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Abstract
We consider a system of interacting particles with random initial conditions. Continuum
approximations of the system, based on truncations of the BBGKY hierarchy, are described
and simulated for various initial distributions and types of interaction. Specifically, we
compare the mean field approximation (MFA), the Kirkwood superposition approxima-
tion (KSA), and a recently developed truncation of the BBGKY hierarchy (the truncation
approximation—TA). We show that KSA and TA perform more accurately than MFA in
capturing approximate distributions (histograms) obtained from Monte Carlo simulations.
Furthermore, TA is more numerically stable and less computationally expensive than KSA.

Keywords Many particle system · Mean field approximation · Closure of BBGKY
hierarchy

1 Introduction

Systems of interacting particles are ubiquitous and can be found inmany problems of physics,
chemistry, biology, economics, and social science. A wide class of such systems can be
presented as follows. Consider N interacting particles described by a coupled system of N
ODEs:

dXi (t) = S(Xi )dt + √
2D dWi (t) + 1

N

N∑

j=1

u(Xi , X j )dt, for i = 1, . . . , N . (1)

Here Xi (t) is the position of the i th particle at time t , S is either self-propulsion, internal
frequency (as in Kuramoto model, see Sect. 3.3), or a conservative force field (e.g., gravity),
{Wi }Ni=1 are N independent Wiener processes and u(x, y) is an interaction force between
two particles at positions x and y. Oftentimes the force is represented by a function of the
directed distance between particles, so u can be written as follows
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u(Xi , X j ) = û(X j − Xi ). (2)

System (1) has to be supplied with initial conditions. For a large number of particles
N , finding the initial position for each particle is not practical. Instead, it is reasonable
to assume that initially the positions X1,. . . ,XN are random, independent and identically
distributed (i.i.d.). Thus, instead of determining a massive tuple of N initial conditions, a
single continuous probability distribution function is introduced.

Note that system (1) represents first order dynamics in which the net force is proportional
to velocity, i.e. Fi ∼ Vi = Ẋi , as opposed to second order dynamics, usually obtained from
Newton’s Law, in which the net force is proportional to acceleration Fi ∼ ai = Ẍi . First
order dynamics are commonly used for models such as those of ants marching [29], bacteria
swimming [38,39], hierarchies in pigeons [32], opinion dynamics [31], point vertices [16],
etc.

To solve (1) with random initial conditions means to find a joint probability distribution
function (or N -particle pdf):

fN (t, x1, x2, . . . , xN ).

Then the probability of finding a tuple (X1, . . . , XN ) in a given domain Ω at time t is
∫

Ω

fN (t, x1, . . . , xN ) dx1 . . . dxN .

The function fN can be found as a solution of the Liouville equation [44]. However finding a
function of N arguments, such as fN , numerically means computing an N -dimensional array
which is prohibitively computationally expensive even for moderately large N . Therefore a
simplification for the problem for fN is required.

A classical approach is the mean field approximation (MFA) [2,20,44] which relies on the
assumption that initially uncorrelated particles remain uncorrelated as time evolves. Then
the joint probability distribution function fN is determined by a function of a two variables,
f1(t, x):

fN (t, x1, x2, . . . , xN ) ≈
N∏

i=1

f1(t, xi ). (3)

One can substitute (3) into the Liouville equation for fN to obtain a partial differential
equation (PDE) for f1 (McKean–Vlasov equation). In the limit N → ∞ (the mean field
limit), formula (3) holds exactly [6,13]. The function f1 has themeaning of a one-particle pdf.
Alternatively, in the limit N → ∞ one can describe the set of all particles as a continuumwith
density f1(t, x). Though MFA is useful in many applications, it is generally not as accurate
for moderate or small N [28]. MFA is also not applicable when the impact of correlations
(which are neglected in MFA) is investigated. An example is collective behavior in bacterial
suspensions [42,43]: density of bacteria—or equivalently one-particle pdf (since the number
of bacteria is N = 1010 per cm3)—remains uniform, while correlation length increases, so
that the two-particle pdf changes due to emergence of correlations.

One set of approaches to account for correlations is based on using closures of the
Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy. This hierarchy is the sys-
tem of N PDEs: one for the one-particle pdf f1, one for the two-particle pdf f2, . . . , and one
for the N -particle pdf fN . The PDE for fk (k = 1, . . . , N − 1) in the BBGKY hierarchy is
obtained by integration of the Liouville equation with respect to xk+1, . . . , xN . The equation
for fN is the Liouville equation itself. Solving the BBGKY hierarchy is equivalent to solving
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the Louiville equation which is computationally prohibitive as explained above. On the other
hand, the PDEs in the BBGKY hierarchy are coupled as follows: the PDE for fk depends
on fk+1. Therefore, one can obtain a closed system for f1, . . . , fk by introducing a closure
approximation for fk+1 in terms of f1, . . . , fk . For example, MFA can be considered as a
closure of the BBGKY hierarchy at level k = 1 using the closure approximation:

f2(t, x1, x2) = f1(t, x1) f1(t, x2). (4)

The closure approximation (4) means that MFA relies on the assumption that correlations
in the system of interacting particles are negligible. To account for correlations one needs a
closure approximation at least at level k = 2.

The Kirkwood superposition approximation (KSA), developed in [23], is the most widely
used closure of the BBGKY hierarchy at level k = 2 and was applied, for example, in
gas dynamics [25], simple liquids [14] and recently employed in biology [3,28]. Following
the general idea of closure approximations of the BBGKY hierarchy described above, in
KSA a single ansatz for f3 in terms of f1 and f2 is substituted in the equation for f2. This
ansatz is presented in Sect. 2 and may be formulated in words as follows: the probability of
finding the particle triple in a given configuration equals to the probability of finding each
pair independently from the third particle [10]. Though KSA is a phenomenological ansatz,
formal justification and further improvements are available [9,36]. However, we note that,
up to our best knowledge, there is no rigorous asymptotic approach to derive a closure of
BBGKY hierarchy that takes into account correlations.

Recently, a closure at level k = 2, alternative to KSA, has been introduced in [5]. The
main difference between KSA and the closure from [5]—referred below to as the truncation
approximation (TA)—is that instead of a single ansatz for f3, TA introduces an individual
representation for each of the two terms in the equation for f2 where f3 appears. The choices
in TA are made so that key properties of pdfs f1 and f2 are preserved (the properties are
listed in Sect. 2). It was also proven that there is no such single representation ansatz for f3
that preserves the key properties. Moreover TA is less computationally expensive than KSA.

Note that in order to construct a correction to MFA in a way alternative to finding cor-
relations, one can take into account fluctuations. This is typically done by so called Large
Deviations or Concentration Estimates which in simple terms are upper bounds for probabil-
ities that a given realization of system (1) is far from the mean field limit; see [7,8,11,12,15]
and review [21]. In this work we aim to characterize the collective or correlated state (for
example, via the correlation length determined by f2), which is not a result of random fluc-
tuations from the mean field limit.

In this paper we consider system (1) with various types of interactions u. We compare the
closures obtained fromMFA,KSA andTAwith each other andwithMonte Carlo Simulations
of (1). We show that TA is at least as accurate as KSA (when comparing to Monte Carlo
simulations). Moreover, we observe that TA is less computationally expensive and more
numerically stable than KSA. Finally for each type of interaction considered in this paper
we describe the effect of correlations by comparing MFA, which neglects correlations, with
other methods. Here we consider not very large N for the following two reasons. First, one-
and two-particle histograms f̂1 and f̂2 obtained fromMonte Carlo simulations do not require
excessive computations for such N . Note that f̂1 and f̂2 converge to true f1 and f2 (that
is, solutions of the original not truncated BBGKY hierarchy) as sample size, the number
of realizations, grows to infinity. The second reason to choose N not large is to have an
observable impact of correlations (correlations vanish as N → ∞).
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The paper is organized as follows. In Sect. 2 we formulate the main problem and review
and discuss the application of the BBGKY hierarchy and its truncations, such as MFA, KSA
and TA. Results of numerical simulations are presented in Sect. 3 and discussed in Sect. 4.

2 Description of ContinuumApproximations

In this section we review the continuum approximations that are used in this work. First,
we describe the BBGKY hierarchy and then discuss its closures such as MFA, KSA, and
TA. Next, we compare the three approximations noting some key differences as well as
similarities between them. Numerical integration of the corresponding PDEs is presented in
Sect. 3.

BBGKY Hierarchy Consider system (1) with u satisfying (2). The one-particle pdf f1(t, x1)
solves the following evolution equation

∂t f1(t, x1) + ∇x1 · ((S(x1) + F (t, x1)) f1(t, x1)) = DΔx1 f1(t, x1), (5)

where F is the conditional expectation of force exerted on the first particle which occupies
the position X1(t) = x1 by all other particles:

F (t, x1) = E

{
1

N

N∑

j=2

u(X1(t), X j (t))

∥∥∥∥X1(t) = x1

}
. (6)

Equation (5) is an advection–diffusion equation for f1 or, alternatively, it can be derived from
the Liouville equation by direct integration with respect to all variables except t and x1.

An explicit formula for F in terms f1 and f2 follows from the definition of conditional
expectation:

F (t, x1) = N − 1

N

∫
u(x1, y)

f2(t, x1, x2)

f1(t, x1)
dy. (7)

In view of formula (7), we note that Eq. (5) depends on the two-particle pdf f2(t, x1, x2). In
order to find f2 we need to consider an equation for f2, analogous to (5) for f1:

∂t f2(t, x1, x2) + ∇x1 · (F1 f2(t, x1, x2)) + ∇x2 · (F2 f2(t, x1, x2))

+∇x1 · (S(x1) f2(t, x1, x2)) + ∇x2 · (S(x2) f2(t, x1, x2))

= D(Δx1 f2(t, x1, x2) + Δx2 f2(t, x1, x2)), (8)

where Fi (t, x1, x2) (i = 1, 2) are the conditional expectation of force exerted on the i th
particle by other particles given that X1(t) = x1 and X2(t) = x2:

Fi (t, x1, x2) = E

{
1

N

N∑

j �=i

u(Xi (t), X j (t))

∥∥∥∥
X1(t) = x1
X2(t) = x2

}
. (9)

Using that all particles are identical and substituting conditions X1(t) = x1 and X2(t) = x2
into the sum in the right hand side of (9), we simplify the formula for Fi

F1(t, x1, x2) = 1

N
u(x1, x2) + N − 2

N

∫
u(x1, y) f3(t, x1, x2, y)

f2(t, x1, x2)
dy, (10)

F2(t, x1, x2) = 1

N
u(x2, x1) + N − 2

N

∫
u(x2, y) f3(t, x1, x2, y)

f2(t, x1, x2)
dy. (11)
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It is clear from (10), (11) that to solve (8) one needs f3, the three particle pdf. One can
write the equation for f3 similar to (5) and (8), and this equation will depend on f4. We
can continue in this manner to obtain a system of N coupled partial differential equations
for f1, f2, . . . , fN . The resulting system is the BBGKY hierarchy described in Sect. 1.
This system is prohibitively computationally expensive to solve. Instead we look at various
truncations of the BBGKY hierarchy which are computationally feasible and do not rely
on the assumption that correlations are negligible unlike MFA which is a truncation in the
equation for f1 (at level k = 1). Specifically, we focus on truncations in the equations for f1
and f2 (at level k = 2). One can consider truncations at higher levels but the computational
expense increases greatly with increasing the level of a truncation. As a result, we only
consider truncations in the equations for f1 and f2.

Mean field approximation MFA is a truncation of the BBGKY hierarchy at the equation for
f1 using the assumption

f2(t, x1, x2) = f1(t, x1) f1(t, x2). (12)

Substituting this assumption into (5) results in the following PDE

∂t f1(t, x1) + (N − 1)

N
∇x1 ·

(∫
u(x1, y) f1(t, y) dy f1(t, x1)) + ∇x1 · (S(x1) f1(t, x1)

)

= DΔx1 f1(t, x1). (13)

Notice that the assumption (12) is equivalent to particles being uncorrelated. In other words,
MFA does not take into account the effects of correlations. Taking the limit as N → ∞
results in the coefficient (N−1)

N being dropped and yields the McKean–Vlasov equation,

∂t f1(t, x1) + ∇x1 ·
(∫

u(x1, y) f1(t, y)dy f1(t, x1)

)
+ ∇x1 · (S(x1) f1(t, x1))

= DΔx1 f1(t, x1). (14)

It was shown in [13] that Eq (14) is well-posed for smooth and bounded u(x, y).
The McKean–Vlasov equation (14) can also be understood as follows. Write the BBGKY

hierarchy for N = ∞, that is, the hierarchy is an infinite system of coupled PDEs for
f1, f2, . . . . Assume in addition that all particles are initially independent:

fn(0, x1, . . . , xn) =
n∏

i=1

f1(0, xi ), n ≥ 1. (15)

Then one can show that

fn(t, x1, . . . , xn) =
n∏

i=1

f1(t, xi ) for all t ≥ 0 and n ≥ 1. (16)

This is so called propagation of chaos: if particles are initially independent (no correlations,
“chaotic”), then they stay independent as time evolves. The notion of propagation of chaos
was introduced in [22] and was rigorously justified in the limit N → ∞ in the framework of
Newtonian systems, that is, for the second order in time analogue of (1), for both stochastic
[26] and deterministic [6] systems with Lipschitz interaction force F , whereas the first order
dynamics with stochasticity was considered in [27,34]. For further review and extensions of
these results we refer to [44,45].
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Therefore, MFA assumption holds exactly in the limit N → ∞ and it implies that corre-
lations in the system (1) are negligible. Since we are interested in capturing how correlations
affect the evolution of f1, we must go beyond MFA.

Kirkwood superposition approximation KSA is a truncation of the BBGKY hierarchy at the
equation for f2. KSA is based on the following representation ansatz for f3 in terms of f1
and f2:

f3(t, x1, x2, x3) = f2(t, x1, x2) f2(t, x2, x3) f2(t, x1, x3)

f1(t, x1) f1(t, x2) f1(t, x3)
. (17)

Substitute this approximation into (8) and obtain the following equation for f2,

∂t f2(t, x1, x2) + 1

N
∇x1 · (u(x1, x2) f2(t, x1, x2)) + 1

N
∇x2 · (u(x2, x1) f2(t, x1, x2))

+ N − 2

N
∇x1 ·

∫
u(x1, y)

f2(t, x1, x2) f2(t, x1, y) f2(t, x2, y)

f1(t, x1) f1(t, x2) f1(t, y)
dy

+ N − 2

N
∇x2 ·

∫
u(x2, y)

f2(t, x1, x2) f2(t, x1, y) f2(t, x2, y)

f1(t, x1) f1(t, x2) f1(t, y)
dy

+∇x1 · (S(x1) f2(t, x1, x2)) + ∇x2 · (S(x2) f2(t, x1, x2))

= D(Δx1 f2(t, x1, x2) + Δx2 f2(t, x1, x2)). (18)

Note that KSA representation ansatz (17) can be formally derived from the maximization of
a truncated entropy functional [41]. The derivation in [41] is based on the observation that
the equilibrium N -particle pdf fN minimizes the Helmholtz free energy

1

N

∫∫∫

RN

∑

i, j

Û (x j − xi ) fN (x1, . . . , xN ) dx1 . . . dxN

+ D
∫∫∫

RN
fN (x1, . . . , xN ) ln( fN (x1, . . . , xN )) dx1 . . . dxN , (19)

subject to normalization constraint
∫∫∫

RN fN dx1 . . . dxN = 1. Here −Û is the potential of

interaction force û, that is û = −Û ′. Since the goal is to find an expression for fN in terms of
f2, the next step in [9] and [41] is to assume that f2 is given and to replace the normalization
constraint by:

f2(xi , x j ) =
∫∫∫

fN (x1, . . . , xN )
∏

k �=i, j

dxk, i, j = 1, . . . , N , i �= j . (20)

Then the first term in (19) can be rewritten in terms of f2 only and thus does not influence
the minimization subject to (20), so one can replace (19) by the maximization of the entropy
functional:

H( fN ) = −
∫∫∫

fN ln( fN ) dx1 . . . dxN subject to (20).

The idea of the truncated entropy maximization principle in [41] is to maximize H( f3)
instead of H( fN ). This substitution of fN by f3 introduces an approximation error but leads
to the KSA representation of f3 in terms of f2; for further details we refer to [41]. This
method can be applied to find similar approximations for fn , n > 3, however the numerical
cost of solving the associated PDEs becomes prohibitive.

123



814 L. Berlyand et al.

Truncation approximationTA is obtained from the following observation. Consider i = 1 and
rewrite the first term in the sum (9) by substituting conditions X1(t) = x1 and X2(t) = x2:

F1(t, x1, x2) = 1

N
u(x1, x2) + E

{
1

N

N∑

j �=1,2

u(X1(t), X j (t))

∥∥∥∥
X1(t) = x1
X2(t) = x2

}
(21)

Next observe that the sum in (21) does not have a termdepending on X2(t) and thus it is natural
to assume that the dependence of the expected value in (21) on the condition X2(t) = x2 is
weak and therefore can be ignored. This observation leads to the following approximation
for F1:

F1(t, x1, x2) = 1

N
u(x1, x2) + E

{
1

N

N∑

j �=1,2

u(X1(t), X j (t))

∥∥∥∥X1(t) = x1

}
. (22)

A similar approximation can be written for F2:

F2(t, x1, x2) = 1

N
u(x2, x1) + E

{
1

N

N∑

j �=1,2

u(X2(t), X j (t))

∥∥∥∥X2(t) = x2

}
. (23)

Next we use the definition of conditional probability to rewrite (22) and (23):

F1(t, x1, x2) = 1

N
u(x1, x2) + N − 2

N

∫
u(x1, y)

f2(t, x1, y)

f1(t, x1)
dy, (24)

F2(t, x1, x2) = 1

N
u(x2, x1) + N − 2

N

∫
u(x2, y)

f2(t, x2, y)

f1(t, x2)
dy. (25)

Substituting (24), (25) into (8) yields the following PDE for f2, without f3:

∂t f2(t, x1, x2) + 1

N
∇x1 · (u(x1, x2) f2(t, x1, x2)) + 1

N
∇x2 · (u(x2, x1) f2(t, x1, x2))

+ N − 2

N
∇x1 ·

∫
u(x1, y)

f2(t, x1, x2) f2(t, x1, y)

f1(t, x1)
dy

+ N − 2

N
∇x2 ·

∫
u(x2, y)

f2(t, x1, x2) f2(t, x2, y)

f1(t, x2)
dy

+∇x1 · (S(x1) f2(t, x1, x2)) + ∇x2 · (S(x2) f2(t, x1, x2))

= D(Δx1 f2(t, x1, x2) + Δx2 f2(t, x1, x2)). (26)

Solutions f1 and f2 of the system (5)–(26) satisfy the following key properties of probability
distribution functions [5]:

1. f2 is symmetric with respect to x1 and x2:

f2(t, x1, x2) = f2(t, x2, x1). (27)

2. f2 conserves its mass and positivity as time evolves:
∫

f2(t, x1, x2)dx1dx2 =
∫

f2(0, x1, x2)dx1dx2, (28)

and

f1(t, x1) ≥ 0, f2(t, x1, x2) ≥ 0 if f1(0, x1) ≥ 0, f2(0, x1, x2) ≥ 0. (29)
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3. f1 and f2 are consistent:

f1(t, x1) =
∫

f2(t, x1, x2)dx2. (30)

4. Propagation of chaos: f2(t, x1, x2) = f1(t, x1) f1(t, x2) where f1 solves the McKean–
Vlasov equation (14) is a solution of (26) in the limit N → ∞.

It was also shown in [5] that no single representation for f3 is able to satisfy all four of these
properties. Namely, consider a representation for f3 of the following form:

f3(x1, x2, x3) = F ( f1(x1), f1(x2), f1(x3), f2(x1, x2), f2(x2, x3), f2(x1, x3)) , (31)

where F : R6 → R is a nonlinear function. Then solutions f1 and f2 of system (5), (8)
with f3 replaced by (31) ( f3 enters (8) through Fi ; see (10) and (11)) cannot satisfy all the
four above listed properties. For example, solutions of KSA, which is derived from a single
representation (17), do not satisfy the property of consistency (30). The fact that solutions of
TA satisfy (30) implies that we can substitute (30) into (26) to obtain a closed form equation
for f2.

Comparison between approximations Here we focus on the comparison between TA and
KSA since we are most interested in the effect of correlations which MFA neglects. First we
present heuristics on how TA and KSA can be derived in a simple way. Consider a triplet of
particles 1, 2, and 3 with positions at x1, x2, and x3, respectively. Assume that one studies
how particles 2 and 3 affect particle 1. If correlations in the system are not low, then we
need to take into account all correlations including the correlation between particles 2 and
3. On the other hand, if overall correlations are not high, then one would expect that the
contribution from correlation between particles 2 and 3 only appear at a lower order for
particle 1, compared to correlations between particles 1 and 2 as well as 1 and 3. Therefore,
take as an approximation assumption that particles 2 and 3 are almost independent:

1 ≈ f2(t, x2, x3)

f1(t, x2) f1(t, x3)
. (32)

Furthermore, using Bayes’ Theorem and again independence of particles 2 and 3 one obtains
that

f3(t, x1, x2, x3) = f3(t, x3|x1, x2) f2(t, x1, x2)
≈ f2(t, x3|x1) f2(t, x1, x2)
= f2(t, x1, x2) f2(t, x1, x3)

f1(t, x1)
. (33)

Here f3(t, x3|x1, x2) and f2(t, x3|x1) denote conditional pdfs. The formula (33) can serve
as an approximation for f3 with the specific assumption that particles 2 and 3 are almost
independent. To extend the formula to the case when a pair from the three particles (not
specifically particles 2 and 3) is almost independent, multiply (33) by (32). By doing this
we get a representation for f3 which is symmetric with respect to x1, x2, and x3, and it
exactly coincides with KSA representation (17). However, multiplication by (32) introduces
an additional approximation error. Instead, TA uses exactly (33) in the equation for f2 where
f3 appears inF1, and (33)with the assumption that particles 1 and 3 are almost independent in
the term where f3 appears inF2. From these observations it follows that TA is more accurate
than KSA, and both KSA and TA are more accurate than MFA since they are derived from
less restrictive assumptions.
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Finally we compare computational complexity between solving KSA and TA. To this end,
note that equations for f2 in KSA and TA only have a difference in the integral terms. For
example, the first integral term in these equations looks as follows:

KSA:
∫

u(x1, y)
f2(t, x1, y) f2(t, x2, y)

f1(t, y)
dy

f2(t, x1, x2)

f1(t, x1) f1(t, x2)
, (34)

TA:
∫

u(x1, y) f2(t, x1, y)dy
f2(t, x1, x2)

f1(t, x1)
. (35)

We see that the integral for KSA involves variables x1, x2, and y, whereas there are only x1
and y for TA. This allows for the reduction of computational complexity for TA as compared
to KSA since at each time step the following integral can be pre-computed:

c(x) :=
∫

u(x, y) f2(t, x, y)dy, (36)

and used in both integral terms of the TA equation for f2. Thus, TA is less computationally
expensive than KSA.

3 Results of Numerical Simulations

In this section we compare numerical solutions of the continuum approximations MFA,
KSA, and TAwith direct simulations for various examples of interaction forces u(Xi , X j ) =
û(X j − Xi ). Throughout this section, by direct simulations we mean Monte Carlo simula-
tions of the individual based system (1). First, we present our results for smooth interaction
forces including positive, attraction, repulsion and attraction–repulsion interactions. Next, we
consider these continuum approximations for the Morse interaction force and the Kuramoto
model. All the interaction forces are introduced below.

In all cases, we consider dynamics of the system of interacting particles for 0 < t < T
with one-dimensional positions Xi (t) and periodic boundary conditions in 0 ≤ x ≤ 1. For
the direct simulations of system (1) we use the Euler-Maruyama scheme in order to capture
the stochastic term. The time step is Δt = 5 · 10−3 and the number of realizations is 106.
To compute solutions for the continuum approximations a finite difference scheme was used
with the spatial and time steps Δx = 10−2 and Δt = 10−5, respectively. We note here that
KSA has a specific drawback, it does not satisfy the consistency relation between f1 and f2,
that is f1 �= ∫

f2. In order to find f1 for KSA we use Eq. (5). The choice of the number of
particles N and magnitude of diffusion D was made so the difference between the continuum
approximations is visible and one can draw a conclusion on how the approximation captures
properties of the system. For large N , approximations are nearly indistinguishable from each
other as well as from the direct simulations, which is consistent with the mean field limit.
Thus, we used small N , which in addition allowed us to have a reasonable computational
time for the direct simulations, since they require many realizations. The computational cost
of each realization depends linearly in N if a more powerful particle method, such as the Fast
Multipole Method [17–19], is applied. Since we considered small N the benefit of the Fast
Multipole Method would be negligible and a direct explicit method was used. We compare
probability distribution functions f1 and f2 obtained from the continuum approximations
with histograms of the positions of particles and pairs of particles obtained from the direct
simulations. Here our focus is on qualitative comparison, such as description of peak forma-
tion or convergence to uniform distributions, rather than on quantitative comparison such as
L p errors since they are not informative about the effects of correlations.

123



Continuum Approximations to Systems of Correlated. . . 817

Fig. 1 Plot of the smooth
interaction forces given by
(37)–(40). Note that the sign of
x · û(x) determines attraction and
repulsion, with a positive sign
implying attraction and a
negative sign signifying repulsion

3.1 Smooth Interaction Forces

We consider cases of positive, attracting and repulsive interaction forces as well as the one
which combines short range repulsion and long range attraction. These forces are defined by
(2) with û given by:

ûpos(x) = 2 e−10x2 , (37)

ûatt(x) = 10x e−10x2 , (38)

ûrep(x) = −10x e−10x2 , (39)

ûatt-rep(x) = −100x(0.12 − x2) e−10x2 . (40)

Note that all these interaction forces are smooth functions (Fig. 1). In particular, they
are continuous at 0, unlike, for example, the Morse interaction force, considered in the next
subsection. Initial conditions are chosen as follows:

f1(0, x) = 1.0 + 0.4 sin(2πx) 0 ≤ x ≤ 1, (41)

f2(0, x, y) = f1(0, x) f1(0, y) 0 ≤ x, y ≤ 1. (42)

In other words, we consider initial one-particle distribution function f1 as a perturbation of
the uniform distribution f1 ≡ 1, and the condition (42) means that the particles are initially
independent. Throughout this subsection we set N = 10 and D = 0.005.

Positive interaction force ûpos given by (37) This force acts so that particles exert forces on
each other in the positive direction only, that is, particles in front pull particles behind and
those behind push those in front. One way to think of this system is unidirectional swimming,
for example fishes swimming in a narrow channel. The fish in front will lower the resistance
for those behind causing them to swim faster, while the fish behindwill push the water around
them forward, helping those in front to move faster. Cannibalistic locusts oriented in the same
direction in a one dimensional tunnel would also follow this type of interactions, a locust
will chase the locusts in front trying to eat them, while running away from those trying to eat
it from behind [4,37].

Direct simulations for this system showed that it exhibits interesting qualitative behavior
for large times. Namely, particles interacting via the positive force ûpos tend to form a cluster
which moves with speed close to ûpos(0). Nevertheless, the one-particle probability distri-
bution function f1 converges to a uniform value for large times, that is f1 ≈ 1 as t → ∞.
This does not contradict to cluster formation, since as t → ∞ the many particle system is in
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Fig. 2 Left figure: the initial distribution at t = 0 for all approximations. Right figure: f1(0.5, x) from the

various approximations to (1) with the positive interaction force ûpos(x) = 2e−10x2 , N = 10, and initial
conditions (41)

a highly correlated regime, therefore f2 concentrates around the diagonal x1 = x2 and f1 is
essentially the probability distribution function of the cluster location.

In direct simulations we observe that the peak of f1(t, x) moves to the right and slightly
grows as time increases. Motion to the right is because all the particles’ velocities in this case
are positive, that is, Ẋi (t) > 0 (if diffusion is disregarded). The growth of the peak is due to
the particles clustering.

In continuum approximations the solution f1 for both KSA and TA moves to the right at
almost the same pace as for the direct simulations and also captures the growth of the peak
while MFA moves slower and is unable to capture the growth of the peak, see Fig. 2. This
is due to particles clustering and that particles move faster when they are part of a cluster.
Since these effects come from correlations, the methods such as TA and KSA, which take
into account correlations, capture the speed and the peak growth better than the MFA. In
Fig. 3, one can see that like in the direct simulations the two-particle distribution function f2
computed by TA and KSA has a single non-round peak (the yellow spot), while f2 in MFA
has smaller wider and round peak.

Attracting interaction force ûatt given by (38) This force results in particles approaching
to one another and as time evolves the particles tend to concentrate at a single location
determined by initial conditions. As in the case of positive interaction force, for N < ∞ one
should distinguish between the concentration of many interacting particles and one-particle
probability distribution function f1. While the particles tend to cluster at a single location,
the one-particle probability distribution function does not become a δ-function. Moreover,
if initially the distribution f1 is close to uniform, it stays nearly uniform for all t > 0, even
though the particles will almost surely form a point cluster. This is because particles tend to
concentrate but the point of concentration is random and almost uniformly distributed. On
the other hand, for fixed initial f1, if N increases, then the one-particle distribution function
f1 eventually (i.e., as t → ∞) exhibits larger peaks (unless it is initially uniform), and in
the limit N → ∞ it becomes a δ-function. This is consistent with the mean field limit: as
N → ∞ correlations vanish, and the notion of one-particle probability distribution function
f1 coincides with the particles concentration. We also note that the two-particle distribution
function f2(t, x1, x2) for all N concentrates along the diagonal x1 = x2 as t → ∞.

All three approximations capture the growth of the peak of f1 at t = 0.15, see Fig. 4
(left). The MFA overestimates the peak but KSA and TA both capture it well with TA being
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Fig. 3 Approximations of f2 at t = 0.5with the positive interaction force ûpos. Top left: direct simulations, top
right: mean field, bottom left: truncation approximation, bottom right: Kirkwood superposition approximation

Fig. 4 Approximations of f1 with the attraction interaction force ûatt(x), N = 10 and initial conditions (41).
Left: t = 0.15, right: t = 0.5

slightly more accurate. Both KSA and TA, unlike MFA, capture large values of f2 near
the diagonal, x1 = x2 (see Fig. 5: the peak represented by the yellow spot is elongated
along the diagonal for KSA and TA, while for MFA it is round). Recall that concentration
of f2 near the diagonal x1 = x2 means that any two particles are located close to each
other. All approximations underestimate the maximum value of f2 obtained from the direct
simulations, with KSA being the closest. At t = 0.5 MFA greatly overestimates the growth
of the peak of f1, TA also overestimates the growth of the peak but is much closer to the
direct simulations than MFA, see Fig. 4 (right). Moreover, among the two truncations at
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Fig. 5 Approximations of f2 at t = 0.15 with the attraction interaction force ûatt. Top left: direct simula-
tions, top right: mean field approximation, bottom left: truncation approximation, bottom right: Kirkwood
superposition approximation

level k = 2 considered in this work, TA was capable of producing results with the explicit
numerical scheme, while the numerical simulations for KSA became unstable and are not
presented. For f2 TA approximates values obtained from direct simulations near the diagonal
better than MFA, see Fig. 6. The maximal value of f2 in direct simulations is also closer to
TA than MFA.

Repulsion interaction force ûrep given by (39) This force results in particles pushing away
from one another. As time evolves, particles form a lattice with even spacing, where the
final locations are determined by initial conditions. The one-particle probability distribution
function f1 becomes uniform as t → ∞. Repulsion between particles leads to that values of
the two-particle probability distribution function f2 near the diagonal x1 = x2 decrease with
time, and f2 concentrates at lines |x1 − x2| = k

N , k = 1, . . . , N as t → ∞ (these lines are
parallel to the diagonal x1 = x2 but the diagonal is not one of these lines).

All three approximations capture tendency of f1 to become uniform, see Fig. 7. The KSA
and the TA, unlike theMFA, capture that the values of f2 along the diagonal x1 = x2 decrease
in time, see Fig. 8.

Interaction force with repulsion at short range and attraction at long range ûatt-rep given
by (40) This interaction force results in particles pushing away from one another when the
distance between the particles is less than 0.1 and attracting otherwise. Interaction forces
which are repulsive at short range and attracting at long range are very common in physics.
For example, in order to describe forces between atoms, a variety of such interaction functions
introduced via potentials is used, among them theMorse, the Yukawa, and the Lennard–Jones

123



Continuum Approximations to Systems of Correlated. . . 821

Fig. 6 Approximations of f2 at t = 0.5 with the attraction interaction force ûatt. Top: direct simulations,
bottom left: mean field, bottom right: truncation approximation

Fig. 7 Approximations of
f1(0.5, x1) for the repulsion
interaction force ûrep and initial
conditions (41)

potentials. The Morse potential will be considered in Sect. 3.2. The main difference between
ûatt-rep and these potential forces that ûatt-rep is smooth at 0 which leads to that the repulsion
part of ûatt-rep is weaker than for the potential forces and hence it can not be considered as a
good choice for modeling if interactions between particles at short range are steric, that is,
particles have a finite size and do not penetrate each other. However, since equations for f1
and f2 contain derivatives of terms with û, smooth interaction forces are the most convenient
for numerical simulations among all short-range-repelling/long-range-attracting interaction
forces.

Results of numerical simulations for all approximations of one-particle probability distri-
bution function f1 with interaction force ûatt-rep are depicted in Fig. 9. MFA overestimates
the peak of f1 obtained from direct simulations. Note that this observation is similar to the
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Fig. 8 Approximations of f2 at t = 0.5 for ûrep. Top left: direct simulations, top right: mean field approxi-
mation, bottom left: truncation approximation, bottom right: Kirkwood superposition approximation

Fig. 9 Approximations of
f1(0.5, x) for ûatt-rep with
N = 10 where initial conditions
are given by (41)

one for the attraction interaction force, see Fig. 4; this is because the attraction component
of interactions dominates due to the specific form of ûatt-rep, see Fig. 1. However, TA and
KSA underestimate the peak; this is presumably because these approximations overestimate
the repulsion at the peak as in Fig. 7. TA, unlike MFA and KSA, captures that f2 tends to
decrease at the diagonal x1 = x2, see Fig. 10.

3.2 Morse Interaction Force

The Morse interaction force was originally introduced in physics and chemistry to model
inter-atomic forces, see e.g. [30,40], and was further used in other disciplines such as for
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Fig. 10 Approximations of f2 at t = 0.5 for ûatt-rep. Top left: direct simulations, top right: mean field, bottom
left: truncation approximation, bottom right: Kirkwood superposition approximation

example mathematical biology, see [28,33]. As in the case of uatt-rep from Sect. 3.1, particles
which interact through theMorse interaction force repel each other if they are close and attract
otherwise. On the other hand, unlike uatt-rep, the repulsion of theMorse interaction force does
not vanish as particles approach each other. The growth of repulsion as inter-particle distance
goes to zero is relevant if for instance the repulsion component serves to model flexible
volume constraints (that is, particles push each other away if they share the same place).
Specifically, the system of many particles interacting through the Morse interaction force is

dXi =
∑

j �=i

û(X j − Xi ) dt + √
2D dWt , where (43)

ûM (x) =
{
120

[
e−2(|x |−re) − e−(|x |−re)

] x

|x | , |x | ≤ c,

0, |x | > c.
(44)

The Morse interaction force is defined in (44), see Fig. 11. The parameter re = 0.1 is the
equilibrium distance, that is, the distance at which the force vanishes, and c is the radius of
truncation of the Morse force or in other words c is the range of interactions.

For the numerical simulations of system (43), (44) the following initial conditions were
chosen

f1(t = 0, x) = 5

6
(tanh(30(x − 0.2)) + tanh(30(0.8 − x))). (45)

We note here that we chose to present results of numerical simulations for initial conditions
(45) instead of (41) from Sect. 3.1, since the system (43), (44) for latter conditions showed
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Fig. 11 The Morse interaction force with truncations at c = 0.2 and c = 0.3. Note that the sign of x · û(x)
determines attraction and repulsion, with a positive sign implying attraction and a negative sign signifying
repulsion. Dashed line depicts the plot for the Morse force for c = ∞ (rescaled for better visibility)

Fig. 12 Approximations of
f1(0.01, x) with the Morse
interaction force, c = 0.2,
D = 0.045, and initial conditions
(45)

very slow dynamics of the probability distribution function f1. Visible changes in f1 with
initial condition (45) as time evolves are due to large gradients of f1 at x ≈ 0.2 and x ≈ 0.8.

First we consider the system (43), (44) with N = 5, D = 0.045 and c = 0.2. Two distinct
peaks in the plot of f1 obtained by direct simulations are observed, see Fig. 12. Both TA
and KSA capture these peaks, and TA approximates the peaks more accurately. MFA does
not exhibit any peaks. In capturing f2, both TA and KSA capture the low values along the
diagonal lines, x1 = x2 and x1 ≈ x2 ±0.2, whereas MFA does not, see Fig. 13. Additionally,
TA captures the maximum values of f2 better than KSA as well as the narrowness of the
peaks’ width.

Next consider the system (43), (44)with a larger range of interactions, specifically, c = 0.3
with all other parameters remaining the same: N = 5 and D = 0.045. Note that increasing
the range of interactions effectively increases the strength of attraction between particles in
the system. In this case the one-particle probability distribution function f1 has a single peak
at center, see Fig. 14. TA and KSA both capture the peak, while MFA does not. Comparing
the approximations of f2 depicted in Fig. 15, we see that both TA and KSA capture low
values along the diagonal lines, x1 = x2 and x1 ≈ x2 ± 0.3, whereas MFA does not.

3.3 Kuramoto Interaction Force

Among all models used for the description of synchronization phenomena, the Kuramoto
model is the most popular one and it was successfully used in various branches of science
such as chemistry, physics, neural science, biology and even social science [1,24,35]. In
general, this model considers N oscillators so that each oscillator has the phase Xi (t) at time
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Fig. 13 Approximations of f2 at t = 0.01 with the Morse interaction force and c = 0.2. Top left: direct sim-
ulations, top right: mean field approximation, bottom left: truncation approximation, bottom right: Kirkwood
superposition approximation

Fig. 14 Approximations of
f1(0.01, x) for the system (1)
with the Morse interaction force,
c = 0.3, D = 0.045, and initial
conditions (45)

t , and the oscillators are coupled by the following attracting interaction force (which we call
here the Kuramoto interaction force):

ûK(x) = K sin(2πx). (46)

The sub-index K in the left hand side of (46) stands for “Kuramoto” and the parameter
K = 2.0 in the right hand side of (46) is the strength of interactions.
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Fig. 15 Approximations of f2 at t = 0.01 with the Morse interaction force and c = 0.3. Top left: direct sim-
ulations, top right: mean field approximation, bottom left: truncation approximation, bottom right: Kirkwood
superposition approximation

A distinguishing feature of the Kuramotomodel is that in addition to pairwise interactions,
each oscillator also has a given intrinsic frequencywi . The resulting individual based system
is

dXi (t) = widt + 1

N

N∑

j=1

ûK (Xi − X j )dt + √
2D dWi (t), fori = 1, . . . , N . (47)

The interactions are purely attractive, therefore the particles tend to occupy a single location
at each moment of time moving with the same frequency/velocity. However, if values of
frequencies wi are high, then they dominate the attractive interactions and in this case the
one-particle probability distribution function becomes uniform.

In numerical simulations we choose N = 5 and D = 0.045. The frequencies wi are
random variables, independently and identically distributed with the uniform distribution on
(− 1, 1).

From Fig. 16 we see that both TA and MFA exhibit a peak in f1 and TA is more accurate
thanMFA. TA also approximates direct simulations more accurately thanMFA. Specifically,
from Fig. 17 we see that while the MFA distribution converges towards uniform, both direct
simulations and TA, which takes into account correlations, concentrate on diagonal x1 = x2.
It suggests that even whenMFA does not predict synchronization of oscillators, theymay still
exhibit collective motion (roughly speaking, a weak synchronization) since correlations in a
systemof a finite number of interacting particles inevitably appear. TA, capturing correlations,
may potentially serve for analysis of such “weakly” synchronized states.
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Fig. 16 Approximations of
f1(0.025, x) for the system (47)
with the Kuramoto interaction
force and initial conditions given
by (41)

Fig. 17 Approximations of f2 at t = 0.025 with the Kuramoto interaction force. Top: direct simulations,
bottom left: mean field approximation, bottom right: truncation approximation

KSA was not used here since the introduction of intrinsic frequencies significantly
increases computational complexity of KSA.

4 Conclusions

In this paper three continuum approximations of a system of interacting particles—MFA,
Kirkwood superposition approximation, and truncation approximation—were tested and
compared to direct simulations of the individual based system for various types of inter-
actions. It was shown that in all the considered cases TA and KSA performed noticeably
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better than MFA. When comparing TA and KSA, TA performed significantly better for all
tested interactions except the repulsive interaction. For attractive interactions TA was stable
while KSAwas not. The major advantage TA had over KSAwas the computational complex-
ity. Due to the form of integral terms TA has significantly shorter computational time. This
advantage becomes more important as the dimension of a problem is increased. In compari-
son to direct simulations, continuum approximations are faster as they do not depend on the
number of particles N and do not require many realizations to take into account randomness
of initial particles’ locations.
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