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Global existence of weak solutions for
compressible Navier—Stokes equations:
Thermodynamically unstable pressure and
anisotropic viscous stress tensor

By DipDIER BRESCH and PIERRE-EMMANUEL JABIN

Abstract

We prove global existence of appropriate weak solutions for the com-
pressible Navier—Stokes equations for a more general stress tensor than
those previously covered by P.-L.Lions and E. Feireisl’s theory. More pre-
cisely we focus on more general pressure laws that are not thermodynami-
cally stable; we are also able to handle some anisotropy in the viscous stress
tensor. To give answers to these two longstanding problems, we revisit
the classical compactness theory on the density by obtaining precise quan-
titative regularity estimates: This requires a more precise analysis of the
structure of the equations combined to a novel approach to the compact-
ness of the continuity equation. These two cases open the theory to im-
portant physical applications, for instance to describe solar events (virial
pressure law), geophysical flows (eddy viscosity) or biological situations

(anisotropy).
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The question of global in time existence of solutions to fluid dynamics’

models goes back to the pioneering work by J. Leray [45] (1934), where he

introduced the concept of weak (turbulent) solutions to the Navier—Stokes
systems describing the motion of an incompressible fluid; this work has become
the basis of the underlying mathematical theory up to the present day. The
theory for viscous compressible fluids in a barotropic regime has, in comparison,
been developed more recently in the monograph by P.-L. Lions [48] (1993-1998),
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 579

later extended by E. Feireisl and collaborators [34] (2001) and has been since
then a very active field of study.

When changes in temperature are not taken into account, the barotropic
Navier—Stokes system reads

(11) Op + div(pu) = 0,
O(pu) + div(pu @ u) —dive = pf,

where p, u denote respectively the density and the velocity field and f is
the given external force. The stress tensor o of a general fluid obeys Stokes’
law 0 = § — P1Id, where P is a scalar function termed pressure (depending
on the density in the compressible barotropic setting or being an unknown
in the incompressible setting) and S denotes the viscous stress tensor that
characterizes the measure of resistance of the fluid to flow.

Our approach should also apply to the Navier—Stokes—Fourier system, as
we will explain in a future work; this system is considered more physically
relevant. But our main purpose here is to explain how the new regularity
method that we introduce can be applied to a wide range of Navier—Stokes-
like models and not to focus on a particular system. For this reason, we discuss
the main features of our new theory on the simpler (1.1).

In comparison with Leray’s work on incompressible flows, which is nowa-
days relatively “simple” at least from the point of view of modern functional
analysis (and in the linear viscous stress tensor case), the mathematical the-
ory of weak solutions to compressible fluids is quite involved, bearing many
common aspects with the theory of non-linear conservation laws.

Our focus is on the global existence of weak solutions. For this reason we
will not refer to the important question of existence of strong solutions or the
corresponding uniqueness issues.

Several important problems about global existence of weak solutions for
compressible flows remain open. In this article we consider the following ques-
tions:

e general pressure laws, in particular without any monotonicity assumption;
e anisotropy in the viscous stress tensor, which is especially important in
geophysics.

In the current Lions—Feireisl theory, the pressure law P is often assumed to be
of the form P(p) = ap” but this can be generalized, a typical example being

P e CY([0,+0)), P(0)=0 with

(1.2) . , 1, '
ap”  —b< P'(p) < 5p7 + b with v > d/2
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580 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

for some constants a > 0,b > 0; see B. Ducomet, E. Feireisl, H. Petzeltova,
I. Straskraba [27] or E. Feireisl [31] for slightly more general assumptions. How-
ever it is always required that P(p) be increasing after a certain fixed critical
value of p.

This monotonicity of P is connected to several well-known difficulties:

e The monotonicity of the pressure law is required for the stability of the
thermodynamical equilibrium. Changes in monotonicity in the pressure are
typically connected to intricate phase transition problems.

e At the level of compressible Euler, i.e., when S = 0, non-monotone pressure
laws may lead to a loss of hyperbolicity in the system, possibly leading to
corrected systems (in particular, as by Korteweg).

In spite of these issues, we are able to show that compressible Navier—
Stokes systems like (1.1) are globally well posed without monotonicity assump-
tions on the pressure law; instead, only rough growth estimates are required.
This allows us to consider for the first time several famous physical laws such
as modified virial expansions.

As for the pressure law, the theory initiated in the multi-dimensional
setting by P.-L. Lions and E. Feireisl requires that the stress tensor has the
very specific form

o =2uD(u) + Adivuld — P(p) Id
with D(u) = (Vu+ Vu®)/2, i and X such that A +2u/d > 0. The coefficients
A and p do not need to be constant but require some explicit regularity; see,
for instance, [33] for temperature dependent coefficients.

Unfortunately several physical situations involve some anisotropy in the
stress tensor; geophysical flows, for instance, use and require such constitutive
laws; see, for instance, [56] and [14] with eddy viscosity in turbulent flows.

In this article we present the first results able to handle more general
viscous stress tensor of the form

o= A(t)Vu+ Adivuld — P(p) Id

with a d x d symmetric matrix A with regular enough coefficients. The matrix
A can incorporate anisotropic phenomena in the fluid. Note that our result
also applies to the case

o= A(t)D(u) + MdivuId — P(p) Id,
where D(u) = (Vu + Vu®)/2 still.

Our new results therefore significantly expand the reach of the current
theory for compressible Navier—Stokes and make it more robust with respect
to the large variety of laws of state and stress tensors that are used. This is
achieved through a complete revisiting of the classical compactness theory by
obtaining quantitative reqularity estimates. The idea is inspired by estimates
obtained for non-linear continuity equations in [6], though with a different

This content downloaded from
129.2.19.102 on Thu, 09 Jul 2020 22:56:33 UTC
All use subject to https://about.jstor.org/terms



COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 581

method than the one introduced here. Those estimates correspond to criti-
cal spaces, also developed and used, for instance, in works by J. Bourgain,
H. Brézis and P. Mironescu and by A.C. Ponce; see [11] and [53].

Because of the weak regularity of the velocity field, the corresponding
norm of the critical space cannot be propagated. Instead the norm has to
be modified by weights based on an auxiliary function that solves a kind of
dual equation adapted to the compressible Navier—Stokes system under con-
sideration. After proving appropriate properties of the weights, we can prove
compactness on the density.

The article is organized as follows:

e Section 2 presents the classical theory by P.-L. Lions and E. Feireisl, with the
basic energy estimates. It explains why the classical proof of compactness
does not seem able to handle the more general equations of state that concern
us here. We also summarize the basic physical discussions on pressure laws
and stress tensors choices that motivate our study. This section can be
skipped by readers who are already familiar with the state of the art.

e In Section 3, we present the equations and the corresponding main results
concerning global existence of weak solutions for non-monotone pressure
law and then for anisotropic viscous stress tensor. Those are given in the
barotropic setting.

e Section 4 is devoted to an introduction to our new method. We give our
quantitative compactness criterion, and we show the basic ideas in the simple
context of linear uncoupled transport equations and a very rough sketch of
proof in the compressible Navier—Stokes setting.

e Section 5 states the stability results that constitute the main contribution of
the paper.

e Section 6 states technical lemmas that are needed in the main proof and are
based on classical harmonic analysis tools: maximal and square functions
properties, and translation of operators. It also includes a basic presentation
of the theory of renormalized solutions that we rely on in our calculations.

e Sections 7 and 8 constitute the heart of the proof. Section 7 is devoted
to the renormalized equation with definitions and properties of the weights.
Section 8 is devoted to the proof of the stability results of Section 5, both
concerning more general pressure laws and concerning the anisotropic stress
tensor.

e Section 9 concerns the construction of the approximate solutions. It uses the
stability results of Section 5 to conclude the proof of the existence theorems
of Section 3.

e Section 10 is a list of some of the notations that we use.

e Section 11 is an appendix recalling basic facts on Besov spaces that are used
in the article.
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582 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

2. Classical theory by E. Feireisl and P.-L. Lions, open problems
and physical considerations

For the moment we consider compressible fluid dynamics in a general
domain € that can be the whole space R%, a periodic box T¢ or a bounded
smooth domain with adequate boundary conditions. We do not specify the
boundary conditions and instead leave those various choices open as they may
depend on the problem, and we want to insist in this section on the common
difficulties and approaches. We will later present our precise estimates in the
periodic setting for simplicity.

2.1. A priori estimates. We collect the main physical a priori estimates
for very general barotropic systems on Ry x €,

(2.1) {atp + div(pu) =0,

9 (pu) + div(pu ® u) = Du+ VP(p) = pf,

where D is only assumed to be a negative differential operator in divergence
form on w such that

(2.2) / u-Dudr ~ —/ \Vul|? d,
Q Q

and for any ¢ and u,
(23 | ¢-Duds < CIVl12 [Vl

The following estimates form the basis of the classical theory of existence of
weak solutions, and we will use them in our own proof. We only give the formal
derivation of the estimates at the time being.

First of all, the total energy of the fluid is dissipated. This energy is the
sum of the kinetic energy and the potential energy (due to the compressibility),

namely,
U 2
Bl = [ <p‘2' ¥ pelp )) d,

e(p) = /pp P(s)/s%ds

ref

where

with pref a constant reference density. Observe that formally from (2.1),

2
(o) + v (puw‘“‘mﬂ'VP(p):pf'u,

2
d/pu‘ /uDu—/P leU—/pfu
dt Q

and thus
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 583

On the other hand, by the definition of e, the continuity equation on p implies
O¢(pe(p)) + div (pe(p) u) + P(p) divu = 0.
Integrating and combining with the previous equality leads to the energy equal-
ity
d
(2.4) —E(p,u)—/u-Du:/pf~u.
dt Q Q

Let us quantify further the estimates that follow from (2.4). Assume that P(p)
behaves roughly like p?7 in the following weak sense:

(2.5) Clp"—C < P(p)<Cp'+C;

then pe(p) also behaves like p7. Note that (2.5) does not imply any mono-
tonicity on P that could keep oscillating. One could also work with an even
more general assumption than (2.5): Different exponents v on the left-hand
side and the right-hand side, for instance. But for simplicity, we use (2.5).

Assuming that f is bounded (or with enough integrability), one now de-
duces from (2.4) the following uniform bounds:

sup / plul?dz < C + B(p, u0),
t Q

(2.6) Sup/ pldx < C,
t Jo

T
/ / |Vu|* dx < C.
0 Q

We can now improve on the integrability of p, as it was first observed by P.-L.
Lions. Choose any smooth, positive x(t) with compact support, and test the
momentum equation by x g = x B p®, where B is a linear operator (in z) such
that

div g = (p* = p?), [IVglre < Cpllp* — 0% e,
1Bollr < Cypl|dllre, V1< p< oo,

where we denote by p® the average of p® over ). Finding g is straightforward
in the whole space but more delicate in bounded domain as the right boundary
conditions must also be imposed. This is where E. Feireisl et al. introduce the
BOGOVSKI operator. We obtain that

[x [ 0 Peydzat < [xtt) [ g(@(pu)+ divpuww) ~Dupf)dwe

+ [xt0) [ 7P,

By (2.5), the left-hand side dominates

/)((75)/Qpa'w dzx dt.
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584 DIDIER BRESCH and PIERRE-EMMANUEL JABIN
It is possible to bound the terms in the right-hand side. For instance, by (2.3)

—/X(t)gpudﬂ? dt < C||Vull 2o, 7, 2 IX V9l L2, 1), £2(9))
< C|Vullrzqo, 71, 2 X (0" = 0PI 20, 11, L2(02))>

by the choice of g. Given the bound (2.6) on Vu, this term does not pose any
problem if 2a < a + . Next

@7 [xgalowdudt =~ [(gx @) +x(0)B@il" — 7)) puduat,

The first term in the right-hand side is easy to bound; as for the second one,
the continuity equation implies

[x@)B@p" ~ 7)) pudadt = [ x [B(div ()] pu

(2.8)
- /X [(a -1)B (p“ div u — div(up®) 4+ (a — 1)pediv u))] pu.

Using the properties of B and the energy estimates (2.6), it is possible to con-
trol those terms as well as the last one in (2.7), provided a < 2v/d — 1 and
v > d/2, which leads to

(2.9) /OT/Qdexdt < O(T, E(s°,u)).

2.2. Heuristic presentation of the method by E. Feireisl and P.-L. Lions.
Let us explain, briefly and only heuristically, the main steps to prove global
existence of weak solutions in the barotropic case with constant viscosities and
power  pressure law. Our purpose is to highlight why a specific form of the
pressure or of the stress tensor is needed in the classical approaches. For such a
general presentation of the theory, we also refer to the book by A. Novotny and
I. Straskraba [50], the monograph Etats de la Recherche edited by D. Bresch
[49], or the book by P. Plotnikov and J. Sokolowski [52].

Let us first consider the simplest model with constant viscosity coefficients
w and A, before discussing the limitations of the classical approach to other
settings. In that case, the compressible Navier—Stokes equation reads, on R x
Q?

(2.10) Op + div(pu) = 0,
‘ O(pu) + div(pu @ u) — pAu — (A + p)Vdivu + VP(p) = pf,

with P(p) = ap?. For simplicity, we work in a smooth, Lipschitz regular,
bounded domain €2 with homogeneous Dirichlet boundary conditions on the
velocity

(2.11) ulpo = 0.
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 585

A key concept for the existence of weak solutions is the notion of renormal-
ized solution to the continuity equation, as per the theory for linear transport
equations by R. J. DiPerna and P.-L. Lions, which we briefly recall in Sec-
tion 6. Assuming p and w are smooth and satisfy the continuity equation, for
all b € C(]0,+00)), one may multiply the equation by ¥'(p) to find that (p,u)
also solve

(2.12) tb(p) + div(b(p)u) + (b'(p)p — b(p))divu = 0.
This leads to the following definition:

Definition 2.1. For any T € (0,+00), f, po, mo satisfying some technical
assumptions (defined later on in theorems), we say that a couple (p, u) is a weak
renormalized solution with bounded energy if it has the following properties:

e pe L>®(0,T;L7(Q)NC([0,T], LY ... (), p> 0 a.e.in (0,T) X Q, pli=o =
po a.e. in £,
e u € L*0,T; H (), plul? € L>(0,T;L*(2)), pu is continuous in time
with value in the weak topology of LfVZQSJrl)(Q), (pu)lt=0 = mp a.e. Q;
e (p, u) extended by zero out of Q solves (2.10); in D'((0,T) x R%);
e (p,u) solves the momentum equation (2.10)2 in D'((0,T) x );
e for any smooth b with appropriate monotonicity properties, b(p) solves the
renormalized equation (2.12);
e for almost all 7 € (0,7), (p, u) satisfies the energy inequality

Blp.u)(r)+ [ [ (@ VuP + O+ ldiva®) < Bo+ [ [ pr-u

In this inequality,
Blp,u)(r) = [ (plul*/2+ pelo))(7).

with e(p) = ppr L)/ 52ds (pret being any constant reference density), denotes
the total energy at time 7 and Ey = [, [mo|?/2po + poe(po) denotes the initial

total energy.

Assuming P(p) = ap” (in that case e(p) may equal to ap?~!/(y — 1)), the
theory developed by P.-L. Lions to prove the global existence of renormalized
weak solution with bounded energy asks for some limitation on the adiabatic
constant v, namely, v > 3d/(d 4+ 2). E. Feireisl et al. have generalized this
approach in order to cover the range v > 3/2 in dimension 3 and more generally
v > d/2, where d is the space dimension.

We present the initial proof due to P.-L. Lions and indicate quickly at
the end how it was improved by E. Feireisl et al. The method relies on the
construction of a sequence of approximate solution, derivation of a priori esti-
mates and passage to the limit, which requires delicate compactness estimates.
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586 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

For the time being, we skip the construction of such an approximate sequence;
see, for instance, the book by A. Novotny and I. Straskraba for details.

The approximate sequence, denoted by (pg, ug), should satisfy the energy
inequality leading to a first uniform a priori bound, using that p > 0 and
A+2p/d >0,

¢
sup/ﬂ(ﬂk\Uk\Qﬂ—l—apZ (7—1))daz+u/ /Q]Vuk|2dxdt§(),
t 0

for some constant independent of n.
For v > d/2, we also have the final a priori estimate (2.9) explained in the
previous subsection, namely,

b 2
/ / Pt < C(R,T) for a < Sy — 1.
0 Ja d

When needed for clarification, we denote by U the weak limit of a general
sequence Uy (up to a subsequence). Using the energy estimate and the extra
integrability property proved on the density, and by extracting subsequences,
one obtains the following convergence:

pr—=p 0 C[0,T]; LY (),

weak
pl =7 in LOT/((0,T) x Q),
prug — pu in CO([0,TT; L2/ 0D (),
pruju, = pu' v in D'((0,T) x Q) for i,j =1,2,3.

The convergence of the non-linear terms pg ur and pg up ® up uses the com-
pactness in time of p; deduced from the uniform estimate on O0;py given by
the continuity equation and the compactness in time of |/prur deduced from
the uniform estimate on O;(pruy) given by the momentum equation. This
is combined with the L? estimate on Vu;. Consequently, p,u,p? solve the
momentum equation

O(pu) + div(pu @ u) — pAu — (A + p)Vdivu + aVp? = pf.

The extensions by zero to (0,7) x RY/Q of (p,u) (again denoted (p, u)) satisfy
the mass equation in R} x R,

(2.13) Op + div(pu) = 0.

The difficulty consists in proving that (p,u) is a renormalized weak solution
with bounded energy and the main point is showing that p7 = p7 a.e. in
(0,T) x .

This requires compactness on the density sequence that cannot follow
from the previous a priori estimates only. Instead P.-L. Lions uses a weak
compactness of the sequence {F }ren+ = {ap] — (A + 2p)divug }ren, which is
usually called the effective viscous flux. This property was previously identified
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 587

in one space dimension by D. Hoff and D. Serre. More precisely, we have the
following property for all functions b € C*(]0, +00)) satisfying some increasing
properties at infinity:

T
lim / / (ap] — (2p + N)divug)b(pg)edzdt
0 Q

k—+o00

(2.14) .
_ /0 /Q (apT — (2p + N diva)b(p)pdadt,

where the over-line quantities design the weak limit of the corresponding quan-
tities and ¢ € D((0,7) x Q). Note that such a property is reminiscent of
compensated compactness as the weak limit of a product is shown to be the
product of the weak limits. In particular, the previous property implies that

P(p)p—P(p)p
20+ A '

(2.15) pdivu — pdivu =

Note that taking the divergence of the momentum equation, we get the relation

A[(Qlu + )\)divuk — P(pk)] = div[@t(pkuk) + div(pkuk & uk)] — diV(pkf)

written as

(2.16) (2u + N)divug, — P(px) = Fy + Ry,

where

(217)  F, = Adiv[0(prur) + div(opur @ up)], R = A”'div(prf).

We call F}, the effective viscous flux that has the same compactness property
in space as (2u+ \) divug — P(pg). Note that here the form of the stress tensor
(isotropy and linearity) has been strongly used to get this expression. From this
identity, P.-L. Lions proves the property (2.14) based on harmonic analysis due
to R. Coifman and Y. Meyer (regularity properties of commutators) and takes
the observations by D. Serre made in the one-dimensional case into account.
The proof by E. Feireisl is based on div-curl lemma introduced by F. Murat
and L. Tartar.

To simplify the remaining calculations, we assume v > 3d/(d + 2), and
in that case, due to the extra integrability on the density, we get that p; €
L?((0,T)x$). This lets us choose b(s) = slog s in the renormalized formulation
for p; and p and take the difference of the two equations. Then we pass to
the limit ¥ — +oo and use the identity of weak compactness on the effective
viscous flux to replace terms with divergence of velocity by terms with density
using (2.15), leading to

9 (plogp — plog p) + div((plog p — plog p)u) =
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Observe that the monotonicity of the pressure P(p) = ap? implies that

P(p)p— P(p)p < 0.

This is the one point where the monotonicity assumption is used. It allows us
to show that the defect measure for the sequence of density satisfies

dft[pr — p)(t) = /Qplog p(t) = plog p(t) dz < dft[p, — p](t = 0).

On the other hand, the strict-convexity of the function s — slogs, s > 0
implies that dft[py, — p] > 0. If initially this quantity vanishes, it then vanishes
at every later time.

Finally the commutation of the weak convergence with a strictly convex
function yields the strong convergence of the density pg in Llloc. Combined with
the uniform bound of py in L77*((0,T) x ), we get the strong convergence of
the pressure term p).

This concludes the proof in the case v > 3d/(d + 2). The proof of E.
Feireisl works even if the density is not a priori square integrable. For that,
E. Feireisl observes that it is possible to control the amplitude of the possible
oscillations on the density in a norm LP with p > 2 allowing the use of an
effective viscous flux property with some truncature. Namely, he introduced
the following oscillation measure:

oscplpr, — p) = sup [limsup |15, (pr) — To(p)l| Lo ((0,7)x 25
n>1 k—+oo

where T,, are cut-off functions defined as
To(z) = nT( ), n>1

z
n
with T € C?(R),
T(z) =z for z <1, T(z) =2 for z > 3, T concave on R.

The existence result can then obtained up to v > d/2; see again the review by
A. Novotny and I. Straskraba [50].

To the author’s knowledge there exist few extensions of the previous study
to more general pressure laws or the more general stress tensor. Concerning a
generalization of the pressure law, as explained in the introduction there exist
the works by B. Ducomet, E. Feireisl, H. Petzeltova, 1. Straskraba [27] and
E. Feireisl [31] where the hypothesis imposed on the pressure P imply that

P(z) =rs(z) —ra(2),

where r3 is non-decreasing in [0, +00) with 74 € C?([0, +o0)) satisfying r4 > 0
and r4(z) = 0 when z > Z for a certain Z > 0. The form is used to show that it
is possible respectively to continue to control the amplitude of the oscillations
oscplpr — p] and then to show that the defect measure vanishes if initially

it vanishes. The two papers [31] and [27] we refer to allow us to consider,
for instance, two important cases: the Van der Waals equation of state and
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some cold nuclear equations of state with finite number of monomial (see the
subsection on the physical discussion).

2.3. The limitations of the Lions—Feireisl theory. The previous heuristical
part makes explicit the difficulty in extending the global existence result for
the more general non-monotone pressure law or for the non-isotropic stress
tensor. First of all the key point in the previous approach was

P(p)p—P(p)p <0.

This property is intimately connected to the monotonicity of P(p) or of P(p)

for p > p. with truncation operators as in [31] or [27]. Non-monotone pressure
terms cannot satisfy such an inequality and are therefore completely outside
the current theory.

The difficulty with an anisotropic stress tensor is that we are losing the
other key relation in the previous proof, namely, (2.15). For a non-isotropic
stress tensor with an additional vertical component and power pressure law,
for instance, we get instead the following relation:

PALPY — pAup?

pdivu — pdivu < a

Pz + A
with some non-local anisotropic operator A, = (A — (u, — pz)02)"10? where
A is the total Laplacian in terms of (z,z) with variables x = (x1,--- ,24-1),
z = xq.

Unfortunately, we are again losing the structure and, in particular, the
sign of the right-hand side as observed, in particular, in [14]. Furthermore
even small anisotropic perturbations of an isotropic stress tensor cannot be
controlled in terms of the defect measure introduced by E. Feireisl and collab-
orators: Note the non-local behavior in the right-hand side due to the term A,,.
For this reason, the anisotropic case seems to fall completely out the theory
developed by P.-L. Lions and E. Feireisl.

Those two open questions are the main objective of this monograph.

2.4. Physical discussions on pressure laws and stress tensors . The deriva-
tion of the compressible Navier—Stokes system from first principles is delicate
and goes well beyond the scope of this manuscript. In several respects the sys-
tem is only an approximation, and this should be kept in mind in any discussion
of the precise form of the equations, which should allow for some uncertainty.

2.4.1. FEquations of state. In general it is a non-straightforward question
to decide what kind of pressure law should be used depending on the many
possible applications: mixtures of fluids, solids, and even the interior of stars.
Among possible equation of state, one can find several well-known laws such
as Dalton’s law of partial pressures (1801), ideal gas law (Clapeyron 1834), the
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Van der Waals equation of state (Van De Waals 1873), the virial equation of
state (H. Hamerlingh Onnes 1901).

In general the pressure law P(p,9) can depend on both the density p
and the temperature 9. While we focus on barotropic systems in this article,
we include the temperature already in the present discussion to emphasize its
relevance and importance.

Let us give some important examples of equations of state.

e State equations are barotropic if P(p) depends only on the density. As
explained in the book by E. Feireisl [32] (see pages 8-10 and 13-15), the
simplest example of a barotropic flow is an isothermal flow where the tem-
perature is assumed to be constant. If both conduction of heat and its
generation by dissipation of mechanical energy can be neglected, then the
temperature is uniquely determined as a function of the density (if initially
the entropy is constant) yielding a barotropic state equation for the pressure
P(p) = ap” with a > 0 and v = (R+ ¢,)/cy, > 1. Another barotropic flow
was discussed in [27].

e The classical Van der Waals equation reads

(P+ap?) (b—p) = cpv,

where a, b, ¢ are constants. The pressure law is non-monotone if the tem-
perature ¥ is below a critical value, ¥ < 9, but it satisfies (1.2). In com-
pressible fluid dynamics, the Van der Waals equation of state is sometimes
simplified by neglecting specific volume changes and becomes

(P+a)(b—p)=cp?,

with similar properties.
e Using finite-temperature Hartree-Fock theory, it is possible to obtain a tem-
perature dependent equation of state of the following form:

(2.18) P(p,9) = as(1 + 0)p*™ — agp® + k' S Bup”,
n>1
where k is the Boltzmann’s constant, and where the last expansion (a simpli-
fied virial series) converges rapidly because of the rapid decrease of the B,,.
e Equations of state can include other physical mechanism. A good exam-
ple is found in the article [27], where radiation comes into play: a photon
assembly is superimposed to the nuclear matter background. If this radia-
tion is in quasi-local thermodynamical equilibrium with the (nuclear) fluid,
the resulting mixture nucleons+photons can be described by a one-fluid
heat-conducting Navier—Stokes system, provided one adds to the equation
of state a Stefan-Boltzmann contribution of black-body type

Pr(¥) = av¥* with a > 0,
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and provided one adds a corresponding contribution to the energy equation.
The corresponding models are more complex and do not satisfy (1.2) in
general.

In the context of the previous example, a further simplification can be in-
troduced leading to the so-called Eddington’s standard model. This ap-
proximation assumes that the ratio between the total pressure P(p,?¥) =
P (p, V) + Pr(vY) and the radiative pressure Pr(9) is a pure constant

Pr(9)
Pa(p, V) + Pr(V)
where 0 < 8 < 1 and Pg is given, for instance, by (2.18). Although crude,
this model is in good agreement with more sophisticated models — in par-

:17ﬁ7

ticular, for the sun.

One case where this model leads to a pressure law satisfying (1.2) is when
one keeps only the low order term into the virial expansion. Suppose that
o = 1, and let us plug the expression of the two pressure laws in this relation,

Yasp’ — aop® + kBydp = 1 Lo,
agp” — app” + KH1UP 1-33
By solving this algebraic equation to leading order (high temperature), one
gets
6az(1—B)\ 3/4
Y~ (— )
(=)
leading to the pressure law
2a
P(p,9) = 73,03 — aop® + kB

which satisfies (1.2) because of the constant coefficients.
However in this approximation, only the higher order terms were kept.

6az(1 — B)\ 7/4
(7"

Considering the non-constant coefficient or keeping the whole virial sum in
the pressure law was out of the scope of [27] and leads to precisely the type
of non-monotone pressure laws that we consider in the present work.

The virial equation of state for heat conducting Navier—Stokes equations
can be derived from statistical physics and reads

P(p,9) = pﬁ(Z Bn(ﬁ)pn)
n>0

with By = cst, and the coefficients B,, (1)) have to be specified for n > 1.

We will the treat truncated virial with appropriate assumptions or pres-
sure laws of the type P(p,¥) = Pe(p) + Pun(p,9) for the Navier—Stokes—
Fourier system in a future work.
Pressure laws can also incorporate many other type of phenomena. Com-
pressible fluids may include or model biological agents that have their own

This content downloaded from
129.2.19.102 on Thu, 09 Jul 2020 22:56:33 UTC
All use subject to https://about.jstor.org/terms



592 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

type of interactions. In addition, as explained later, our techniques also ap-
ply to other types of “momentum” equations. The range of possible pressure
laws is then even wider.

Based on these examples, the possibilities of pressure laws are many. Most
are not monotone and several do not satisfy (1.2), proving the need for a theory
able to handle all sort of behaviors.

2.4.2. Stress tensors. One finds a similar variety of stress tensors as for
pressure laws. We recall that we denote D(u) = (Vu + (Vu)T)/2.

e The isotropic stress tensor with constant coefficients reads as

D=pAu+ A+ p)Vdivu,
which is the classical example that can be handled by the Lions—Feireisl
theory; see, for instance, [48], [50] and [52] with v > d/2. See also the
recent interesting work by P.I. Plotnikov and W. Weigant (see [51]) in the
two-dimensional in space case with v = 1.

e Isotropic stress tensors with non-constant coefficients better represent the
physics of the fluid however. Those coefficients can be temperature 9 de-
pendent

D =2div (u(¥) D(u)) + V (A(P)divu).
Provided adequate non-degeneracy conditions are made on p and A, this
case can still be efficiently treated by the Lions—Feireisl theory under some
assumptions on the pressure law; see, for instance, [32] or [33].

e The coefficients of the isotropic stress tensors may also depend on the den-

sity

D = 2div (u(p,9) D(u)) + V (A(p, V) divu).

This is a very difficult problem in general. The almost only successful insight
in this case can be found in [12], [14], [15], [58], [46] with no dependency with
respect to the temperature; see the recent review paper [13]. Those articles
require a very special form of p(p) and A(p), and without such precise as-
sumptions, almost nothing is known. Note also the very nice paper concern-
ing global existence of strong solutions in two-dimension by A. Kazhikhov
and V. A. Vaigant where p is constant but A = p? with 8 > 3; see [57].

e Geophysical flow cannot in general be assumed to be isotropic, but instead
some directions have different behaviors; this can be due to gravity in large
scale fluids for instance. A nice example is found in the handbook written
by R. Temam and M. Ziane, where the eddy-viscous term D is given by

D = upAgu + 2020 + (A + p) Vdivu,

with pp # 1. While such an anisotropy only requires minor modifications
for the incompressible Navier—Stokes system, it is not compatible with the
Lions—Feireisl approach (see, for instance, [14]) and requires p, pp, pz > 0
and A + 2 min(up, pz, p1)/d > 0.
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3. New results for the compressible Navier-Stokes system

From now on we will work on the torus T¢. This is only for simplicity in
order to avoid discussing boundary conditions or the behavior at infinity. The
proofs would easily extend to other cases as mentioned at the end of the paper.

3.1. Statements of the results: Theorems 3.1 and 3.2. In this section we
present our main existence results. As usual for global existence of weak solu-
tions to non-linear PDEs, one has to prove stability estimates for sequences of
approximate solutions and construct such approximate sequences. The main
contribution in this paper and the major part of the proofs concern the stability
procedure and more precisely the compactness of the density.

(I) Isotropic compressible Navier—Stokes equations with general pressure.
Let us consider the isotropic compressible Navier—Stokes equations in (0,7)
x T

(3.1) Op + div(pu) = 0,
' By (pu) + div(pu © u) — pAu — (A + p)Vdivu + VP(p) = pf,

with 2 u/d+ X > 0, a pressure law P that is continuous on [0, +00), P locally
Lipschitz on (0, +o00) with P(0) = 0 such that there exists C' > 0 with

(3.2) C™ o) —C<P(p)<Cp'+C
and for all s > 0,
(3.3) |P'(s)| < P77t

with two constants v > d/2,5 > 1. System (3.1) is complemented with the
initial conditions

(3.4) pli=0 = po, (pu)lt=0 = po uo.
One then has global existence.

THEOREM 3.1. Assume that the initial data ug and pg > 0 with de po =
My > 0 satisfies the bound

Ey = /Td(’(pu)OP + Podﬂo)) dz < +o0,

2p0
where e(s) = [; p(7)/T2dr. Let the pressure law P satisfy (3.2) and (3.3) with
. d

and let f be bounded in L'(0,T; L*/O=Y(T%)). Then there exists a global
weak solution of the compressible Navier—Stokes system (3.1) with the initial
condition (3.4) in the sense of Definition 2.1.
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Remark. Let us note that the solution satisfies the explicit regularity es-
timate
ClEnl

Sup Lovety=n Lo (y,ty=n Kn(z —y) x(0px) () < W

te[0,7] /T2

for some 6 > 0, where K}, is defined as in Proposition 4.1 and Jdp; and x are
defined as in Section 8; see (8.1).

(IT) Non-isotropic compressible Navier—Stokes equations. We consider an
example of non-isotropic compressible Navier—Stokes equations in (0,7") x T¢:
(3.6)

Op + div(pu) = 0,

O(pu) + div(pu @ u) — div (A(t) Vu) — (u+ X\)Vdivu + VP(p) = pf,
with A(t) a given smooth and symmetric matrix, satisfying
2
d

where § A will be a perturbation around p Id. We again take P locally Lipschitz
on [0, +o0) with P(0) = 0 but require it to be monotone after a certain point

(3.8) Clpt—Cc<P(p)<Ccpt+c,

(3.7)  A®) = pld+6A1), p>0, =p+A—|5A®H)] e >0,

with v > d/2. System (3.6) is supplemented with the initial conditions
(3.9) pli=0 = po, (pu)]t=0 = po uo.
The second main result that we obtain is

THEOREM 3.2. Assume that the initial data ug and pg > 0 with de po =
My > 0 satisfies the bound

’(PU)OP
Ey = _— 4 d +
0 /d ( 2p0 poe(po) xr < +00,
where e(s) = [; p(7)/72dr. Let the pressure P satisfy (3.8) with

1 1
<1+E)+‘/1+ﬁ ,

and let f be bounded in L*(0,T; L*Y/(=V(T%)). There exists a universal con-
stant Cy, > 0 such that if

d
77

[0A]loc < Cx 21+ A),

then there exists a global weak solution of the compressible Navier—Stokes equa-
tion (3.6) with the boundary condition (3.9) in the sense of Definition 2.1 but
replacing the isotropic energy inequality by the following anisotropic energy:

E(p,u)(T) + /OT /Q(VuT A(t) Vu + (u+ ) [divul?) < Ej.
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Remark. Let us note that the constraint on ~y corresponds to the constraint
onp: p>~v+v/(y—1), where p is the extra integrability property on p.

3.2. Important comments/comparison with previous results. The choice
was made to focus on explaining the new method instead of trying to write re-
sults as general as possible but at the cost of further burdening the proofs. For
this reason, Theorems 3.1 and 3.2 are only two examples of what can be done.

As we mentioned in the introduction, our new method should also apply
to the Navier-Stokes—Fourier system (with an additional equation for temper-
ature). The Navier—Stokes-Fourier system is physically more relevant than
the barotropic case and moreover, as seen from the discussion in Section 2.4,
it exhibits even more examples of non-monotone pressure laws.

(I) Possible extensions. Applications may be done to various other impor-
tant models — in particular, in the Bio-Sciences where the range of possible
pressure laws (or what plays their role such as chemical attraction/repulsion)
is wide. But there are many other possible extensions; for instance, (3.2) could
be replaced with a more general

C'p —C < P(p) <Cp*+C,

with different exponents v, # 7. While the proofs would essentially remain
the same, the assumption (3.5) would then have to be replaced and would
involve 71 and 9. Similarly, it is possible to consider the spatially dependent
stress tensor A(t,x) in Theorem 3.2. This introduces additional terms in the
proof, but those can easily be handled as long as A is smooth by classical
methods for pseudo differential operators.

(IT) Comparison with previous results.

(ITI-1) Non-monotone pressure laws. Theorem 3.1 is the first result to
allow for completely non-monotone pressure laws. Among many important
previous contributions, we refer to [27], [31], [17], [48] and [32], [33], [50], [18]
for the Navier—Stokes—Fourier system. These references are our main point
of comparison, and they all require 0,P > 0 after a certain point and, in
fact, typically a condition like (3.8). The removal of the key assumption of
monotonicity has important consequences:

e From the physical and modeling point of view, it opens the possibility of
working with a wider range of equations of state as discussed in Section 2.4,
and it makes the current theory on viscous, compressible fluids more robust
to perturbation of the model.

e Changes of monotonicity in P can create and develop oscillations in the den-
sity p (because some “regions” of large density become locally attractive).
It was a major question whether such oscillations remain under control at
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least over bounded time intervals. This shows that the stability for bounded
times is very different from uniform in time stability as ¢ — +o0o0. Only the
latter requires assumptions of a thermodynamical nature such as the mono-
tonicity of P.

Obviously well posedness for non-monotone P could not be obtained as
is done here for the compressible Euler system. As can be seen from the
proofs, the viscous stress tensor in the compressible Navier—Stokes system
has precisely the critical scaling to control the oscillations created by the
non-monotonicity. This implies, for instance, that in phase transition phe-
nomena, the transition occurs smoothly precisely at the scale of the viscosity.
Our results could have further consequences, for instance, to show conver-
gence of numerical schemes (or for other approximate systems). Typical nu-
merical schemes for compressible Navier—Stokes raise issues of oscillations in
the density that are reminiscent of the ones faced in this article. The ques-
tion of convergence of numerical schemes to compressible Navier—Stokes is
an important and delicate subject in its own, going well beyond the scope
of this short comment. We refer, for instance, to the works by R. Eymard,
T. Gallouét, R. Herbin, J.-C. Latché and T. K. Karper; see, for instance,
[36], [29] for the simpler Stokes case, [28], [35], [37] for Navier—Stokes, and
more recently to the work [19], [42].

Concerning the requirement on the growth of the pressure at oo, that is,
the coefficient v in (3.5), we have the following remarks:

In the typical case where 4 = ~, (3.5) leads to the same constraint as in
P.-L. Lions [48] for a similar reason: the need to have p € L? to make sense
of pdivu. It is worse than the v > d/2 required, for instance, in [32]. In 3d,
we hence need v > 9/5 versus only v > 3/2 in [32].

It may be possible to improve on (3.5) while still using the method intro-
duced here but propagating compactness on appropriate truncation Tk (p)
of p; for instance, by writing an equivalent of Lemma 7.1 on Tk (p(t,x)) —
Tk (p(t,y)) as in the multi-dimensional setting by E. Feireisl. This possibil-
ity was left to future works. Note that the requirement on v > d/2 comes
from the need to gain integrability as per (2.9) along the strategy presented
in Section 2.1. Our new method still relies on this estimate and therefore
has no hope, on its own, to improve on the condition v > d/2.

In the context of general pressure laws, and even more so for possible later
applications to the Navier—Stokes—Fourier system, assumption (3.5) is not
a strong limitation. Virial-type pressure laws, where P(p) is a polynomial
expansion, automatically satisfy it, for instance, as do many other examples
discussed in Section 2.4.
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(I1-2) Anisotropic stress tensor. Theorem 3.2 is so far the only result of
global existence of weak solutions that is able to handle anisotropy in the stress
tensor. It applies, for instance, to the eddy-viscous tensor mentioned above for
geophysical flows

D = upAgu + 12020 + (A + p) Vdivu,
where pp, # 1, and corresponding to
(310) Aij = Up 5ij for i, j = 1, 2, A33 = Uz, Az’j =0 otherwise.

This satisfies the assumptions of Theorem 3.2 provided |puj — pg| is not too
large, which is usually the case in the context of geophysical flows.

We also wish to emphasize here that it is also possible to have a fully
symmetric anisotropy, namely, div (A Du) with D(u) = Vu + Vu' in the
momentum equation. This is the equivalent of the anisotropic case in linear
elasticity, and it is also an important case for compressible fluids. Note that
it leads to a different form of the stress tensor. With the above choice of A,
equation (3.10), one would instead obtain

div (ADu) = ppAgu + p0%u + p, Vo, u, + (A + p) Vdivu.

Accordingly we choose to state Theorem 3.2 with the non-symmetric anisotropy
div (AVu) as it corresponds to the eddy-viscous term by R. Temam and
M. Ziane mentioned above. But the extension to the symmetric anisotropy is
possible although it introduces some minor complications. For instance, one
cannot simply obtain divu by solving a scalar elliptic system, but one has to
solve a vector valued one instead; we refer the interested readers to the remark
just after (5.10) and at the end of the proof of Theorem 3.2 in Section 9.

Ideally one would like to obtain an equivalent of Theorem 3.2 assuming
only uniform elliptic bounds on A(¢) and a much lower bound on . The-
orem 3.2 is a first attempt in that direction, which can hopefully later be
improved.

However the reach of Theorem 3.2 should not be minimized because non-
isotropy in the stress tensor appears to be a level of difficulty above even
non-monotone pressure laws. Losing the pointwise relation between div u and
P(p) is a major hurdle, as it can also be seen from the proofs later in the
article. Instead one has to work with

divu = P(p) + L P(p) + effective viscous flux,

with L a non-local operator of order 0. The difficulty is to appropriately control
this non-local term so that its contribution can eventually be bounded by the
dissipation due to the local pressure term.

This content downloaded from
129.2.19.102 on Thu, 09 Jul 2020 22:56:33 UTC
All use subject to https://about.jstor.org/terms



598 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

Notation. For simplicity, in the rest of the article, C' will denote a nu-
merical constant whose value may change from line to line. It may depend
on some uniform estimates on the sequences of functions considered (as per
bounds (5.5) or (5.4) for instance) but it will never depend on the sequence
under consideration (denoted with index k) or the scaling parameters h or hg.

4. Sketch of the new compactness method

The standard compactness criteria used in the compressible Navier—Stokes
framework is the Aubin—Lions—Simon lemma to get compactness on the terms
pu and pu ® u. A more complex trick is used to get the strong convergence
of the density. More precisely it combines extra integrability estimates on the
density and the effective viscous flux property (a kind of weak compactness)
and then a convexity-monotonicity tool to conclude.

Here we present a tool that will be the cornerstone in our study to prove
compactness on the density and that will be appropriate to cover the more
general equation of the state or stress tensor form.

In order to give the main idea of the method, we present it first in this
section for the well-known case of linear transport equations, i.e., assuming
that u is given. We then give a rough sketch of the main ideas we will use in
the rest of the article. This presents the steps we will follow for proofs in the
more general setting.

4.1. The compactness criterion. We start with a well-known result pro-
viding compactness of a sequence:

PROPOSITION 4.1. Let pi be a sequence uniformly bounded in LP((0,T)
x T?) for some 1 < p < co. Assume that K, is a sequence of positive, bounded
functions such that
(i) for alln >0, supy, fpa Kn(2) L. |g/>ndr < 00;
(ii) 1KnllL1(pay —> +00 as h — +o0.

If Oypr € LI([0, T] x W—H9(T?)) (with ¢ > 1) uniformly in k and

. 1 T
timsup|—— [ [ Kn(o = 9) lpn(t,) — pult )P dwdyde] — 0
ko Cwllzy Joo Jr2a

as h — 0, then py, is compact in LP([0, T] x T¢). Conversely, if py. is compact
in LP([0, T] x T9), then the above quantity converges to 0 with h.

For the reader’s convenience, we just quickly recall that the compactness
in space is connected to the classical approximation by convolution. Denote
by K, the normalized kernel

— K
K=t
1Chll L1
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Write
_ ) p
ok — Kn %o pillhp < IKCallB s /qu (/Td Kn(x —y)lpr(t, x) — Pk(t,y)\d:c) a
L
1
= Tllur /T Kn(x = y)lox(t @) = pi(t, y)[Pdu dy,

which converges to zero as h — 0 uniformly in k& by assumption. On the
other hand, for a fixed h, the sequence K}, *, u; in k is compact in z. This
completes the compactness in space. Concerning the compactness in time, we
just have to couple everything and use the uniform bound on 0;py as per the
usual Aubin-Lions-Simon lemma.

In all the paper the following important choice of Kernel K} and its asso-
ciated Kj, functions are used.

Definition 4.2. We define the positive, bounded and symmetric function
K}, such that

1
(h+ |z])®
with some a > d and K}, positive, independent of h for |z| > 2/3, K}, positive
constant outside B(0,3/4) and periodized so as to belong in C*°(T9\ B(0, 3/4)).

For convenience, we denote

Fh(l‘) o Kh(x)

Kp(z) = for |x| <1/2,

 IKwllpieray”

This kernel K} is enough for linear transport equations to prove compact-
ness. For compressible Navier—Stokes, for 0 < hg < 1, the following important
quantity will play a crucial role:

T dh
Kho(x) = Kh(.f[])?
ho
Important remarks. The weights defined in Definition 4.2 satisfy the prop-
erties

Kp(z) = Kp(—2),  |2]|[VEp(z)| < c Kp(z)
for some constant ¢ > 0 and
1Cho ll L1 10y ~ |log hol.
These properties will be strongly used throughout the paper.

4.2. Compactness for linear transport equation. Consider a sequence of
solutions py, on the torus T¢ (so as to avoid any discussion of boundary con-
ditions or behavior at infinity) to

(4.1) Orpr + div (prur) =0, prli=o = P,
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600 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

where uy, (a given velocity field) is assumed to satisfy, for some 1 < p < oo,

(4.2) s%p HukHLﬁwi,p < 0.
Defining
1 T . .
(4.3) ex(h) = ”KhHLl/O - Ky (z — y) |div gug(t, ) — divyug(t, y)|? dx dy,

we assume div u, compact in x, i.e.,

(4.4) limsup ex(h) — 0 as h — 0.
k

Moreover, defining

b
(L

we assume compactness of the initial data, namely,

45 &)= [ Kol =) @) = p(w)] o dy,

(4.6) limsupég(h) — 0 as h — 0.
k
The condition on the divergence is replaced by bounds on py,
1
(4.7) 0<—= <infpg <suppp <C <400, Vte]|0, T],
C Td Td

where C' does not dependent on k. One then has the well-known

PROPOSITION 4.3. Assume py solves (4.1) with the bounds (4.2), and

(4.7).  Assume, moreover, that the initial data pg is compact — mnamely,
(4.6) — and that the divergence of the wvelocity uy is compact in space —
namely, (4.4). Then py is compact and, more precisely,
(4.8)

sup | Kp(x —y)|or(t,z) — pi(t,y)| dzdy < C [l

tejo,7] J T2 ’ ’ |log(h + ex(h) + éx(R))]’

where i (h), €x(h) are given respectively by (4.3) and (4.5).

This type of results for non-Lipschitz velocity fields uy was first obtained
by R. J. Di Perna and P.-L. Lions in [26] with the introduction of renormalized
solutions for u; € Wh! and appropriate bounds on div uy. This was extended
to ug, € BV, first by F. Bouchut in [8] in the kinetic context (see also M. Hauray
in [39]) and then by L. Ambrosio in [3] in the most general case. We also refer
to C. Le Bris and P.-L. Lions in [44], [48] and to the nice lecture notes written
by C. De Lellis in [23]. In general, ux € BV is the optimal regularity as shown
by N. Depauw in [25]. This can only be improved with specific additional
structure, such as provided by low dimension; see [2], [10], [20], [21], [38],
Hamiltonian properties [16], [40], or as a singular integral [9)].

This content downloaded from
129.2.19.102 on Thu, 09 Jul 2020 22:56:33 UTC
All use subject to https://about.jstor.org/terms



COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 601

Of more specific interest for us are the results that do not require bounds
on div ug (which are not available for compressible Navier—Stokes) but replace
them by bounds on pg, such as (4.7). The compactness in Proposition 4.3 was
first obtained in [4].

Explicit regularity estimates of pp were first derived by G. Crippa and
C. De Lellis in [22]. (See also [41] for the Wh! case.) These are based on
explicit control on the characteristics. While it is quite convenient to work on
the characteristics in many settings, this is not the case here — in particular,
due to the coupling between div uy, and p(pg).

In many respects the proof of Proposition 4.3 is an equivalent approach
to the method of G. Crippa and C. De Lellis in [22] at the PDE level, instead
of the ODE level. Its interest will be manifest later in the article when dealing
with the full Navier—Stokes system. The idea of controlling the compactness of
solutions to transport equations through estimates such as provided by Propo-
sition 4.1 was first introduced in [6] but relied on a very different method.
Note that in the linear case with a given vector field ug sequence, the com-
pactness of the divuy is strictly required to obtain the compactness of px; see,
for instance, [24].

Proof. One does not try to directly propagate

o Kn(z —y) |pr(t, ) — pr(t, y)| dz dy.

Instead one introduces the weight w; solution to the auxiliary equations
(4.9) Oywy, + ug - Vwi, = —A M |Vug| wy, Wk li=0 = 1,

where M f denotes the maximal function of f (recalled in Section 6) and A is
a constant to be chosen large enough.

First step: Propagation of a weighted regularity. Here and in the follow-
ing, we use the convenient notation (pf,uf) = (p(t, x), ux(t, z)), (pf,u}) =

(p(t,y), u(t, y)) and (pf)o = ple=o0, (p)o = pjli=o. We prove that we prop-
agate in time the following quantity:

Re(t)= | | Knle—y) ok Pl wi wy, dz dy,
where as before we denote wi = wy (¢, z) and wy = wy(t,y).
The starting point is essentially a doubling of variables argument, going
to Kruzkov’s seminal work [43]. Using (4.1), we note that densities pf and pj},
respectively satisfy

Oy + dive (pgug) = 0, Pili=0 = (P¥)os

(4.10) _
opy + divy(pjul) =0, pilli=o = (p§)os
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602 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

and from (4.9) weights w{ and wj respectively satisfy

(4.11) Owi + uy, - Vawig = =AM |Vug|® wi, Wi |i=o =1
and
(4.12) oywy +ui - Vywl = =AM |Vug | wy, wy|i=o = 1.

Using (4.10), we obtain that
Opi — pil + div (ui [pk — pil) + divy (uj [k — p1)
= S (diveuf + divyuf) Jof o}
— (v —div ) (of + pl) s

where s, = sign(pf — p}). We refer to Section 7.1 for the details of this
calculation, which is rigorously justified for a fixed k& through the theory of
renormalized solutions in [26] as recalled in Section 6. From this equation on
|pE — pi|, we deduce

R )= [, VB =) (uf = u) |of = o] wi wf dady
—5 /Tzd Kp(z —y) (div guf — divyul) (pf + pY) s, wi wi da dy
1
—1—/ ) Kn(z —y) |pf — Pl <8tw£ +uf - Vywi + 5 div puf w%) wy dz dy
’H‘Q
+ symmetric of the last term.

Note that the weights wf and wj satisfy (4.11) and (4.12) and are uniformly
bounded; thus duwj + uf - Vawi + div zuf wi /2 belongs to LP uniformly in &
for some 1 < p < 400, even though we may not be able to make sense of each
term individually. Observe that by (4.9), wy < 1 and therefore by (4.7) and
the definition of ¢ in (4.4), the second term in the right-hand side is easily
bounded:

/OS N Kp(z —y) (divug — divuy) (pf + py) sk wi wy dz dy
< C|Knl p1(ray ek (h).
For the first term, one uses the well-known inequality (see [54], [55] or Section 6)
ui — ui] < Calz — y| (M [Vupl" + M [Vug|”),
combined with the remark that from the choice of K},

IVE(z —y)| |z —y| < CKp(x —y).
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 603

Therefore,
/OS T2d VEw(x —y) - (uf —up) |pf — ppl wi w de dy dt
= C/os /]I‘2d Kn(z = y) (M |Vug|” + M [Vur]”) |pk — pi| wi wy dz dy dt,
combining everything and integrating the equation on R(t) from 0 to s:
Rilt=s — Rilt=0 < C'||Kp| 11 ex(h)
+ /OS /TZd K (z —y) (Bewd +uf - Vowd + C (div puf + M [Vuy|*) wi )
\pi — pi| wi dz dy dt + symmetric of the last term.

Since divuy < d,|Vug| < d M|Vuyg|, by taking the constant A large enough
in (4.9),

oywyi, + uj, - Vywi, + C (div guj, + M |Vug|®) wi <0,
and hence

Rilies < [ Kl =) @) = pw)] dody + 11Kl roy 2u(h)

< C [ Kll ey (ex(h) +Ex(R).

Second step: property of the weight. We need to control the measure of
the set where the weight w is small. Obviously if w were to vanish everywhere,

(4.13)

then the control of R(t) would be trivial but of very little interest. From
equation (4.9) one formally obtains

9o |og wf|) + div; (pF wp| log wfl) = A pf M |V |”.

And thus, integrating in space on T¢,

d x| X _ xr x
) dt/wuogwk\pkda:—A/kaMrw da

< Mokl o (pay 1M Vgl || Lo pay-

Of course at this point, the calculations are only formal. In particular, since
wg may vanish, one has to be especially careful when trying to work with
log wy. Instead one may rigorously derive (4.14) directly from the theory of
renormalized solutions; we refer more precisely to Lemma 6.11 later in the
article.

Equation (4.14) gives

sup / |logwi| pp de < C
te[0,T] /T4

uniformly with respect to k by (4.2) (which implies that the maximal function
is bounded on LP((0,T) x T?) for p > 1) and from (4.7). This estimate may
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604 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

be written in the (¢,y) variable, namely,

sup / |logwy| pj da < C
tefo, 1] J T
uniformly with respect to k.

Third step: Conclusion of the proof. Assume t is fixed, again using (4.7),
and let 1 be a small enough parameter. Then

)
|log wi| pf dx < .
|log 7| FEET (log |

Note that the same holds in the (¢,y) variables. Let us now write

{z, wi <njf <

Kp(z —y) o — pj| dz dy

T2d
:/ L Kn !p?i—pildxdy+/ Kj, |p — pi| dz dy,
w§ >0, wy>n wi<n or wi<n

and so

sup Kn(x —y) |py — ppl da dy

tefo, 7] /T2

< = s [ Kyl pflukwl dwdy + (Kl
N~ telo,1) / T2d | log 7|
ex(h) + ér(h 1
n | log 7|

which by minimizing in 7 finishes the proof of (4.8). The compactness is a
consequence of the compactness criterion, taking limsup; and checking the
convergence to zero when h goes to zero using (4.4) and (4.6). O

4.3. A rough sketch of the extension to compressible Navier—Stokes. We
will only consider the case of general pressure laws and assume that the stress
tensor is isotropic. When considering the compressible Navier—Stokes system,
the divergence divuy is not given anymore but has to be calculated from py
and the total time derivative of the velocity itself through the relation (2.16),
where Ry, includes the force applied on the fluid and Fj is the effective viscous
flux encoding the total time derivative of the velocity itself (see (2.17)). For
the moment, we will assume to have the compactness property in space for
Ry and Fj, = 0 even if for the compressible Navier—Stokes system it is not the
case. More precisely, we consider that

(4.15) divug = P(pk) + Rg.

The aim of this subsection is to provide a rough idea of how to extend the
previous method when the velocity field u; is not given but linked to density
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 605

pr. and to prove compactness far from the vacuum. To keep things as simple
as possible here, we temporarily assume that
(4.16)

Sllip | Rkl oo ((0,7) ) < 005 limksup ex(h) — 0 as h — 0,

1 T
where i (h) = HKhHLl/o /T2d Kp(x —y) |Ri(t,z) — Ri(t,y) P dz dy dt.
Denoting
- 1
@) ) = e [ K= ) ) - )l ddy,

we assume compactness of the initial data, namely,

(4.18) limsup £;(h) — 0 as h — 0.
k

We do not assume monotonicity on the pressure P but simply the control
(4.19) P/(p) < Cp7 L,
A modification of the previous proof then yields

PROPOSITION 4.4. Assume py, solves (4.1) and the bounds

sup 1Pkl Loo (0,751 () < 00, Sup okl Lo 0,y x T2y < 00 withp > v+ 1.

Assume that supy, |[ug| L2711 (1)) < 00 and that (4.15) holds with the bounds
(4.16) on Ry and (4.19) on P. Assume moreover that the initial data pY) is
compact, namely, (4.18). Then py is compact away from the vacuum and, more
precisely,

sup / Kh(ﬂlC - y) ’Pk(taﬂf) - Pk(ta y)\ dx dy
te(0,T) Y pi(t,2)>n, pr(t,y)>n
[
<C po )
= " og(h + (e (h)) + Ex(h))]

where £ (h) and € (h) are respectively given by (4.16) and (4.17).

Unfortunately Proposition 4.4 is only a rough and unsatisfactory attempt
for the following reasons:

e The main problem with Proposition 4.4 is that it does not imply compact-
ness on the sequence pi because it only controls oscillations of py for large
enough values but we do not have any lower bounds on p;. In fact not only
can pi vanish, but for weak solutions, a vacuum could even form; that is,
there may be a set of non-vanishing measures where pr = 0. This comes
from the fact that the proof only gives an estimate on

[ Bl =) I = o i wf o dy,
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but since there is no lower bound on pf and p{ anymore, estimates like
(4.14) only control the set where w{ wy is small and both pf and p} are
small. Unfortunately |pf — p¥| could be large while only one of pf and pY is
small (and hence w§ w} is small as well).

The solution is to work with w{ +wj instead of wf w}. Now the sum w} +w}
can only be small if |p} — p}| is small as well, meaning that a bound on

[ Enla =) 10t = o} (wf + w) dady,

together with estimates like (4.14), would control the compactness on py.
Unfortunately this leads to various additional difficulties because some terms
are now not localized at the right point. For instance, one has problems es-
timating the commutator term in VKj, - (uf — u) or one cannot directly
control terms like div ;uf w} by the penalization that would now be of the
form M |Vuyg|® wi. Some of these problems are solved by using more elab-
orate harmonic analysis tools, while others require a more precise analysis
of the structure of the equations. Those difficulties are even magnified for
anisotropic stress tensors that add even trickier non-local terms.

The integrability assumption on px, p > v + 1 is not very realistic and
too demanding. If p = (1 +2/d) — 1 as for the compressible Navier—Stokes
equations with power law P(p) = ap”?, then this requires v > d. Improving it
creates important difficulty in the interaction with the penalization. It forces
us to modify the penalization and prevents us from getting an inequality like
(4.14) and, in fact, only modified inequalities can be obtained, of the type

sup/ |log wi|? p¥ da < oc.
E JTd

The bounds (4.16) that we have assumed for simplicity on Rj cannot be
deduced from the equations. The effective viscous flux Fj is not zero, is
not bounded in L*°, and is not a priori compact. (It will only be so at
the very end as a consequence of pj being compact.) Instead we will have
to establish regularity bounds on the effective viscous flux when integrated
against specific test functions, but in a manner more precise than the exist-
ing Lions—Feireis] theory; see Lemma 8.3 later.

This is of course only a stability result; in order to get existence one has to
work with an appropriate approximate system. This will be the subject of
Section 9.

Proof. One now works with a different equation for the weight

20) Owi + ug - Vwg = =X (M [Vug| + p}),  wili=o = 1,

where M f is again the maximal function of f.
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 607

First step: Propagation of some weighted reqularity. Recall, here and in
the following, that we use the notation G§ = Gi(t,z) and G} = Gi(t,y) for
all Gy € D'((0,T) x T¢). The beginning of the first step essentially remains
the same as in the proof of Proposition 4.1: one propagates

Relt) = [ | Kl =) |of = i wl do dy.

The initial calculations are nearly identical. The only difference is that we do
not have (4.4) any more, so we simply keep the term with div guf — div ,u} for
the time being. We thus obtain

(4.21)

d 1
%Rk(t) <-3 /2d Kp(z — y) (div guj, — divyul) (pf + p) s wi wi dz dy
T

B )\/TM((,O@'Y + (Pz)w) ok — ﬂZ| wi, wZ dx dy

by taking the additional term in equation (4.20) into account. This is of course
where the coupling between u; and pg comes into play, here only through the
simplified equation (4.15). Thus

[ e =) (vt = div ) o + pf) su wf wf do dy
(1.22) = [ ol =) (PUR) = P (G + ) s it wl i dy
+ [ Kn@ =) (B = B (0 + ) s wi wf do dy.
By the uniform LP bound on p; and the estimate (4.16), one has
L K =) (R = B (5 + o) st w? dardy

< O||Knllp (ex(h) 1P,

(4.23)

Now using (4.19), it is possible to bound

1
(o) = PUA) < 1ok = pl] [ 1P/ (s 0+ (1= ) )] ds

< C((p)" + () ek — Al

leading to
o 0@ =) (P(E) = P(p})) (b + p) s wic wi da dy
<C | Knle—y) (D)™ + (09 (0F + p!) |t — p| wi w da dy

<€ [ il =) (0 + 607 Ik ol wf dwdy,
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608 DIDIER BRESCH and PIERRE-EMMANUEL JABIN
Now using this estimate, equality (4.22), the compactness (4.23), and by taking
A large enough, one finds from (4.21) that

Rili=s < Rili=0 + C || p1 (ray (ex(R)' /7.

Second step and third steps: Property of the weight and conclusion. The
starting point is again the same and gives

| toguiipiar<c. [ loguplpidy < ©

with C independent of k but where we now need p € LP with p > v+ 1
because of the additional term in equation (4.20). By splitting the integration,

/ Ki(z —y) |of — pl| de dy
p

T

£>n, pr>n

= Kn(z —y) ok — pil dz dy
pE>n, pY>n, wE>n', wi>n'

Kl (1+ ) do.

pr=m, wi<n’

On the one hand,

1
/ (1—|—p£)dx§(f+1)/ pr dx
pr=n, w<n’ n wi<n/

1 1 1 C
§<7+1) / log wf pxdm§<—+1> i
n | log /| w’ il o n | log /|

On the other hand,

T Yy
/ , K@ —y) ok — pyl dedy
PEZM, PR2M, Wi 2N, wp>n

1
< 2 s K =9 10— ol vy

Therefore,

| Eua—y)lE -l dody
P Pr=M

(424) OO c c Ly
< || K (7 )7 —— ||K 1 (h h)) —/P
< IRl (1) gy * e 1l () + (e =7)

which concludes the proof by optimizing in 7’ as we get the estimate

/ K@ =) lpe(t,2) = pi(t,y)| de dy
pr(@)2n; pr(y)=n

< | Kpl| 11
= " |log(h + (ex(h)) + éx(h))]’
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 609

where e (h) and £(h) are respectively given by (4.16) and (4.17). Now taking
the limsup in k, the resulting quantity converges to zero as h — 0. Therefore
we get compactness far from the vacuum applying the compactness lemma. [

5. Stability results

5.1. The equations. Here and in the following, we will often use the no-
tation G} = Gy(t,-1) and H,"? = Hy(t,-1,-2) for any space variable -1, -2
belonging to T?. For instance, pf = pk(t, x), P,f’p’“ = Py(t, z, p(t, x)).

5.1.1. General pressure law. We consider a sequence (pg,ug) of global
weak solutions (with the uniform bounds given below, which allows us to make
sense of the equations in the sense of distributions). Here py solves the conti-
nuity equation

(5.1) Orpr + div (pr ur) = arlpy, in (0,7) x T¢,

and we ask that py be a renormalized solution to (5.1). (We recall this notion
in Section 6.2.) Here uy solves

(5.2) pd divuf — PP7F = FE + R in (0,T) x TY,
where
Fip = A1 div o (9:(pf uf) + div o (pf uf ® uf))

and Ry represents terms that will be assumed to be compact as an external
force with the initial conditions

: d
Pklt=0 = po, PrUk|t=0 = poto in T
and periodic boundary conditions in space.

Remark. Note that the term Fj} represents the effective viscous flux part
coming from the total time derivative. Compactness of such a quantity is
a priori not known and will be treated in a section. Readers who are inter-
ested by the method without too much complexity may skip this term and
the corresponding parts. This will provide compactness with the vacuum state
compared to the previous section, which focused on compactness far from the
vacuum.

Important remark. Note that here we allow a possible explicit dependence
on t and x in Py, namely, P,f’pi = Pi(pr(t,x),t,z). This does not really
affect our stability results, and it can be critical for treating non-homogeneous
settings or cases such as the Navier—Stokes—Fourier system. This general form
is hence a good illustration of the flexibility of our compactness method.

In this part, we will assume the viscosity of the fluid to depend on time
and space for the first time. To handle with more general viscosity of this kind,
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610 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

we assume it to be bounded from below and above, namely, that there exists
a constant i1 independent on k such that

(5.3) 0< = <pd<p<—+o0o

=i =

We consider the following control on the density (for p > 1):

(5.4) Sup okl oo o, 7, 27 (ray) + okl Loqo, Txmay] < 00

We consider the following control for wg:

(55)  sup|loe lurPlleo, 7, Locwny + IVurll 2o zazcoay| < +oo
We also need some control on the time derivative of pruy through

(5.6) Ip > 1, s%p Hat(Pkuk)”LfW;lvﬁ < 00

and on the time derivative of pg, namely,
(5.7) dg > 1, sup HathHLq ~1,4 < 00.

Remark. Note that usually (see, for instance, [32], [48]), (5.6) and (5.7)
are consequences of the momentum equation and the mass equation using the
uniform estimates given by the energy estimates and the extra integrability on
the density.

Concerning the equation of state, we will consider that for every z, s: P;"*
continuous in s on [0, +00) and positive, P,f ** locally Lipschitz in s on (0, +00)
with P 0= ©7 and with one of the two following cases:

(i) Pressure laws with a quasi-monotone property: There exists P, pg indepen-
dent of ¢,z such that if s > po, then P,® is a function P¥ plus a function
independent of ¢,z and

Dy ([P,f’s — P,f]/s) > 0 for all s > po, SEIJPOOP ¥ = oo,

(5.8) |Py" — PV < Plr— s\ + Qm’y for all 7, s < po, x, y € T,

lim sup SUP/ / PE — PY| +QpY) dx dydt = 0.
0 T2d ‘KhHLl (| k k| k )
(ii) Non-monotone pressure laws (with very general Lipschitz pressure laws):

There exist P> 0,5 >0 and PZ in L2((0, T)xT9), Q¥ in L' ((0, T)xT?)
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 611
and ©¢ in LY((0, T) x T¢) such that for all ¢z, y,
.0 Yy : 5 5— 5— 75 75
[Py = PP < QEY + [P ((00) 7+ (o)1) + B+ PY] Lok — s,
P < P(pE)Y + ©F with ©F >0,

(5.9) Sgp(”ﬁ’kum((o, T)xqrd)+H9k”L1([o, T]de)) < 00,

lim sup su / / PF —
ot e T2d HKhH 1 (| i
+16f — 6| + Q) dv dy dt = 0.

Two important remarks. (1) The general hypothesis on pressure laws
should prove quite useful in many extensions of our results, such as the heat-
conducting compressible Navier—Stokes case. The pressure law can then in-
clude, for instance, a radiative part (namely, a part depending only on the
temperature as in [33]) and a pressure law in density with coefficients depend-
ing on temperature. (See the comments in the section under consideration.)

But this general form can also cover various inhomogeneous settings where
the pressure law may have some explicit spatial dependence.

(2) In the basic case where Py does not depend explicitly on ¢ or = (namely,
P, =0, Qr =0 and O, = 0), then (5.9) reduces to the very simple condition

|Py(r) — P(s)| < Pri~1|r — s,
Note that this assumption is satisfied if P is locally Lipschitz on (0, 4+00) with
|P'(s)| < Ps71,
namely, with the hypothesis mentioned in Theorem 3.1.

Remark. Note that (i) with the lower bound P(p) > C~!p” — C provides
the same assumptions as in the article [31] by E. Feireisl. Point (i) will be used
to construct approximate solutions in the non-monotone case.

5.1.2. A non-isotropic stress tensor. In that case, assume (pg, ux) to be a
sequence of global weak solutions solving (5.1) with oy = 0,

Orpr + div (prug) = 0 in (0,7) x T%
and
(510) divug = Pk(ﬂk) + Vg aHAH Pk(ﬁk) + Fkﬂ,

where

AH = (A — ay Ek)_l E;
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612 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

with Ej a given integral or differential operator discussed later on and where
the anisotropic effective viscous flux is given by

Fro=vip (A —a, Ek)_1 div (O¢(p ug) + div (pg ug @ ug)).
The equations are supplemented with the initial conditions

. md
Pklt=0 = po, PrUL|t=0 = oo in T
and are periodic in space boundary conditions.

Remark. If one considers a symmetric anisotropy, div (A Du) in Theo-
rem 3.2, then instead of (5.10), we have the more complicated formula

divuy, =vy, Pe(pr) + v ap Ay Pe(pr)

(5.11) ] -~ )
+ypdiv (AT — a, Er) ™ (0u(pr ug) + div (pr up @ ug)),
where A, = (AT —a, E},)""- Ey. But now Ej, and Ej may be different and are
vector-valued operators so that, in particular, (A1 —a, E))~! means inverting
a vector valued elliptic system. Except for the formulation there would however
be no actual difference in the rest of the proof.

Coming back to (5.10), we assume ellipticity on vy:
(5.12) O<rv<y <7< o.

We assume that Fj is a given operator (differential or integral) such that

e (A —ay, Er)"' A is bounded on every LP space;

e A, =(A—ay,E)"! Eg is bounded of norm less than 1 on every LP space
and can be represented by a convolution with a singular integral still de-
noted by A,:

%,
A=A o 1Au(a)| < 1 /A#(x)dx:().

Note here that to make more apparent the smallness of the non-isotropic
part, we explicitly scale it with a,. We consider again the control (5.4) on the
density but for p > +2/(y — 1), and the bound (5.5) for uz. We also need the
same controls: (5.6) on the time derivative of pyuy and (5.7) on the time of
the Pk-

The main idea here is to investigate the compactness for an anisotropic
viscous stress obtained as the perturbation of the usual isotropic viscous stress
tensor, namely, —div (A Vu) + (A + p) Vdivu assuming A = pld 4+ 6A and
a, = ||0A]| < € for some small enough «.
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 613

5.2. The main stability results: Theorems 5.1, 5.2 and 5.3. First note that
as in Lions’ scenario, the main point in the proof of both results is the coupling
of the specific renormalized form of the continuity equation for the new quan-
tity measuring density oscillations with the specific compensated compactness
properties of the commutator involving the effective viscous flux coming from
the total time derivative. Readers who are interested in models without total
time derivative in the equation that gives the velocity field in terms of the
pressure may skip the parts called effective viscous flux.

5.2.1. General pressure laws. The main step in that case is to prove the
two compactness results

THEOREM 5.1. Assume that py solves (5.1), uy, solves (5.2) with the bounds
(5.3), (5.5), (5.6), (5.7), and that ux and Ry, are compact in L'((0,T) x T9).

Moreover,

(i) if o > 0 (with ap — 0 when k — +00), we assume the estimate (5.4) on
pr with v > 3/2 and p > 2 and quasi-monotonicity on Py, through (5.8);

(ii) of ap = 0, then it is enough to assume (5.4) with v > 3/2 and p >
max(2,%) and only (5.9) on Py.

Then the sequence py is compact in L'((0,T) x T9).

We also provide a complementary result that is a more precise rate of
compactness away from the vacuum; namely,

THEOREM 5.2. Assume again that py solves (5.1) with a, = 0, uy, solves
(5.2) with the bounds (5.3), (5.5), (5.6), (5.7) and that i and Ry, are compact
in LY((0,T) x TY). Assume that (5.4) holds with v > d/2 and p > max(2,7)
and that Py, satisfies (5.9). Then there exists > 0 and a continuous function
e with £(0) = 0, depending only on py and Ry such that

limsup sup [ ]ka(x,t)Zn Hpk (y,t)>n Ky, (l‘ - y) X(5,0k) dx dy}

k  selo,1) /T2

t=s
C || Knl[ 2
= n'/2|log(e(h) + h)[0/2

For instance, if Py, Oy, p and Ry are uniformly in W*?! for s > 0, then
for some constant C' > 0,

limsup sup [ ]ka(a:,t)Zn Hpk (y,t)>n Ky, (l‘ - y) X(6Pk) dx dy}

k  seo,1) /T t=s

o | Knl 1
— n1/2|10gh’9/2'
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614 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

Since those results depend on the regularity of p; and Ry, we denote gg(h) a
continuous function with £¢(0) = 0 such that

T
L mnte =) (1R = B+ g — il

+|BE = PY| +|0F — Of| + |QY|) du dy dt < eo(h) | Kl

(5.13)

5.2.2. Non-isotropic stress tensor. In that case our result reads

THEOREM 5.3. Assume that py, solves (5.1) and that uy solves (5.10) with
the bounds (5.5), (5.6), (5.7) and (5.12) together with all the assumptions on
Ey below (5.10). Assume as well that Py satisfies (5.8) and that (5.4) with
v > d/2 and p > v2/(y — 1). There exists a universal constant C, > 0 such
that if

a, < O,
then py, is compact in L*((0,T) x T9).

Remarks. Theorems 5.1, 5.2, and 5.3 are really the main contributions of
this article. For instance, deducing Theorems 3.1 and 3.2 follows usual and
straightforward approximation procedures.

As such the main improvements with respect to the existing theory can be
seen in the fact that point (ii) in Theorem 5.1 does not require monotonicity
on Py and in the fact that Theorem 5.3 does not require isotropy on the stress
tensor.

Our starting approximate system involves diffusion, ax # 0, in the con-
tinuity equation (5.1). As can be seen from point (i) of Theorem 5.1, our
compactness result in that case requires an isotropic stress tensor and a pres-
sure P that is monotone after a certain point by (5.8). This limitation is the
reason why we also have to consider approximations P, and E} of the pres-
sure and the stress tensor. While it may superficially appear that we did not
improve the existing theory in that case with diffusion, we want to point out
the following:

e We could not have used P.-L. Lions’ approach because this requires strict
monotonicity: P,g > 0 everywhere. Instead, any non-monotone pressure
P satisfying (5.9) can be approximated by Py satisfying (5.8) simply by
considering P, = P + ¢ p? as long as ¥ > 4 and thus without changing
the requirements on .

e E. Feireisl et al. can handle “quasi-monotone” pressure laws satisfying (5.8)
together with diffusion, but they require higher integrability on p; for this:
p > 4 in (5.4). This in turn leads to a more complex approximation
procedure.
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 615

6. Technical lemmas and renormalized solutions

6.1. Useful technical lemmas. We recall the well-known inequality, which
we used in Section 4.2 and will use several times in the following (see, for
instance, [54]): For any |z —y| <1,

(6.1) [@(z) — @(y)| < Clz—y[(M|VE|(z) + M|VP|(y)),

where M is the localized maximal operator

1
(6.2) M f(z) = ilgl}l) B0 /B(o,r) flz + 2)dz.

As will be seen later, there is a technical difficulty in the proof, which would
lead us to try (and fail) to control M|Vug|(y) by M|Vug|(z). Instead we
have to be more precise than (6.1) in order to avoid this. To deal with such
problems, we use more sophisticated tools. First,

LEMMA 6.1. There exists C > 0 such that for any u € WH1(T), one has
lu(z) = uy)] < Clz =y (Djg—yju(®) + Dig—yju(y)),

where we denote

1 |Vu(z + z)|

Dyu(z) ’Z’d_l

= = dz.
h Jz1<n

Proof. A full proof of such a well-known result can, for instance, be found
in [41] in a more general setting, namely, v € BV. The idea is simply to
consider trajectories y(t) from x to y that stay within the ball of diameter
|x — y| to control

1
fu(z) — u(y)| < /0 ¥ (t) - Vu(y(t)) dt,

and then to average over all such trajectories with length of order |z — yl.
Similar calculations are also present, for instance, in [30]. U

Note that this result implies the estimate (6.1) as

LEMMA 6.2. There exists C > 0 for any u € WIP(T?) with p > 1:

Dpu(x) < C M|Vul(z).

This content downloaded from
129.2.19.102 on Thu, 09 Jul 2020 22:56:33 UTC
All use subject to https://about.jstor.org/terms



616 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

Proof. Do a dyadic decomposition, and define ig such that 27%~! < p
< 9~to:

1 |Vu(z + 2)|
D < - —_—
nu(z) < h 2/2_ B dz

i>io i_1<‘2|§2_i

9(i+1) (d—1)
<Z/2 | Vu(z + z)| dz

i>ig h Timlz]<27e

277,'
< 2d4-1 Z |B(0,1)] TM |Vu|(x) < C M |Vul|(z). O
i>io

The key improvement in using Dy, is that small translations of the operator
D, are actually easy to control

LEMMA 6.3. For any 1 < p < o0, there exists C > 0 such that for any
u € HY(T9),

- dh
63) [ [ Ru@ 1D u0) = Dpjul+ 2)ldz 5 < C ulgy
h() Td P,

where the definition and basic properties of the Besov space B;yl are recalled
in Section 11. As a consequence,

1 — dh
64) [ [ R 1D u() = Dpjul+2)l12d= 5 < C l1oghol fum,
0

It is also possible to disconnect the shift from the radius in D,u and obtain,
for instance,

1 _ _ dh
[ Fr@ Ra@)IDyu() = D+ w) 12 dz dw S
ho J/T2d h

< C'|log ho|"/ [|u]| g1

(6.5)

We can in fact write a more general version of Lemma 6.3 for any kernel:
LEMMA 6.4. For any 1 < p < oo and any family N, € W (T?) for some
s > 0 such that

sup suprfs/ |2|* [Ny (2) = Np(2 4+ rw)|dz < oo,
wl<1 7 T4

sup (| Nel[pr + 7% [[Np[lws1) < o0,
T

there exists C' > 0 such that for any u € LP(T?),

1 — dh
(6.6) /h/WKh(z)HNh*u(.)—Nh*u(.+z)|]Lpdzh§C’|logh0\1/2\|uHLp.
0

This content downloaded from
129.2.19.102 on Thu, 09 Jul 2020 22:56:33 UTC
All use subject to https://about.jstor.org/terms



COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 617

We will mostly use the specific version in Lemma 6.3 but will need the
more general Lemma 6.4 to handle the anisotropic case in Lemma 8.6. Both
lemmas are in fact a corollary of a classical result:

LEMMA 6.5. For any 1 < p < oo, any family L, of kernels satisfying for
some s > 0,

(6.7)
/Lr =0, sup (|| L]l zr + 7° || Lr||wsn) < CL, supr™?® / |z|° | Ly (2)| dz < C,

then there exists C > 0 depending only on Cp, above such that for any u €
L7(T7),

1 dr
(6.8) SN xuler <€ gy,
As a consequence, for p < 2,
1 dr
(6.9) /h Ly ulls 5 < Cog hol 2 ul 1.

Note that by a simple change of variables in r one has, for instance, for
any fixed power [,

SNl S < Colog hol 2 ul]
0

Remark. The bounds (6.4) and (6.9) could also be obtained by straight-
forward application of the so-called square function; see the book written by
E. M. Stein [54]. We instead use Besov spaces as this yields the interesting
and optimal inequalities (6.3)-(6.8) as an intermediary step.

Proof of Lemmas 6.3 and 6.4 assuming Lemma 6.5. First of all, observe
that Dy, u = Nj, xu with

1

Ny = W%lsm

which satisfies all the assumptions of Lemma 6.4. Therefore the proofs of
Lemmas 6.3 and 6.4 are identical, just by replacing Dy by Npx. Hence we only
give the proof of Lemma 6.3.
Calculate
L dh L Cch=1 dh c
Ly [
R N R (SEa

— <
ho h
Note also for future use that the same calculation provides

1__ dh 1
6.10 K s
(6.10) S TG
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618 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

We hence observe that we are essentially working here with the kernel
1
(12 + ho)®”
which has the critical exponent (equal to the dimension d). Indeed in this
section, we could replace [; hlo K, % by m and obtain similar results. Some

formulations though are more natural with K}, such as (6.5) in Lemma 6.3.
Therefore, using spherical coordinates,

1
/h Fh(z) HD|Z| u() _D\z| u( +Z)HLP dz dh

o /T4
<o [ [ 1Deut) ~Dout 4 re)ln
w(.)— Dyu(. +rw w.
>~ sa-1 Jny T T Lp r+ h()
Denote
loj<i Ta—w<a —d
Lw(‘r) = ‘aj|d*1 - ‘33 — w’dil, Lwﬂ"(x) =r LW(IL’/’F),

and remark that L, € W*! for some s > 0 with a norm uniform in w and with
support in B(0,2). Moreover,

Dyu(z) — Dyulx + 1) = / Vaul(z — r2) Lo(2) dz = Ly, % |V,

We hence apply Lemma 6.5 since the family L, , satisfies the required hypoth-
esis, and we get

1 dr
| MgVl S < Cluly
r Lp

0
with a constant C' independent of w, and so

1
[ [ Ru@ I a0) = Dyul.+ 2) 1 dz dh
ho JT

1 d
<[ [ sl Tavsc [ uly, d
gd—1 ho r gd—1 1,p

yielding (6.3). The bound (6.4) is deduced in the same manner. The proof of
the bound (6.5) follows the same steps; the only difference is that the aver-
age over the sphere is replaced by a smoother integration against the weight
1/(1+ |w|)®. O

Proof of Lemma 6.5. First remark that L, is not smooth enough to be
used as the basic kernels ¥y, in the classical Littlewood—Paley decomposition
(see Section 11) as, in particular, the Fourier transform of L, is not necessarily
compactly supported. We use instead the Littlewood—Paley decomposition
of u. Denote

Uk :\I/k*u.
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The kernel L, has 0 average, and so

LexUp = [ Li(w=y) (Us(y) = Usl@) dy.

Therefore,

Lo Uler < [ 120 U0 = Ul + 2)or dz

< [ Lo Uellwens dz,
Td
yielding by the assumption on L,, for k < |log, r|,
(6.11) 1Ly % Uklle < Cr* 25 | Ukl v,

by Proposition 11.2. Note that C' only depends on [ |z|*|L,(2)| dz.
Similarly, we now use that L, € W*! and deduce for k > |log, 7| by
Proposition 11.2,

(6.12) Ly % Ukllze < || Lellwos |Uklw—so < Cr7> 275 | Uyl 1,

where C only depends on sup, r* || Ly||ys.1. From the decomposition of f,

1 dr © 1 dr
/||Lr*uHLp—:Z/ Ly 5 Ul oo &
ho T =k T

> 2% s AT 1 s dr
<C S Ukl Hkg.log2h0|/ . L+/ s gk )
k=0 ho r max(ho,27F) r

by using (6.11) and (6.12). This shows that

1 dr 2~ ks
613) [ ILexulp <0 S Udp+C Y S WUl
ho k<|log, ho| k>|log, hol 0
Now simply bound
271?8 o) N
oMUkl + D s 1Uklle < C 725 Ukl 1o
k<|log, hol k>|logy ho| 0 k=0
= Culpy,;

which gives (6.8).
Next remark that
27]6‘8
> s [Uklle < Csup [Ukllzr < Clullpy -
k>|logy ho| 0 k

Therefore (6.13) combined with Lemma 11.3 yields

1 dr
M xulon S < 0 Tlogy Bl lullr +C sy ..
0

which gives (6.9) by Proposition 11.2. O
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620 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

Finally we emphasize that

LEMMA 6.6. The kernel

1 dh
Kho(2) = A Kh(z)f
0

also satisfies (i) and (ii) of Proposition 4.1.
Proof. This is a straightforward consequence of using (6.10). O

6.2. A brief presentation of renormalized solutions. Many steps in our
proofs manipulate solutions to the transport equation, either under the con-
servative form

(6.14) Op +div (pu) =0,
or under the advective form

(6.15) Ow~+u-Vw=F.
We will also consider the particular form of (6.15),
(6.16) ow +u-Vw = fw,

which can directly be obtained from (6.15) by taking F' = f w.

However since u is not Lipschitz, we do not have strong solutions to these
equations, and one should in principle be careful with using them. Those
manipulations can be justified using the theory of renormalized solutions as
introduced in [26]. Instead of having to justify every time, we briefly explain in
this subsection how one may proceed. The reader more familiar with the theory
of renormalized solutions may safely skip most of the presentation below.

Assume for the purpose of this subsection that u is a given vector field
in L7H!. The basic idea behind the renormalized solution is the commutator
estimate.

LEMMA 6.7. Assume that p € L%@ and w € L?}x. Consider any convolu-
tion kernel L € C, compactly supported in some B(0,7) with Jpa Ldz = 1.
Then

[div (Le o (pu) —uLe xu)llpy — 0 ase =0,

[(Le %2 (u- Vow) —u-VeLe xwllpy — 0 ase —0.

The proof of Lemma 6.7 is straightforward and can be found in [26]. Note
however that the techniques we introduce here could also be used, a variant of
Proposition 4.3, to make the estimates even more explicit. From Lemma 6.7,
one may simply prove
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 621

LEMMA 6.8. Assume that p € Lix is a solution in the sense of distribution
to (6.14). Assume w € L%x, with F € L', a solution in the sense of distribution

to (6.15). Then for any x € W1°(R), one has in the sense of distribution that

Ax(p) + div (x(p) u) = (x(p) — pX(p)) divu,
Orx(w) +u - Vx(w) = Fx'(w).

Finally, if in addition p € LP*, w € LP2, w € LP® with 1/p1 + 1/p2+1/p3 <1
and F € Lg’m with 1/p1 + 1/q < 1, then in the sense of distribution for any
X € WHe(R),

A (p x(w)) +div (p x(w) u) = F x'(w) p.

Of course Lemma 6.8 applies to (6.16) in the exact same manner just
replacing F by fw, provided that f € LP and w € LP" with 1/p* +1/p =1
(so that F e L') and fw e L{,,.

Lemma 6.8 can be used to justify most of our manipulations later on.
Remark that all terms in the equation make sense in D’: For instance, u-Vw =
div (uw) —w div u, which is well defined since u, divu and w belong to L?. The
proof of Lemma 6.8 is essentially found in [26] and consists simply in writing
approximate equations on L. x p, L. *w, performing the required manipulation
on those quantities, and then simply passing to the limit in €.

As a straightforward consequence, we can easily obtain uniqueness for
(6.14). Consider two solutions p1, p2 € L}, to (6.14) with same initial data.
Apply the previous lemma to p = p; — p2 and x(p) = |p|, and simply integrate
the equation over T to find

& L o) = paft.n)| di =0,
Thus,

LEMMA 6.9. For a given p° € L2, there exists at most one solution p €
L7, to (6.14).

The uniqueness for the dual problem (6.15) or (6.16) is, however, more
delicate and, in particular, the previous strategy cannot work unless divu €
L. The estimates are now slightly different from (6.15) or (6.16), and we
present them for (6.16) as we use this form more later on.

If one considers two solutions w; and wy to (6.16) and a solution p to
(6.14), one has

d
S| et ot o) —wat, )l de = [ f p(t, ) wn(t,2) — walt, ) do,
t Jrd Td
leading to

LEMMA 6.10. Assume that
e pe L}, solves (6.14);
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e wy and wy are two solutions in L7, to (6.16) with wi(t = 0) = w(t = 0)
for a given f € LY, and w; € L i=1, 2, with1/p* +1/p=1;
e pELP, we L, ue LP with 1/p1 +1/p2+1/p3 <1 and fw € L{, with

I/pr+1/g< 1
o finally either f € L™ or f <0 and p > 0.

Then w1 = wy p almost everywhere.

Of course if p > 0 everywhere, then Lemma 6.10 provides the uniqueness
of the solution to (6.15). But in general p could vanish on a set of non-
zero measure. (This is the difficult vacuum problem for compressible Navier—
Stokes.) In that case in general one cannot expect uniqueness for (6.15).

We will use the same strategy of integrating against a solution p to the
conservative equation (6.14) to obtain some bounds on logw for w a solution
to (6.16).

LEMMA 6.11. Assume that
e p>0in L}, solves (6.14);
e wy is a solution in L}, to (6.16) with 0 < w1 < 1, wi(t = 0) = w° for a
given f € LY and w € LV, i =1, 2, with 1/p* +1/p = 1;
e peE P w c LP2 w e LP with 1/py+1/pa +1/p3 <1 and fw € L{, with
1/p1+1/g<1.
Then one has for any 0 < 0 <1,

[ ogu(t o)) plt.z)de < [ logu®l” pit, ) do
Td Td

+6’/0t/Td |f(s,2)| (14 [logw(s,z)|)? 1 p(s, x) dz ds.

The lemma is proved simply by applying Lemma 6.8 (the last point) to
a sequence xe(w) = (1 + |log(e + w)|)?, as for a fixed € > 0, x. is Lipschitz.
One then integrates in ¢ and x and finally passes to the limit ¢ — 0 by the
monotone convergence theorem.

Note that the log transform allows one to derive (6.15) from (6.16) but
requires in addition logw € L? while Lemma 6.11 does not require any a priori
estimates on logw.

Let us finish this subsection by briefly mentioning the existence question.
This does not use renormalized solutions per se, although as we saw using the
solutions once they are obtained requires the theory.

For uniqueness, the conservative form was well behaved and the advective
form delicate. Hence for existence, things are reversed. Unless divu € L,
it is not possible to have a general existence result for (6.14). In general, a
solution to (6.14) with only divu € L? may concentrate, forming Dirac masses,
for instance.
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But it is quite simple to obtain a general existence result for (6.15)

LEMMA 6.12. Assume that w® € L>°(T9) and either that f € L=(T%) or
that f <0, f € L{, and w > 0. Then there exists w € L>([0, T] x T%) for
any T > 0 solution to (6.16) in the sense of distributions.

Proof. Consider a sequence u,, € C° such that u,, converges to u in LZH}.
Define the solution w,, to

Orwn, + Uy - Vawy, = fwm wn(t = O) =w’.

This solution w,, is easy to construct by using the characteristics flow based
on uy,. Now if f € L*, then

lwnt, Mz < o]l e 172

In the other case, if w® > 0, then w,, > 0. Furthermore, if f < 0, then
llwn (, lzge < flw°||zge-

So in both cases w,, is uniformly bounded in L°([0, T] x T%) for any T > 0.
Extracting a subsequence, still denoted by w,, for simplicity, w,, converges to
w in the weak-* topology of L>([0, T] x T¢9).

It only remains to pass to the limit in wu, - Vyw, = div (u, wy) — wy, div uy,
which follows from the strong convergence in L? of u, and divu,. Similarly
one may pass to the limit in f w,. O

7. Renormalized equation and weights

We explain here the various renormalizations of the transport equation
satisfied by pr. We then define the weights we will consider and give their
properties.

7.1. Renormalized equation. We explain in this subsection how to obtain
the equation satisfied by various quantities that we will need and of the form
Zyx(pi — pi) where Z7¥ is chosen as Z;Y = Ky(z — y)Wy with W/ =
Wi n(t,z,y). The weights Wlffj are assumed to satisfy

Wi € Lo((0,T) x T?%),
QWY +uf - VWil +uf - Vo Wi € LN(0,T) x T
and

apWid € L'(0,T; H*(T??)).
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624 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

LEMMA 7.1. Assume py solves (5.1) with (5.4) for p > 2 and that wuy,
satisfies (5.5). Then for any convex function x € W,

[/ Kn(z —y)Wiy x(0px) dx dy} - [/W Kn(z —y)Wi x(0px) dx dy}

t=0
+/ / X (6pr)dpr — (5pk)>(divxui+divyuz)Kh($— )Wk dx dy dt
—/ X(épk)[ui'Vth(ac—y)—i—uZ-VyKh(w—y)
0 T2d
+ap(Ag + A Ky (z — o) | Wi da dy dt

— 20%/0 o VEKp(z—y) x(0pk) [Vleiﬁ - VyW,f,ﬂ dx dy dt
- 20%/ / Kp(x —y) x(dpk) [AmWIf,f + AyW;ﬁ] dx dy dt

// XEpR)WEY + uf - VWY - VWY
—ak(A +A )Wk NKp(x —y)dx dydt

1 S
- */ / X (0pk) Kn(z —y) Wi (divmui — div yu})pr, dz dy dt

2/ / "(0pk) Kn(z — )W (div gy, + div yuf)dpx dz dy dt.

Proof. The result essentially relies on a doubling of variable argument
and straightforward algebraic calculations (up to Di Perna—Lions techniques).
Since py solves (5.1), one has that

Opy + divg (pruf) = Az pi, owpy + divy (plul) = apAyp}.

Recalling dpr, = pi — p}, and using that p; € LY, with p > 2 and hence

prdiv uy is well defined, one can check that

t,x

OO pr+div 5 (uf, 0pr) +div y(u dpr) = a(Dz+Ay) dpir— py, div zuf + p div yuy.
Then, recalling the notation py = pf + p, we observe that
. . L/, . . .
—pi div guf, + pf divyul = B (le LUl pp — div guf pf + div yu pp — divyulpf
— div guj, pf — div puf pf + div yuj pi + div yuj pz)
1 1
= i(div Luf + divyul) dpy — i(divu”}g — divuy) pg.

Consequently, we can write

O pr + div 5 (uf dpr,) + divy (u} dpr) = ag (Mg + Ay) dpg;

(7.1) Loy Lo o
+ §(d1V cup, + div yuy) dpr, — §(dlvuk — divuy) pi.
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 625

We now turn to the renormalized equation, i.e., the equation satisfied by x(d)
for a non-linear function s — x(s). Formally the equation can be obtained
by multiplying (7.1) by x'(dpr). If ap = 0 and pj is not smooth, then the
formal calculation can be justified following Di Perna—Lions techniques using
regularizing by convolution and the estimate (5.5), i.e., ux, € L?H}. Then

Ox(0px) + div ;- (upx(dpr)) + divy (upx(9pr))
+ (X'(épk)épk - X((Spk)) (divxu% + divyu%)
1 . _
= ai(Da + Ay)x(61) — 5 (k) (div s, — div yuf) o

o (o) div e + div yuf) s — i (pe) ((Vadpul + 1V, 00uf2).
For any Vi, V! and smooth enough Z;/, in the sense of distributions one has
ZpAViE = div o (Zy VL Vi) — dive (ViEVLZ0Y) + VP AL Zy
Zgp AV = div (27, V) — div (VIV, Z00) + VA Z0
Consequently, we get the following equation for Zk Ux(6p):
O[Zy;yx (Spr)] + div o (ugpx(6pr) Z).)) + divy (ugx (5pk) Z)),)
+ (X (5pr) 01 — x(Sp1) ) (div puf, + div yull) Zp
= XOpR)OeZ ) + uy - Vo Ziy +up - Vy Zy — ar(Ag + Ay) Zi}] = rhus,
with
r.h.s. = —%X/(épk) 7’ (dlvxuk div yui) p,
+ %X/((Fpk)ZZﬁ(divxui + div yul)dpy,
— X" (or) ZiR (IVabprl? + [V 8p11%) + 2000 (8p1) (s + Ay) 21
+ o [div o (ZE Y Vax(0pr) — div o (X(0pk) Vo Zi 3
+ divy (Zih Vyx(0px)) — divy (x(9p) Vy 25 1))

Integrating in time and twice in space (double variable (x,y)) and perform-
ing the required integration by parts, we get the desired equality writing
Zkh = Kp(z — )W,f;j O

7.2. The weights: Choice and properties. In this subsection, we choose
the PDEs satisfied by the weights. We state and then prove some of their
properties.

7.2.1. Basic considerations. We define weights wy, periodic in space, that
satisfy

(7.2) Oywy, + ug - Vwg, = — Dy wg + apAwg, wk’tzo =’
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626 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

for some appropriate penalization Dy depending on the case under consider-
ation: Dy, D1 i, Dg . The choice of Dy, will be based on the need to control
“bad” terms when looking at the propagation of the weighted quantity. The
choice will also have to ensure that the weights are not too small, too often.

7.2.2. Isotropic viscosity, general pressure laws. The case with ag > 0 and
monotone pressure. The simplest choice for the penalization D to define wy is

with A a fixed constant (chosen later on) and M the localized maximal operator
as defined by (6.2). In that case we choose accordingly

0 —
t:[):w(]:]_.

wo,k

The case a, = 0 and non-monotone pressure. In the absence of diffusion
in (5.1) (ap = 0) and when the pressure term P, is non-monotone, for instance,
one needs to add a term pz in the penalization. This would lead to very
strong assumptions, in particular, on the exponent p in (5.4) (and hence 7)
as explained after Proposition 4.4. It is possible to obtain better results using
that p € LP for some p > 2, by taking the more refined

D -
(7.4) ;\’k = Pk \divuk| + |divuk\ + M |Vug| + pz + Py pr + Ry

for the general compactness result. For simplicity we take

w1 k|i—0 = w} = exp (—)\ sup pg) )

The reason for the first term in D;j compared to Dy is to ensure that
wy g < e~k which helps compensates the penalization in pZ to get the prop-
erty on pg|logw;|? for some 6 > 0. The three last terms are needed to respec-
tively counterbalance: additional divergence terms in the propagation quantity
compared to wp, the same M |Vuy| as for wy, and the PZ for terms coming from
the pressure.

7.2.3. Anisotropic stress tensor. The choice for the penalization, denoted
D, in this case and leading to the weight w,, is now

Da,k
A

(7.5) — M|y + K« (|divag| + | A,7)).

Note that the second term in the penalization is used to control the non-local
part of the pressure terms. As initial condition, we choose accordingly

0 —
wa7k|t:0 — wa = ].
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 627

7.2.4. The forms of the weights. Recall that we use the convenient nota-
tion wi = w(t,x) and w; = wy(t,y) when we compare expressions at points
(t,z) and (¢,y). Two types of weights W*¥ are used:

WY =w® +wY, or WY =w”uwY.

The first one will provide compactness and will be used with (7.3) or (7.4).
The second, used with (7.4), gives better explicit regularity estimates but far
from the vacuum and is considered for the sake of completeness. Therefore one
defines

W;,f = wp, + ngk, Wlxky =wiy + w?ik,

(7.6)

€,y __ T ) €T,y T Y
WZk = WY WY g ka = Wo g + We g

As for the penalization, we use the notation W, ¥ when the particular choice
is not relevant and W}”, i = 0, 1, 2 or a otherwise. For all choices, one has

(77 OWEY i Ve Wi+ up - VWi = Qi + anle y WY
The term @y, depends on the choices of penalizations and weights with the four
possibilities
Quk = Di s wi g + D wg s U = DY pwiy + D pw!y,
Z,

Y _ e Y z Ty _ pr oo y o,y
2k = ( 1k T D1,k) Wk WY k> Qa,k = Dg j wq 1, + Da,k Wq k-

7.2.5. The weight properties. We summarize the main estimates on the
weights previously defined.

PROPOSITION 7.2. Assume that py solves (5.1) with the bounds (5.5) on
uy and (5.4) with p > max(2, 7). Assume that Py, Ry, are given by (5.9) and,
in particular, Py is uniformly bounded in L%,x and Ry, in L%@. Then there exist
weights wy, wi, and w, that satisfy equation (7.2) with initial data respectively,

Wo k=0 = 1, w1 kli=o = exp(—=A supp}), Waklimo = 1,
and Dy j,, D1, Dq ;. respectively given by (7.3), (7.4) and (7.5) such that
(i) For any t,z,
(7.8) 0 <wor(t,z) <1, 0<wan(t,z) <1, 0<wig(t,a)<e APr(ET),

(ii) One has

sup pi(t, x) |logwo k(t, z)| de < C (1 + A).
tef0,7) /T4

If ar, =0 and p > max(2, 7), then similarly there exists @ > 0 such that

sup / pi(t, ) | logwy i (t, 2)|° de < Oy,
tefo,7] /T4
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628 DIDIER BRESCH and PIERRE-EMMANUEL JABIN
while finally if p > v+ 1, then

(7.9) sup / pi(t, x) |logwe i (t, )| de < C(1+ N).
tef0,7) /T4

(iii) For any n, we have the two estimates

1+ A

| log 7|

t, H 7 d < C
tes[%%} T4 Pt ) (Kp*wor)(t,z) <n x]

and, if p >y +1,
1+ A

t,x)l dr < .
2 oD 0 <0 < Cliogy

(iv) Denoting wqpn = Kp * W, if p >, for some 0 < 8 <1 we have

Ik

Ko (K (|divug] + Ao} wa,r)

_ dh
_ (Kh * (|divug| + |AH,OZ|)> wa’k’hHLq dt 7 < C'|log h0|9,

with ¢ = min(2, p/7).

Remark 7.3. Part (i) tells us that w;y is small at the right points (in
particular, when pj is large). On the other hand, we want w; to be small only
on a set of small mass; otherwise, one obviously does not control much. This
is the role of part (ii). We use part (iv) to regularize weights in the anisotropic
case. Part (iii) is also used to get a control under the form given in 4.1 from
the estimates with weights.

Remark 7.4. Even when «y > 0, it would be possible to define Dy in order
to have a bound like wy (¢, z) < e~ k(2! For instance, take

D _ . (079
71 — p% 1 (¢ —1)|divug| + )\’ |V10gw17k]2
+ |divug| + M |Vug| + L p] + Py pr. + Ry,
with
1 ) _ q— 2
ogrx=0o |l —————= ], )y = —.
14+ Apl ! (¢—1)

However one needs ¢ < p/2 and ¢ > 2, which already forces p > 4. Moreover
the main difficulty when ap > 0 comes from the proof of Lemma 8.1 which
forces us to work with K, wo 1, and not wy ;. Because of that, any pointwise
inequality between wy(z) and pg(x) is mostly useless.

Proof. Point (i). This point focuses on the construction of the weights
satisfying the bounds (7.8).
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 629

Construction of wg . The construction of the weights wy is classical since
it satisfies a parabolic equation; moreover, since Dy j, is positive, then one has
0<wyr <1

Construction of wy . Choosing wg|t—o = 1 and f = —D, < 0 and noticing
that D, € L? and we hence easily construct (see Lemmas 6.12, 6.8 and 6.9)
Wq  such that 0 < w, < 1 solution of

Opwq  + ug - Vg + Dy g e = 0, Walt=0 = 1.

Note that D, > |divuy| because M |[Vug| > |Vug| > |divug| and w,y also
solves
8twa,k —+ div(ukwa,k) + (Da,k — divuk) Wq f = 0,

so that by the maximum principle, we also have w, 1 < pi where p; > 0.
This means that we can actually uniquely define w, j by imposing wgj = 0 if
pr = 0.

Construction of wy . Choosing wy k=0 = exp(—Asupp?) and f = —D;
< 0 and noticing that Dy € L' and Dy > |divug|, we again construct wy y
just as wg  such that 0 < wy ; < 1 with wy ,(¢, ) = 0, where pi(t,2) = 0 and
w1,k is a solution to
Oywy g + div(ugwi i) + (D1 — divug) wi g =0, Wi kt=o = exp(—Asup pj).
Note that using the renormalization technique on the mass equation,

Olexp(—Apg] + div(uk[exp(—)\pkm + [ Aprdivug, — divug] exp(—Apg) = 0.

Subtracting the two equations we get the following on g, = wy 1 — exp(—Apg):

Oegr + div(ukgr) + (D1x — divug)gr = —(D1x + Aprdivuy) exp(—Apk)
Recall now that Djj > |divug| and Dy > —Apgdivuy; thus using the maxi-
mum principle, we get

W1k < e—Aﬂk’

recalling that we have w; ; = 0 where py = 0.
Point (ii). Let ¢ = 0,1 or a. By point (i), w;; < 1, hence |logw; ;| =
—logw; i, and from (7.2), denoting |logw; x| = A; k,

823

O(Aig) +uk - Vi(Aig) — Digp = ——
(7.10) Wik
= OzkAA@k — O |VA1’]€’2

Awi,k

For Ay, we directly apply
Or(pr Ao k) + div(px Ao rur) = Do pr + aA(pr Aok) — 20 Vpr - VAo
— appi|VAg |
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630 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

and integrate to find

(/ Pi Aok dac) li=s = C —i—/ / Do (t,x) pi da dt
Td 0 Jrd

—ak// pk|VA0,k|2dmdt
0 JTd

2y, / / Vi - VAo de dt.
0 JTd
Simply bound

S 1 v 2
/ / Vpr - VAgdedt < 7/ pk‘VAO,kP—F/ ﬂ
o Jrd 4 Jpd T Pk

On the other hand, using renormalization techniques,

d 2
—/ Pk logpkdx:—/ pkdivukdx—oak/ Mdm.
dt Jra Td T Pk

However as p > 2, then p div ug is bounded uniformly in Ltl@ and pg log pi in
L°(LL). This implies, from the previous equality, that

s 2
ozk/ / [Voxl dedt < C,
0 JTd Pk

and consequently
—2%/ / Vo - VA dedt < %/ / |V Ay dedt + C.
0 JTd 2 Jo Jrd

Using this in the equality on / pr Ao . given previously, we get
Td

(/ PkAo,kdx>(S)§C+/ /Do,k(t7x)Pkd$dt_%// |V Ao o |? da dt.
Td 0 2 Jo Jra

In that case, we know that || Do x| 2 < C A, and since p > 2, we get

(7.11) </dp;€]logw07k|d:v) (s)+ak/ /dpkon,dexdsg C(1+ ).
T 0 JT

Concerning w, j, to get

(/w Pk |log we k| d:c) (s5) < C(1+ )\,
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 631

the estimate is similar assuming p > v+ 1, and even simpler as a; = 0. Indeed
M|Vuy| and K}, * |divuy| are bounded in L? by (5.5). Finally,

T o 1/(v+1)
/ /dpkKh*(\Aupk] drdt < (/ / 7+1dxdt)
0 JT

v/ (v+1)
([ Lt
T 1
< C/ / PZ+ dx dt,
o Jrd

since A, is continuous on any L? space for 1 < ¢ < +o00. The right-hand side
is bounded assuming p > v + 1.

For wy y, as before the estimate is a bit different. We now assume that
ap =0, define Ay, = (1 + ALk)e and from (7.10), obtain
D1

A VA =0 ——">%
Ot A1+ ug - VA, TEV

Integrating and recalling Ay, > X p, M |[Vuy| and P, by (5.9) are uniformly
bounded in L? and Ry, in L':

- 1
(Aﬁwhmﬂ <C+C//;1;“%|mmHMﬁ

+C/ / %(M’vuk‘+Pkpk+@k)dxdt
T4 1+ py

'y+1
+q// P drdi < O
Td 1 +p

for some 6 > 0 depending on p — max(2, 7). This gives the desired control
regarding p|logw:|? for an exponent @ small enough.

Point (iii). Estimate (7.11) will not be enough in the proof, and we will
need to control the mass of p, where Kj, wo, is small. Denote

Qh,n = {ZL‘ c Td7 ?h*wo,k(t,l’) S n}a Qh,n = {:U S Qh,na wO,k(tax) Z \/ﬁ}

The time ¢ is fixed during this argument, and for simplicity we omit it. One
cannot easily estimate |, »| directly, but it is straightforward to bound €2y, ,|.
Assume z € Q. i.e., Kj * wo(x) < 7. From the expression of Kj, if [§| < h

1K1 —
R < 0Ry(2),
(h+ |z +0)) n(2)

then we deduce that for any y € B(z, h),

Kp(z+96) <

Kpxws, <Chn.
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632 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

Now cover Qn r by U; Ch with Ch disjoint hyper-cubes of diameter h/C. For
any i, denote Q’ h= thﬂC’ If Q’ n # 0, then Kj *wor(z) < Cn on the
whole C!'. In that case,

Onhdz/ m*wo,kdxz/ Kz —y) wor(y) dy do
o on Jas
\/ﬁ .
> Q0
- C 7]7h

We conclude that |§~2;‘7’ nl < C \/ﬁhd. Summing over the cubes, we deduce that
one has

Finally,

C

/ Pkdib‘é/~ Pk AT + ——— / pi; | log wo | dx < CpH/27 12 4 —
Qo Qi 1o gn! | logn|’

since pg € L°(LY) for some « > 1. This is the desired bound.

The same bound may be obtained on the quantity pl+= K poktwa o <n in a similar

way when p > v + 1 because of bound (7.9) on py|log wq k|-

Point (iv). To simplify, denote f = |divug|+ |A, p}|. Then by the defini-
tion of wg i p,

) = (Bo ) wann ar
ho 0 Lq(’]I‘Zd) h
</1/8 R (o) (Bnx 1)+ = (Bnx f) ) wih dtd- 2
~ JnoJo JTd " g 4 k La(Td) h
S 1 o . " . ) dh
g/ / Bn()|| (B » £y = (B x £)) dz 2 gt
0 Jhy JT4 La(T4) h

<C| 10gh0|1/2/0 1£(t, )l pa¢ray dt < C'|log ho|*/?

by a direct application of Lemma 6.4 with N;, = K}, provided f is uniformly
bounded in L} L%, which is guaranteed by ¢ < min(2, p/7v). O

8. Proof of Theorems 5.1, 5.2 and 5.3

We start with the propagation of regularity on the transport equation in
terms of the regularity of divuy; more precisely, div zuj, — div yuz. We prove
in the second subsection some estimates on the effective pressure. This allows
us to write a lemma in the third subsection controlling div zuf — div yuj and
then to close the loop in the fourth subsection, thus concluding the proof. In
Sections 8.5 and 8.6 we consider the anisotropic viscous case.

This content downloaded from
129.2.19.102 on Thu, 09 Jul 2020 22:56:33 UTC
All use subject to https://about.jstor.org/terms



COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 633

8.1. The propagation of reqularity on the transport equation. This subsec-
tion uses only equation (5.1) on py without yet specifying the coupling between
divug and py (for instance through (5.2)).

Recall that we denote

Opk = Pk — Pl Pr = Pk + PR
Choose any C? convex function y such that

1) O - O <xeE X©E<oxe <Cl

It is, for instance, possible to take x (&) = €2 for |¢| < 1/2 and x(&) = |¢| for
€] > 1.

Similarly for the anisotropic viscous term, for some ¢ > 0, choose any
convex xq € C1,

/L
Xl - €] < TN €
Xa(€) € < Cxal8) < ClEIM,

E+ (X = (- +2xa(6 - 9))

> (67~ &) (e~ EE+ ).

Note that it is possible to simply choose x, = |£]'T. But to unify the notations
and the calculations with the other terms involving y, we use the abstract x,.

The properties on these non-linear functions y and x, will be strongly used
to characterize the effect of the pressure law in the contribution of div yuy(z) —
div yug(y). They will play the role of renormalized functions on the difference
0§ — pil-

The form of x, x, and the choice of £ will have to be determined very
precisely so that the corresponding bad terms will be exactly counterbalanced
by the A terms coming from the penalization: We refer, for instance, in the
anisotropic case, to the A terms appearing in Lemma 8.2.

We write two distinct lemmas concerning respectively the non-monotone
pressure law case and the anisotropic tensor case; even though the continuity
equation is the same in both cases, we do not use the same weights as we will
need different properties for them later in the proof.

LEMMA 8.1. Assume that py solves (5.1) with estimates (5.4) and (5.5)
on ug.
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634 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

(i) With diffusion, oy, > 0, if p > 2, there exists ep, (k) — 0 as k — oo for a
fized ho:

1 — — w0 dh
[ ] Rnte = 2) Ry = w) Wi K = y) x(Gpw) derdydz dw 5|
ho T4d ’ h

< C (epy (k) + | log ho|/?)
1 rs
=5 o o Ko=) @ —div ) X G
2 JhoJo Jrad
i K K dh
Wik En(z—2) Kp(y—w) dxdydzdwdtf
: 1 S 1 x .
3 /ho /0 pad Kp(z — y) (div guj, + div yul)

z2w 37 = dh
(X' (Opk) dpk — 2x(0pk)) Wiy Kn(z — 2) Kp(y — w) da dy dz dw dt W

t=s

1 S . dh
=5 | En e = (o) Rola = 2) MIVuf i do dyd= e 5.
ho T3d h
where we recall that VV0 e = wo kT wo .

(ii) Without diffusion, o, =0, if p > 2, then

L — dh
[ Rt =) xn0 iy + ) dedy |

0 T2d

<cuogh0\1/2/ g (£, )|yt
N73 T\ pDT T T T dh
2 / | Rt =) ()7 + B o + O wh o x(0py) dady e 5
ho JO JT2d h
1 rs o 1
72/ / Ky (x — divuf — dive?) (= (8§ D
oo Sy o 0@ = w) (dive k)(ZX( PE) Pk

1 . dh
+x(dpk) = 5X' (0 1) 5Pk;) wi g do dy dt —-.

For the derivation of explicit reqularity estimates, we also have the version with
the product weight, namely,

/ Kn(z —y)x(dpk) wlkwlkdx dy}

t=s
<C - / s Kp(z — y)(div puf — divyu)) x "(6 pr.) pr wT kwl P dx dy dt
_A/ / K (x = y)((0F)7 + B okt + OF + (o) + B pf. + ©}) x(6p1)
’wl,k wlyk dx dy dt.

For convenience, we write separately the result that we will use in the
anisotropic case:
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 635

LEMMA 8.2. Assume that py solves (5.1) with estimates (5.5)—(5.4). With-
out diffusion, ap = 0, assume (8.2) on x, with p > v+ €+ 1, and denote
Wq,p = K, xw,. There exists § with 0 < 6 < 1 such that

1 Kp(z —
[ bt ) w0 dedy ]
ho JT2d h v

t=s

1 Kp(z—vy), ,
/h /qud (h)(wa,k,h + wZ,k,h) Xa(0px) dx dy dh}
0

+ Clloghgl® + I+ IT—T,,

t=0

with the dissipation term

o= [ i a0 B v + Ao 7) o 5
while
1= / (div 2uf — divyul)
xa(5p ) k(wy g + W kh)d:r:dydtdh
and

1 1 s Kp(z—v) , .. . ) ”
= /ho ; /Tzd — (div gug + dlvyuk)
- (o (Opn)0pr — 2xa(0p)) (WE o, + w4, ) da dy dt dh.

Remark. We emphasize that the A terms in relations (i) and (ii) of Lemma
8.1 come from the penalization in the definition of the weights wy and wi. They
will help to counterbalance terms coming from the contribution by div juj, —
divyuy. Similarly, the non-local term T, follows from the definition of the
weights wy.

Proof. Case (i). Denote
WOh —/ Kp(r —2)Kp(y — w)WOZ,zudzdw
and let us use y in the renormalized equation from Lemma 7.1. We get

<A+ B+D

t=s

([, WO Ki(x — ) x(6p) dr dy )

- = Kn(x — y) (div zuf — divyul) x'(0p) pr Wyt dae dy dt

2 0 T2d
1 /s Ry
3 Kp(z —y) (div guf + divyul) (X' (6pk) 0pk
0 T2d
—2x(pk)) Wy dzdy dt,
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636 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

with, by the symmetry of K}, Kj and W(i » and, in particular, since VzW(i ¥ =
VyWor,
x4=/“A%a¢—u@-VKux—y>Mém)WﬁﬁMﬂym,
= 2/ o Kp(x — )(8t YtV WOh akAzW(i’,f>
X(6 pg) dz dy dt,
=2 ak/ / X(0 pr) [Az Kp(x —y) W&}f’h + 2K (x — y)AmWS:}gh]d:U dy dt.
Then using (8.1), simply bound
D < 8oy h? [|Knllprva okl 2oy xmay < Car h=2 || Kpll 1,
leading us to choose
(8.3) eno (k) = ay, h_
As for B, using equation (7.2),
B =B - 2/08 o Kn(x = y) X(0pk) K %2y Roda dydt,
with
B, = 2/ / Kn(z — ) x(6px) (uf, — uf) - Vo Fo(z — 2)Kp(y — w)
W5 dz dy dz dw dt.

We recall that RyY = DE w§ + D w§ with Dy = MK}, x (M |Vug|), and we
thus only have to bound B;. By Lemma 6.1, we have

B < c/ / Kn(x — y) x(0pk) (Do gyt + Dig_yyui) | — 2|
\VER(z — 2)|Kp(y — w) W5 dz dy dz dw dt
< C/ / Kh xr — ((5pk) (D|x y|uk + D|CE y\uk)

Kp(r — 2)Kp(y —w) WOZ Ydx dy dz dw dt
as |z| |VK}p| < C K. Next, recalling that W = w§ + wy, by symmetry,
Bi<C [ [ K@= x(n) Dyyui
0 T4d
cKp(z — 2)Kp(y — w) widz dy dz dw dt
+ C/ / Ky (z — ((5pk) (D|x y|uk + D|x y‘uk 2D‘x,y‘ui)
“Kp(z — 2)Kp(y — w) widr dy dz dwdt .
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 637

Since Dj,_yjui(2) < C M|Vug|(z), for X large enough, the first term may be
bounded by

A

5 Kn(x —y) x(6pk) Kp %z (M|Vug| wo) dx dy dt.
0 T2d

Use the uniform bound on ||px||z» with p > 2 to find

/0 - Kn(@—=y) x(6pk) (Djy—y i + Dyp—yjui — 2Dj5—yjui;)
Kp, wg pdx dy dz dw dt
of ]
0 Jrsd

L2 Kn(r)
Ky (u) Kp(v) dr dudv dt,

where we used that w = 2 + (y — z) + (w — y). We now use Lemma 6.3 and,

more precisely, the inequality (6.5) to obtain

1 s
Kp(x — 0 Dy,_ui + Dyp_uil — 2D, uf
/ho/() oo Tn (@ = W) X(0Pk) (Dip—y e + Digy| i jo—y| Ui)

: +rtu +v
Dyt + Dy — 2D pu|

_
Kpwg j, ?dxdydz dwdt
< C|logho\1/2/ g (t, )| dt < C | log ho|V/2.

Therefore, we have that

B h”“ dh < C epy (k) + C | log ho|/?

/h//Kh x —y) X(0pr) M|Vug|(2) Kp(x — 2) wo(z )dzdxdydt%

The computations are similar for A, and we only give the main steps. Again
using Lemma 6.1, we have

/0 2 VEp(r —y) - (uj — Uk) x(6pk) W&ﬁdl‘ dy dt
S
= C/ T2d Kn(z —y) (D‘x—y| uj, + Dlz—y\ u%) X (0 pr) W&’é/dl‘ dy dt.
By decomposing Wy j,, just as for B, we can write
/0 2 VEu(x —y) - (u —ui) x(6p) W&ﬁd:ﬂ dy dt
= C/ / Kn(@ = y) M [ Vgl x(6 pr) Kn(z — 2) wi y d dy dz dt
0 Jr3 ,
+ C/O 1o K@ = 9) (i U+ Digy ul + Dy uf — 3 Djy_y i)
X(0 pr) Kn(x — 2) Kp(y — w) w  dr dy dz dw dt.
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638 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

The first term in the right-hand side can again be bounded by
A3 _

—3 K (z —y) x(0pr) Kp ¢ (M|Vug|wo k) de dy dt.

0 T2d

The second term in the right-hand side is now integrated in h and controlled
as before thanks to the bound (6.5) in Lemma 6.3 and the uniform LP bound
on p;, and H' on uy. This leads to

dh
[ Az 5

— — dh
—l-*// Kp(x —y) M|Vug|® x(0 pr) Kp(x — z) w§ j, de dy dz dt —.
4 ho J0O JT3d ’ h

< C'|log ho|'/?

Now summing all the contributions we get

, dh

/(A+B+D) KAl S < Cong () + C log ho /2
ho

dh
/ / Ki(@ — )X (0p1) K %0 (M[Vug| woy) de dy dt
ho T2d h

Note that indeed ep,,(k) — 0 as k — oo for a fixed hg. This concludes the
proof in that first case.

Case (ii). In this part, we assume ay = 0. We may not assume that pg
is smooth anymore. However by [26], since p; and Vuy belong to the space
L?((0,T) x T%), one may use the renormalized relation with ¢ = x and choose
Wh o = Wf,;y. We then can use the identity given in Lemma 7.1. Denoting

£(6) = = (MO - 5x(©¢),
fori =1, 2, we get
< a0 (@ = 9) x(0p%) Wi da dy) (s) < Ai+ Bi+ D,
where by the symmetry in x and v,
Av= [ [t =) - VKo = ) x(6 ) WY ddy
=y L En = ) (M [V w e+ M (Dl wl ) x(6 pr) da dy
while

Ay = /O /W(uﬁ,g —up) - VER (2 — y) X (0 p) Wy dw dy dt

A [ Bl = ) (M (90l 4+ M V) wf el ) (6 o) da dy
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Furthermore,
S
B :2/ Kn(@ — ) (00wf, + uf - Vo,
0 T2d b K
+ 2div g ug X(6pr) wi ) + A M|Vl wfk) X(0 p) dz dy dt,
while
S
B2:2/ Kp(x —y) <8tw‘fk+uﬁ-vxwfk
0 ’]I‘Qd K b
+ div puy X(0pr) wi g + A M|Vug||* wfk) wzlfyk X(6 pr) dz dy dt.

Finally,

5 e 1 _
D, = —2/ Kp(z — y) (div zuy — divyuf) (*x’(5pk) Pk
0 2d

\V]

1
+x(0pk) — §x’(5 Pk 5,01:) wyy, dx dy di

and
S
Dy = — / Kp(z —y) (div guf — divyul) x'(6 pr) prwi , wi , da dy dt.
0 T2d ’ )

Note that we have split a null contribution into several non-null parts in terms
of the maximal function, namely, the ones with M |Vuy|?. Notice also the addi-
tional terms in D; that come from cross products such as divug(y) x x w1 (z),
which would pose problems in Bj.

The contributions Dy and D5 are already under the right form. Using
equation (7.2) with (7.4), one may directly bound

By < -2\ /O [ B =) (07 + PE o+ B wi i x(0 o) dar dy d
and

Bo<—2A [ [ Knlw =) (6F) + P o+ RE) wigwd (0 ) dody

giving the desired result by symmetry of the expression in x and y. The term
Ay is straightforward to handle as well. Use (6.1) to get

AQS/O /T2d IVER(z = y)| |z —y| (M [Vug["+M [Vug|?) x (0 px) Wa ) da dy dt
0 [ Bl =) (M [Vl 4+ M V)l (6 po) dady .

Since |z| VK| < CKy, by taking A large enough, one obtains

Az <0.
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640 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

The term A; is more complex because it has no symmetry. By Lemma 6.1,

S
Ars 0/0 /TzJVKh(w—y)l 2=y (Dyg—y) tr)* + (Djz—y| ur)?)
X(0 pr) wi y, da dy di

S
a A/ /2d Kp(z —y) M |Vug|* wi, x(6 pr) dz dy dt
0JT
+ similar terms in wy .

The key problem here is the Dy, uy(y) wi, term, which one has to control by
the term M [Vug|(x) wf,. This is where integration over h and the use of
Lemma 6.3 is needed. (The other term in w?{;k is dealt with in a symmetric
manner.) For that we will add and subtract an appropriate quantity to see the
quantity (Djy_y ug)® — (D)jg—yjur)?-

By the definition of Kj,

|z [VKR(2)] < C Kp(2)
and by (8.1),
x(6px) < C (o + p})

with pr € L? uniformly and w; uniformly bounded. Hence using Cauchy-
Schwartz and denoting z=x—1y,
dh

1 Al
20/ / Kn(2) Dy u Dy, u dz dt —
/hO HKhHLl h B hD Td h || |‘ k> ( |‘ k) HLQ(Td h

4 C/o /Tzd Ko (2 = y) (Dpa—y) ur)™ x(0 pk) Wlx,f dx dy dt

- 2)‘/0 24 Kho(x —y) (M [Vug|)* wi ; x (3 pr) dv dy dt

1 — dh
<20 [ [ R (D) — (Dpaua) s dz 5
ho J T4 h

by taking A large enough since Lemma 6.2 bounds (D),_, ux)® by (M |Vug|)®.
Finally, using Lemma 6.3,

LAy dh
< C'|log hg 1/2/ u dt.
/ho IKnll 7o = oghol = | llun(t ) lm

dh
Summing up A4;+ B;+ D; and integrating against W for i = 1 concludes
hilLY

the proof. 0

Proof of Lemma 8.2. In this part, we again assume «p = 0 and still
use [26] to obtain the renormalized relation of Lemma 7.1 with ¢ = x, and
Wi o = Kp*Wa g = Wakh + Wakp With this exception the proof follows the
lines of point (i) in Lemma 8.1, so we only sketch it here.
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From Lemma 7.1, we get

1 Fh(x - y) T Yy
{/ho /T2d T(wa,k,h + W, 1) Xa(Opx) dz dy dh}

t=s

L[ Ku(z—vy)
< z Y
< ([ i+ ) Xalopw) de dy di)

+A4+B+D+I1+II+T,,

t=0

with the terms
A= [ ] k=) VRA@ = 9)Xa0p) (g + ) ddy
while
B=2[ [ [ K-y - i) VRnlw — 2w do dydz dt
0 JT
— )\/0 /T?d Kn(z — y)xa(0pr) (Kp * (M|Vug|we))” de dy dt}
and
s rl o
D=\ [ [ Xalpr) R (v ] + | Aup” Do )
0 JhoJT2d
— dh
- Kp(x— y)dmdyfdt
s rl o
A [ @) xal6) (Rox (divan] + |4,07))"
0 JhoJT2d

— dh
- Kp(z —y)dzdy W dt.

The dissipation term is under the right form
s rl -
To= [ [ s xalGo0) nx (divund + 4,7 )
0 Jho JT2d

— dh
- Kp(x —y) dxdyﬁdt,

and by symmetry, so are

1 1 rs ? o
1= “/ / / Ralz—g) (divuf — divud) X, (0pk) pr wi 5 da dy dt dh
2 ho JO JT2d h kK,
and
1 1 S K T — ‘ ‘
II = _5/ / / M (div uf + leUz)(Xg(épk)épk — 2xa(6pk))
ho 40 T2d h
“wy ., d dy dt dh.

The terms A and B are treated exactly as in case (i) of Lemma 8.1; they only
require the higher integrability p > v+ 1 + £.
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642 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

The only additional term is hence D, which is required in order to write
the dissipation term T, in the right form. D is bounded directly by point (iv)
in Lemma 7.2. Thus
A+ B+ D < C|logh|

for some 0 < 0 < 1, which concludes the proof. O

8.2. The control on the effective viscous flux. Before coupling the previous
estimate with the equation on divuy, we start with a lemma that will be used
in every situation as it controls the regularity properties of

F, = A~ div (8t(pk uk) + div (pk U ® uk)) ,
per

LEMMA 8.3. Assume that py, solves (5.1), that (5.5)—(5.6) hold, and (5.4)
with v > d/2. Assume, moreover, that ® € L°°([0, T] x T?%) and that

Co= || Fnlo— ) (t.2.0) dy :
T4 WLL(0,7; W, b (Td))

+ H/Td Kp(z—y)®(t,z,y) dz < 0.

WLi(0,1; W, V' (Td))

Then there exists 0 > 0 such that
/0 ‘/]I‘Q(i Kh(.il? o y> (I)(t,l‘,y) (Fk(tay) - Fk(t,$)) dx dy dt
< C||Kpll2 (h9 +en(k)) (HCI)HLOO((O,T)xTM) + C<I>> :
with ep(k) — 0 as k — 400 for a fired h (and in fact ep(k) = 0 if ag, = 0).

The proof below makes heavy use of some special notation, which we recall
here for convenience. We will often denote exponents ¢+0 or r—0. This means
that the estimate holds for some exponent ¢’ > ¢ or some exponent r’ < 7.
The exact values of ¢’ or 7’ are irrelevant for our proof. We are indeed using
many interpolations between Sobolev spaces that are not exact. (To have the
precise exponent one would have to use Besov spaces instead; see, for instance,

[47].) We also use # as a generic but positive exponent whose value may change

140
t,x

meaning that f € ng for some ¢ > 1. And for any r > 1, we freely use
interpolation arguments of the type

—0 0
171350 < NI 171

Proof. The proof is divided in four steps. The first one concerns a control

from line to line. For example, we may say that a function f belongs to L

on pilugp — ugy,|, where uy, is a regularization of uj, defined later-on. The
second step concerns the proof of an estimate for &, = (Fh * @)(t,x) and
o, = (Fh * <I>)(t,y) in L2L? with 5 = 5/(p — 1). The third step concerns
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a control with respect to A when ®,, ®, in L?Lg N th’J“X’W*LOO*O with
P =p/(p—1). The last term is the end of the proof obtained by interpolation.

(i) A control on pyluy — uky| where uy,, is a regularization in space and
time defined later-on. Choose a kernel £, € C°(Ry x R) with £, > 0, with
Jg+ Ly(t,s)ds = 1 such that £,(t,s) = 0 if |t — s| > n for smoothing in time.
We still denote, with a slight abuse of notation,

Ly *¢ up(t) = L(t,s) ug(s) ds.
R4
Now wy, is uniformly bounded in LZH} C L?L4 with 1/q =1/2 — 1/d (and in
LZLY for any q < oo if d = 2). Hence u? € LIL92 and since v > d/2, all ex-

pressions of the type py ug or py |ug|? are well defined and even belong to Lo

tx
respectively L} L1T0. The same applies if we replace u; by any convolution
Ly, *t 5 uj, uniformly in the parameter 7.

For this reason one has

(up(t, z) — up(s,z))?
/Pk(t,x) T [ur(t, 2)] + |un(s, 7)) L,(t,s)dtdsdx

< /pk(t,a:) (ug(t, ) — ug(s,x)) Ly(t, ) Ly %o : +@Tzit(,t))_ik|§j];(i S

+ /pk(t,x) (up(t, ) —ug(s, z))Ly(t, s) ‘Tn’ *z g(t, s, ) — g(t, s, x)’ dtdsdx,

with g(t, s,2) = relbms - ince 5 > d/2,

/pk(t, x) (ug(t,x) —ug(s,x)) Ly(t,s) ‘Tn’ x5 g(t,s,x) — g(t, s,:n)’ dtdsdzx

— 1/q
< 2||pk UkHL%:O (/ Ly(t,s) ‘En/ *z g(t,s,z) — g(t, s,x)‘q dtds dz:)

for some ¢ < co. Since ||g||r~ < 1, we have by interpolation

(/ Ly(t,s) ‘Tn/*gc g(t,s,x) — g(t,s,x)‘q dt ds da;)l/q
< Ty o s — w75 < O () [l ][50y
Hence for some 6 > 0,
[ ontt) (et 2) = wels,0)) £t 5
: ‘Efn/*x g(t,s,x) — g(t, S,.Z‘)‘ dtdsdz < C ().

Note that
Hatpk”LthI*U <C,
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and by interpolation, as v > d/2 and thus v > 2d/(d + 2), there exists § > 0
such that

HPkHHfH;l <C.
Thus

(ug(t, 2) — up(s, x))?
/pk(t,:c) T4 un(t, )] + |un(s, 2] Ly(t,s)dtdsdx

ug(t,.) — uk(s, )
L+ fug(t, )| + uk(s, )]

< /(pk(t) uk(t, @) — pr(s) ur(s, @) La(t, s) Ly x

7’
+O0) +C i el

Using (5.6), one deduces that

0

(up(t, @) — up(s, x))? 0 77
t,x) Ly(t,s)dtdsdr < C +C’ +C .
J[pk 1-+\uk(t;zn-+\uk(s 2)] n(t:9) K

Optimizing in 7’ (taking ' = n? for the best exponent ¢’ ), one has that for
some other exponent 6 > 0,

(ug(t, ) — up(s,z))? 0
L(t,s)dt dsdz < Cn’.
/% ‘Lﬂm@xﬂ+WMs@|n(Q seL =M

We can now remove the denominator in 1 + |ug(t, x)| + |uk(s, z)| simply by
noticing that

(uk(t7 I’) - uk(sa IE))Q

1+ [ug(t, )| + |uk(s,

I <ug(t, z) — ug(s, z)|.

Hence
/Mm@m@@—wgmgﬁgﬁ@mgc%

and this directly implies, in particular, that
(8.4) /pk(t,m) lur(t, 2) — Ly *¢ up(t, z)| dt de < Cnf.

For some v > 0, define L
Uy = Lyv *z Ly %t Up.
We recall that since v > d/2, one has for any f € L?H},
/pk(taw)f(tw) dt dz < || pill ey 1 lzp £ 112 -
On the other hand,
luky = Ly xeurllpz < 0" llukllzz -
Therefore,

/%@@mm@m—gﬁwmmmwgc%

again for some exponent 6 > 0.
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Combining this with (8.4), for some 6 > 0, we have that

/pk(t,x) lug(t, ) — uppn(t, z)| dedt < cnl.
Note again that since v > d/2, one actually has that
lpx fllzg, < Cllekllpeery 1122
for some ¢ > 1, and hence by interpolation,
low Fllzpso < C ok £ ooy 171255

still for some (possibly small) positive 6 > 0.
Applying this to f = wui(t,x) — ugy(t,x), we finally deduce that there
exists € > 0 such that

(8.5) lor (we = gy 1o p1v0 < C.

(ii) The case where ®,, ®, is only in L7LE with i = p/(p—1). We recall
that p is the exponent in (5.6). Denote

10— [ ]| Ko~ ) 0(t2.0) (Fult,y) - Fult,a)) do dydt,
which can be seen as a linear form on ®. Recall as well that
@, = [ Kal—y)o(tay)dy, o= [ Kia—yoltay)ds.
By (5.6), F is uniformly bounded in L?L2. Therefore,

1 1
=1-->0.

86) 110 < CURn (190l + 12401y ) . = =12

L2L%
(iii) The case ®,, ®, in LELE 0 W, W 1000 with i = p/(p — 1).
Denote
CCD = ||(I)$HL?L§’/ + Hq)y”L?Lg’ + Hq)xHth’OOW*LOO*U + H(I)yHth’c"’W*LOO*O

and
Ry = A~ div py, (uy, — k)
Observe that by (8.5) and integration by part in time,

s ~
/ / B, 8 Ry dadt < Coprf | Kl 1.
0 Jrd
The same procedure can be performed with div (pg ur ® uy). Denoting
Fpn= A~ div (O (pr uk ) + div (pr up @ ugp)) ,
one then has

19 <Coq || Kp| 121’

[ K =) @0 2.) (P () = Fog(t.2)) o dy s
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However using (5.1),
Ot (pr k) + div (pr up @ uky) = pr(Okup,y + g - Vg y) + ag gy Apg.

For some exponent x,

HAfldiV (Pre (Oruk,y + g - vuk,n))‘ Lgpin SCOn"
A
and
oy, HA_ldiV (g gy Apk)‘ L2 p0 <Cn " ag.
t Hx
Therefore,

| L Ena =) @(0..0) (P (t.) = (. 2) da dy ds

< Con " ||Kpll o1 (h+ Vag)' ™",
Finally
18 < Co ||Kpllpy (n° +07" (h+ Vo)),
and by optimizing in 7, there exists # > 0 such that

(8.7) 10 < C | Knllr (h+en(k)) (@2 llynopy-r.o0-0 + [@y ooy oo )
with ep (k) — 0 as k — 400 for a fixed h.

(iv) Interpolation between the two inequalities (8.6) and (8.7). For any
s € (0,1), there exists # > 0 such that

10 < O Knllga (0 + +en(k) (|@xl o0 + 119y

=/
L21F L21F

S 2 P— chyy\wts,q+owf,r+o),
with
I 1-s I 1-s
¢« 2 r
and ep(k) — 0 as k — +oo for a fixed h. On the other hand if, for ex-
ample, ®, belongs to L7 and to th’lWx_ L1 then by interpolation ®, is in

1/5—0 11,—8,1/5—0
w0 w50 Hence

C¢> = H‘I)JUHWg,lW;l,l + HCDyHth,lWJm

controls the Wts’quOW; $7+0 norm provided

1—s

25/

1_

s<1/q:TS, s<1l/r=
One can readily check that this is always possible by taking s small enough (but
strictly positive) as p > 1 and hence p' < co. This concludes the proof. O
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 647

8.3. The coupling with the pressure law. We are able to handle all type of
weights at the same time here. For convenience, we denote

e 1 ) 1
X1¥ = 5X (0pk) pr + X(pr) = 5X' (0pk) Opic

(1) In the case without diffusion, one has

LEMMA 8.4. Assume that py solves (5.1) with o, = 0 and that (5.6),
(5.5), and (5.4) with v > d/2 and p > 2 hold. Assume, moreover, that u
solves (5.2) with g compact in L' and satisfying (5.3), Ry compact in L', Py
satisfying (5.9).

(i) Then there exists a continuous function &(.) with £(0) = 0, depending only
on our uniform bounds and the smoothness of ur and Ry such that

—/ y Kp(z —y) (div puf — divyul) X7 wiy dedy dt < C||Kp| 2 e(h)
0o Jr

+C/0 /qrzd Kn(z—y) (1+ (o) + PF ok + OF) x(6pk) wi . d dy dt.

(ii) There exist @ > 0 and a continuous function € with €(0) = 0, still depend-
ing only on p and the smoothness of u and Ry, such that

- / ) Kp(z —y) (div guf — divyul) X' (0pk) pr wi, wi , do dy dt
0 JT2 o
< Ol Knlp (e(h) +1°)
+C [* [ Bule =) (14 (1) + PE g+ OF + (o) + Pl + 6}

X (0pr) wi g wglj’k dx dy dt.

For instance, if py, and Ry, belong to W1 for some s > 0, then one may
take e(h) = h? for some 6 > 0.

(2) In the case with diffusion, more terms have to be considered, but one
can prove a very similar type of result with

LEMMA 8.5. Assume that py solves (5.1) and that (5.6), (5.5), (5.4) with
v > d/2 and p > 2 hold. Assume, moreover, that u solves (5.2) with
compact in L' and satisfying (5.3), Rx compact in L', Py satisfying (5.8).
Then there ezists a continuous function €(.) with €(0) = 0 and depending only
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648 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

on the smoothness of ur and Ry such that

S
/ Kp(z —y) (div guf — divyul) x'(0pk)
pkWO Kip(z — 2) Kp(y — w) dz dy dz dw dt

1 [t ) . '
T2 )y Jpaa Kp(x — y)(div guf + divyul) (X (6pk)dpk — 2x(dpx))

' ngfh(af — 2)Kp(y — w) dx dy dz dw dt

A3 _
-3  Kp(r —y)x(dpr) Kn(z — 2) M|Vug|* wj j dx dz dt
0 T3d
< Ol G0 +enk) +C [ Knla =) x(60) Wt

- Kp(z —2) Kp(y — w) de dy dz dw dt,
with ep(k) — 0 as k — oo for a fized h.

Proof of Lemmas 8.4 and 8.5. The computations are very similar for (i)
and (ii) in Lemma 8.4 and for Lemma 8.5. For simplicity, in order to treat the
proofs together as much as possible, we denote

Gl = Xf’y wiy,  GyY=x'(0pr) prwiywi,,
GoY = fx (dpk) Pk/ W B — ) By — w) ds dw.

The first step is to truncate: Denote IF = ¢(pf/L) ¢(p}/L) for some smooth
and compactly supported ¢,

—/ Kp(z — y) (div puj — divyul) G Y dx dy dt
0 T2d
< C||Kp||p L% — /0 /Tzd Kp(z —y) (divgug — divyuf) GiY IF da dy dt.

Here due to the property of x, for i = 0, 1,2, G7Y < C(pf + p}) (even
G2 < 2) and consequently, as divug € L? uniformly, only p > 2 is required

with 0y = (p — 2)/2 > 0. Introduce an approximation py, of u, satisfying
(5.3) and such that

linllwzoe < Cn72 iy — pallr < eo(n),

(8.8)
L Ena =) iy = sl dwdy dt < (1Kl (b,

from (5.13). Use (5.2) to decompose

- 2th(x—y)(divmu}€ div yuf) Gi VIFdedy =2A;+2B; +2E;,
T
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 649

with L
I
A= — Kn(z —vy) (Pe(pf)) —Pk(PZ))GfEdexdy

T2d ' :uk:,n

and
HL,Y G:E Y II% d d
B~:/ Kn(z —y) B,7 Gy T ay,
v T2d N lu’i,ﬁ

where

- . 11 . 11
R¥ = R = Ryl py piy div yui ( - y> = M Py iV 2 (m - m> :
ko Mk Hen  Hk

T

Finally,

IL
B = [ Knlo—y) (7~ F) GiY - = dody,
" Higy
with F}, the viscous effective flow, namely,

F, = AN div <8t(pk ’U,k) + div (pk U & ’U,k))
(I) For B; by the compactness of Ry, p, estimates (8.8) and (5.13), and
by (5.3),
t N
B < CL/ / Kn(z —y) |REY) de dy dt
0 JT2d
< CL(eo(h) +eo(n)) 1Knll Ly ey
Note that again |G7}/| < C (pr(x) + px(y)) for i =0, 1, 2.

(IT) For E;, we use Lemma 8.3 by simply defining

1

X
k.n

By (5.3),
19l oo ((0,7)x w20y < C L.
As for the time derivative of ®, for ¢ = 1, 2, (G; is a combination of functions
of pr(t,x), px(t,y) and w;, which all satisfy the same transport equation (with
different right-hand sides). By (5.1),
partialyG}Y + div, (uﬁ Gf,f) + divy, (uf G7Y)
= fii divgug + foty divyup + 37 Diy + fa: DYy,

where the D;;, are the penalizations introduced in Section 7.2 and the f;ff’ i
are again combinations of functions of pf, pY, wy'y and wi’k Finally by the
smoothness of y ),
0T + div, (uf DY) + divy (ull &)

= fridiveuf + foidivyul + fai Dy + fai DY)+ @5 gy,
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650 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

where every f, ; contains a factor 7, k,L or a derivative of I kL and thus, for instance,
| friklle <CL  V¥n, i

It is then easy to check that the constant Cgp, as defined in Lemma 8.3 is
bounded by C' Ln~!.

The case ¢ = 0 is slightly more complicated as Wy is integrated against
K}, so the equation on ® involves non-local terms and we have to take into
account extra terms as mentioned in the statement of Lemma 8.4. By (7.2),
denoting wo i n = Ky, * wo, k>

Owp g+ g Vawg g p — ok Agwp g, p, = —Kpx (Do wo k) + Rp, — K o (div ug wo k),
with

b= /Td VEKp(x—2) - (uf —uj) w§ g dz.

Remark that Rj, is uniformly bounded in L%z by usual commutator estimates.
Finally as pg , is smooth in time, one has

3&%}’% + div, (ui @g:z) + div, (UZ @g;’z) — oy (Ag +4Ay) (I)g:,g

= frodiveug(t, ) + foo divyur(t,y) + o (f30 [(Vapr)"1? + fa0(Vepr)|?)
P

- MTP (K * (Dowog) + R — Kp x (divug wo))
7’,7
(6]
~ 2RV, 8, Vowo k. + B0 gy,
HEmn

where ®, = 6py, pi [ ,f, gy is a function involving first and second derivatives
of pgn in t and x and Vuy. The f; are combinations of functions of py(t, z)
and pg(t,y), multiplied by wop, and involving ¢(px(x)/L), ¢'(pr(z)/L), or
¢"(pr(z)/L) and the corresponding term with pg(y). By the L* bounds on
®,, wo, each fjo and by (5.5), one obtains

Therefore Cy < C Ly~!. Thus for all three cases, Lemma 8.3 yields

< C Lyt

-1,
x

YR
Td ’ L}

(8.9) E; <C Ly YKy p1 (B +en(k))

for some 6 > 0 and e (k) = 0 if a = 0.

(ITII) The term Ag: End of proof of Lemma 8.4. The terms A; are where
lies the main difference between Lemmas 8.4 and 8.5 as P, is not monotone in
the first case and monotone after a certain threshold in the second. For this
reason we now proceed separately for Lemmas 8.5 and 8.4. In the case with
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 651

diffusion for Lemma 8.5, there also exist extra terms to handle, namely, J + I
with
)\ S

J=-2
2 Jo Jrsd

Kn(z = y)x(0pr) Kn(a — 2) M|Vug|* w§ , do dy dz dt

—= Kp(z —y) (divuf + divu))
2Jo Jrad

(X' (0pk) Opx — 2x(0pk)) Wyl Kn(z — 2) Kp(y — w) dz dy dz dw dt.

We decompose this last term in a manner similar to what we have just done,
first of all by introducing the truncation of p:

[ <C|Kp|gr L%
- (X' (6pr) Spr — 2x(6pr)) I Wl Kn(x — 2) Kn(y — w) dz dy dz dw dt,
again with 6y = (p — 2)/2. Now introduce the p:
1 S
<[§(?HB%HL1L9——§?/ /?dK%Cz—qﬁ(uﬂﬁvxuﬁﬁ—u%ﬁvxu%
0o JT

L

) k / _ Yy
i (£2) (X' (0pr) dpr — 2 x(dpK)) Wy

Kp(z — 2) Kp(y — w) do dy dz dw dt

1 ) o
+2/0 /T4d Kh(fv—y)Hk’y(X/&pk—2x(5pk))l,f WOth(x_Z)
Ky — w) de dy dw dz dt,

1 1 1 1
H Y = pidiv zuf, — — | = pldiv ul | — — )
S VT A T

where

By the compactness of uj, one has that

/0 /TMKh(x — ) HY (X dpe — 2x(5pr)) Wil Kn(z — 2)
- Kp(y — w) dz dy dwdz dt
< | KnllLreo(h) llunllpz my lloklizz < Ceo(h) [[Knllpr-

This implies that

1 S
I< —7/ Kp(z — y) (pidiv guf, + pidivyul)

2 0 T4d

IF o — _

f (X/(5pk) 0pr —2x(0pK)) Wof Kp(r —2) Kp(y — w)dxdy dz dwdt
k.n

+ O | Knll 1 (L0 + eo ().
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652 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

Using (5.2) or, namely, that ugdiv ug = Fi+Ri+Px(pr), the quantity Ag+1+.J
may be written

(8.10) Ao+ T+ J < C|Kp| (L0 +eo(h) + I + I,
with

L =A —1/8 Kp(z — )(Pﬂc"’hpy”’z)i

1= A0 2 Jo Jopaa h Yy k k I

777
(X' (0pk) Opx — 2x(0pk)) Woil Kn(z — 2) Kp(y — w) da dy dw dz dt

and
1 y X X Y Y Ilg

(X' (6px) dpr — 2 x(6pr)) Wi Kn(x — 2) Kp(y — w) da dy dw dz dt

)\ S

=5 | o @ =X Op) Kn(w = 2) M|Vug|" wi dav dy dz dt.

In this case with diffusion, because Py is essentially monotone, the term Ag is
mostly dissipative and helps control the rest. More precisely,

]_ S x, T , Yy i
n=— [ [ Kt =) [P0 = PO Goup
0 Jr2d

x, T , Y
+ (B 4 B (X (k)5 pk — 2x(5p))]
I
P

/ . Wil Kin(x — 2) Kp(y — w)dz dw] dx dy dt.
T2 :

As P, > 0 and by (8.1), X'(dpk)dpr — 2x(dpr) = —X'(dpr)dpk, thus

T Y T Y
(P"5) = BN o+ (P + B9 (X Sk — 2x(pi))
T Y T )
> ' (6pr) [(BEE =PI oy — (P74 B 6y
Without loss of generality, we may assume that pg(x) > pr(y) and hence
X' (8px) > 0. Develop
T Y T Y € Y
(B = B (L 4 B b = 2B =2 P

We now use the quasi-monotonicity (5.8) of P,*/s. First of all, if pg < pj < pf,
then necessarily Py depends only on pf or pj plus P,. Thus

Y
k

(8.11) PP gt — PP g > —|BY — BY).
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Y
If p! < po, then by (5.8), P5"° — 0o as s — oo while P."”* is bounded. Hence
there exists p large enough with respect to pg, such that if pf > p, then again

T Y
P]:?’Pk pz . P]i/vpk pi > 0.

The only case where one does not have the right sign is hence where both
py and p{ are bounded by p and pg. Therefore, using the local regularity of
Py, given by (5.8),

€ Y T Y _
(8.12) (P = P o — (P 4+ Y)Y pr > —Plope] — Qilt, 7, y).

Introducing estimates (8.11) and (8.12) in I yields

(8.13)

~ s _ B /5 IL
n<p [ Rl — ) (P8 - P+ Quot loprl) CORILIE
kn

: {/ dWOZ’,z”Fh(x— 2)Kp(y—w)dzdq| dzdydt
T2d
< eo(h) [|KnllL

+ ]5/0 - Kpn(x —y)x(0pk) WOZ”,:) Kp(z — 2) Kp(y — w) dz dy dz dw dt.

Now turning to Is, we observe that py M|Vuy| > prdivug > Fy + Ry and
that x(0x) > (2x(0x) — X'(0k) 0)/C. Therefore for A large enough, using
W(’)Z W= w§ i, + wi'y, and the symmetry, we find

1 t
< __ _
b= 2/0 /]I“ld Kn(z=y)

(Ff —F; + R — R+ F! — F{ + R} — R})
Ilf / PR -

o (X (6pr) 6pk — 2 Xx(0pk))Woy, Kn(x —2) Kp(y — w).
k,n

The differences in the R; are controlled by the compactness of Ry and the
differences in the effective viscous flux Fj by Lemma 8.3 as for the terms F;.
Hence, finally

(8.14) Iy < C || Kp|lz2 (e0(h) + Lyt n?).

Conclusion of proof of Lemma 8.5. We sum up the contributions from By
in (8.3), Ep in (8.9), Ao+ I + J in (8.10) together with the bounds on I; in
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654 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

(8.13) and I in (8.14) to obtain

1 S
3 Kp(x —y) (div puf, — div yuf) G da dy di
2 Jo Jr2d ,
1 s o
T2y Jpaa Kp(z — y) (div guf + divyul) (X (6pk) 0pk — 2x(5pk))

. WOZ”;U Kp(z —2) Kp(y — w) dz dy dw dz dt
)\ S
2 Jo Jrs3d
< C||Kpllpr (L7% + L(eo(h) + 20(n)) + Ly~ h?)

—i—C/O /1P4th(m—y)X(5pk) W(i’,zufh(x—z)?h(y—w)dxdydzdwdt.

Kn(z —y) x(0pr) Kn(z — 2) M [Vuy|* wi dz dy dz dt

Just optimizing in L and 7 leads to the desired e(h) and concludes the proof
of Lemma 8.5. O

(IV) The term A; with i = 1, 2: End of proof of Lemma 8.4. It now

T Y
remains to analyze more precisely the terms (P, %) — P,""*) GT¥ for i = 1,2

concerning the case without diffusion but with non-monotone pressure. We will
split the study into three cases but remark that now the possible dependence
of P, in terms of x affects the estimates. For this reason, we carefully write
this dependence explicitly.

T Y
Case (1): The case (P,"* — P,‘g’pk)épk > 0. Since G2 obviously have the
same sign as dpi, one simply has

T Y
vak Z/vﬁk T,y
(B, = B,F) Gy, = 0,
We can check this is the same for G7’, namely,
T Y
fL",Pk nyk x,Y
(Pk _Pk ) Gl,k

= (B, = ™) <§X,(5Pk) P+ X(3p1) = 5x'(Op) 5pk) Wi

N (1 _ 1
> |P." — P <§\x’(5pk)| Pr = |x(8pr) = 5 X' (Gpk) 5Pk:‘) wi
>0,

by (8.1) as pr > |0pk|. Therefore, in that case the terms have the right sign
and can be dropped.

T Y
Case (2): The case (P, —Pg’pk)épk < 0 and p} < p}/2 or pl > 2 p§ for

T Y
some constant C. For ¢ = 1, first assume that P,f’p’“ > P,f’p’“ while pf > 2 p}:

x Y
(P = P G = = Pr(pb) (X (Spw)| o + X(3pr)) w .
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Now observe that since pj, > 2 p¥, then

_ 3
X' (@)l o1 < 51X (Gl o1 < 3IX(0pi) 110 p1| < C'x(9p),
by (8.1). Therefore in that case, by (5.9),
(B~ Py GTL 2 —C((pR)7 + ©7) x(0pr) wi s

Note that the result is not symmetric in  and y. We also have to check
that Py(z, pf) < Pi(y,p;) and p} < pf/2. Then simply bound since now

i < Pi:

T Y
(PZ»pk o PkZ:J)Pk) G

\ \/

((p1)7 + OF) x(6pk) wi

—C
—C ()" + ©}) x(0pk) wiy

| \/

In both cases, one finally obtains
.05 Y.} . 5 _
(P = P*) GUy = = C((pk)" + ©5) x(0pk) wi y, — |OF — OF] o wi g
For i = 2, the calculations are similar (simpler in fact) for G5}, and
T Y
this lets us deduce that if P, "% — PY"* and p¥ — p¥ have different signs but
k k Pr — Pk
py < pi/2 or pi > 2p}, then
N , 5B 5B
(P = PR G > = C (o) + BE pb + (o) + BY p) x(Spi) wh .

Case (3): Fori =1, 2, the situation where P;’pk(x) - P,f’p’“(y) and pf — p},
have different signs but pi/2 < p} < 2pf. Then using the Lipschitz bound on
Py given by (5.9), one bluntly estimates

TPk pYPk| < \i—1 | pa -1, Py
By P < C (o) + By + (o) + ) |opk] + Q-

Now bounding the G; by (8.1),
T Y
(P’?Pk . P]ihpk) GCé?:]:Z
< C((pf) + B o+ (0)7 + B p}) x(Opr) wi p wi j + Qr prwi
and
(PP — PYPRYGIY < C (o) + P pf + (o)
+ B o) X(6pk) wi 1, + Q. pi
< C(1+ (pf) + PE i) x (dpr) wi
+ (Qk + [Py — P{| pr.) pr wi

as pf and p} are of the same order. From Proposition 7.2 point (i), we know
that wi, < e 2P’ One the other hand, we are precisely in the case where
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pi and pj, are of the same order. Hence ,52 w1 i is uniformly bounded for any
I > 0. Hence in this case, we finally obtain

x Y ~
(PP = PY™) Gyt < C (o) + P
)i

+ (o, Y i) X (6pr) wi pwi, + QpY

and
(PP — BYPR) GE < C (14 (o) + BY o) x(0pr) wl i + QY + | PE — PY|.
From the analysis of these three cases, one has that
A1 =C [ Kilw—y) (4 ()7 + B+ OF) x(Opw) wi g d dy dt
+C [ Kn(o =) (@47 + B¢ - PY| +|6F — O}) do dy .

Therefore by the compactness properties of P and the estimate on () in the
assumption (5.8),

(8.15)
A <C /0 ) /T Kn(w—y) (L+ (o) + P pf + OF) x(0px) wi . da dy di
+ [ Klls eo(h),
and
A< [ [ Ko=) (1 (07 + PE o+ OF + (o))

+ P pl + 07) x(pr) wi y wl ), dw dy dt + || Ky 1 eo(h).

(8.16)
Conclusion of the proof of Lemma 8.4. Summing up every term, namely,
(8.3)—(8.9) and (8.15)—(8.16), we eventually find that
- / Kp(z — y) (div guj, — div yul) G Ydx dydt
0 T2d
< C|[Bnllz (L7 + L (eo(h) +eo(n)) + Ln—1 h)
+C [ Bna =) (14 GR)T + PE g+ 00) X(6pu) wi dady di
while
- / y Kp(z — y) (div guj, — divyul) G5} dx dy dt
0o JT ’
< ClEnllp (L7 + L(eo(h) +eo(m) + L~ 1)
+C [ [ Kile =) (1+ ) + P g+ OF + ()

+ PVl + @Z) X(0pr) WY g, wik dx dy dt.
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To conclude the proof of Lemma 8.4, one optimizes in 7 and L. Just remark
that since the inequalities depend polynomially in L and 7, then the result
depends on &} for some 6.

8.4. Conclusion of the proofs of Theorems 5.1 and 5.2. Now we combine
Lemma 8.1 with Lemma 8.5 or 8.4, and we finally use Proposition 7.2. Let us
summarize the required assumptions. In all cases one assumes that pi solves
(5.1) and that div ug is coupled with pg through (5.2); bounds are assumed on
the viscosity as per (5.3), on the time derivative of pg ux per (5.6) and on wuy
per (5.5). Finally the viscosity uj and the force term Ry are assumed to be
compact in L'((0,7) x T%). Moreover,

e In the case with diffusion, aj > 0, one assumes that the pressure term Py
satisfies (5.8) and the bounds (5.4) on py with v > d/2 and p > 2.

e In the case without diffusion, a = 0, one needs only (5.9) on the pressure
Py, and the bounds (5.4) on pr with v > d/2 and p > 2. Moreover for
Proposition 7.2, it is necessary that p > 4. (In general, ¥ = v < p so this is
not a big issue.)

Then by taking A large enough, using the properties of K; and using a
simple Gronwall lemma, one obtains

(8.17)

! T T z w dh

/ Kp(z — 2) Kp(y — w) (Wi, + wog) Kn(z —y) x(6pk) dz dy dz dw——
ho JT4d h
<C [ Rigla =) Fnoly = w) (i + ) Kno @ — ) x(bpr) dardy dz duo
12 | - bodh
SC |10gh0‘ +€h0<k)+ E(h)f s
ho

where we have used the monotonicity of 1/(h+|z|)* to simplify the integration
in h.

For the case without diffusion,

(8.18)

1 — dh
[ is+ wd) Rl = y) (o) dody
ho JT24 h

L dn
= | (w4 w! ) Kno(x —y) x(6pr) dedy < C ( log hol'/? +/ e(h) ) ,
T2d ho h

finally with
(319) [ wipwl, Kn(o ) x(0p) dedy < C Kyl (1 +2(0).

where € depends only on the smoothness of p; and Ry and p > 2.
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658 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

The key point in all three cases is to be able to remove the weights from
those estimates. For that, one uses point (ii) of Proposition 7.2.

The case with w , +wf .. Let t be fixed. Denote wy, = {x : [Kpxwo ] <
n} € T for some parameter 7 that we will only choose in (0, 1). Remark that

1 — dh
[ e =) xGp)dzdy = [ [ Fitw— ) xGon) dody 5
TQd hO TQd h
1 — dh
:/ / Kh(x—y)x(épk)d:rdyf
ho JzEws or yEwsg

1 — dh
[ (@ = 9)x(Op) dudy "
ho Jx€wy and ycwy

Now

1 — dh
Kn(z = y) x(0p) dr dy =~
ho Jz€wg or yEws
1 — — dh
< [ Rnlo = ) (Rooxwoe) + Ko wo(y)) x(Gpe) davdy 5
77 ho T2d h

while by point (iii) in Proposition 7.2, using that p € LP((0,T) x T¢) with
p > 2 and recalling that x(£) < C'[¢],

! — dh
N Ko —9) x(0pr) dardy
ho Jx€wy and yEwy
dh _ C|log hyl

1 PR
< — — — < .
_2/}10 o Kp(x y)PkHKh*wogndxdy h = ]logn|'/?

Therefore combining this with (8.17), one obtains
[ Kol = ) x(O) derdy
T2d

_ 1 dh
<o (%(k) + [log ho['/? + [, e(h) 9 n 1Cho |l 21 ) ,

n |log 7|1/2
recalling from equation (8.3) that in this case,
1 dh 1 dh
k) = ax [ W25+ [ et G
ho h ho h

with €5, (k) the function introduced in Lemma 8.5. We may freely assume that
en(k) is decreasing in h (i.e., increasing as h — 0) and hence

Eno (k) < ag hg?|1og ho| + eng (k) | log hol.
We also denote
1 1 dh
= — € .
| log hO‘ ho

&(ho)
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 659

Remark that &(hg) — 0 since (h) — 0. For instance if £(h) = h’, then
£(ho) ~ |log ho|~!. The estimate then reads

Kho(x —y) x(0px) dz dy

Tzd
akhgz —I—Eho(k}) + ’10gh0|_1/2+5(h0) H/Cho”Ll
+ .
" | log 7|/

<C <\ log ho|
As || KChg |l 1 ~ |log hg|, we optimize in n by taking

1/2
n = (max(1/2, aphy? + eny (k) + | log ho| /2 + 2(ho)) "7,

and we observe that indeed n < 1 if hg is small enough. The following esti-
mate is obtained if k is large enough with respect to hg and hence oy hy 24
€ho (k) <1 / 2:

| Kol =) x(Gpw) dwdy
TQd

< ClIKho |l 2 .
= [log(arhy® + eny (k) + [ log ho|~1/2 + &(ho) ) [/

Per Proposition 4.1, this gives the compactness of pi as

lim sup

1 T
b LKhoHLl/o T2d no(z — ) X (0px) d dy

< C
| log(| log ho|~1/2 + é(ho))\l/2

— 0,

as hog — 0. And it proves case (i) of Theorem 5.1.

The case with wy j, + wy .. Similarly, from (8.18), one then proves that in
the corresponding case,

[log ho| /2 +£(ho) 1 )

— <
/qm Kho(z —y) x(6px) dz dy < C'|log ho ( . Tog 7

C ||ICho | 21
- y1og(\1oghoy—1/2+§(h0))10’

again using part (ii) of Proposition 7.2 to get rid of the weights w{ and wY
as shown in the previous case concerning the weight w® and w{. In both
cases, using Proposition 4.1 together with Lemma 6.6 in the second case, one
concludes that py is compact in « and then in ¢, . Thus we have shown case
(ii) and concluded the proof of Theorem 5.1.
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660 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

The case with wikwfk. The situation is more complicated for (8.19) and
the product w{ jwf,. Indeed wf, +wg,, or wf; +w{, are small only if both
wy g, and wak are small (or the corresponding terms for w; ). But wy g wik
can be small if either wi or w{ is small. This was previously an advantage,
then with simpler computations, but not here, and (8.19) does not provide
compactness.

This is due to the fact that one does not control the size of {w, < n} but
only the mass of pi over that set. The difference between the two is the famous
vacuum problem for compressible fluid dynamics, which is still unsolved.

The best that can be done by part (ii) of Proposition 7.2 is for any 7, 1/,

aalon@zn o=y Kn(@ = y) X(0pk) dz dy

| Knll L
nt/2 | logn'|0/2
using that pp € L? uniformly. Using (8.19) and optimizing in 7/, one finds for
some 6 > 0,

/1r2d Loy (2)>n Loy (y)>n En(z —y) x(0pr) dz dy < C

1 X
< [ whewd e Kl ) x(6p0) dedy + O

| Kpll 1
n'/2|log(e(h) + h9)|0/2"

If yj, and Fj, are uniformly in W*! for s > 0, then

[[Knllr
_ < (O """ nrltL”
Kh(l’ y) X((Spk) d.%'dy = Cn1/2|10gh|9/27
which concludes the proof of Theorem 5.2. Note, however, that in many senses
(8.19) is more precise than the final result.

4 Tor@)2n Torw)>n

8.5. The coupling with the pressure in the anisotropic case. In that case
we need the weight w, and its regularization w, j, defined by (7.2) with (7.5)
in order to compensate some terms coming from the anisotropic non-local part
of the stress tensor.

LEMMA 8.6. There exists Cy > 0 such that assuming that py solves (5.1)
with o, = 0, that (5.6), (5.5), (5.4) withy > d/2 andp > y+1+£ =~%/(y—1)
hold where £ = 1/(y — 1); assuming moreover that Py, satisfying (5.8) and that
ug solves (5.10) with

(8.20) a, <C,
then there exists 0 < 0 < 1 such that for x, verifying (8.2) for this choice of ¢,

U R (e —
[ M(wiﬁwzmxa(apkmxdy]
ho JT2d ’ ’

t=s

K T — .
/h /qu h ( Waq,h + wg,h) Xa((spk) dx dy}
0

+C 1+£)ylogh0|9

t=0
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 661

Proof. To simplify the estimate, we assume in this proof that Py (pi) = p{,
the extension when Py satisfies (5.8) instead being straightforward. We also
recall that y, satisfies (8.2), meaning that for all practical purposes, x4 (&) ~
|€]1T¢. We use the formula written in Lemma 8.2, namely,

! Fh (.Z' - y) x Y
[ foa ™5 b ) om0y

t=s

! Fh(x - y) x y
_ {/ho /TQd #(wa’h + wa’h) Xa(0pk) dz dy dh}

< Clloghg|® + T+ IT — T,

t=0

where 0 < 6 < 1 and with the dissipation term by symmetry,

s 1 - ) - dh
o= [ [ [ it xalOom) (B (v ug] + [ 4uPelpi) DI K dody S,
0 Jho Jr2d h

while still by symmetry

1 1 rs K _
I=-3 / / / Bnle=9) (div ug, — divyu)xq (0px) pr w, j, dz dy dt dh
2 JhoJo Jr2d h ,

and

Lbs o Kplw—y) o0 o
II:_z/ho/o /T?d . (div puf + div yul)

- (Xa(8pk)0pr — 2xa(Opr)) W, da dy dt dh.

(I) The quantity I. We recall that in this case one has the formula (5.10)
on div ug,

(8.21) divuy, =vPr(pr) + vk ap Ay Pr(pr) + Fo ks
where

Fop = vi(Ay — a,Ey) ™ div (0 (pr ug) + div (pg up @ ug)).
Therefore, one may decompose

I=1y+ 1P +I%,

Ltogs Kp(z —y)
I = —= x Fy
0 5 /ho/O /]I‘Qd h ( a,k a,k)
“ Xa(0pr) pr (W5 5 + wi’,k’h) dx dy dt dh,

with

while

_ Vi ! s ? (.Z’—y) T
1P = —;/}lo/o /Wih — (Pi(pt) = Pe(o})

“Xa(0pr) pr wa g, p, d dy dt dh
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662 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

and

auyk’ /ho/ /quth (A Pr(p}) — AuPr(pl))

*Xa(0pk) pr gy, dz dy dt dh.

(I-1) The term Iy. This term is handled just as in the proof of Lemmas 8.4
and 8.5 by using Lemma 8.3, and for this reason we do not fully detail all the
steps here. First note that Lemma 8.3 applies to Iy, j as well as for F, as

Fog = (ve(Ay = auBr) ™' A) F.

Then as before, we first truncate by using some smooth function I kL (t,z,y) =
?(pf/L)¢(py /L) with some smooth and compactly supported function ¢ lead-
ing to In = I + I with

Lotogs Kn(z —y)
—_ _ L x Fy
2 /h0 A /]I‘2d h ( a,k a7k:)

Xa(8pw) IE pr, (w5, +wl ) d dy dt dh

L otogs Kp(z —y)
__ L S Fy
2/}10/0 /’11‘2‘1 h ( ak ak)

Xa(0pr) (1= IE) pr (W, + wl ) d dy dt dh.

and

Remark that divug € Lm7 Pi(pr) € L%7 and since A, is an operator of 0
order, A, Py(pi) € Lp/’y. Therefore by equation (8.21),

sup ”Fa,kHLmin(Zp/'v) < o0.
k t,x
On the other hand, |\, (3pk)| < C (1 +€) (|pr(2)|* + |pr(v)[*), and this lets us
very simply bound IgfL by the Holder estimates
b < C (40 [loghol [|Full mincans [I(1 = I) i [ max(2.0)

<CA+0)|loghol |1 =TI p H|| (20

with 1/¢ +~v/p = 1. But ¢(1 + ¢) < p by the assumption p > v+ 1+ ¢ and
similarly 2 (1 + ¢) < p. As a consequence, for some exponent 6; > 0,

(8.22) I’ < C (14 0)|loghg| L7%.

We now use Lemma 8.3 for F,, ;, and ® = x/,(dpx) I,f Pk Wq k. h(z). We note that
@z < C (14 £) L'+, Moreover, just as in the proof of Lemmas 8.4 and
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 663

8.5, we can show that ® satisfies a transport equation giving that

Cp = H/Td Kp(x —y)®(t,x,y) dyHW“W‘“

+ H / Kl = 9)®(t, 2, ) dr <CO+0L,
T

1,10,—1,1
whiw,

By Lemma 8.3, we obtain that for some 65 > 0,

1
(8.23) Ir<c@a+o Ll“/ ho2 % <C (140 L'
ho

By optimizing in L, this lets us conclude that again for some 0 < § < 1 and
provided that p > v+ 1+ ¢,

(8.24) Iy < C(1+0)|loghgl’.
(1-2) The term I”. This term has the right sign as

1 s Fh r—Yy T P T
/ / / (h) (k)™ = (P1)7) Xa(Opw) pr (Wg g, + Wy g, ) do dy dt dh
ho JO JT2d

1 S F T —
= C/ / / h(hy)Xil(‘Spk) px pj, (Wap, p + Wy 1. ) dx dy dt dh.
ho JO JT2d

We will actually give a more precise control on I” + ITP later on when the
corresponding decomposition of IT = IIy + ITP + IT" will be introduced.

(I-3) The term I™. The difficulty is thus in this quantity. From its defini-
tion, A, is a convolution operator. With a slight abuse of notation, we denote
by A, as well its kernel or

At = | Aua =) F@)dy,

and we note that A, corresponds to an operator of 0 order; i.e., for instance,
it satisfies the property [, A, = 0 for any annulus A centered at the origin,
|A,(z)| < C|z|~¢. Decompose

A, =Ly + Ry, supp Ly, C {|z| < 0n}

such that both L; and Rj; remain bounded on any LP space, 1 < p < 0o, and
moreover I?y, is a regularization of A, that is, Ry, = A, x N5, for some smooth
kernel N5, . The scale d5, has to satisfy that

h
op << h, logé— << |loghl|.
h

For simplicity, we choose here §, = h/|logh|.
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664 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

Contribution of the Ry, part. The first step is to decompose Ry, into dyadic
blocks in Fourier. Introduce a decomposition of identity ¥; as in Sections 6
and 11 such that 1 = >7; ¥;, and write

[logy o |
(8.25) Rh: Z \I/l*Rh—i-Rh, Rh: Z \I/l*Rh :Nh*Néh*Au-
I=|log, h| 1<|logs h|

Note that of course we require the ¥; to satisfy all the assumptions specified
in Section 11 for the definition of Besov spaces. Now define Nj, = Nj, x N, .
This kernel N}, therefore satisfies that for any s > 0,

(8.26) N pllyysr < CR7S,

and moreover by the localization property of the Wy, one has that for s > 0
and any |w| <1,

(8.27) /d 2] [Va(2) + Nn(z + wr)|dr < C 1.
T

Fix t for the moment, and decompose accordingly

L Ka(2)
R YN R Y\ -tz
e (AT A

! Fh(z) I . I 2z
< [ R N0l B )y

1 |logs dn| Ko (2
S M)y k Ry s gl — (W5 Ry 1) .
h
7o 1—[logy | 7 T

By (8.26) and (8.27), the kernel N, satisfies the assumptions of Lemma 6.4.
Thus with Uy, = A, * p}, applying Lemma 6.4, for any ¢ > 1,

1 Ki(z - , - s
| ey = By gz
0

1 Kp(z)  — I o
:/ / W) | (R UL) — (N % U) 0 d
ho JTd  h

< C'|log ho|"/? | Ul 1.

Recalling that A, is continuous on every LP space, one has that ||Uy[[;» <
C1(07) 172 and hence

! Kh(Z) P, Y - ~ YNz 1/2 -
/h /Td B> o) = (Bax )2 g d= dh < C [log ho[''2 |75
0

On the other hand, simply by bounding
(Wi * Ry % pg)" — (Wi x Ryx p)V 17 < C[(Wy % Ry pg)* |7 + |(W0 % Ry, % pg)? |,
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 665

we write
1 |logs on| oz
/ / mE) | (@ % Ry % 07) — (W% Ry 5 p]) | s dz dh
ho T h
I=|logs h|
- 127t dh
<Y R [ 5

1<|logs ho|+log, | log, ho|

recalling that 6, = h/|logy h|. This leads to

1 [logs dn| Ko (2
LS [ e R )y (e Bax ) g el

0 1= {logy 7T P
<C > logl||(Wx Ry *p}) || e dz dh
1<2|logy ho

and can in turn be directly bounded by
< Cloglloghol > [(¥;xRyxp}) |l
1<2|logy ho
< C log|log ho |log ho["[|(Rn % ) [ls < C[log ho|” [|pillT
with 0 < # < 1 by Lemma 11.3. Combining with the previous estimate, we

deduce that
(8.28

)

1 Kz , —“s .

R Ry = B gz < C ol 1(e)
0

with 0 < 6 < 1. Therefore since x/,(¢) < (1 + £)|£|¢, by Hélder’s inequality
with the relation 1/¢g + (1 +¢)/(1+~v+¢) =1, that is, ¢ = (1 + £+ ) /7,

Sl P o e

“Xa(0pr) pr. (W i, +wy 4 ) do dy dt dh

s 1
1+
> —C(l—i—ﬁ)/ Hpk”1LT+2+7/ /
0 z ho /T4

Kn(2)
h
Finally by (8.28) there exists 0 < 6 < 1 such that

e e L

“Xa(0pr) pr (wp, +wy )
¢
> —C (14 0) [loghol® [|pr]l 3450

|(Rux 0}) — (R 5 ) 1 dz dhd.

(8.29)
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666 DIDIER BRESCH and PIERRE-EMMANUEL JABIN
Contribution of the Ly part. It remains to deal with the term involving Lj,.

First we symmetrize the position of the weight with respect to the convolution
with Ly by

1 s Ki(rx —
L L0 e g = (Lax 0009) ¥Op) i rdy
ho JO JT2d h
= IF — Diff,
with
s Kn(z—vy)
e
A n(2)((p2) (r2)777)
Xo(0px) pi (wi )"0 (wi?)’ du dy dz dt dh
for = 1—1/7. Recall that since wq , = Kp*wq, then |w? , —wg*| < htz|

while |z| ~ 6, on the support of L. Thus using that |y, (&) < C €] from
(8.2) and that |Ly(2)| < C'|z|7¢, one has

Diff = /ho/ /qud Kh =Y Lh( )((pk) - (p )Y7%)
“Xo(6pr) pr (W] )1 6((wah)9—(w %) dx dy dz dt dh

) Y\T—2 Y\Nr—z4w| =l+1 3 —0
<owen [ [ s S oty s ] g
-|2|% dax dw dz dt dh

Kh(w) +£+1 -z +o+1\z— 2w

+ (pl”“) + (oY) da dw dz dt dh.

Using |z| < dp = IlThzh\’ we obtain on the other hand that

/ / /1 Spdh /1 dh
h1+0 12|<6n |Z|d 0 = B0 ho P |log h|?

< C|logho|'~*.
As § =1 — 1/, this leads to
(8.30) Diff < C (14 0) || o]} 455 [log hol /7.
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COMPRESSIBLE NAVIER-STOKES AND PROPAGATION OF REGULARITY 667

As for the first term by Holder inequality, using again that |x/,(¢)| < C £[¢[f,

1 rs £/(¢+1)
I SC(1+5)/ / / (/ Sl PV (4 §1h 0 (E+D/tya )dx)
ho JO JT4 Td

v/ (y++1)
'(Aﬁbﬁaﬁwwdﬁwm&nfw“mdg f

Kp(w)
ok
provided that £ is chosen such that
gl ¢ gl
ponry s Sl e e BN A i §
implying, for instance, that
(+1 y+l+1
T Ty T
Given those algebraic relations and recalling that Lpx is continuous on every
LP for any 1 < p < o0,

1 ps K (w . b L ﬁ
oo [ [ B e - @ )
hoJo Jrd R T4

£/(¢+1)
(L, Wbt00)1 7w da)

Since using the definition of ¢,

[(p0)" = ()" | DI < oy 57 |5k | OFEEDIT =y 7 (5|,

dw dt dh,

dwdt dh.

one has

1 s F
831) I-< C(1+m/ / / En) |51 57w, da duw dt dh,
ho JO JT2d h 77

which multiplied by —a, /2 will be bounded by I D 4 ITP provided la,| is
small enough.

(IT) The quantity I1. Let us turn to IT and decompose it as for I:
IT=1Iy+1IP + 117,

where

Kh . Y
IIO_—/hO/ /W FHFM)

(X a(5pk)5pk — 2Xa(0pk)) (Wokn + Wy, ) dz dy dt dh,

K
SRS )+ Ruto)
hO T2d
- (x a(5pk)5pk —2Xa(0pk)) (Wg o+ W ) dz dy dt dh

while
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668 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

and

a;ﬂ/k /ho/ /W Kh (A Pr(p}) + AuPr(p?))

: (Xa(5ﬂk)5pk — 2Xa(0pk)) (WG ., + Wa i p) dz dy dt dh.

(II-1) The Iy term. For the term Iy, using Lemma 8.3 in a manner
identical to Iy,

1 s Kplx —vy) —
Iy < —/ / / Knle—y) (K * Foi)" (Xa(0px)0pk — 2Xa(dpk))
ho Jo J2d h
wy i, p dx dy dt dh
+C (1+0) [|prll 2041 | log o)’
for some 0 < 6 < 1. Using formula (5.10) or (8.21), one has that
div U — auA,qu:(pk) Z Fan,

and hence since —x}, & + 2xq > —C (1 + ¢) Xa,

+ Lors ( y)
I, < 144 1 0 1 / / / Z<h x
(832) 0> OﬁHﬁkHl’YJrLkl ‘ Og ho‘ C( g) ho 2d h

- K (|divug| + au ApPr(ox)]) Xa(0pr) we ., d dy dt dh,
and the first integral will be bounded by T,/2 for A large enough.

(II-2) The IIP term. The term IIP is controlled by I”: For a > b, by
(3.2),

(@ ) (xhla —b)a ) + 2xa(a— D) = (a7~ ) o a b +b).
Therefore,
PP <oy / / /
(8.33) Z ( ho T2d
' hg;l) 160" 7 (Wa e + Wy 1. ) dx dy dt dh

for some C' independent of ¢ and 7.

(I1-3) The II% term. The control on the last term, 17, requires the use
of the penalization T\:

1 1 s Fh z—y . . N
IIR—l—zTaS—CL#Vk/h /0 /ngd(h)((Alu‘pZ> _(AuKh*,OZ) )
0
- (Xa(0pk)0pr — 2Xa(6pr)) W 1 1, da dy dt dh.

We use the same decomposition of A, = Lj, + Ry, as for Iz,
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Contribution of the Ry part. Note that as x4(¢) < C|€|' and |\,| <
CA+OE[f, for g=(1+L+7)/vor1/qg+ 1+ /(1 +L+7) =1,

Lrs [ Kz —vy) —
—a,V Ry % 0) — (K xRy % 0))%
“’“/ho/o/w h (Rp* pp)* — (Kp* Ry * py,)")
- (Xa(0pr)0pr — 2Xa(Opr)) Wy gy, dez dy dt dh

s 1 Kz , s
<C1+0) /0 A some /h /T ) ’;f)H<Rh*pz>—<Rh*p;;>+HLgdzdhdt-
z 0

Now by estimate (8.28), we have that

1 rs ?h($ - y) z S .
_aqu/hO/O /E‘th((Rh*pZ) —(Kh*Rh*Pz))
- (X (60k)0pk — 2Xa(8p1)) W 1, d dy di dh
< O+ 0 oghol™* [ ol toes o]0

144
< C (14 ) [log hol*/* || 72,
t,z

(8.34)

Contribution of the Ly, part. Similarly as for I, we symmetrize the weights
leading to the following decomposition:

1 rs Ki(x — —
o [T (@ ) (R L))
ho Jo Jr2d h

- (X (608)0pk — 2Xa(Sp1)) Wi 1., d dy dt dh
= IIF + Diff,,

where

1 rs Ki(x — —
1T} = ay v, /ho /0 /Tszh(hy) Ly (Wi )’ (p1) = (Kn* p))"))

(=X4(0pk)0pk + 2Xa(0p1)) (W . )~ dz dy dt dh,

still with # = 1—1/~. The term Diffy is controlled as the term Diff in I* using
the regularity of w, ; and yielding

(8.35) Diffy < C (1+ £) [ log o[/ || pil|} 11
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670 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

We handle I1 ,f with Holder estimates quite similar to the ones used for
the term I }f, recalling that Lp* is bounded on any L? space for 1 < ¢ < oo:

1 s F w . - .
1t < Come0 [ 00y Rk Dl
ho JO JT4 h

8okl (W ) O peryse dw dt dh

<C 1+e//s/
a,U«Vk?( )h() 0 JTd

A )~ (R )P dr o

1ot K
+Cay, vy (1+€)/ / / h(w>/ w(fkh|5pk\(€+1)2/edxdwdtdh.
hoJo Jrd  h o Jpa T

One immediately has that

1 rs F
/ / / ng;k,h 160 | D/ da dw dt dh
hoJo Jw2a D

1 s ?
= / / / ) W o 6p1T B} dz dw dt dh
ho Jo JT2¢ R

as |[0px| < pr, and again ({4 1)/0 =~
Finally as (( +1) (v — 1) =,

1 ps K (w —
L L w0~ (e )74 de o
hO T2d

/ho/ /W

( )Kh() akhlpk IJFZ|€—H (p¥ +px+z)7d$dwdzdtdh

Kp(z
/h / /W wi n ok — op 1 (o + pE )T dz dw dt dh,
0

as Kp(w) is the only term depending on w and is of integral 1. Therefore,

Ki(2)

1 prs
(8.36) ITF < Ca, I/k’y(1+€)/h /0 /ng w;’f,k’hlépul%ﬁz dz dx dt dh.
0

To conclude, we sum all the contributions, more precisely (8.24), (8.29),
(8.30), (8.31), (8.32), (8.33), (8.34), (8.35), and (8.36), to find that for some
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0 <0 <1 and provided p > v+ 1+ ¥,

1 Fh(l‘ - y) T Y
[/ho /11“2‘1 T(wa,k,h + W, k1) Xa(0px) dz, dy dh}

t=s

! Kn(z —y)
< x Y
<[ T i+ i) xalop) dedyan]|

+C(1+2)|loghol’
1 rs K
—i—C(auuk(l—i—f)—C@)'y/// Mwﬁfh\épkﬂ%ﬁgdxdzdtdh.
2 hoJo Jr2a R ’

This finishes the proof of the lemma: As 14 ¢ = /(7 — 1) is bounded (we
recall that v > d/2), if a, < C, for Cy > 0 well chosen, the last term in the
right-hand side is non-positive. O

8.6. Conclusion of the proof of Theorem 5.3. We combine Lemmas 8.2
and 8.6 to get the following estimate:

t=s

1 K @ dh
[/ho /md Kp(r —y)(wg ppn + wg’k,h)Xa((Spk)dxdyﬁ}

< C'|log ho|? + initial value,

with 0 < 8 < 1. We now follow the same steps as in the proof of Theorem 5.1
with the weight w§ +wg. We define w, = {w} , , <7} and note that

| Kol = 9)xa(0p1) o dy
TQd
1 — dh
= K — o(0pr) dx dy —
/ho o n(@ =) Xa(Opr) dz dy -
1 — dh
:/ / Kn(z —y) xa(6pr) dxdyf
ho mewg or ywa7
1 — dh
[ (e~ 9) Xal6pr) dody 5.
ho Jx€wy, and ycwy

Now

1 — dh
/ / Kn(z —y) Xa(dpr) dz dy W
ho JzEW or yews

1 /1/ dh ’logh0|6
=5 =) (W, +w? ) xa(0p) dody — < C =220
<0 D n(@ = Y) (WG jn + Wy 1) Xa(pk) dz dy ; p
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672 DIDIER BRESCH and PIERRE-EMMANUEL JABIN

while by point (iii) in Proposition 7.2 and using the LP bound on p, for some
0 >0,

1 — dh
/ / Kn(z = y) Xa(dpk) da dy —-
ho JxEwy and yEwy

1 — dh
< N L dh
< Q/ho Tszh(:c Y) Py 1%, vy <n 4T dy W

C'|log ho|
|[logn|?

Hence we have

[/11‘24 Kho(z —y) Xa(dpk}

log hol?—1 1
o (M1
s n | log 7|

t=
C[|Kho |l 2
~ |log |log hol|?”
by optimizing in 1 and recalling that ||Kp, |1 = |log ho|. Using Proposition 4.1
together with Lemma 6.6, one concludes that py is compact in ¢, . Thus we
conclude the proof of Theorem 5.3.

9. Proof of Theorems 3.1 and 3.2: Approximate sequences

In this section, we construct approximate systems that allow us to use
Theorems 5.1 and 5.3 to prove Theorems 3.1 and 3.2.

Here we do not need to use pressure laws P that depend explicitly on ¢ or
x, which simplifies the form of the assumptions on the behavior of P, either
(5.8) or (5.9).

9.1. From regqularized systems with added viscosity to no wiscosity. Our
starting point for global existence is the following regularized system:

Orpr + div(prug) = axApy,
(9.1) O(prur) + div(prur @ ug) — pAug — (A + p)Vdivu, — Ag * uyg,
+ VP.(pr) + arVpr - Vuy = pf,

with the fixed initial data

(9.2) Prli=0 = p°, P ukli=0 = p°u’.

The pressure P. satisfies the bound (3.2) with v > 3d/(d + 2) uniformly in €,
that is,
C'pT—C<P(p)<Cp’ +C,
implying that e(p) > C~!p?~1 — C. In addition we ask that P. satisfies the
quasi-monotone property (5.8) but possibly depending on ¢; i.e., there exists
po,e such that
(P:(s)/s) >0 for all s > pg.
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And finally we impose an € dependent bound (3.2) on P. for some . > d:
(9:3) Cotps = C < Pep) < Cep™ +C,

Similarly A, is assumed to be a given smooth function, possibly depending on
€ but such that the operator defined by

D f=—pAf = A+ p)Vdivf — Ao« f

satisfies (2.2) and (2.3) uniformly in €.

As usual the equation of continuity is regularized by means of an artificial
viscosity term and the momentum balance is replaced by a Faedo-Galerkin
approximation to eventually reduce the problem on X,, a finite-dimensional
vector space of functions.

This approximate system can then be solved by a standard procedure.
The velocity u of the approximate momentum equation is looked at as a fixed
point of a suitable integral operator. Then given u, the approximate continuity
equation is solved directly by means of the standard theory of linear parabolic
equations. This methodology concerning the compressible Navier—Stokes equa-
tions is well explained and described in the reference books [32], [33], [50]. We
omit the rest of this classical (but tedious) procedure and we assume that we
have well-posed and global weak solutions to (9.1).

We now use the classical energy estimates detailed in Section 2.1. Note
that they remain the same in spite of the added viscosity in the continuity
equation because, in particular, of the added term iV pg - Vug in the momen-
tum equation. Let us summarize the a priori estimates that are obtained from
(2.6):

T
sup Sup/ (i [ug]® + p}) dz < oo, sup/ / |Vug|? de dt < oco.
ke t JTd ke JO JTd

The estimate (2.9) may actually require the € dependent bound from (9.3) with
~ve > d to control the additional term oy Vpg - Vug. It provides

T
sup/ / ph(t, z) dzdt < oo,
k Jo Jrd

with p. = 7. +27v./d —1 or p = v+ 2v/d — 1, which means p > 2 as
~v > 3d/(d+ 2). This bound may not be independent of € because it requires
(9.3). However since «j, vanishes at the limit, it still implies that any weak
limit p of p; satisfies

T
sup/ / ph(t, x) de dt < oo
e Jo JTd

forp=~+2v/d—1.
From these a priori estimates, we obtain (5.4) and (5.5). And from those
bounds it is straightforward to deduce that pj uy and py |ux|? belong to Lg,m
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for some ¢ > 1, uniformly in k. Therefore using the continuity equation in

(9.1), we deduce (5.7). Using the momentum equation, we obtain (5.6), but

this bound (and only this bound) is not independent of ¢ because of A..
Finally taking the divergence of the momentum equation and inverting A,

(A +2p) divug =P(pr) + A7 div (9s(pg up) + div (pr, up, @ ug))
— A7 Ndiv (pp f + Ae *ug) + apr AN div (Vg - Vaug),
which is exactly (5.2) with pup = A + 2 p satisfying (5.3) and compact, while
F, = A7 div (pp f + Ao xug) + o A7 Hdiv (Vg - V).

The first term in F}, is also compact in L' since A, is smooth for a fixed €. On
the other hand,
akﬁfl div (Vpk . Vuk)

converges to 0 in L' since \/aVpy, is uniformly bounded in L? and Vuy is as
well in L?. Therefore F}, is compact in L'. We may hence apply point (i) of
Theorem 5.1 to obtain the compactness of p;, in L!. Then extracting converg-
ing subsequences, we can pass to the limit in every term (see Section 2.2 for
instance) and obtain the existence of weak solutions to
(9.4)

Op + div(pu) = 0,

O(pu) + div(pu ® u) — pAu — (A + p)Vdive — Az xu + VP.(p) = pf.

9.2. General pressure laws: End of proof of Theorem 3.1. Now consider a
non-monotone pressure P satisfying (3.2) and (3.3). Let us fix ¢p. = 1/¢ and
define

P.(p)=P(p) ifp<coe,  P(p)=Plcoe) +Clp—coe)’ if p>coe.

If v < d, then we also add to P. a term in € p)° to satisfy (9.3). Note that P is
Lipschitz and converges uniformly to P on any compact interval. Due to (3.2)
there exists pg . with pp. — 400 as € — 400 such that for p > po,

(P.(s)/s) = (PL(s)s — P(s))/s* = (Cy = 1)(p— c0.2)" — Pleos)) /s> = 0.
The approximate pressure P still satisfies (3.2) with 7, and due to the previous
inequality it satisfies (5.8) for p > po . and (5.9) in the following sense: For all
s >0,

|P£(5)| < ?S:Y_IHSSCO,E +C(y— 1)5W_1H5260,5'
As a consequence, we have existence of weak solutions (p, u) to (9.1) for this
P. (assuming A. = 0) for any ¢ > 0. Consider a sequence ¢, — 0 and the
corresponding sequence (py, uy) of weak solutions to (9.1).
Because the previous a priori estimates were uniform in e for the limit p

and u (including (5.6) since A. = 0), then the sequence (pg, ug) satisfies all
the bounds (5.4), (5.5), (5.6), (5.7) and (5.9).
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Moreover the representation (5.2) still holds with pp = 2u + A, compact
in L' and satisfying (5.3). Finally the exponent p in (5.4) can be chosen up to
v+ 2v/d— 1. Since v > 3d/(d + 2), then p > 2. Since v > (y+ 1) d/(d + 2),
then one has p > 7 as well.

Therefore all the assumptions of point (ii) of Theorem 5.1 are satisfied
and one has the compactness of pi. Extracting converging subsequences of py
and ug, one passes to the limit in every term. Note, in particular, that P;, (px)
converges in L' to P(p) by the compactness of p;, the uniform convergence of
P., to P on compact intervals and by truncating Px, (pi) for large values of py
since the exponent p in (5.4) is strictly larger than .

This proves the global existence in Theorem 3.1. The regularity of p
follows from Theorem 5.2, which concludes the proof of Theorem 3.1.

9.3. Anisotropic viscosities: FEnd of proof of Theorem 3.2. For simplicity,
we take f = 0. Now consider a “quasi-monotone” pressure P satisfying (3.8).
Observe that P then automatically satisfies (3.2) since P(0) = 0. To satisfy
(5.8), we have to modify P on an interval (cg., +00) with ¢y — 400 when
€ — +00. More precisely, we consider P. as defined in the previous subsection:

P:(p) = P(p) if p<cog, P.(p) = P(coe) +C(p—coe)’ if p>cop.

Remark that since v > d here, we never need to add a term with ~..
Now given any smooth kernel, for instance K, we define

Az x u=div (§A(t) V K. xu).

Because of the smallness assumption on dA(t), the operator D, satisfies (2.2)
and (2.3) uniformly in €. Therefore we have existence of global weak solutions
to (9.4) with this choice of P. and A.. We again consider a sequence of such
solutions (pg, uy) corresponding to some sequence €, — 0. Because the esti-
mates are uniform in ¢ for (9.4), we again have that this sequence satisfies the
bounds (5.4), (5.5), (5.7). We now assume that

d 1
’Y>7 ﬁ7

1
17) 1
2(+ +4/1+

d

implying that p in (5.4) is strictly larger than +2/(y — 1). Moreover observe
that

| Ae,urll 2 1 < ClIVuillzz,

such that (5.6) is also satisfied.
For simplicity, we assume that 0 A has a vanishing trace; otherwise just
add the corresponding trace to p. Denote a, = 2|[6Al[z=/(2p + A) and the

This content downloaded from
129.2.19.102 on Thu, 09 Jul 2020 22:56:33 UTC
All use subject to https://about.jstor.org/terms
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operator Ej,

: GA(t — GA;(t —
Eru = —div (2]614(H)Loov}(a*u) = —%W@ijffak * .
For a, small enough, A — a, E}, is a uniform elliptic operator so that (A —
a, E})~! A is bounded on every LP space, uniformly in k. For the same reason,
A, = (A —a, Ey) ! By, is bounded on every LP space with norm less than 1
and can be represented by a convolution with a singular integral.
Taking the divergence of the momentum equation in (9.1), one has

(2u+ ) (A divuy — a, Ej div u)
= A P(pi) + div (0¢(pr ug) + div (pg up @ ug)).
Just write A P.(pr) = (A — au Ex) P-(pr) + a, Ex P- and take the inverse of
A —a, Ej; to obtain
(2u + N divu =P(pr) + a, (A — a, Ex) " Ey, P(p)

+ (A = a, By) "t div (9 (pr wr) + div (pr ug @ uy)),
which is exactly (5.10) with v, = (2 + X)~!. As a consequence, if a, < Ci,
which is implied by ||§ A||e small enough, then Theorem 5.3 applies and py, is
compact. Passing to the limit again in every term proves Theorem 3.2. Note

that P, (p) converges in L' to P(p) for the same reason as in the previous
subsection.

The case with D(u) instead of Vu. Let us finish this proof by remarking
on the different structure in the case with symmetric stress tensor div (A D u).
In that case, one cannot find div uy by taking the divergence of the momentum
equation, but instead we have to consider the whole momentum equation. Let
us write it as

Eup = VP(pr) + 0y (pr ur) + div (pr ur ® ug),
with £ the elliptic vector-valued operator
Eu=pAu+ (p+ ) Vdivu + div (dA D u).

The operator £ is invertible for §A small enough as one can readily check
in Fourier, for instance, where —& becomes a perturbation of 1 |€]2 T + (u +
A) & ® & Its inverse has most of the usual properties of inverses of a scalar
elliptic operator (with the exception of the maximum principle for instance).
Therefore, one may still write

divuy, = div E7VVP(pg) + div €7 (0 (pr ur) + div (pp up @ ug)),

leading to the variant (5.11) of the simpler formula (5.10).
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10. Appendix: Notation

For the reader’s convenience, we repeat and summarize some of our main

notation.

Physical quantities.

p, or pi denotes the density of the fluid.

u, or uy denotes the velocity field of the fluid.

P(.), or Px(.) denotes the pressure law.

e(p) is the internal energy density, which in the barotropic case, reads e(p) =
flfref P(s)/s*ds.

E(p,u) = [ p(Ju|?>/2 + e(p)) is the total energy of the fluid.

e 4, A and ui denote various viscosity coefficients or combination thereof.

S denotes the viscous stress tensor. In the simplest isotropic case, S =
2uD(u) 4+ Adiv uld.
D is the diffusion term related to the viscous stress tensor by Du = div S.

Technical notation.

d is the dimension of space.

g% means g(t, X), where X is any space variable in T¢.

%Y means g(t, X,Y) where X and Y are space variables in T¢.

k as an index always denotes the index of a sequence.

h and hy are scaling parameters used to measure oscillations of certain
quantities such as the density.

K}, is a convolution kernel on T¢ and Kj(z) = (h+|z|) = for 2 small enough
and with a > d.

o K}, is equal to K /|| Kpl|1:-
o Cpy, = f}}o Kp(x) % is the weighted average of Kj. Note that ||[ICph, |1 ~

| log hol.

wp, wy and w, are the weights and w; ), = K, % w; their regularization with
1 =20,1,a.

C'is a constant whose exact value may change from one line to another but
which is always independent of k, h or other scaling parameters.

e(h) is a smooth function with £(0) = 0.

6 is an exponent whose exact value may change as for C but in (0, 1).

The exponent p is most of the time such that p € L} .

q and r are other exponents for LP type spaces that are used when needed.
I, II,...and A, B, D, F,... denote some intermediary quantities used in
the proofs. Their definitions may change from one proof to another.

x, Yy, w, z are typically variables of integration over the space domain.

e Opy = pi — py is the difference of densities.

pr = pi + py is the sum of densities.
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o D puy = A~Ldiv (0, (pr, ug) + div (pr up ® ug)) denotes the effective viscous
flux.
e The individual weights w = wy, wi, w, satisfy equation (7.2) or

Ow + uy - Vw = —Dw + oy, Aw,

where D = Dy, D1, D, are respectively the penalizations in (7.3), (7.4), and
(7.5).

e The weights wg or w, may be convolved to give wy = K} * wo, Wo,p =
Kh * Weq,-

e The weights are then added or multiplied to obtain the composed W (¢, z, y)
= Wy, W1, Wa, W, with

WO(ta'x:y) = wO(tvx) + ’U)()(t,y), Wl(t,.%', y) = ’lUl(t, I’) + w1<t7 y)7
WQ(t,fL',y) = wl(tvx) wl(tvy)a Wa(ta xz, y) = wa(ta 'T) + wa(t,y).

The main properties of the weights are given in Proposition 7.2.

11. Appendix: Besov spaces and Littlewood—Paley decomposition

We only recall some basic definitions and properties of Besov spaces for use
in Lemma 6.3. We start with the classical Littlewood—Paley decomposition and
refer to the readers, for instance, to [5], [1] and [7] for details and applications
to fluid mechanic. Choose any family ¥; € S(T9) such that

e its Fourier transform Wy, is positive and compactly supported in the annulus
{21 < gl <2
e it leads to a decomposition of the identity in the sense that there exists ®
with & compactly supported in {|€| < 2} such that for any &,
L=®(&) + > Wi(9);
k>1

e the family is localized in T¢ in the sense that for all s > 0,
sup || g1 < oo, sukaS/ |2|° | Wk (2)] dz < oo.
k k Td

Note that in R?, one usually takes ¥y (z) = 254 ¥(2¥ 2) but in the torus, it can
be advantageous to use a more general family. It is still necessary to take it
smooth enough for the third assumption to be satisfied. (It is, for instance,
the difference between the Dirichlet and Fejer kernels.)

For simplicity, we then denote Wy = ® for k = 0 and for k > 1, Ui (x) =
2k W (27% ). For any f € S'(R%), we also write fi = ¥ » f and then obtain
the decomposition

(11.1) F=> fe
k=0

From this decomposition one may easily define the Besov spaces:
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Definition 11.1. The Besov space By, is the space of all f € L}, NS'(RY)
for which

k
1£lls,, = (2% 11 £ill e

[e%¢} 1/q
o= (Z 9skq ||fk‘%g> < o0.
k

k=0
The main properties of the Littlewood—Paley decomposition that we use

in this article can be summarized as

PrROPOSITION 11.2. For any 1 < p < oo and any s, there exists C > 0
such that for any f € L}, NS'(R?),

23k

C
<[l fllwsr <C

00 1/2
(Z 22k5 ‘fk‘2>
kZO Lp
And as a consequence, we have for 1 < p < 2,

O 1 fllzg, < Iflwes < Cflls;,-

p,2

I fillze < (A2 frllze < C2°% || fill 1o,

oo 1/2
(Z 22ks |fk‘2>
k=0

C—l

Lp

Note that the norm H(Z?’ZO 22ks \ka)l/QHLp actually defines the F2,

spaces that for 1 < p < oo are equivalent to the classical Sobolev spaces.
In particular, a consequence of Proposition 11.2 is the following bound on
truncated Besov norm:

LEMMA 11.3. For any 1 < p < 2, there exists C > 0 such that for any
ferLl NS RY and any K € N,

loc
K

ST 2| fill e < CVE | fllwes.

k=0
Proof. By a simple Cauchy-Schwartz estimate,

K 00 1/2
S 2 il < VK (z 2k kauig) —VE I£l5;.,
k=0 k=0

which can easily conclude the proof by applying Proposition 11.2. O
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