see the study of hydrodynamic limits in [49, 50] -see also
[6, 7, 8] and references therein-), which has constituted an obvious motivation for its study.
From the numerical point of view, the BGK collision operator is more amenable than Boltz-
mann’s collision integral. Therefore, the BGK model is used as the basis of a number of
lattice Boltzmann schemes [45, 47, 56]. It has been also used for the numerical simulations
of dilute gases instead of Boltzmann’s equation. However, the BGK collision operator is
mathematically involved due to the presence of an exponential nonlinearity instead of a
quadratic interaction; the first existence result for the BGK model, although simpler than
the celebrated DiPerna-Lions theory for the Boltzmann equation [20], was derived later
[46].

If gas particles are moving at speeds comparable to the speed of light, the classical
description in terms of Boltzmann’s equation is not accurate and we must use the tools of
relativistic kinetic theory instead; reference monographs for this subject are e.g. [15, 19].
This branch of kinetic theory revolves around relativistic generalizations of Boltzmann’s
equation for the relativistic phase distribution f(¢,x,q) > 0 depending on time ¢ € [0, ),
space x € R and momentum q € R3. If a relativistic gas is assumed to be non-degenerate
(i.e. it obeys the Maxwell-Boltzmann statistics) and its dynamics are driven by binary
collisions, we can describe its temporal evolution in terms of the relativistic Boltzmann
equation,

2
O.f + ;10 Vif = %ﬁ@(f, )

where m denotes the mass, ¢ represents the light speed in vacuum and ¢° := ¢/ (mc)? + |q|2.
Here Q(f, f) denotes the non-linear quadratic (binary) collision term of the Boltzmann
equation, which incorporates the intrinsic properties such that the conservation laws for
particle number and energy—momentum tensor hold for this model.

Global steady states of this model are the well-known Jiittner equilibria, also known
as relativistic Maxwellians, which describe the state of a relativistic gas in equilibrium,
depending on five parameters: density n > 0, inverse temperature S > 0 and velocity
u € R3, as follows

(1) I fua) = VT Pe G AP~ w- ).

where

(1:2) M(E) = [ e {-BVI+TpP} dp.
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Note that with this notation g is dimensionless and so is M (/3); the equilibrium temperature
is actually given by mc?/(kpf3) with kg the Boltzmann constant.

Let us mention here some results about the relativistic Boltzmann equation in the
literature. In a global regime very close to a Jiittner distribution, Dudynski and Ekiel-
Jezewska [21] proved that the linear relativistic Boltzmann equation admits unique solutions
in L2. The existence of global-in-time renormalized solutions, a la DiPerna-Lions [20], for
large data were shown by the same authors in [23], using the causality of the relativistic
Boltzmann equation [21, 22]. In [26], Glassey and Strauss proved the global existence,
uniqueness and stability in a periodic domain of smooth solutions that are initially close
to a relativistic Maxwellian. The case of the whole space was considered in [27], while
the extension to the relativistic-Vlasov-Maxwell-Boltzmann and the relativistic-Vlasov—
Maxwell-Landau equations were analyzed by Guo and Strain in [30, 31]. In [4], Andréasson
proved the L' convergence to equilibrium for large initial data that are not necessarily
close to an equilibrium solution. In [54, 55], Strain studied the soft potential relativistic
Boltzmann equation, by proving global existence, uniqueness, and rapid time convergence
rates for close-to-equilibrium solutions. The study of limit models of relativistic Boltzmann
equations under physically relevant regimes has also been conducted. Newtonian limits
have been reported in [12, 26, 32, 53], for different regimes. The hydrodynamic limit to the
relativistic Euler fluid equations has been worked out in [52] -see also [13].

Many of the computational methods that have been developed for the relativistic Euler
equations are based on macroscopic, continuum descriptions -see [41] for a review. However,
there is room for the development of numerical schemes based on model equations for the
relativistic Boltzmann equation, e.g. [16, 35, 36, 37, 42, 43]. It is therefore interesting to
develop our mathematical understanding about relativistic generalizations of the classical
BGK model. We shall adopt here a description based on the Marle model [39, 40], which
can be written as

mczw

Ouf + ;%-foz /]

where w denotes the collision frequency. This relativistic BGK model satisfies the same
conservation laws that the relativistic Boltzmann equation, as we explain below. For sim-
plicity and for the kind of analysis that this paper proposes to develop, from now on we can
consider a rescaling of the variables so that the physical constants are all equal to one.
The existing mathematical literature covers different aspects of the relativistic BGK
model, see [9, 37] and the references therein. Defining the physical parameters of the model
correctly is of great importance when paramount issues such as their relationship with
relativistic macroscopic models, as for example with the Euler equations, are addressed. In
this sense, the relativistic BGK model is the mesoscopic key to understanding the dynamics
of relativistic fluids, as we have pointed out before. The aforementioned analysis of the
model’s physical parameters can be found in [9], a study that becomes essential for the
scaling and analysis of the classical, ultra-relativistic and hydrodynamical limits. In [9] it
is also studied the maximum entropy principles, as well as the analysis of the linearized
operator and the existence of the linearized BGK relativistic model near the global Jiittner
distribution. The global existence of the nonlinear relativistic BGK model together with
fast-in-time decay with any polynomial rate of convergence to equilibrium, for a close-
enough to equilibrium family of initial conditions, have been analyzed by Bellouquid, Nieto
and Urrutia in [10], using parallel arguments to those in [54, 55]. The existence of steady
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state solutions has been analyzed in [33] for the problem in a slab with inflow boundary
conditions.

We note that in the case of the classical BGK model, Perthame [46] established the
global existence of weak solutions by using an approximate BGK operator that truncates
the temperature. The strong convergence of the moments (mass, velocity and temperature)
was derived via an averaging lemma.

The aim of this paper is to explore the former ideas in the relativistic context. The
difficulties to extend this classical result to the relativistic case are multiple. To begin
with, the density-to-momenta map is not Lipschitz continuous, as opposed to the case of
the classical BGK model. Therefore, one has to find suitable regularizations such that
the truncated relativistic BGK operator gives rise to a well-posed approximate problem.
Then, the standard averaging results should be generalized to the relativistic case and, even
proving strong convergence of the moments, we have to identify the nonlinearity in the
limit, which does not depend on the moments in a direct way. All in all, the extension of
these techniques to prove existence for other model equations in relativistic kinetic theory
-e.g. the Anderson-Witting model [2, 15, 34]- seems feasible.

The paper is structured as follows: Section 2 is devoted to introduce the notations
and basic objects that are needed to write down the BGK-Marle model and our global
existence result. Existence will be shown by means of an approximating scheme. This
approximating scheme is introduced and studied in Section 3. Section 4 investigates the
time evolution of the entropy functional and the a priori estimates stemming from it. This
is crucial as it enables to handle the nonlinearities in Section 5, where we pass to the limit
in the approximating scheme to construct solutions of the original BGK—Marle model.

2. PRELIMINARIES AND STATEMENT OF THE PROBLEM

2.1. General conventions. From now on, generic positive constants will be denoted by
C, their value may change from line to line. We will write C'(a,b,...) if we are to specify
that the expression of C' depends on the quantities a, b, etc. We write x4 for the indicator
function of a set A C R%, that is, x4(z) = 1 if # € A and zero otherwise. We will say that
two real functions f and g are asymptotically equivalent at zero (resp. infinity) if

lim M = resp. lim —= =1

+=0 g() a0 g(x)
and we shall denote this just by f ~ g; the context will make clear if we refer to equivalence
at zero or infinity.

The space-time coordinates in the four-dimensional Minkowski’s space M are z#, yu =

0,1,2,3, with 20 = ¢ for the time and z', 2%, 23 for the position. The metric tensor 9w and
its inverse g"¥ are given by

guw=9""=1, ifp=v=0, -1, ifp=v=1,23 and 0, ifv#p.

By default Greek indices will run from 0 to 3. With the aid of the metric tensor we can
perform the operations of raising and lowering indices. That is, for any four-dimensional
vector v* (four-vector hereafter),

v av «
GV’ = v, and ¢g*v, = v*.

Here and in the sequel we use Einstein’s summation convention, meaning that any index
that appears twice in an expression (once as a sub-index and once as a super-index), is



GLOBAL WEAK SOLUTIONS TO THE RELATIVISTIC BGK EQUATION 5

understood to be summed over its whole range. In the sequel we understand v* as a (four)-
vector and v, as the associated covector. We will always work on Minkowski’s space, hence
v = —v, if a # 0 and v° = vy. This works in the same way for general tensor objects.
We will also consider vectors in the Euclidean three-dimensional space, which we will
always denote by bold characters. Then we use the standard notations |v| and v - q for the
euclidean norm and scalar product respectively. Furthermore, we will restrict ourselves to
work with unit rest mass particles. For that aim, we shall consider the following subset of

Minkowski’s space (recall that the tangent space at any x* € M is itself isometric to M):
M; ={¢"e R4/q“q,, =1}
= {¢" e R*/g" = (/1 + |q|2, q) for some q € R?}.
This is a three-dimensional timelike sub-manifold of Minkowski’s spacetime.

In relativistic kinetic theory, distribution functions and their (evolution) equations are
defined over the tangent bundle of the underlying spacetime, whose structure may depend
itself on the distribution function -e.g. the case of Vlasov—Einstein’s kinetic model [3, 17, 48].
However, when gravitational effects are not relevant (i.e. we are in the framework of special
relativity, that is, the underlying spacetime is M no matter the distribution function under
consideration) the tangent bundle is diffeomorphic to M x M -which, as a set, is just R®. It
is therefore customary to regard distribution functions to be defined on classical function
spaces as it is done in non-relativistic kinetic theory. For that, we first restrict to the (future-
pointing) mass shell, that is Ml x My, which is a geodesically invariant, seven-dimensional
manifold of the tangent bundle. This corresponds to particles with unit rest mass that
move forward in time. Let (z#,¢") denote the coordinate frame on the tangent bundle
naturally induced by the coordinates z* on the base space M. Then (¢!, ¢?, ¢%) constitutes
an orthonormal frame in R3 as a subset of the tangent space. Hence we can identify the
standard time (2°, that we rename as t), space (z', 2% and 23, which we denote collectively
by x) and momenta coordinates ¢',¢?, ¢® thanks to the fact that M is diffeomorphic to
R? under the correspondence ¢* + q and its inverse q — (/1 + |q|?,q). Thus, hereafter
distribution functions are defined as functions f(¢,x,q) where ¢t > 0 and x, q € R3.

Also, as it was pointed out in the introduction, all the physical parameters (including
the speed of light ¢) are renormalized taking, for simplicity, the value one. We consider all
the physical quantities in dimensionless form.

2.2. Matter quantities. We introduce the relativistic phase density f(¢,x,q) > 0, which
represents the density of particles with given spacetime coordinates x* = (t,x) and mo-
mentum q € R3. We will consider that all the gas particles have the same rest mass. Then
the energy-momentum four-vector is defined as

" =("q), ¢":=+/1+]q]? (thatis,¢" e M,).

Let us now introduce several spacetime densities associated with f(¢,x, q).

Definition 2.1. Let x* such that f(t,x,-) > 0 is not identically zero. We define the particle-
density four-vector NH(t,x), the energy-momentum tensor and the entropy four-vector as
follows:

d
-w%mz/quxmﬁ,
R3 q

y y dq
°W@M=/¢WW%®0,
R3 q
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o 1) = - [ ' fxan(fxa) 5.

Next we can define several useful macroscopic quantities (thermodynamic fields). The
fact that the proper volume element dq/q° is invariant with respect to Lorentz transforma-
tions (i.e. isometries of the Minkowski space) is a key physical feature of these definitions.

Definition 2.2. Let f(t,x,q) > 0 not identically zero. We define the following macroscopic
quantities:

(1) The proper particle density ny = \/NHN,,,

(2) The velocity four-vector u‘]ﬁ, given by nfu’]f = N#,

(3) The proper energy density ef = (ug)u(up),TH.

(4) The proper pressure py = 5((us)u(us)y — guw)TH.

(5) The proper entropy density oy = S*(ug),.
Remark 2.1. Several comments are in order:

(1) Note that us(up), =1 and then uly = (/1 + [us|?,uy), i.e. vy € Mi. We note the
following useful relation,

(2.1) np /14 [up|? = /R3 f(t,x,q)dq

We shall abridge ut* = u’]ﬁ whenever clear from the context. We also point out that
(22) u#qu 2 17

which s a straitghtforward consequence of the Cauchy—Schwartz inequality for vectors
mn M1 .
(2) Since N* is timelike, we have that N*N, > 0,

NHN, = / “ £ 1t x,q) £t %, ) dq dd,

and ¢" (¢'), > 1 -this follows again from Cauchy-Schwartz’s inequality. Hence ns
given by Definition 2.2 is well defined and positive.
(3) Keep in mind that u’; is mot defined for those x € R3 such that ng(x) = 0 (but the

product nfu’]ﬁ is, being zero at those points).
(4) The proper energy density can be rewritten as

dq
r = [ (st x. )%
R3 q
and clearly ey > 0. Moreover, since
’ d
ng =u,N' = / uug! f(t,x, q)—g?
R3

there always holds that 0 < njy < ey.
(5) According to (1) and (2), it is clear that

/f<nf</ fdq.
R3 40 R3
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We finish this subsection by discussing the behavior of the former quantities under
Lorentz transformations. Let A be a Lorentz boost (i.e. a linear isometry with respect to
the Minkowski metric) in Rg. The restriction of A to M; can be regarded as a map acting

on Rf’l as previously explained. Given any distribution function f, we can define a new
distribution function fx by means of

fa(t,x,q) = f(t,x,Aq).
Recall that dq/qo is a Lorentz invariant measure [38]. As
(2.3) vz = (Av),(A2)*  for any v¥, 2# € R,
we get the following well-known result.

Lemma 2.1. Given any distribution function f, the scalar quantities ny,, €f,, Pfy, Of,
and By, are Lorentz invariant. The vector u’f transforms according to u’}fA = Aflu’;.

2.3. Jiittner equilibria. The generalization of the classical global Maxwellian to Special
Relativity is the so-called Jittner equilibrium (or relativistic Maxwellian). The Jittner
distribution (1.1) can be written without physical parameters as follows

J(n,B,u;q) = %exp{—ﬁuuq“}
or equivalently
T, prwia) = e {8 (VI+uPVIH[a? —u-a) |

Since J(n, 5,u;q) is thought of as an equilibrium distribution, then n is interpreted as its
particle density, u as the spatial part of the four-velocity u* (and as such u,u* = 1) and 1/
as the equilibrium temperature. Here M () is given by (1.2). We also have the following
relation

(2.4) M(B) = ‘g&(ﬁ),

where the modified Bessel functions K; are defined as

K;(B) = /000 cosh(jr)exp{—pBcosh(r)}dr.

The following asymptotic expansions for small and large temperature values will be helpful
in the sequel, see e.g. [1, 15, 37].

Lemma 2.2. The modified Bessel function K1, Ko verify

(2.5) 2(5)~1—236+0(;;Z) for B> 1.

(2.6) Ki(8) ~ ; +O(BlogB)  and Ka(B) ~ 522 +0() forB<,
Lemma 2.3. The partition function M (B) verifies

(27) M)~ (S om) forp<,

2\ 3/2 _8 e’
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We list below several basic properties of the Jiittner equilibrium that will be useful in
the sequel, whose proof follows from direct inspection.

Lemma 2.4. The following assertions hold true:

(1) M(B1) < M(B2) for B1 > pa.

(2) In the Lorentz rest frame the Jiittner equilibrium reduces to

J(n,B,0;q) = %exp{—ﬁvl + lql?}.

(3) J < ne P /M(B).

Some moments of the Jiittner distribution are easily computed, see the appendix in [9]
for instance. Namely:

Lemma 2.5. Define the function ¥ as

3 Ki(B)
2.9 VU(p) =+ .
(29) =73 K (B)
Then the following identities hold:
(1) ey =n¥(B),
(2) by = B,d
q
3 / q"J— = nu”,
” F d 4 3 K1(B)
q 1
J—=e5—3p;=n |V —— ) =n .
(4} /]R?’ qo J pJ < (ﬁ) 5) KQ(,B)
2.4. The BGK-Marle model. We consider the BGK-Marle model in the following form:
Jr —
(2.10) 8tf+(%~vxf: fq0f7

where the Jiittner local equilibrium J; is constructed from some macroscopic invariants of
the function f(t). More precisely,

t
(211) Tyt ) = e e (0.0 s (1))
The function ff(t,x) is defined by means of the relation
dq
(2.12) B(By) _ /Wfqo.
K>(By) ng

It is straightforward to check that this relation defines 3y uniquely due to the following
result.

Lemma 2.6 ([9]). The function & — 2&8 is strictly increasing and one-to-one from [0, 00)
to [0,1).

So defined, the right hand side of the equation (2.10) verifies the following cancella-
tion/conservation properties:

dq dq
2.13 B = L
(2:13) /qu Tg /qu fqo’
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dq dq
(2.14) / Jf / f=-
R3 R3 4

Therefore, the relaxation operator is determlned in such a way that the five conservation
laws for the particle number, the energy, and the momentum hold, which is to say, the
solutions to (2.10) satisfy the following equation in divergence form

ONH oTw

2.1 = —
(2.15) Oz 0, ox¥ 0

m
These conservation laws are derived from the fact that the particles interact only through
elastic collisions, without other forces and/or radiation being involved.

Jiittner equilibria associated with a given distribution function satisfy a couple of useful
extremality principles, as we now state.

Proposition 2.1. Let 0 < f € L! (Rg) be given and let J; be the associated Jittner equi-
librium defined by (2.11). Then there holds that:

(1) (o —pe);, — (0 —fe)y 20
d
(2) Anglong£<A%flogfq

Proof. The first point can be found in [9]. The proof of the second follows the lines of [37]:
As x — zlogx is a convex function, we get

d(xzlogx)

1 > Jrlog J
flog f > Jglog Jy + .

(f = Jp),

Jy

that is

flog f > JslogJy + <1 + log MT(Lgf) —,Bf(uf)uq“) (f—=Jp).

We check that

dq
1+ log -p > (f—J ) =0
/R ( M(B j~ Ortuslu !
thanks to (2.13) and (2.14). The result follows. O

2.5. Main result and comments on the proof. Let us first introduce our notion of
solution:

Definition 2.3. Let 0 < f € LY(R®) and consider T > 0. A function f € C([0,T), L*(R®))
is a weak solution of (2.10) in [0,T) x RS with initial datum fO if f(t =0) = f°, f(t) >0
a.e in RS for every t € [0,T) and

T
9 v 0 _
/0 /[R6f8tq5+fq0 ¢dqudt+/ p(t=0)f"dqdx = / qS
holds for every ¢ € CL([0,T) x R).

fJf

dqdxdt

We can now state the main result of this document.

Theorem 2.1. Let f* >0 a.e. RS be such that

/ (14 ¢° + |x| + log f°) f dqdx < .
R6
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Then, given T > 0 there erists a weak solution f : [0,T) x R® — R, of (2.10) with initial
datum fO. Furthermore, this weak solution satisfies an H-theorem, in the sense that

t— / f(t,x,q)log f(t,x,q)dqdx is a nonincreasing map fort € [0,T).
R6

The main idea of the proof is to build an appropriate functional environment to be able
to apply fixed-point theorems. The difficulty comes from controlling the relaxation term in
all its variables, especially those related to temperature and speed. To solve this problem it
is necessary to truncate the relaxation term adequately, and work with weighted L' spaces
with respect to the proper volume element dq/q" -which is invariant with respect to Lorentz
transformations. The truncated thermodynamical fields satisfy density, temperature and
velocity stability estimates that ensure the well-posedness of the truncated system. The
corresponding approximate system then depends on the truncating parameters, and the first
objective is to estimate these solutions and control some of their moments in term of these
parameters. This control will allow to adapt the orders of magnitude of the parameters
jointly, so that in the limit the moments associated with the approximate solutions can
be estimated appropriately. To avoid concentrations in the limit we must also control
the entropy in the approximate system independently of the truncation parameters. This
analysis also allows us to obtain an H-theorem for the evolution of the distribution function.

3. SET-UP FOR AN APPROXIMATING SCHEME

The aim of this section is to study the the following approximated problem:

(3.1) T
which will lead to an iterative scheme to build the solutions of (2.10). The definition of the
truncated relaxation operator .J [f] depends on three parameters R, L, Bs,p > 1 and a cutoff
function . Let ) 0 o
J = — 4 e PrUf)ug ,
[f] w(q)M(ﬂf)

where:

e The cutoff 0 < ¢ < 1is a smooth function such that ¢(q) = 1if |q| < R and ¢(q) =
0 if |q| > 2R. More specifically, we pick 0 < ¢p < 1 a smooth, radially symmetric,
decreasing outwards function such that ¢o(q) = 1 if |q| < 1 and po(q) =0 if |q| > 2
and we let p(q) := ¢o(q/R) (note that we omit the R-dependence in the notation).
We define M (3) := fR% o(q)e P4 dq.

. Bsup i Bf > Bsup,
Let Binf = 1/6sup and ﬂf = Bf if ﬁinf < Bf < Bsupa
Bing if Bf < Bing-

The truncated four-velocity is defined through u; = { ILI u

[u]
A1+ ‘ﬁf|2.
Remark 3.1. The following properties will be useful in the sequel:
(1) M(/Bfl) < M(ﬂfg) fOT’ ﬁfl > 5]“2;

(2) M(B) < M(B) for every f3 € (0,00),
(3) " so defined verifies u'u, = 1.

if ju| <L,
if |u| > L,

and ug =



GLOBAL WEAK SOLUTIONS TO THE RELATIVISTIC BGK EQUATION 11

The initial datum f° is regularized by truncation to ensure that the g-support is contained
in {|a| < 2R}.

In what follows we will impose some constraints on R, L and [, in order to have a
single regularizing parameter in our approximating scheme. We shall define

(3'2) R:= Bgup7 L:= Bsup-

Although we impose (3.2) to hold during the rest of the document, we will keep the notations
R, L at those parts where we find it informative.

The main result of this section is the following existence result for the approximating
scheme.

Theorem 3.1. If fV is supported in R x {|q| < 2R}, then there exists a unique solution
fec(o,T),LY) to (3.1).

Proof. Given f € L*([0,T); L'(R3 x {|q| < 2R})) we define T[f] as the solution of

O, T[f] + q% VL T[f] =

with initial datum f°. The previous system can be solved using classical arguments of
kinetic theory that involve analyzing the associated characteristic dynamic system, whose

transport field 4 is regular in this case. Therefore, the characteristic system is bounded,

q
from which the necessary bound in L' is derived and then the a priori estimate in time in

W1, which provides the continuity in time with values in L' in momentum and space.
The main tool in the proof is the following lemma

Lemma 3.1. Let fi, fo € L*({|a| < 2R})™ with associated thermodynamical fields n; = ny,,
u; = uy,, 5 = By, t = 1,2. The truncated relazation operator satisfies the following stability
estimate

] - JLfll < Ci(a) Mi(ﬂq)) ¢~ Pinslal/31 /| i plda
sup q>

where

CI(OI) = Cl(qa Rvaﬁsulhso)

= 2 1+4R2+(1+2\/1+4R2\/1+L2> <2R02(ﬁmf;+ﬁsupq°>

sup

i

=
=

and Cy is defined in Lemma 3.6 below.

This lemma requires a more thorough analysis of the a priori estimates which is con-
ducted in the rest of the section with the proof of the lemma at the end of subsection 3.2.
Thanks to Lemma 3.1, we have the estimate

[ -rlloada < [ [
e [ [ 15 = oltr)axdadr

@) g, lq/3L9d
C3 = C3(q, R, L, Boup, @) = C ———— e Pinfldl/°F = < o0,
= Cala R o)1= [ Cala) ot o<

J1f) = Jlgl| () axhar

IN

with
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where (1 is defined in Lemma 3.1 above. Then, we are entitled to invoke Picard’ fixed
point theorem together with a prolongation argument to deduce the well-posedness of the
problem. O

The aim of the rest of the section is to build up the cascade of estimates that will
ultimately lead to the Lipschitz properties of T'[f] as stated in Lemma 3.1.

3.1. A priori estimates.

Lemma 3.2. Let f(x,q) supported in R3x {|q| < 2R} be given. Let f(t,x,q) be a solution
to (3.1) with fO as initial datum. Then,

(1) If fO >0, then f(t) >0, Vt>0.

(2) If/ / (1+|x|+¢°) f° dxdq < oo, then/ / (1+]x|+¢°) f(t) dx dq is bounded
R3 JR3 R3 JR3
on bounded time intervals.
Proof. Non-negativity follows by writing the solution in terms of characteristics, so that
clearly

%U’(hx Fat/ )] = —— f(tx+at/e,q)
qo

and hence
flt.x,q) > e 00 (x —qt/q",q) >0, Vt=>0.

Let us develop now the moment estimates. We start by integrating in (3.1):

d K. -~
— qudxg/ nl(ﬁ)dxg/ \/1+]u\2ndx:/ fdqdx,
r: I R3 R6

dt Jre
by using (2.1). We hence easily find that

fdqdx < et/ 1Y dq dx.
R6 R6
Next we multiply (3.1) by |x|¥, k& > 0 and integrate to find
d/ ]x|kqudx—/ q-V(|xk)qudx§k:/ \xy’“ndxgk/ Ix|¥~1 f dq dx.
dt R6 R6 qO R3 R6

If we choose k =1 we get

d
/ |X\qudx§/ fdqdx.
dt R6 R6

Using the previous point,

d
G [ dade <2 [ (0 x)f dadx

and hence

/ (1+ |x|)fdqgdx < th/ (1+ |x|)f0 dq dx.
RS RS

Low momenta in ¢* can be controlled likewise. Multiplying (3.1) by ¢ and integrating we
get

d
— q”dqug/ J[f]dx = qudxg/ " f dq dx,
dt Jgre R3 RS R6
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which implies
/ ¢ fdqdx < et/ " 10 dqdx.
R6 R6
O

We now prove some auxiliary estimates that will help us to assess the convergence of
the approximating scheme.

Lemma 3.3. Let L > 1. Then we have that
e_ﬁﬂqu S 6_6|Q|/(3L)’ Vq c R?"

Proof. Just follow the chain of inequalities:

g = /1+]a2V1+[a2 —a-q> 1+ a1+ [a]? - gt

> lalv/1+[u]? —[al[a] > |al(vV1+ L? = L) > |q]/(3L).

We used that z — 1+ 22 — z is decreasing for 2 > 0 to replace |a| by L in the last line.

Last step follows from
1 1
VI4+I[2—-L= —r——— >
VI+ L2+ L~ 3L
which holds for L > 1. O

To proceed further we introduce some shorthand notations for various residuals that
will appear recurrently in the sequel

Definition 3.1. Let us consider the following positive quantities:

1087L3 _sr (B?R%?  2BR
3) ®(R) = ®(R;L = —Blal/(L) joq — - 9
(3 3) ( ) (R, ,B) /|q|ZR (& dq ﬁ?’ e 3L 9 5 + 73[1 + ,

(34) A(R) = A(R;f):= / e Plaldq = 4—7;(3_63(52}824—26}84—2).
lal>R 8

Note that as a consequence of Lemma 3.3 we have
—Buugh .
[ eturaa<ariL),
la|>R

when L > 1. We exploit this a bit further to control the approximation of M () by M (B8).

Lemma 3.4. We have )

[M(B) — M(B)| < A2R).
As a consequence, there exists some By > 0 with the property: for every pair of values
B> pB1 and R > 1 such that

5/2
(3.5) \/27?,83/2 (46°R* + 48R + 2)e 2PF < =
the following inequality
1 2
(3.6) = < ——
M(B) — M(p)

holds.
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Proof. Clearly
51(8) = (3) + [ e (p(a) - ) da

R
and then
@ -m@)< [ ePags [ e ddg = AeR),
la|>2R |a|>2R

To derive (3.6) we start noting that M(8) < M(f), which ensures that M(8) > M(8) —
A(2R). If we were able to find a set of values 3, R for which we had 2A(2R) < M(p )
we would be done. Let us provide a sufficient condition for that. Starting from (2.8), w
determine some J3; large enough so that

3/2
M) > 5 (?) e P, for every B > B,

and then the sufficient condition given in (3.5) follows. O

Remark 3.2. For future usage we note that under the constraint R = 32, see (3.2), the
condition (3.5) is already satisfied by any 8 > 2. There is no loss of generality in assuming
that By > 2.

3.2. Lipschitz bounds on the truncated relaxation operator. The main step to ob-
tain the existence of solutions to our approximated equation, is to derive a Lipschitz bound
on the relaxation term seen as an operator on f. The key point for so doing is the obser-
vation that when f is compactly supported in q then ny can be bounded from below.

Lemma 3.5. Let f(q) > 0 such that f =0 for |q| > 2R. Then, we have

1
ng>——u | fda.
P2 ey T

Proof. Using a symmetry argument we can write

=[] s (1= 3 dada.

Then, being R fixed we can show that
/ 1 2
1— dqdq > ——— dq | .
/IR3/]RS < Q(qo)’> 4= T ap /Rgf d

The former result enables us to obtain Lipschitz bounds on the moments as per

Lemma 3.6. Let f1, fo € L'({q € R3/|q| < 2R})" with associated thermodynamical fields
n; = nyg, W = uy, B = By, 1 = 1,2. The truncated thermodynamical fields defined after
(8.1) satisfy the following stability estimates

(1) |n1—n2|<2\/1+4R2/ |f1—f2‘ dq.
<2R
- . 1+2\/1+4R2\/1+L2
(2) [ft1 — o] < / i — fal da.
la|<2R

max;—1.2 n;
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1+2\/1+4R2\/1+L2/
1 — [f2] dq,
maxi=1,2 1 \qlsm‘ e

/
with C2 (Bsup) = Sup[ﬂmfﬂsup] [(KI/KQ)_I} < oo

(3) |Bl - 62| S C2(ﬁsup)

Proof. There is no loss of generality in assuming that nq, ny > 0, as otherwise the inequalities
are essentially trivial.

FEstimate on the proper densities: This is obtained using Lemma 3.5 and (2.1) in turn:
[ni —nj|
n1 + n2

2 2

VIF AR

< - </ h dQ> —niwf* - (/ fa dOI> +njluaf?].
/ (F1 + fo) dq | \Jlai=2r al<2R

la|<2R

[n1 —na| =

Hence
vV 4R?
my—ma| = [ emda [ (fi-f)da
/ (F1 + fo) dq | /lal<2R al<2R
la|<2R
—(n1u1 + ngug)[niug — naug|
< VIR [ ifi- flda
lal<2R
(3.7) L+ AR / qﬂ(f1+f2)d(()l'/ q“!fl—led%-
/ (fi + f2) dq ’1al=2E T Jlal<2R q
lal<2R

Estimate on the velocities: To estimate the difference of two velocity vectors we consider
first the case |uy], |ug| < L. With no loss of generality, we may assume that ne > nq; then,
using again (2.1), we have

L dq dq
[ — ] = [u—uyl= n2 afi—5 —m afo—
ninz lal<2R q lal<2R q
1 dq dq
= (n2—n1)/ Qf10+n1/ a(fi — f2)—
ning lal<2R q lal<2R q
V1+ L2 1
< vmwm+/ 1 — fol da,
n2 "2 Jiq|<2R

and we conclude thanks to the former estimate for proper densities. The case |ui|, jug| > L
can be reduced to the previous one as follows:

~ ~ up L8 5}

lay —uy] = L - = ’u1|u2|—u2]u1|‘
| Juef|  Juffug]
L

= mﬂuﬂ(ul —uy) + ug(|ug| — [uyl)|
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2L|u; —
< il ol
jus |
In that case that |u;| < L and |ug| > L, we have that
1 1
u; —us| = —||lug|lu; — Lug| = —|(L(u; —ug) +uy(|us| — L
i — o] = il — L] = L ) g~ L)
and we conclude by noting that 0 < |jug| — L| < |uz| — |uy|, which implies again that

|f11 — 1~12| < 2|111 — ll2|.
Estimate on the inverse temperature: We start with the case 3,5 < 1, B2 < Bsup. We write

. Ki -t fflcq%l K; -t ff2z%
61— Bo| = (K?> SR <K2) -
R [RE o dq dq
- " /qIS2R f1q7 - /|Q|§2R f2q70

ny ng ning
/
with Cy = Co(Bsup) = SUD(8,., 1 Baup] {(Kl/IQ)_I} . Then we conclude by writing

dq dq
nz/ f1*0 - nl/ f270
laj<er 4 laj<2r 4

Next we consider the case with §;,r < 81 < Bsup and B2 > Bsup. Note that

54 KN (JAEY (KUK
’51 - 62’ = ’/81 _/Bsup’ = ‘(K;) ( nllq ) - (K—;) (é(ﬂsup))‘
ffl% ff1%<ff2%_ff1%

ny ny n2 ny

< (O

i

dq dq
< |1 — ng f10+n1/ |fr = fol—-
lal<2r 4 lal<2R q

<CQ

)

K,
- E(ﬁsup)

- E(/Bsup) -

where we used the monotonicity of Kj /K. Then we conclude as in the former case. The
remaining cases can be dealt with in a similar way. O

From this, we may now finish the analysis in this section with the proof of Lemma 3.1
which was used in the proof of our main theorem.

Proof of Lemma 3.1. We recall that

JIf) = w(q)ﬂﬁgﬂe—éf@)uqu,

and that @, ¢* > |q|/(3L). Observe that

(8] = /R o) e P ¢ dg < 2 RNI(B),

3
qa

so that
LA - T0)l < M“”(g”) e=Binrlal/3L [|, |
+ 2R (n1 + n2) m 181 — Ba| + (n1 4 n2) Bsup ¢° 11 — sl

We now use Lemma 3.6 to conclude. O
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4. ENTROPY ESTIMATES
The main aim of this section is to prove the following statement:

Proposition 4.1. Let f be a solution to (3.1) with initial datum f° > 0 such that
/ (1+¢° + |x| +log f) f° dqdx < +oc.
R6
Then, there exists some > 0 such that
[ 100 0g £t daax
R6
is bounded from above on bounded time intervals, for every Bsup > B. In fact,

@ g [0 g fdadx < Coft. S, LR By

+ Chlt S R Bg) [ 1(0)108 £(2) dax.

holds, where C, and Cy are given by

_20(BLByp) o ( 5 2 >
C, = M (Boy) Ca(f7,t) | 1+ Bsup V1 + L? + |log M (Bomy)
2A(2R) . .0 2
+7M(5sup)05(f ,1) (1 + Bsup + |log 7M(ﬁsup) >
Co(f9,t 1
+6’§£Lp>(1 + 10g Bsup) + C7(f0, t) log (1 + \/@)

(with Cy, Cs, Cs and C7 not depending on Bsyp) and

o A, 2M2R)  20(R; L,By)
b Bsup M(/Bsup) M(ﬁsup)

Moreover, we have that
Iim C,= lim C,=0.

:Bsup_)oo Bsup_>00

The aim of the rest of the section is to provide a proof for Proposition 4.1. This requires
a number of intermediate results. We start with the following useful inequality:

Proposition 4.2. Let f be a solution to (5.1) with initial datum f° such that
/ (14 ¢° + |x)) f* dgdx < <.
R6

Then there exists a positive constant Cg(t, f°) not depending on Bsup such that the following
estimate

/ n logndx < / f log f dxdq + Cs(t, f°)
R3 R6
holds.

The proof of Proposition 4.2 is a direct consequence of the next auxiliary result.
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Lemma 4.1. Let f(x,q) > 0 be such that
my = / (1 + |x| + ¢°) f dqdx < co.
R6

Then, the following estimates hold true:

1 \J1 4+ |uarl?1 14+ ]ur]? ) dx < flog f dxdq + C .
() /Rf’( ng ’ f| og (nf | f| ) /Rﬁ 0g Q(ml)
2 nyl dx < ney/1+ [ug|?1 ngy/1+ug|? ) dx + Cio(m

(2) /Ri flogng /Ri f | f‘ 0g< ! | f| ) 10(ma),

where Cy, Cho are positive constants not depending on Bsyp.

Proof. To deal with the first point let us introduce the auxiliary constant K = 1/ ng e dq.
q
Using (2.1) we may write

/R i nyy/1+ ugl?log <nfm> N
N /Rgz ( R f(q)dq) log (/R%f(p)dp> dx

= / flog (Ke_qo/ f(p) dp) dqdx + / .(qo —log K) f dxdq.
RS R3 RS

Therefore, we have

/ ngy/1+ ug|?log (nf\/l + |uf2> dx
RS

:/ flogqudx+/ (¢° —log K) f dxdq
R6 R6

f _0
—/RG{flog(Ke_qofR%f(p)dp> +Ke /R%f(p)dp—f} dadx

< / flog f dxdq + llogK|/ (1+¢°)f dqdx,
RO RO
which proves the first point. To achieve the last inequality we used that
(4.2) zlog(z/y) +y—x >0, VYa,y>0,

which is a consequence of the convexity of x — z log x.
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To prove the second point, using that = logx is increasing for > 1/e, we notice that

/ nylognydx <
R3

X

/ nylognydx
{xeRg/ns>1/e}

S/ npy/1 4 ug|?log(ngy/1+ [ug|?) dx,
{x€R3 /ns>1/e}

leading to

/ nylognydx
RS
< / ngy/ 1+ Jup|?log(ngy/1+ [uygl?) dx
RS
—/ , ngy/14ug?log(ngy/1+ [ugl?)dx := A — B.
{x€R3 /ny<1/e}

We now turn to the lower estimate on B:

B> / ne/1+ Jug|?log(ngy/1 4+ [url?) dx
{x€R3 /np<l/eng/14+|us|2<1} ! ! ! /
> / ney/1+ [ug|?log(ng/1+ |uf|?) dx,
{x€R3 /ny\/1+|uy|2<1} ! / / /

B> / ne/1+ |ug|?log(nsy/1+ |usl?) dx
{x€R /ns/1+|ug|2<e~xI} ! ! ! !
—|—/ ney/1+ |ug|?log(ngy /14 |us|?) dx,
{xeR} /e~ XI<np/1+[uy <1} ! ! ! !

so that

and eventually

B > —/ \/nf\/1+|uﬂ2dx
{x€R3 /nsy/1+|ur2<e~ I}
—/ |x[ngy/1+ |ug|? dx.
{xeRy /e ¥ <npy/14[us2<1}

The fact that zlogax > —\/x for z € [0, 1] was used to get the last inequality. Then, using
(2.1),

-B < / e X2 gx + / |x|f dxdq,
R3 R6
which yields the desired estimate. O

Let us compute now the time derivative of the L log L functional:
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Lemma 4.2. Let f be a solution of (3.1). Then, we have

G [ roxsdadx < [ Jitos 1A ax— [ iflog g1 Gl

RG

Moreover, there exists some [ > 0 such that the following estimate holds true for every

/Bsup > BQ ;

~ 4 d
/RG J(f]log J[f] qgldx—/RG J1f]log J|f] q—?dx§A+B+C+D

with
e Brlag)ua"  o=Brlup)ua\ dq
A= /n logn — — —dx,
RS f< M(By) M(By) q"
6_6f(uf)#qM e_Bf(ﬁf)Mq'u ~ dq
B = / ng | ——————B8r(ur)ug" — —=——B¢(uyr)q" | —dx,
RS f( M(Bf) f( f)u M(Bf) f( f)M 0
e Brus)ua” e~ Br(ag)ua® dq
C:= /n - log M(Bf) — ——=——log M (3 —dx
o f( M (By) LR VTTR B ) @
and

D = W(Cll(f()?t)—i_/ﬂ%inlognd)()

20(R; L, By) 2 > p
M(Bsup) M(ﬁsup) /Rg’; e

where ® is given by (3.3) and C11 is a positive constant not depending on Bsup-

log

(65up 1+ L2+

Proof. For simplicity, throughout the proof we will omit the subindex in ny,u; and gy,
which indicates the dependency of n, 8 and u on f. We compute

d o i N
dt/Rsflogqudx_ /R@ JIf1(1 +log ) qodx—/RGf(lJrlogf) i

_ _/RG J1f]log (‘]Ef]> -] quf)‘dx

+/Rs J[f] log J[ / flogf—dx
Using (4.2),
d . y ,
i [ fromdade < [ e J1p) lix— [ inion i) lax

dq B dﬁ
+ RGJ[f]logJ[f]q—de /RGflogqudx.

Thus, the first statement of the Lemma follows thanks to Proposition 2.1.



GLOBAL WEAK SOLUTIONS TO THE RELATIVISTIC BGK EQUATION 21
To derive the second statement, we start by expanding

= ~ o d
[ Amogtn Sax= [ el

n B(~)MQM1 dﬁ
——€ og p(aq) —5dx
M () q°

_3 @ o ~ o~ ~ d
—i—/RG SO(CI)MT(Lﬁ)e B(w)na <logn —log M (B3) —5(U)Hq“) ?gdx — A+ B
Next we split
= N ~B@)ug _ 3 dq
= /RG M(B) (logn log M(B) — 5(U)uq“> - dx

(q

/ (p(q) — )M?B) e Bl@ug" (logn —log M(f3) — B(@;ﬂ]“) ngx = By + Bs.

We notice that
dq
Bi— [ Jlf]logJIf) Sddx
R6 q
accounts for the terms A + B + C in the statement of the lemma. Thus, it only remains to
give suitable bounds for A and B, that we shall gather in the expression for D. We clearly

have
1 n

A<= | ———®(R;L,B)d
T R L

Let us estimate next the various terms composing Bs in turn. First,

7 ORI W b9y V1+ L2(R; L,
[ o) e Bl e < [ T 5)a

Next, we notice that x — |zlog x| has a local maximum at x = 1/e (where it assumes the
value 1/e) and is increasing for 2 > 1. Hence, since M is decreasing in 8 and B < Bsup,

(4.3)

og M (B

~( ’ log —=| < | = log —=
M(3) M(B) " M(B) MBsup) M (Bsup)
provided that Sy, is large enough so that e.g. M(Beup) < 2/3 -thus the rhs of (4.3) exceeds
1/e. Let us give sufficient conditions for this to happen. It suffices to find the range of 3

for which we have M (Bsyp) < 2/3. Now owing to (2.8) we can find some 3 > (1 (where 3
is defined in Lemma 3.4) such that

1 /22\3/2 9\ 3/2 -
(4.4) - <”> e P < M(B) <2 <”> e P, VB> B
2\ B
We readily see that the rhs of (4.4) is less than 1/3 for e.g. S > 3. There is no loss of
generality in assuming that S > 3 and in this way (43) is granted for By, > Ba.
Once we made sure that (4.3) holds for fs,, > 2 we use it in combination with (3.6)
to get

2

2n log
o)
M (Bsup)

log M (83) _
o R3 M(/Bsup)

_ o8 MB) p@e 94
| (ota) = pn BB R0 a

®(R; L, B) dx.
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To bound the remaining term we have to distinguish between the case in which nlogn > 0
and the complementary one. Arguing like in the proof of the second estimate in Lemma
4.1, we find that

—B(@)ug"
/ﬂ%ﬁ(l—w(q))nlogne 7 da l

M@B) o

§M / nlogndw—/ nlogn dx
M(ﬁsup) RS {x€R3 /nlogn<0}

e P@ud" g
+ [ (1= pl(@)nlog | Mg
{x€R3 /nlogn<0} M(ﬁ) qO

Hence
e—B(@)ua" dq
1—¢(q))nlogn——=——dx
[0 plapmosn® o G

O(R; L, 3
§M / nlogndx—Q/ nlogndx
M(ﬁsup) R3 {x€R3 /nlogn<0}

SM / nlogndx+2/ \/ﬁdx+2/ |x|ndx |,
M (Bsup)  \JRg {x€RY /n<e=Ixl} {x€RY /eIl <n<1}

and finally

M(B) 4

~B(@)ug"
/ (1 —¢(q))nlog nf dqu'
R6

R; L, f) </ nlogndx+2/ el dx+2/ |x|fdxdq>
RS RS RS

(R L,
M(IBSUP)
_ (I)(R7Lvﬁ~) 0
= 71\2/(53@) (/Rinlogndx%— Cu(t, f ))

Now we note that we may replace all factors of M (Bsup)~" in the above estimates by
2/M (Bsup) using Lemma 3.4 provided that Bs,, > fi. Finally, the second claim of the

Lemma is an easy consequence of our estimates so far and Proposition 4.2. ]

IN

-1

To derive Proposition 4.1 it only remains to estimate A, B and C in turn.

Lemma 4.3. There is 33 > 0 such that the following property holds true: there exists a
positive constant Ch2(f°,t) (not depending on Bsup) such that

4 2A(2R)
A< (/RG flogfd:rdq-i—Clz(t,fO)) <5sup + M(,Bsup)> ,

for every Bsup > B3, where A is given (3.4).
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Proof. As in the proof of the previous result, will omit the subindex in ny,uy and 3;. We
use Lemma 2.5-(4) to write

M - K ~ K
A= RinlOgn<M(5)K2 —K2(5)> dX:/Ri(X+Y)nlogndx
with
K K K M(B) - M(B)

Let us start by estimating X. Note that X = 0 whenever 3;,y < 8 < Bsup. If 8 < Biny,
then
due to (2.6). For 8 > Sy, we make use of (2.5); there exists some 33 > B (recall that 3o
is defined in Lemma 4.2) such that

K,

(4.5) (6 - 1‘ <

holds for every 8 > fB3. Then clearly |X| < 4/Bsup for B > Bsup as Ki/Ky is strictly
increasing from zero to one (see Lemma 2.6). Overall, the following estimate holds:

4
|X| < )
ﬁsup

To estimate Y we use Lemma 3.4:
v < /E(RN) < 2A(2R) < 2A(R)

TMPB) T MB) T M(Baw)

which holds for By, > Bi.
As n log n need not have a sign, we argue as in the proof of Lemma 4.1. On one hand,

/ (XX{x>0y + Y)nlogndx
R3

X

< / ny/T 1 [ul log(ny/T+ JuP) (X xpxs0p +Y) dx
R3

ny/ 1+ |ul?log(ny/1+ |11|2)(XX{X20} +Y)dx.

- /{xERi/n<1/e}
This leads to
/ (XX{x>0y +Y)nlogndx
RS

X

< {4+ s} ([, Fromsasda+ . )

2A(2R
+ {4ﬁznf + ]\4(/(381,4,))} (/R@ |X|dedq—|—/R3 e_|x‘/2 dX) ’

X

where we used Proposition 4.2.
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On the other hand,

/ XX{X<0}nlogndx§/ Xx{x<oynlogndx
R3 {x€R3 /n<1/e}

u / e
S
/35 7% {X R3x/n< /6}

< 1 / e"xl/zdx—k/ |x|ndx | .
Bsup {x€R3 /n<e ¥} {x€R3 /e~ IxI<n<1}

Collecting all estimates concludes the proof. O

|nlogn|dx

In order to estimate B and C, we introduce the following notations:

T:={x€R/B;>Bsup} and T¢={x€RL/B; < Bsup}-

Lemma 4.4. There exists some B4 > 0 such that the following estimates

(0 Dt~ o i) a
ng | ————Br(us)ug" — ——=—=—B+(tir)uq —dx
RE xTe / M(/Bf) SR M(ﬂf) I w qo
A(QR)BSUP/
<2— 71 == dqdx,
M(Bsup) R6 f 3
) e—Bf(uf)MQ“l M(3) e—ﬁf(ﬁf)uq“l ]\ZI(B ) dqd
R xTe d M(Bf) & d M(ﬁf) 8 ! q0
S 013(t, fO’ 5sup)7
hold for every Beup > B4, where
2A(2R) ( ‘ 2 )
Cis(t, 0, sup) = ———— | 1+ [log ——— dqdx
13( f ﬁ p) M(,Bsup) g M(/Bsup) ]R6f q

+/ ﬁﬂf (log 16m — 3log By) dx
{(x€R3/B; (x)<Bins} 2

goes to 0 as Bgyp — 00.

Proof. For simplicity we omit along the proof the dependence of f of n, u, and 5. Note
that

M - ~ ~ M~
B= Rinﬂdx—/RinBM(ﬁ)dx:/Rin(ﬁ—ﬁ)dx+/Rin6 (1—]\2[(5)) dx.

We assume in the sequel that Bg,, > B1. Then clearly

3 M A(2R)Bsu
o3 (1550 | <25 v

thanks to Lemma 3.4 and
/ n(8 —B)dx < 0.
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This proves the first estimate. To get the second one, we write
Ky M - Ky - ~
= —(B)log M (B) — —=(8)—(8) log M d
ci= [ n (oo M) - O R Gox (7))

2

= [ n (e Ms) - E ) osi(3) a

+ [ nie Byt (1-5@)

To bound the second term above, notice that we only need to care about those large values
of 8 for which log M (8) < 0, otherwise that integral is non-positive. Then, we have

0 > log M(f3) > log M (Bsup) = — log(1/M(Bsup)) > —log(2/M (Bsup),

for 3 > f1, where we used Lemma 3.4. This means that

~ = 2
log M (B)] < |log ———~| inT".
| (8)] M (Bomy)
Then, using again Lemma 3.4, we find
Ky - ~ = ( M ~> 2A(2R) 2
n—(p)log M 1——(B) ) dx < lo dqdx.
| i rrosi(3) (1= 55 ) dx < S Nog | [ pda

Therefore we focus on the first term in the above formula for C. Let

/Tc n <2(5) log M(B) — 2(6) log M(B)) dx

= [ wogsn(h) () - 319 ax
+ [ ni9) (1og 21(8) ~ g N (5)) dx

Te 2
K ~ ~ ~
+ | nge(8) (log M (B) ~ log M(5) ) dx
=1+ 11+ 111

To handle I, we note that it necessarily vanishes unless 8 < 3;,,¢. In that case, the integrand
can only be positive where M (B) < 1. But this does not take place provided that 3;,y is
small enough; recall here that Bs,, = 1/Bins. This can be shown by a continuity argument,
that we outline next.

We recall that M = M (3, R) actually depends on R (let us forget about the constraint
(3.2) for the moment). We have that R — M (B3;R) is increasing for fixed 3. Hence
1 < M(0,R=1) < M(0,R). Then, by the continuity of M around (8 = 0, R = 1), there
is some B*(R) such that I <0, for any B, > f*(R). Moreover, §*(R) is decreasing in R;
recalling now from (3.2), that we connected R and f,, through R = 5§up, there exists (4
such that if B4,y > B4, then Bg, > B*( gup).

Now to deal with IT we use that log(1 + z) < z for > 0, so that

M(8) - M(ﬁ)) _AQRR) _, AR
M@B) )T MEB) T M(Bo)

log M () — log M () = log <1 +
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and hence (2R)
2A(2R

— fdqdx.

M (Bsup) Jre

Finally, the contribution of I11 is non-negative only when § < 3;,¢. In that case, provided

that Bsup > 8% is small enough, so that M(Bi,) > 1, we may resort to (2.7) and find some

B4 > max(fs3, f*) (recall that S5 is defined in Lemma 4.3) such that

171 <

M(p) - N
log M(ﬁmf) <log M () <log M () <logl6m — 3logf

holds, for every 8 < 1/8,. We also use that %(B) < B/2 to get to

III < / " 3 (log 167 — 3log B) dx
{XE]R3 /B(x)<61nf}

This is clearly finite and converges to zero when [y, diverges. ([l

It only remains to estimate the contribution of B + C over the residual set R‘z x T. For
that aim, we use Lemma 2.5, & and Remark 2.1, 7 to decompose

K M - K
BiC= / g { By + (B log M(3) = 2 (By) (By + 12 () log b5y ) |
and then the contribution over the residual set reads

B+ = [y (m + 2167 0g M(3g) — 5y — (B og M(Bf>) ix

~ M -~ K - - M
+ | n 1—-— dx+/n log M (1—~ )dx
/T By < M(ﬁf)) R, (Bf)log M (By) w7
:= BCy + BC, + BCs.
Lemma 4.5. There is some B35 > 0 such that the following estimate

2A(2R) n
C’ N
(D) BOL< 313 Joo dqd”g/msup

3 1
+2/n<1— >log 1+ dx ,
T /BSUP ﬁsup

where the second and third terms on the right hand side vanish when By, — 0.
2A(2R)

2) BC < / n ,Bsu dx .

( ) 2 R f pM(/Bsup)

A
(3) BCg < /R3 nfjf((ﬁif;)) log

holds for every Bsup > Bs.

log Beup dx

dx

M(/Bsup)

Proof. The estimate for BCy follows like in Lemma 3.4 and that for BC3 is a consequence
of (4.3). Let us address the estimate for BC;. We split

B~ [ {ﬁ+(B)logM(ﬁ)—<5+2(5)10gM(5)>}dx

/ log M(B3) — log M(,@’)) dx := 11 + Yo,



GLOBAL WEAK SOLUTIONS TO THE RELATIVISTIC BGK EQUATION 27

where we omit the subindex f in the dependence of n, u and g for simplicity. We get a
bound on Y9 in the same way as we did with /7 in the proof of Lemma 4.4. Hence

2A(2R

T, < 2ACR)
M(ﬁsup) R6

We study next T for S,y so big that we may use (2.5) and (2.8) in such a way that the

error terms in those formulas represent faithfully the corrections needed when replacing the
functions by the leading term in the expansion. Note that, after (2.8),

fdqdx.

log M(8) ~ 4 — > 1og 5 + log ((2)*/* + 0(1/8))

for x € T, if Bsyp is large enough. Replacing these asymptotic expansions into T1 we meet
many cancellations, so that

T, = /Tn(ﬁsupo(l/ﬁsup) - 60(1/5)) dx

+3 [n{1oe0 (5 +001/9) ~ 10wy (5 +o(1/6p)) } ax

3
+2/Tnlog(5sup/ﬁ) dx

p( 38 «
[ o (71— = %+ ol1 /Bu) +(1/9) )

+ [ n{rostr+ o1/ (1- 5 o1/

—log(1 + o(1/Bsup)) <1
=1+---4+V

- g5 o1/ ) ) | dx

On one hand, we have that IT, III < 0. On the other hand, we can find some 6:5 > [,
being (4 defined in Lemma 4.4, such that the following estimates hold for Bs,, > Bs:

3 3
1< / 2n log Bsup dx
T

2 sup
and
3 1
IV+V§2/n<1— >log 1+ dx .
T Bsup 6sup
Both bounds vanish in the limit 3,,, — oo. This concludes the proof of the lemma. O
Proof of Proposition 4.1: we work with (g, > B := B5, which ensures us that Lemmas

4.1-4.5 and Proposition 4.2 hold true. Gathering all those estimates and performing some
straightforward majorizations we arrive to the differential inequality (4.1). This entails an
upper bound for the relative entropy on finite time intervals. To conclude, we may show
that the constants C,, Cy, vanish in the limit Bs,, — 0o by a cursory inspection, after taking
into account (3.2) and the expansion (2.8).
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5. PASSING TO THE LIMIT

In this section we study the limit behavior of the approximations constructed in section
4 as [Bsyp — 00 (recall the constraints (3.2) that reduce all the regularizing parameters to
a single one). In order to ease the notation, we set € := 1//3 during the rest of the section
and we study instead the limit € — 0 of the sequence of approximations {fc}.. Note that
in the limit € — 0 the restriction on the support of fy in q disappears.

Lemma 5.1. Let f. be a solution to (3.1) with initial datum f° > 0 such that

/ (1+¢° + |x| + log fO) ° dqdx < .
R6

Then

dq dq
fe(t) |log fe(t)| dxdq, Jy log Jy dx—, and Jy. Nlog Jy.| dx—5
RO RS JR3 q RS JR3 q

are uniformly bounded in € on bounded time intervals.

Proof. The first point is a consequence of the following inequality (see e.g. [46])
1 _ x|+lal

(5.1)  g(x,q)llogg(x,q)| < g(x,q)log g(x,q) + (|x| + |a|)g(x,q) + Je

The second point follows from Proposition 2.1 and Proposition 4.1. Then the third point
is worked out as the first one. O

5.1. Momenta averaging. We have shown that under mild assumptions on the initial
datum we have that both f./¢° and Jy. /¢ belong to the Llog L(R®) class.
dq

The combination with the moment estimates with respect to the measure oy is enough

to ensure that momentum averages of solutions are strongly compact in Ll(;l—f)‘).

We first state a general result for averaging lemmas in the relativistic context. This the-
orem is a straightforward extension of the classical L' compactness that is used in collisional
models; see in particular [28].

Theorem 5.1. Let f. and g be two sequences of functions uniformly bounded in L>([0, T7,
LY (R®)) in €, and solutions to the following kinetic equations

q
atfe + qio : vxfe = Ge-
We assume moreover that

sup sup / | fel(|x] + |a| + |log fe]) dx dq < 0.
€ tefo, T) JRS

Then, the moment fRs fe(q) dq is strongly compact in L' ([0, T|xR3), for any test function
¥(q) € C®(RY) such that

|1!}|S|l)| — 0, as|q| = +oc.
Proof. Let ®g, ¥y be two truncation functions satisfying
. £ .
Or)=¢ f KIS F - Op(Q) =2F 0 if {228, |91 Ve,

Yv(g) =1 if [q| <V, Yyv(q) =0 if |q| > 2V, Yy (§)] <1 VE.
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Then, applying the theory of renormalized solutions from [20], one first checks that ff =
O (fe) satisfies the equation

afF + ;% Vo fF = hF = g ¥(f),

with hence h, uniformly bounded in L' in € and F.

First we obtain some regularity, uniform in €, of the moment [ fE(q) v (q) dg. For
this, notice that 11y € C° and that q/q" satisfies the usual assumption for averaging
lemmas on any compact support (and so in particular on the support of 1y/) as the transform
q — q/¢" is one to one with bounded Jacobian. Hence

ACy, V€€ R, |{qg €suppv, |a/¢’ — & < n}| < Cyn.

In addition ff is of course bounded in L? uniformly in €, as it is truncated by the definition
of & and by Cauchy-Schwartz

1/2
sup erF”L2([O, T]xR6) < T V2F sup ”fEHL/oo([o, T), L1(R6))"

One may hence apply the result of [20] for instance and obtain that for any compact
set O C Ry x R3 and for some constant Cry.q, depending on ©, and blowing up with F
and V but independent of €

(52) [ v vl

< Crya,
Wi (@)
for some s > 0 and p € (1, 2), which could be computed explicitly but whose expressions

are unimportant here.
Now one simply writes

/ futb(a)da = / FF (@) (1 - dv(a)) da + / (fe — 1F) v(@) ¥v(a) da
R3 R3 R3

4 / FF (@) v (q) da.

The last term is of course locally compact in L} 2 for Fland V fixed by (5.2).

The first two terms are small in L' as F' and V are large, independently of ¢, provided

¥(2V)/log F is small, since
v
R6

H/ FF 9(a) (1~ by () dg
V>/ f. — 7| dadx

and

| U= g5y vt vy (@) da|

<80 [ (£ log £ dadx.

Hence one deduces first that [ f.1(q)dq is locally compact in L' (R4 x R3).
To conclude and get the compactness over the whole L', it enough to control a moment
in x. For that we recall the duality inequality

ay(b) < |b| + ¥*(a), Va € R, b e RY,
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where U* is the convex conjugate function of ¥(a) = inf{|b|, |(b)] < a}. Note that as
|(b)|/|b] — 0 as |b] — +oo then everything is well defined and one has of course that
U*(a) — oo as a — co. Therefore defining m(r) = sup{a, ¥*(a) < r}, one has
m(r)Y(b) <r+|bl, m(r) — ocoasa— oco.
Finally just observe that
[, mih £l v@axda < [ (al+ x4l dxda
R2d R2d

and is, therefore, bounded which concludes the proof. ]

5.2. Passing to the limit. Remark that from the uniform bounds provided by Lemma
5.1 we have the following result.

Lemma 5.2. Let fO > 0 such that
/ (1+¢° + |x| + log fO) f° dqdx < .
]RG

Let T > 0, and consider f. the solution to (3.1) in [0,T] x R with initial datum f°. Then,
the following statements are verified

(1) The family {f.} is weakly compact in L*([0,T] x RO).

(2) The family J[fe] is weakly compact in L'([0,T] x RS, L' (R, Z—?)).

We may hence extract subsequences

Definition 5.1. Let {€,} be a given subsequence such that {f.,} and J[f.,] converge in the
sense specified in Lemma 5.2. We set:
f:=lim f, and J:= lim J[f,].
n—o0

n—oo

By convexity, we know that the limit f satisfies

sup / (Ix[ +¢° +1og f) f dq dx < oo,
[0, T JRS

for any T' < co. Hence, this lets us define ns, uy from f through Definitions (2.1) and (2.2),
and f; through Eq. (2.12).

This suffices to pass to the limit in all the linear terms of the approximating scheme.
Hence to write down the equation satisfied by the limit distribution it only remains to pass
to the limit in the relaxation operator.

The first step is to remove the truncations at both the thermodynamic fields and the
support in J[f].

Lemma 5.3. Let ¢ < 1/B3, where 3 is defined in Proposition 4.1. Then the following

estimate
A AT
[ =i S ax
A(2/€?) € 1 0
<C < o +6+2+]10g(26)\> /RG(Q + |x[ +log f) f dq dx,

holds, where the constant C is independent of €, and hence the difference converges to 0 as
e — 0.
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Proof. To make the proof easier to follow we resort back to the notations R, L and By,
for the cutoff parameters. We will show that it is possible to obtain an estimate with the
claimed structure and a prefactor of
1 1 1
A(2R) L 52 +++> .
(ACRIZ By T4 3+ oy
This is then combined with (3.2) and (3.4) to conclude the proof.
The first and main difficulty is to obtain an adequate control on
/ ny, dx.
'8f6<1/5sup or 6f>ﬁsup

The part with 8y, < 1/ is straightforward since for example by Lemma 2.5

/ %dx S/ ef. dx S/ ¢ f.dx dq.
R3 P, R3 RS
Hence

1
(5.3) / ng, dx < / ¢ f.dx dq.
ﬂf5<l/ﬁsup BS’LL]) R6

For B¢ > Bsup, we can use Lemma 2.6, to deduce
fe P

d
no- [ 1502 [ gda- [ 150 =cts [ g
rR3 ¢ R3 rR3 ¢ la|>6§

. K
for any 6 > 0. If 57 > Beup then owing to (4.5) we have that ﬁgﬁj > 1—2/Bsup. Let us

abridge := 2/Bsup in the sequel. From (2.12) in that case
€€ NBsup p

dq
ne — e — < nr.
fe /R?)f qo —nﬁsup fe

Therefore, by taking § = ng,,,/C, if Bf. > Bsup, we find

1 1
/ foda< g, thacis [ f.da> ny,
1Q/>B 10y /C 2 1< /C 2

and thus

/ nfedx§2/ fedqdx
ﬁfe >/Bsup ‘q|§n55up

<2 |
‘qlsnﬁsupv fe<F, |X|§X

1 1

<2FX 2 (— 4+ = log £.) f. dqd
< NBoup T <10gF+X> /R(j(IXIJr og fe) fe dqdx

fedqu+2/ fedqdx
> X

fedqu+2/

f>F

C
< o [ (] + 1oz ) o dax,
|lognﬁsup| R6

by optimizing in F' and X.
Combining this part with (5.3), we deduce that

C
(5.4) / ng dx < ——— / (¢° + |x| + log fo) fe dq dx.
B.<1/Bsup OT Bf.>Bsup | log nﬁsup| R6
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‘We may now turn to the estimate in the lemma. First of all, we justify the replacement
of M by M

/ o—Breliua _ e ~Brlag)uer| 99,
RO M( /Bfe M(By.) ¢’
< / N \MSBJE) — MBr) ~1al/(3uu ) d%ldx’
RS M(By.) M(By.) q

as Bfe > 1/Bsup and since |y | < L, (4y.)uq" > |ql/(3 L). From Lemma 3.4, we have that
|M — M| < A2R),

and hence
L e_Bfe ('afs)uqH & _Bfe (’a‘fe)ﬁ‘qH

(5.5) /RG A (Bfe) (Bfe)
< CA(2R)L? gup/ fodqdx.

dq
—dx
7

The next step is to replace @y, by uy . Note that @y = uy, whenever |uy | < L. Thus
/ o(q) e Brelugdue _ e —Br (g )na”
RS M (By.) M(Bf.)

S / 7/”']:.6 / (e_éfe (ﬂfe)ﬂqu _|_ e_'éfe (ufe)ﬂqu) d% dX
{x/uge|>Ly M(By.) Jrs q

1
S/ ny, dxg/ ny ug, dX.
{x/ lug > L} L Jgs

As a consequence

dq
—dx
¢

Ve Bt _ e By Gt dq
(5.6) / o(q) | —5— e PelWend™ — ¢ o7 Pfltfc)u dx < - f€ dq dx.
RS M(By.) M(By.)
With a similar calculation, one may remove ¢(q) with
e By (e dq
5.7 / 1— w(q A fe\Ufe)n dx < fE dqu
o7 w60 o o
Finally we use (5.4) to compute
Ve Brlugduat e ~fp(ug)uer| 99
—=—e el — ————e el —dx
M(By.) M(By.) q°
- ey,
{x/ﬁfe >Bsup or 6f€ <Bsup}><R§l M(ﬂsup) q

+/ Le—ﬁfe(ufe)uqud%dx'
{x/B1.>Beup OF By, <Buup} <& M(B1.) q

By the definition of M, we have that for any 3

1 _ dq
B(ue)ugh “H <1
e .
rs M(B) @ ~
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Therefore by (5.4)

N Brluuet Mo By (ur)uat| 99
——=— e PlelUe — ——< e Pl —dx
C
< / (¢° + [x] +log fe) fe da dx.
| 1Og ,r]ﬁ.sup| R6
Combining (5.8) with (5.5), (5.6), (5.7), concludes the proof. O

In our next step, we apply Theorem 5.1. By the definition of the limit, f.1(q) converges
weakly to f1(q). By the uniqueness of limits in distributions,

[ fevt@da— [ fiayda

strongly in L([0, T] x R3) for any T' > 0 and any 1 (q) with ¥(q)/|q| — 0 as g — oc.
In particular this implies the following strong convergence

Lemma 5.4. The following assertions hold true as € — 0:
(1) ny, converges to ny strongly in L'([0, T] x R3).
(2) nyuly converges to nyuly strongly in L'([0, T] x RY).
(3) Let NV := {t, x € Ry x RS /ny(t,x) >0}. Then us, — uy a.e. in N'V.
(4) Be = By a.e. in NV.

Proof. For the first point, taking ¥ (q) = q/ q,
/ q“fef —>/ T) strongly in L'([0, T] x R}),
R3

for any T > 0.

Then ny. — nyin L?(R3) and the claim follows. We show in the same way that n feusﬁe —
n fu in LY(R3). Our third statement follows as usual from the second, possibly extracting
further subsequences to have the a.e. convergence of ny, u‘;e. For the final statement, we

show as before that

1 d 1
— 6—? f a.e. in NV.
nf Jry 4 nf
Hence K1(By,)/K2(By.) — Ki1(Bf)/K2(By) ae. NV which implies the result. O

We can now derive the limit of J[f¢] as per
Corollary 5.1. We have that J[f] = J[f], a.e. in RS x R, as e — 0.

Proof. Thanks to Lemma 5.4, J[f] — J[f] on NV x ]Rf’1 already. Note now that by
Lemma 2.2

/ J[fe] dq = nfeu(])”e’
RS

Passing to the limit at both sides of the previous relation we get that

/R3 jdq:nfu?.

q

This implies that J[f] — 0 a.e. in NV x R3. O
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By combining Corollary 5.1 with Lemma 5.3, we finally deduce that J[f.] converges to

J[f] a.e., thus concluding the proof of the existence statement in Theorem 2.1. Once we
are entitled to pass to the limit, the H-theorem follows from (4.1).
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