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Abstract We derive quantitative estimates proving the propagation of chaos
for large stochastic systems of interacting particles. We obtain explicit bounds
on the relative entropy between the joint law of the particles and the tensorized
law at the limit. We have to develop for this new laws of large numbers at the
exponential scale. But our result only requires very weak regularity on the
interaction kernel in the negative Sobolev space Ẇ−1,∞, thus including the
Biot–Savart law and the point vortices dynamics for the 2d incompressible
Navier–Stokes.
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524 P.-E. Jabin, Z. Wang

1 Introduction

1.1 Motivation

We consider large systems of N indistinguishable point-particles given by the
coupled stochastic differential equations (SDEs)

dXi = F(Xi ) dt + 1

N

∑

j �=i

K (Xi − X j ) dt +√2σN dWi
t , i = 1, . . . , N

(1)

where for simplicity Xi ∈ �d , the d-dimensional torus, theWi are N indepen-
dent standard Wiener Processes (Brownian motions) in Rd and the stochastic
term in (1) should be understood in the Itô sense.

The interaction term is normalized by the factor 1/N , corresponding to
the mean field scaling. For a fixed N our goal is hence to derive explicit,
quantitative estimates comparing System (1) to the mean field limit ρ̄ solving

∂t ρ̄ + div x (ρ̄ [F + K �x ρ̄]) = σ Δρ̄. (2)

Such estimates in particular imply the propagation of chaos in the limit N →
∞. But precisely because they are quantitative, they also characterize the
reduction of complexity of System (1) for large and finite N .

A guiding motivation of interaction kernel K in our work is given by the
Biot–Savart law in dimension 2, namely

K (x) = α
x⊥

|x |2 + K0(x), (3)

where x⊥ denotes the rotation of vector x by π/2 and where K0 is a smooth
correction to periodize K on the torus represented by [− 1/2, 1/2]d . Ifω(x) ∈
L p(�d) with p ≥ 1, then u = K �x ω solves

curl u = curl K �x ω = α

(
ω −

∫

�d
ω

)
, div u = div K � ω = 0.

If F = 0, the limiting Eq. (2) becomes

∂tω + K �x ω · ∇xω = σ Δω, (4)

where we now write on ω(t, x), using the classical notation for the vorticity
of a fluid. Equation (4) is invariant by the addition of a constant ω → ω + C .
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Quantitative estimates of propagation of chaos 525

We may hence assume that
∫
�d ω = 0 and Eq. (4) is then equivalent to the 2d

incompressible Navier–Stokes system on u(t, x) s.t. ω = curl u,

∂t u + u · ∇xu = ∇x p + σ Δu,

div u = 0.
(5)

The system of particles (1) now corresponds to a system of interacting point
vortices with additive noise. Because we present our method in the simplest
framework where particles are indistinguishable, all point vortices necessarily
have the same vorticity in this setting.

Our main results provide an explicit estimate quantifying that the system
(1)is within O(N−1/2) from the limit (2) in an appropriate statistical sense.
This applies to

– If the diffusion is non-vanishing, σN → σ > 0, to all kernels K ∈ W−1,∞
with div K ∈ W−1,∞, see Theorem 1 in Sect. 1.2. We devote Sect. 1.3
to a long discussion of various examples of kernels K that are covered by
Theorem 1 but emphasize here that it applies to the Biot–Savart law (3)
and to any kernel K s.t. |x | K ∈ L∞ and div K ∈ W−1,∞.

– If the diffusion vanishes (or is degenerate in some directions), σN → σ

with σ �> 0, we can handle any kernels K ∈ L∞ with div K ∈ L∞.
Moreover if the kernel is anti-symmetric, K (−x) = −K (x) [which is the
case for (3)], then we only need |x | K ∈ L∞ with div K ∈ L∞. The
corresponding Theorem 2 is presented in Sect. 1.4.

We are therefore able to handle the Biot–Savart law independently of the
viscosity. But we should note that Theorem 1 applies to much more general
kernels.

The key argument in our proof is given by Theorem 4, a new large deviation
estimate which bounds an appropriate partition function

sup
N

∫

�d N
exp

⎛

⎝ 1

N

N∑

i, j=1

φ(xi , x j )

⎞

⎠ �N
i=1ρ̄( dxi ) < ∞,

for a modified potential φ which is related to K and ρ̄ but is not the potential of
the dynamics. The critical point is that such an estimate holds even if φ is not
continuous, but only exponentially integrable with appropriate cancellations.

The rest of the article is organized as follows: the last subsection in the intro-
duction sketches the proof of our basic a priori estimates. Section 2 presents
the proof of our main results, assuming that one has two critical estimates,
Theorems 3 (law of large numbers at exponential scale) and 4 (large devia-
tion estimate mentioned above).We establish some preliminary combinatorics
notations in Sect. 3. This enables us to easily prove Theorem 3 in Sect. 4. The
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526 P.-E. Jabin, Z. Wang

proof of Theorem 4 is considerably more difficult; it is performed in Sect. 5
which is the main technical contribution of this article.

1.2 Main results for non-vanishing diffusion

We start by recalling the precise definition of the space Ẇ−1,∞(�d) which
is used both in Proposition 1 and in Theorem 1 and which is critical to our
applications.

Definition 1 A function f with
∫
�d f = 0 belongs to Ẇ−1,∞(�d) iff there

exists a vector field g in L∞(�d) s.t. f = div g. Similarly a vector field K
with

∫
�d K = 0 belongs to Ẇ−1,∞(�d) iff there exists a matrix field V in

L∞(�d) s.t. K = div V or Kα =∑β ∂βVαβ . We then denote

‖ f ‖Ẇ−1,∞ = inf
g

‖g‖L∞, with f = div g,

and similarly

‖K‖Ẇ−1,∞ = inf
V

‖V ‖L∞, with K = div V .

Following the basic approach introduced in [56], our main idea is to use
relative entropy methods to compare the coupled law ρN (t, x1, . . . , xN ) of the
whole system (1) to the tensorized law

ρ̄N (t, x1, . . . , xN ) = ρ̄⊗N = �N
i=1ρ̄(t, xi ),

consisting of N independent copies of a process following the law ρ̄, solution
to the limiting Eq. (2).

As our estimates carry over ρN , we do not consider directly the system of
SDEs (1) but instead work at the level of the Liouville equation

∂tρN +
N∑

i=1

div xi

⎛

⎝ρN

⎛

⎝F(xi ) + 1

N

N∑

j=1

K (xi − x j )

⎞

⎠

⎞

⎠=
N∑

i=1

σN ΔxiρN ,

(6)

where and hereafter we use the convention that K (0) = 0. The law ρN encom-
passes all the statistical information about the system. Given that it is set in
�d N with N >> 1, the observable statistical information is typically con-
tained in the marginals

ρN ,k(t, x1, . . . , xk) =
∫

�d (N−k)
ρN (t, x1, . . . , xN ) dxk+1 . . . dxN . (7)
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Quantitative estimates of propagation of chaos 527

Our final goal is to obtain explicit bounds on ρN ,k − ρ̄⊗k
, where ρ̄⊗k =

�k
i=1ρ̄(t, xi ). Those bounds will follow from a relative entropy estimate

between ρ̄N and a solution ρN to (6). But for this, we cannot use any weak
solution to the Liouville (6) and instead require

Definition 2 (Entropy solution) A density ρN ∈ L1(�d N ), with ρN ≥ 0 and∫
�d N ρN dXN = 1, is an entropy solution to Eq. (6) on the time interval

[0, T ], iff ρN solves (6) in the sense of distributions, and for a.e. t ≤ T

∫

�d N
ρN (t, XN ) log ρN (t, XN ) dXN + σN

N∑

i=1

∫ t

0

∫

�d N

|∇xi ρN |2
ρN

dXN ds

≤
∫

�d N
ρ0
N log ρ0

N dXN

− 1

N

N∑

i, j=1

∫ t

0

∫

�d N
( div F(xi ) + div K (xi − x j )) ρN dXN ds, (8)

where for convenience we use in the article the notation XN = (x1, . . . , xN ).

In general it can be difficult to obtain the well posedness of an advection–
diffusion equation such as (6) under very weak regularity of the advection
field K , such as is our case here. We refer to [31] for an example of such study.

In our case though, we do not need the well posedness and it is in fact
straightforward to check that there exists at least one entropy solution to (6).

Proposition 1 Assume that
∫
�d N ρ0

N log ρ0
N < 0, σN ≥ σ > 0, and that

F, div F ∈ L∞. Assume finally that K ∈ Ẇ−1,∞ with as well div K ∈
Ẇ−1,∞. Then there exists an entropy solution ρN satisfying

∫

�d N
ρN (t, XN ) log ρN (t, XN ) dXN + σN

2

N∑

i=1

∫ t

0

∫

�d N

|∇xi ρN |2
ρN

dXN ds

≤
∫

�d N
ρ0
N log ρ0

N dXN + N t ‖ div K‖2
Ẇ−1,∞

2 σ
+ N t ‖ div F‖L∞ .

(9)

Moreover for any φ ∈ L2([0, T ], W 1,∞(�2d)) with ‖φ‖L2
t W

1,∞
x

≤ 1

1

‖K‖Ẇ−1,∞

∫ t

0

∫

�2d
φ(s, x1, x2) K (x1 − x2) ρN ,2(s, x1, x2) dx1 dx2 ds

≤ 1 + t + 2

N σ

∫

�d N
ρ0
N log ρ0

N dXN + t ‖ div K‖2
Ẇ−1,∞

σ 2 + t
2‖ div F‖L∞

σ
,

(10)

so that the product K ρN is well defined.
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528 P.-E. Jabin, Z. Wang

Our method revolves around the control of the rescaled relative entropy

HN (ρN | ρ̄N )(t) = 1

N

∫

�d N
ρN (t, XN ) log

ρN (t, XN )

ρ̄N (t, XN )
dXN , (11)

while our main result is the explicit estimate

Theorem 1 Assume that div F ∈ L∞(�d), that K ∈ Ẇ−1,∞(�d) with
div K ∈ Ẇ−1,∞. Assume that σN ≥ σ > 0. Assume moreover that ρN
is an entropy solution to Eq. (6) as per Definition 2. Assume finally that
ρ̄ ∈ L∞([0, T ], W 2,p(�d)) for any p < ∞ solves Eq. (2) with inf ρ̄ > 0
and

∫
�d ρ̄ = 1. Then

HN (ρN | ρ̄N )(t) ≤eM̄ (‖K‖+‖K‖2) t
(
HN (ρ0

N | ρ̄0
N ) + 1

N

+ M̄(1 + t (1 + ‖K‖2)) |σ − σN |
)

,

where we denote ‖K‖ = ‖K‖Ẇ−1,∞ + ‖ div K‖Ẇ−1,∞ and M̄ is a constant
which only depends on

M̄
(
d, σ , inf ρ̄, ‖ρ̄‖W 1,∞, sup

p≥1

‖∇2ρ̄‖L p

p
,

1

N

∫

�d N
ρ0
N log ρ0

N , ‖ div F‖L∞
)
.

Remark 1 The regularity assumptions for the limit ρ̄ on the time interval [0, T ]
can be established by propagating the regularities of the initial data.

Remark 2 There is no explicit regularity assumption on F in the previous
theorem, since F does not appear explicitly in the evolution ofHN (ρN |ρ̄N )(t).
Nevertheless some regularity on F is implicitly required, in particular to obtain
W 2,p solution ρ̄ to (2). The constant M̄ depends on ‖ div F‖L∞ only in the
case σN �≡ σ . See the proof of Lemma 2 for details.

Remark 3 While our results are presented for simplicity in the torus �d , they
could be extended to any bounded domain Ω with appropriate boundary con-
ditions. The possible extension to unbounded domains however appears highly
non-trivial, in particular in view of the assumption inf ρ̄ > 0 which could not
hold anymore.
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Quantitative estimates of propagation of chaos 529

The proof of Theorem 1 strongly relies on the properties of the relative
entropy over tensorized spaces such as�d N . Those properties are also critical
to derive appropriate control on the observables ormarginalsρN ,k . In particular
the sub-additivity implies that the relative entropy of the marginals is bounded
by the total relative entropy or

Hk(ρN ,k | ρ̄⊗k
) = 1

k

∫

�d k
ρN ,k log

ρN ,k

ρ̄⊗k dx1 . . . dxk ≤ HN (ρN | ρ̄N ),

(12)

for which we refer to [50,69,70] where estimates quantifying the classical
notion of propagation of chaos are thoroughly investigated.

It is then possible to derive from Theorem 1 the strong propagation of chaos
as per

Corollary 1 Under the assumptions of Theorem 1, if HN (ρ0
N | ρ̄0

N ) → 0 as
N → ∞, then over any fixed time interval [0, T ]

HN (ρN | ρ̄N ) −→ 0, as N → ∞.

As a consequence considering any finitemarginal at order k, one has the strong
propagation of chaos

‖ρN ,k − ρ̄⊗k‖L∞([0, T ], L1(�d k)) −→ 0.

Finally in the particular case where supN N HN (ρ0
N | ρ̄0

N ) = H < ∞, and
where supN N |σN − σ | = S < ∞, then one has that, for some constant C
depending only on k, H, S, T and ‖K‖ and M̄ defined in Theorem 1,

‖ρN ,k − ρ̄⊗k‖L∞([0, T ], L1(�d k)) ≤ C√
N

. (13)

Remark 4 The rate of convergence in 1/
√
N in (13) is widely considered to

be optimal as it corresponds to the size of stochastic fluctuations. We refer for
example to [67] where entropy methods are used in this context for smooth
interaction kernels; see also the prior [3,11,20].

Proof Corollary 1 follows directly from Theorem 1 by using inequality (12)
and the Csiszár–Kullback–Pinsker inequality (see for instance [88]) for any f
and g functions on �d k

‖ f − g‖L1(�d k) ≤ √2kHk( f | g).
��

123



530 P.-E. Jabin, Z. Wang

Remark 5 Theorem 1 also provides the rate of convergence in theWasserstein
distance by a Talagrand-type inequality (see for instance [8,12])

Wp(ρN ,k, ρ̄
⊗k

) ≤ C(ρ̄, p)
(
kHk(ρN ,k |ρ̄⊗k

)
) 1

2p

for any p ≥ 1, since the underlying space �d is compact.

The starting steps in the proof of Theorem 1, such as the relative entropy and
the reduction to a modified law of large numbers, had already been exposed in
[56]. However the present contribution expands much on the basic ideas and
techniques introduced in [56]: First we make better use of the diffusion, which
was insteadmostly considered as a perturbation in [56]. This is themain reason
why we are essentially able to gain one full derivative in our assumption on
K with respect to the K ∈ L∞ in [56].
The main technical contribution in the present article, namely the modified

law of large numbers stated in Theorem 4, is considerably more difficult to
prove than any equivalent in [56]. This has lead to several new ideas in the
combinatorics approach, detailed in the proof of Theorem 4 in Sect. 5. Theo-
rem 4 corresponds to classical large deviation estimates for instance in [2] but
for non-continuous potentials, which is new in the literature. We believe that
it can be of further and wider use.

The importance of law of large numbers for the propagation of chaos or the
mean field limit has of course long been recognized, at least since Kac, see
[58] or [85]. We also refer to [43] for an example where the classical law of
large numbers is used but which is limited to Lipschitz kernels K .

The relative entropy at the level of the Liouville equation does not seem to
have been widely used for mean field limits yet. The relative entropy method,
initiated in [89] in the context of hydrodynamics of Ginzburg–Landau and now
has been extensively used for hydrodynamics limits (see chapter 6 in [59]),
is maybe the closest to the approach developed here. A similar approach,
namely a modulated energy argument, was introduced in [82] to investigate
mean field limits for quantumvortices (see also [26]), and has been used in [25]
for gradient flows with Riesz-like potentials and in [83] for 1st order Coulomb
flows. We also refer to [34] for a different, trajectorial, view on the role of the
entropy in SDEs.

1.3 Applications

We delve in this section into some examples of kernels K that our method can
handle and discuss at the same time where our result stands in comparison
to the existing literature. In general quantitative estimates of propagation of
chaos were previously only available for smooth, Lipschitz, kernels K such
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Quantitative estimates of propagation of chaos 531

as in the classical result [68]; see also [3,11,20,67] for more on the classical
Lipschitz case. Gronwall-like estimates with Lipschitz force fields, but a fixed
number of SDEs, were also at the basis of [54].

System (1) retains simple additive interactions, contrary to the more com-
plex structure found for example in [71,72]; but it still includes a large range
of first order models, such as swarming, opinion dynamics, aggregation equa-
tions, neuroscience models, see for instance [10,16,22,30] or [61] and the
reference therein. The propagation of chaos of stochastic system (1) is also
closely related to complex geometry, which has been investigated in [4,5]. The
Dyson Brownian motions, i.e. (1) with K (x) = 1/x in 1D, or more general
mean filed models at low temperature, are also connected to random matrix
theory [1,27]... The list of examples given below is hence by nomeans exhaus-
tive and we refer to our recent survey [57] for a more thorough discussion of
current important questions.

– The 2d viscous vortex model where K satisfies (3). As mentioned in the
introduction, the mean field limit (2) is then the 2d incompressible Navier–
Stokes equation written in vorticity form, Eq. (4). We can write

K = div V, V =
[− φ arctan x1

x2
+ ψ1 0

0 φ arctan x2
x1

+ ψ2

]
,

where one can choose φ smooth with compact support in the representative
(− 1/2, 1/2)2 of �2 and (ψ1, ψ2) a corresponding smooth correction to
periodize V . Therefore K satisfies the assumptions of Theorem 1.
The convergence of the systems of point vortices (1) to the limit (4) had first
been established in [74] for a large enough viscosity σ . The well posedness
of the point vortices dynamics has been proved globally in [73]; see also
[32]. Finally the convergence to themean field limit has been obtained with
any positive viscosity σ in the recent [36].
However those results rely on a compactness argument based on a control
of the singular interaction provided by the dissipation of entropy in the
system.
As far as we know, this article is the first to provide a quantitative rate of
propagation of chaos for the 2d viscous vortex model.

– Hamiltonian structure. If the dimension d is even then the previous example
can be generalized to include any Hamiltonian structure. In that case one
has d = 2n, x = (q, p) with q, p ∈ �n and for some Hamiltonian
H : �2n −→ R,

K = (∇pH, −∇q H).
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532 P.-E. Jabin, Z. Wang

Theorem 1 now applies if H ∈ L∞(�2n), though this may not be
the optimal condition (see the discussion below). The theorem provides
propagation of chaos for such systems with diffusion with much weaker
assumptions than any comparable result in the literature.
We are nevertheless somewhat limited by our framework here. One would
for example typically want to apply this to the classical Newtonian dynam-
ics where H = ∑

i p
2
i /2 + 1

N

∑
i, j V (qi − q j ). This is formally easy by

choosing the appropriate function F in the system of particles (1).
The first issue is that themomentum should be unbounded instead of having
p ∈ �n; as we mentioned in one of the remarks after Theorem 1, such an
extension of our result to p ∈ R

n for example would be non-trivial...The
second issue concerns the diffusion which for such models usually applies
only to the momentum. This leads to a degenerate diffusion whereas we
absolutely require it in every variable.

– Collision-like interactions. We can even handle extremely singular inter-
actions where some sort of collision event occurs at some fixed horizon.
Consider for example any function φ ∈ L1(�d), any smooth field M(x)
of matrices and define

K = div (M Iφ≤0), or Kα(x) =
∑

β

∂β(Mαβ(x) Iφ(x)≤0).

It is straightforward to choose M s.t. div K ∈ Ẇ−1,∞ or even div K = 0:
A simple example is simply to take M anti-symmetric. As M Iφ≤0 ∈ L∞,
Theorem 1 applies. This particular choice of K means that two particles
i and j will interact exactly when φ(Xi − X j ) = 0. An obvious example
is φ(x) = |x |2 − (2R)2 in which case the particles can be seen as balls of
radius R which interact when touching.
But in the context of swarming, one could have birds, or other animals,
which interact as soon as they can see each other; this is different from
the cone of vision type of interaction found for example in [17] where
the interaction is much less singular (bounded). Micro-organisms such as
bacteria may also have complicated, non-smooth shapes. In all those cases
{φ ≤ 0} is not a ball in general and may even be a singular set.
Since M(x) is smooth, one could interpret K as being supported on the
measure δφ=0. But in fact we do not need any regularity on φ, not even
φ ∈ BV and here K may not even be a measure...

– Gradient flow structure. The dual to the Hamiltonian case is to take K =
∇ψ for some potential ψ . This lets us see the system of particles (1) as a
gradient flow with diffusion and it endows the mean field limit (2) with the
derived and nonlinear gradient flow structure.
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When ψ is convex, but not necessarily smooth, it is possible to strongly
use this gradient flow structure. This is in particular the key to obtain the
well posedness of Eq. (2), even without diffusion, as in [18,19] and in [10]
for the mean field limit.
However it does not seem easy for our approach to fully make use of such
gradient flows. This is seen on the assumptions of Theorem 1where having
K ∈ Ẇ−1,∞ is not very demanding, ψ ∈ L∞ would be enough, while
the condition div K ∈ Ẇ−1,∞ actually forces us to consider Lipschitz
potentials ψ . Of course any ψ convex is Lipschitz so that Theorem 1 still
extends the known theory for general ψ . But it is clearly not performing
as well as in the Hamiltonian case.
A very good example of this is the 2d Patlak–Keller–Segelmodel of chemo-
taxis where one would like to have K = α x/|x |2 + K0(x). This choice
of K is just a rotation of π/2 from the 2d Navier–Stokes kernel given by
(3). Therefore we still have that K ∈ Ẇ−1,∞ by using a rotation of the
matrix V that we wrote in the Navier–Stokes setting. But unfortunately
div K is now one full derivative away from Ẇ−1,∞ and Theorem 1 cannot
be applied.
By studying the specific properties of the system though, a convergence
result to measure-valued solutions was obtained in [52] while the con-
vergence to weak solutions was achieved in [37] (see also [40] for the
sub-critical case). We also refer to [66] for general Coulomb interactions.
Those results are not quantitative though and amajor open problem remains
to find an equivalent of Theorem 1 in this case.

We wish to conclude this subsection about kernels K to which Theorem 1
applies, by discussing more in details the assumption K ∈ Ẇ−1,∞.

We first come back to the vortex dynamics for 2d Navier–Stokes and the
kernel K given by the Biot–Savart law (3). Since div K = 0, the classical way
to represent K is by K = curlψ with

ψ(x) = α log |x | + ψ0(x),

with againψ0 a smooth correction to periodizeψ . Obviouslyψ is not bounded
which at first glance suggests that K does not belong to Ẇ−1,∞. This is incor-
rect as the “right” choice of V above demonstrates but it means that knowing
whether K ∈ Ẇ−1,∞ is not as simple as it may seem.

The distinction is rather technical but it is critical for us as it allows us
to handle the crucial example of the vortex model. It also turns out to be
connected with a fundamental difficulty in our proof. Our estimates directly
use a representation K = div V and the most difficult term would vanish if V
were anti-symmetric, which is the case if we take K = curlψ . The fact that
we cannot take K = curlψwithψ ∈ L∞ is responsible for the main technical

123



534 P.-E. Jabin, Z. Wang

difficulty in this article and in particular this is what requires Theorem 4whose
proof takes all of Sect. 5.We refer to the more specific comments that wemake
in Sect. 2.1.

In general the study of the K for which there exists a matrix field V ∈ L∞
s.t. div V = K turns out to be a very complex mathematical question. This
can be done coordinate by coordinate obviously so the question is equivalent
to finding the scalar field φ for which there exists a vector field u ∈ L∞ s.t.
div u = φ.
The difficulty is that for a given K , there does not exist a unique matrix

field V s.t. div V = K . Of course in dimension d = 2 if div K = 0, then
there exists a unique ψ up to a constant, s.t. K = curlψ . In dimension d > 2,
if div K = 0, there exists an anti-symmetric matrix V s.t. K = div V . The
anti-symmetric matrix V is not unique in general though with the well known
issue of the gauge choice for vector potential if d = 3.

But even in dimension 2, there is no reason why ψ ∈ L∞ if K ∈ Ẇ−1,∞.
This is indeed connected to the fact that the Riesz transforms are unbounded
on L∞ and the kernel K of (3) is the classical example of this. Instead one
only has in general that ψ ∈ BMO .

However even in this simple case, it is not known ifψ ∈ BMO is equivalent
to K ∈ Ẇ−1,∞. This question is connected to the classical representation of
BMO functions in [29]. For any ψ ∈ BMO , [29] showed that there exists
ψ0, ψ1, ψ2 ∈ L∞ s.t. ψ = ψ0 + R1 ψ1 + R2 ψ2 with Ri , i = 1, 2, the Riesz
transforms. If it were always possible to take ψ0 = 0 then we would have the
equivalence but that seems (at best) highly non-trivial.

Instead the positive results that we have are much more recent and limited.
This line of investigation was started in the seminal [14] which proved that if
K ∈ Ld(�d) then K ∈ Ẇ−1,∞(�d). If K is known to be a signed measure
then this was extended in [76] to find that K = div V with V ∈ L∞ iff there
exists C s.t. for any Borel set U

∣∣∣∣
∫

U
K (dx)

∣∣∣∣ ≤ C |∂U |. (14)

This result in [76] hence has the direct consequence

Proposition 2 If d > 1 and K belongs to the Lorentz space Ld,∞(�d) then
K ∈ Ẇ−1,∞.

Proof Assuming K ∈ Ld,∞ then for a constant C , we have that

|{x ∈ �d , |K (x)| ≥ M}| ≤ C

Md
.
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Decompose now dyadically

∫

U
|K (x)| dx ≤ |U | +

∑

k≥0

2k+1 |{x ∈ U, |K (x)| ≥ 2k}|.

Define k0 s.t. 2−d (k0+1) ≤ |U | ≤ 2−d k0 and bound

|{x ∈ U, |K (x)| ≥ 2k}| ≤ |U | for k ≤ k0,

|{x ∈ U, |K (x)| ≥ 2k}| ≤ |{x ∈ �d , |K (x)| ≥ 2k}| ≤ C

2d k
for k > k0.

This leads to

∫

U
|K (x)| dx ≤ |U | +

∑

k≤k0

2k+1 |U | + C
∑

k>k0

2(1−d) k+1

≤ |U | + 2k0+2 |U | + C 2(1−d) k0+1 ≤ C ′ |U | d−1
d ,

by using the definition of k0. By the isoperimetric inequality, there exists a

constant Cd s.t. |U | d−1
d ≤ Cd |∂U | so that we verify the condition (14) which

concludes the proof. ��
Proposition 2 not only applies to K given by (3) but proves in general that any
K with |K (x)| ≤ C/|x | belongs to Ẇ−1,∞. This in particular implies that our
result in the case with vanishing viscosity, Theorem 2 in the next subsection,
is indeed weaker that Theorem 1 when viscosity does not degenerate.

The original result in [14] is not constructive, and it is even proved that the
V ∈ L∞ s.t. K = div V cannot be obtained linearly from K . The development
of constructive algorithms to obtain V is a current important field of research,
see [86].

1.4 The case with vanishing diffusion

While we are mostly interested in Eq. (6) when the viscosity does not asymp-
totically vanishes, a nice (and essentially free) consequence of the method
developed here is to also provide a result with vanishing viscosity.

The result is of course weaker and requires that K ∈ L∞ with div K ∈ L∞
or that |K (x)| ≤ C/|x | but K is anti-symmetric (K (−x) = −K (x)) also with
div K ∈ L∞. Obtaining an entropy solution to (6) in the sense of Definition 2
is even more straightforward in these cases as there is no need for integration
by parts. However, we emphasize that in the case that K is anti-symmetric and
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|K (x)| ≤ C/|x |, we should understand the product KρN using the classical
observation from Delort [24]

∫

�2d
φ(t, x1, x2)K (x1 − x2)ρN ,2(t, x1, x2) dx1 dx2

= 1

2

∫

�2d

(
φ(t, x1, x2) − φ(t, x2, x1)K (x1 − x2)ρN ,2(t, x1, x2)

)
dx1 dx2

≤ C‖∇φ‖L∞,

where the equality is ensured by the is anti-symmetry of K and the symmetry
of ρN and therefore ρN ,2.

Moreover we also directly obtain the following bound, which replaces in
that case the one provided by Proposition 1,

∫

�d N
ρN (t, XN ) log ρN (t, XN ) dXN + σN

N∑

i=1

∫ t

0

∫

�d N

|∇xi ρN |2
ρN

dXN ds

≤
∫

�d N
ρ0
N log ρ0

N dXN + N t (‖ div K‖L∞ + ‖ div F‖L∞) . (15)

Under those stronger assumptions on K , we have the following result.

Theorem 2 Assume that div F ∈ L∞(�d), div K ∈ L∞(�d) and that either
K ∈ L∞(�d) or for d ≥ 2, K (−x) = −K (x) with |x | K (x) ∈ L∞(�d).
Assume moreover that ρN is an entropy solution to Eq. (6) as per Definition 2.
Assume finally that ρ̄ ∈ L∞([0, T ], W 1,∞(�d)) solves Eq. (2) with

∫
�d ρ̄ =

1. Then

HN (ρN | ρ̄N )(t) ≤ eM̄2 ‖K‖∞ t
(
HN (ρ0

N | ρ̄0
N ) + 1

N

+ M̄2 (1 + ‖K‖∞t) |σ − σN |) , (16)

where we now denote ‖K‖∞ = ‖K‖L∞ +‖ div K‖L∞ in the general case and
‖K‖∞ = ‖|x | K‖L∞ + ‖ div K‖L∞ for the anti-symmetric case while M̄2 is
a constant which only depends on

M̄2

(
σ, ‖ log ρ̄‖BMO , sup

p≥1

‖∇ log ρ̄‖L p(ρ̄ dx)

p
,

1

N

∫

�d N
ρ0
N log ρ0

N , ‖ div F‖L∞

‖ρ̄‖L∞ , sup
p≥1

‖∇2 log ρ̄‖L p(ρ̄ dx)

p
, ‖ log ρ̄‖W 1,∞

)
.
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Remark 6 The constant M̄2 is in the above complex form simply because we
include all cases σN → σ ≥ 0. For instance if σN ≡ σ , then M̄2 does not
depend on 1

N

∫
�d N ρ0

N log ρ0
N , ‖ div F‖L∞ and ‖ log ρ̄‖W 1,∞ . See the proof of

Theorem 2 in Sect. 2.7 for more details.

Remark 7 To control the error caused by the difference |σ − σN |, we need
∇ log ρ̄ ∈ L∞(�d). This can be replaced by appropriate moment assumptions
like |∇ log ρ̄(x)| ≤ C |x |k so that the result can easily be extended to the whole
space Rd .

Theorem 2 also applies to the Biot–Savart law (3), which for σN = 0 cor-
responds to the inviscid point vortex model approximating 2D incompressible
Euler equation. This derivationwas an early breakthrough from [44,45], which
obtained a very precise and quantitative comparison of the point vortex dynam-
ics with its mean field limit. The results on those articles required however also
a precise mesh-like distribution of the point vortices, that is in particular not
compatible with random initial conditions. This was a strong motivation for
the later works in [80] for example, which allowed for more general initial
conditions but less optimal quantitative estimates.

As for the contributions justmentioned, our result strongly relies on the anti-
symmetry of the kernel K . It provides the optimal rate of convergence while
allowing random initial data (and in fact, doesn’t work well if particles are
initially strongly correlated). But more importantly, it does not require σN = 0
so that it is compatible with all sort of vanishing viscosity approximations to
the Euler system.

As we remarked above, if |x | K ∈ L∞ then K ∈ W−1,∞ while on the other
hand if K ∈ W−1,∞ then it can be singular on a more complex set, it can be
measure-valued functions or evenmore general thanmeasures as we discussed
earlier in Sect. 1.3. For this reason Theorem 2 is obviously mostly only useful
in comparison to our main result if σN → σ = 0, including potentially the
purely deterministic setting where σN = 0 or cases where the viscosity is
degenerate in some directions. But it may also require less regularity on the
limit ρ̄ and could also be of use in such a situation. In particular it does not
require that inf ρ̄ > 0 and is hence easy to extend to unbounded domains
contrary to Theorem 1.

Because of its usefulness for degenerate viscosities, it is rather natural to
compare Theorem 2 to results for kinetic mean field limits based on the 2nd
order dynamics

dQi = Pi dt, dPi = 1

N

N∑

j=1

K (Qi − Q j ) dt +√2σN dWi
t . (17)
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We refer to [41,55] for an introduction to the mean field question in this
kinetic setting. The best results so far have been obtained in [49] for a singular
kernel K with |K (x)| ≤ C |x |−α , |∇K (x)| ≤ C |x |−1−α with α < 1; in
[53] for Hölder continuous K . The most classical case is again the Poisson
kernel K (x) = γd x/|x |d which is unfortunately out of reach so far (except
in dimension 1 as in [51]). It is possible to treat truncated kernels such as
K (x) = γd x/(|x | + εN )d with the most realistic εN obtained in [62,63].
However none of the techniques in those articles seems, so far, to be able to
handle any diffusion and especially vanishing or degenerate diffusion as in
(17). In the case of (17) where the limiting equation is often called Vlasov–
Fokker–Planck, we refer for example to [11] which requires more regularity
on K .

We remark that in comparison, the theory of mean field limits for purely 1st
order systems without viscosity is much more advanced. In particular the limit
of point vortices had already obtained in [45], with a very precise comparison
at the level of characteristics but very specific initial conditions as well. The
requirements on the initial data was later relaxed in [80] to allow for random
initial distributions at the cost of a less accurate comparison. In [65], it was
even possible to obtain 2D vortex sheet at the limit. Those results rely on the
particular structure of the Biot–Savart law, and especially on the cancellation
at the heart of Delort’s argument.

Nevertheless, it was proved in [48] using appropriateWasserstein distances,
that the mean field limit holds for any interaction kernel with |K (x)| � |x |−s

and |∇K | � |x |−s−1 with s < d − 1, without any other structure on K and in
any dimension but not including the Coulomb case.

More recently, a relative entropy approach based on the natural energy of
the system has been introduced in [25]. This allows for a direct control on
the difference between the empirical measure and the limit. The method per-
forms especially well on gradient flows (where our present techniques are
sub-optimal) and allows to obtain the mean field limit for general Riesz poten-
tials (including Coulomb in 2D). This approach can also be used when the
discrete dynamics is not immediately under the form of an aggregation equa-
tion, with Ginzburg–Landau vortices in [26]. The technique also allowed to
include Coulomb interaction in any dimension in [83].

However it remains quite challenging to employ the techniques developed
in those deterministic settings with any (possibly vanishing) diffusion.

Specifically for stochastic systems with diffusion, a proper use of the
gradient flow structure (in comparison to theHamiltonian structure of theBiot–
Savart law) was instrumental in [21] and more recently in [6]. This allowed to
obtain propagation of chaos in [21], in dimension d = 1 and for a logarithmic
interacting potential, or converting in our notation K (x) = 1/x in 1D. This
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result could be extended in [6] to K (x) = C x
|x |s with s ∈ [1, 3) but still in 1D

by introducing the right notion of quasi-convexity.
Another obvious point of comparison for Theorem 2 is our previous result

in [56]. This previous result covered the case of (17) with the same assumption
K ∈ L∞; it also introduced the basic ideas for the method used here, based
on the relative entropy and combinatorics estimates.

However [56]was relying strongly on the symplectic structure of the dynam-
ics in (17). Extending the method to general kernels K which may not even
be Hamiltonian, as is done by Theorem 2, changes the scope of the result. It
has also been proved to be quite complex: From a technical point of view, the
whole combinatorics estimates of [56] can be summarized in Sect. 3 of the
present article while the new estimates are considerably longer, see Sect. 5.

1.5 Sketch of the proof of Proposition 1

The proof follows very classical ideas: consider a regularized interaction kernel
Kε. Equation (6)with Kε nowhas a unique solutionρN ,ε for any initialmeasure
ρ0
N . The goal is to take the limit ε → 0, by extracting weak-* converging sub-

sequences of ρN ,ε, and to derive (6) for the limiting kernel K and the various
estimates such as (8) and (9).

The only (small) difficulty in this procedure is to obtain adequate uniform
bounds. For this reason we only explain here how to derive those bounds for
any weak solution ρN to (6) which also satisfies (8).

The first step is to prove from (8) that

N∑

i=1

∫ t

0

∫

�d N

|∇xiρN |2
ρN

dXN ds ≤ C
∫

�d N
ρ0
N log ρ0

N dXN .

Observe that if div K ∈ Ẇ−1,∞, that is div K = divψ with ‖ψ‖L∞ =
‖ div K‖Ẇ−1,∞ , then

− 1

N

N∑

i, j=1

∫ t

0

∫

�d N
div K (xi − x j ) ρN dXN ds

≤ ‖ div K‖Ẇ−1,∞
N∑

i=1

∫ t

0

∫

�d N
|∇xiρN | dXN ds
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On the other hand

N∑

i=1

∫ t

0

∫

�d N
|∇xiρN | dXN ds

≤ σN

2 ‖ div K‖Ẇ−1,∞

N∑

i=1

∫ t

0

∫

�d N

|∇xiρN |2
ρN

dXN ds

+ ‖ div K‖Ẇ−1,∞
2 σN

N∑

i=1

∫ t

0

∫

�d N
ρN dXN ds

≤ N t ‖ div K‖Ẇ−1,∞
2 σN

+ σN

2‖ div K‖Ẇ−1,∞

N∑

i=1

∫ t

0

∫

�d N

|∇xiρN |2
ρN

dXN ds.

This implies that

− 1

N

N∑

i, j=1

∫ t

0

∫

�d N
div K (xi − x j ) ρN dXN ds

≤ N t ‖ div K‖2
Ẇ−1,∞

2 σN
+ σN

2

N∑

i=1

∫ t

0

∫

�d N

|∇xiρN |2
ρN

dXN ds.

Introducing this bound in (8) shows that

∫

�d N
ρN (t, XN ) log ρN (t, XN ) dXN + σN

2

N∑

i=1

∫ t

0

∫

�d N

|∇xiρN |2
ρN

dXN ds

≤
∫

�d N
ρ0
N log ρ0

N dXN + N t ‖ div K‖2
Ẇ−1,∞

2 σN
+ N t ‖ div F‖L∞,

which since σN ≥ σ exactly proves (9).
From Lemma 3.7 in [50], i.e. the Fisher information of 2-marginal ρN ,2 can

be controlled by the total Fisher information of ρN , we know that

∫ t

0

∫

�2 d

|∇x1ρN ,2|2
ρN ,2

dx1 dx2 ≤ 1

N

N∑

i=1

∫ t

0

∫

�d N

|∇xiρN |2
ρN

dXN ds,

which can be proved by applying Jensen’s inequality to the convex function
(a, b) �→ |a|2/b.
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If K ∈ Ẇ−1,∞, i.e. if K (x) = div V (x)meaningwith the use of coordinates
that Kα(x) = ∑d

β=1 ∂βVαβ(x) with V a matrix-valued field, then for any

φ ∈ W 1,∞

∫

�2 d
K (x1 − x2) φ(x1, x2) ρN ,2 dx1 dx2

= −
∫

�2 d
V (x1 − x2) (φ ∇x1ρN ,2 + ∇x1φ ρN ,2) dx1 dx2

≤ ‖V ‖L∞ ‖∇φ‖L∞ + ‖V ‖L∞ ‖φ‖L∞
(∫

�2 d

|∇x1ρN ,2|2
ρN ,2

dx1 dx2

)1/2

,

which leads to (10) using that infV ‖V ‖L∞ = ‖K‖Ẇ−1,∞ .
Finally, we note that

div
x

|x |γ = d

|x |γ − γ
∑

α

xα xα

|x |γ+2 = d − γ

|x |γ ,

so that with the same approach it would be possible to derive the bound

∫

�2 d

ρN ,2

|x1 − x2|γ dx1 dx2 ≤ 1

(d − γ )2

∫

�2 d

|∇x1ρN ,2|2
ρN ,2

dx1 dx2,

for any γ < 2 if d = 2 and for γ = 2 if d > 2, which has proved critical
in the previous derivation and studies of the 2d incompressible Navier–Stokes
for instance see [32,36,74].

2 Proofs of Theorems 1 and 2

2.1 Sketch of the proof of Theorem 1

Our goal in this subsection is to present the main steps of the proof. For this
reason, we make several simplifying assumptions that allow us to focus on the
main ideas. First of all, we assume that

F = 0, div K = 0, Kα =
∑

β

∂βVαβ with ‖V ‖L∞(�d ) ≤ δ,

for δ small in terms of some norms of ρ̄.
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We also assume that ρ̄ ∈ C∞ with inf ρ̄ > 0 and that ρN is a classical
solution to (6) so that we may easily manipulate this equation.

Finally we assume that σN = σ = 1.
Following our previous discussion about the criticality of the assumption

K = div V with V ∈ L∞, we refer the readers in particular to the end of step
2 after formula (20) and to step 5 in the following proof. That step requires
the use of Theorem 4 whose proof contains the main technical difficulties of
the article.

If instead one would assume that V is anti-symmetric then the term B̃ in
step 5 vanishes and as we mentioned above, we would have a much simpler
proof. Unfortunately this would not let us handle our most important kernel
K = x⊥/|x |2 corresponding to the 2d incompressible Navier–Stokes system.

Step 1: Time evolution of the relative entropy First of all it is straightforward
to derive an equation on ρ̄N from the limiting Eq. (2)

∂t ρ̄N +
N∑

i=1

1

N

N∑

j=1

K (xi − x j ) · ∇xi ρ̄N =
N∑

i=1

σ Δxi ρ̄N

+
N∑

i=1

⎛

⎝ 1

N

N∑

j=1

K (xi − x j ) − K �x ρ̄(xi )

⎞

⎠ · ∇xi ρ̄N .

Combining this with the Liouville equation (6), one obtains that

d

dt
HN (ρN | ρ̄N )(t)

≤ − 1

N 2

N∑

i, j=1

∫

�d N
ρN
(
K (xi − x j ) − K �x ρ̄(xi )

) · ∇xi log ρ̄N dXN

− 1

N

N∑

i=1

∫

�d N
ρN

∣∣∣∣∇xi log
ρN

ρ̄N

∣∣∣∣
2

. (18)

A full justification of this calculation is given later in the main proof in
Lemma 2.

Step 2: Using K = div V . As the kernel K is not bounded but we only have
that K = div V with V ∈ L∞, the next step is to integrate by parts to make
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V explicit in our estimates. Writing Kα =∑β ∂βVαβ , we find

− 1

N 2

N∑

i, j=1

∫

�d N
ρN
(
K (xi − x j ) − K �x ρ̄(xi )

) · ∇xi log ρ̄N dXN

= − 1

N 2

∑

α,β

N∑

i, j=1

∫

�d N

(
∂
xβ
i
Vαβ(xi−x j )

− ∂
xβ
i
Vαβ �x ρ̄(xi )

) ρN

ρ̄N
∂xα

i
ρ̄N dXN ,

so that integrating by part, this term is equal to

1

N 2

∑

α,β

N∑

i, j=1

∫

�d N
ρN
(
Vαβ(xi − x j ) − Vαβ �x ρ̄(xi )

) ∂2
xα
i xβ

i

ρ̄N

ρ̄N
dXN

+ 1

N 2

∑

αβ

N∑

i, j=1

∫

�d N

(
Vαβ(xi − x j ) − Vαβ �x ρ̄(xi )

)
∂xα

i
ρ̄N∂

xβ
i

ρN

ρ̄N
dXN .

Writing in tensor form this is finally equal to

1

N 2

N∑

i, j=1

∫

�d N
ρN
(
V (xi − x j ) − V �x ρ̄(xi )

) : ∇2
xi ρ̄N

ρ̄N
dXN

+ 1

N 2

N∑

i, j=1

∫

�d N

(
V (xi − x j ) − V �x ρ̄(xi )

) : ∇xi ρ̄N ⊗ ∇xi
ρN

ρ̄N
dXN .

The second term involves a derivative of ρN/ρ̄N which can be controlled
thanks to the dissipation term in (18). More precisely by Cauchy–Schwartz

1

N 2

N∑

i, j=1

∫

�d N

(
V (xi − x j ) − V �x ρ̄(xi )

) : ∇xi ρ̄N ⊗ ∇xi
ρN

ρ̄N
dXN

≤ 1

N

N∑

i=1

∫

�d N

∣∣∣∇xi
ρN

ρ̄N

∣∣∣
2 ρ̄2

N

ρN
dXN

+ 1

N

N∑

i=1

∫

�d N
ρN

|∇xi ρ̄N |2
ρ̄2
N

∣∣∣
1

N

N∑

j=1

(
V (xi − x j ) − V �x ρ̄(xi )

)∣∣∣
2
dXN .
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Of course

∣∣∣∇xi
ρN

ρ̄N

∣∣∣
2 ρ̄2

N

ρN
=
∣∣∣∇xi log

ρN

ρ̄N

∣∣∣
2
ρN

so that the first term is actually bounded by the dissipation of entropy. On the
other hand

|∇xi ρ̄N |2
ρ̄2
N

= |∇xi ρ̄(xi )|2
ρ̄(xi )2

.

Hence we obtain that

d

dt
HN (ρN | ρ̄N )(t) ≤ A + B, (19)

where

A = Cρ̄

N

N∑

i=1

∫

�d N
ρN

∣∣∣∣∣∣
1

N

∑

j

(
V (xi − x j ) − V �x ρ̄(xi )

)
∣∣∣∣∣∣

2

dXN ,

B = 1

N 2

N∑

i, j=1

∫

�d N
ρN
(
V (xi − x j ) − V �x ρ̄(xi )

) : ∇2
xi ρ̄(xi )

ρ̄(xi )
dXN ,

(20)

and Cρ̄ is a constant depending only on the smoothness of ρ̄.
We point out here that ∇2

xi ρ̄ is a symmetric matrix. Hence, if V is anti-
symmetric, then the term B completely vanishes: B = 0.

Step 3: Change of law from ρN to ρ̄N The two previous terms A and B can be
seen as the expectations of the corresponding random variables with respect to
the law ρN . Obviously we do not know the properties of ρN and would much
prefer having expectations with respect to the tensorized law ρ̄N . We hence
use the following

Lemma 1 For any two probability densities ρN and ρ̄N on �d N , and any
Φ ∈ L∞(�d N ), one has that ∀η > 0

∫

�d N
Φ ρN dXN ≤ 1

η

(
HN (ρN |ρ̄N ) + 1

N
log
∫

�d N
ρ̄N eNηΦ dXN

)
.

Proof We give the (short) proof for the sake of completeness. Without loss of
generality, we assume that η = 1. Define

f = 1

λ
eN Φ ρ̄N , λ =

∫

�d N
ρ̄N eN Φ dXN .
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Notice that f is a probability density as f ≥ 0 and
∫

f = 1. Hence by the
convexity of the entropy

1

N

∫

�d N
ρN log f dXN ≤ 1

N

∫

�d N
ρN log ρN dXN .

On the other hand, one can easily check that

1

N

∫

�d N
ρN log f dXN =

∫

�d N
ρN Φ dXN + 1

N

∫

�d N
ρN log ρ̄N dXN − log λ

N
,

which concludes the proof of the lemma. ��
To apply Lemma 1 to A, we first expand A coordinate by coordinate as

A ≤ Cρ̄

N

N∑

i=1

d∑

α,β=1

∫

�d N
ρN

⎛

⎝ 1

N

N∑

j=1

(
Vα,β(xi − x j ) − Vα,β �x ρ̄(xi )

)
⎞

⎠
2

dXN .

Now applying Lemma 1 with first to each

Φα,β =
⎛

⎝ 1

N

N∑

j=1

(
Vα,β(xi − x j ) − Vα,β �x ρ̄(xi )

)
⎞

⎠
2

,

in A and then to

Φ = 1

N 2

N∑

i, j=1

(
V (xi − x j ) − V �x ρ̄(xi )

) : ∇2
xi ρ̄(xi )

ρ̄(xi )
,

in B, we obtain that

A + B ≤ 2HN (ρN | ρ̄N )(t) + Ã + B̃,

with

Ã = Cρ̄

N 2

N∑

i=1

d∑

α,β=1

log
∫

�d N
exp

⎛

⎝ 1√
N

N∑

j=1

(
Vα,β(xi − x j ) − Vα,β �x ρ̄(xi )

)
⎞

⎠
2

ρ̄N dXN ,

B̃ = 1

N
log
∫

�d N
ρ̄N e

1
N

∑N
i, j=1(V (xi−x j )−V �x ρ̄(xi )) : ∇2

xi
ρ̄(xi )

ρ̄(xi ) dXN .

(21)

123



546 P.-E. Jabin, Z. Wang

Observe that the cost to perform this change of law is, unfortunately, severe as
we now have exponential factors in Ã and B̃. That is the reason why we need
L∞ (or almost L∞) bounds on V .

Step 4: Bounding Ã through a law of large number at the exponential scale
By symmetry of permutation, we may take i = 1 in Ã. Define

ψα,β(z, x) = Vα,β(z − x) − Vα,β �x ρ̄(z),

so that
⎛

⎝ 1√
N

N∑

j=1

(
Vα,β(x1 − x j ) − Vα,β �x ρ̄(x1)

)
⎞

⎠
2

= 1

N

N∑

j1, j2=1

ψαβ(x1, x j1)ψαβ(x1, x j2).

We remark that each ψ has vanishing expectation with respect to ρ̄

∫

�d
ψαβ(z, x) ρ̄(x) dx = 0.

Theorem 3 Consider any ρ̄ ∈ L1(�d) with ρ̄ ≥ 0 and
∫
�d ρ̄(x) dx = 1.

Assume that a scalar function ψ ∈ L∞ with ‖ψ‖L∞ < 1
2e , and that for any

fixed z,
∫
�d ψ(z, x) ρ̄(x) dx = 0 then

∫

�d N
ρ̄N exp

⎛

⎝ 1

N

N∑

j1, j2=1

ψ(x1, x j1)ψ(x1, x j2)

⎞

⎠ dXN

≤ C = 2

(
1 + 10α

(1 − α)3
+ β

1 − β

)
,

(22)

where ρ̄N (t, XN ) = �N
i=1ρ̄(t, xi )

α = (e ‖ψ‖L∞)4 < 1, β =
(√

2e ‖ψ‖L∞
)4

< 1.

We give a straightforward proof of Theorem 3 in Sect. 4, using the com-
binatorics techniques developed in the article. But note that this theorem is
essentially a variant of the well known law of large numbers at exponential
scales; the main difference being thatψ(x1, x j1)ψ(x1, x j2) does not have van-
ishing expectation if j1 = j2, j1 = 1 or j2 = 1. Technically Theorem 3 is
hence rather simple, contrary to Theorem 4 below.
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Using Theorem 3 and by taking ‖V ‖L∞ small enough, we deduce that

Ã ≤ Cρ̄

N
. (23)

Step 5: Bound on B̃ through a new modified law of large numbers We now
define

φ(x, z) = (V (x − z) − V � ρ̄(x)) : ∇2
x ρ̄(x)

ρ̄(x)
,

and we apply to B̃ the following result

Theorem 4 Consider ρ̄ ∈ L1(�d) with ρ̄ ≥ 0 and
∫
�d ρ̄ dx = 1. Consider

further any φ(x, z) ∈ L∞ with

γ := C

(
sup
p≥1

‖ supz |φ(., z)|‖L p(ρ̄ dx)

p

)2

< 1,

where C is a universal constant. Assume that φ satisfies the following cancel-
lations

∫

�d
φ(x, z) ρ̄(x) dx = 0 ∀z,

∫

�d
φ(x, z) ρ̄(z) dz = 0 ∀x . (24)

Then

∫

�d N
ρ̄N exp

⎛

⎝ 1

N

N∑

i, j=1

φ(xi , x j )

⎞

⎠ dXN ≤ 2

1 − γ
< ∞, (25)

where we recall that ρ̄N (t, XN ) = �N
i=1ρ̄(t, xi ).

Theorem 4 is by far the main technical difficulty in this article. Observe that
contrary to classical laws of large numbers, it requires twoprecise cancellations
on φ, separately in x where

∫

�d
φ(x, z) ρ̄(x) dx =

∫

�d
( div K (x − z) − div K �x ρ̄(x)) ρ̄(x) dx = 0,

as div K = 0 and in z where we use the classical cancellation
∫

�d
(V (x − z) − V �x ρ̄(x)) ρ̄(z) dz = 0.
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Choosing δ so that ‖V ‖L∞ is small enough, Theorem 4 again implies that

B̃ ≤ Cρ̄

N
. (26)

While Theorem 4 looks similar to the modified law of large numbers that
was at the heart of our previous result [56], it is considerably more difficult to
prove. In [56],we relied a lot on the natural symplectic structure of the problem,
which is completely absent here. The proof Theorem 4 is therefore the main
technical difficulty and contribution of the article, performed in Sect. 5.

Aswe noticed earlier, if V were anti-symmetric, then onewould have φ = 0
and in turn B̃ = 0. The main technical difficulty here is due to the need for a
V without symmetries, which is required to handle 2d incompressible Navier–
Stokes.

Theorem 3 is essentially a classical law of large numbers at the exponential
scale. On the other hand, Theorem 4 is actually a result of large deviation. If φ

was continuous, it would follow from the classical [2] for example. However
with only φ bounded (which is critical if we want to apply this to the Biot–
Savart law), we are not aware of any existing results in the literature. The
connection to such large deviation estimates is briefly explained in Sect. 2.2
below.

Final step:Conclusion of the proof Inserting (23) and (26) in (19),we deduce
that

d

dt
HN (ρN | ρ̄N ) ≤ 2HN (ρN | ρ̄N ) + Cρ̄

N
,

allowing to conclude through Gronwall’s lemma.
There are several additional difficulties in the general proof. The fact that

‖V ‖L∞ is not small forces us to carefully rescale all our estimates. Similarly
sinceρN is only an entropy solution to the Liouville Eq. (6), we have to proceed
more carefully in estimating the relative entropy.

2.2 A comparison with classical large deviation results

Wefirst recall the classical law of large numbers at the exponential scale which
one can for instance formulate as

Proposition 3 Assume that φ ∈ L∞(�d) with ‖φ‖L∞ ≤ 1, denote μN =
1
N

∑
i δ(x − Xi ) the empirical measure. Then there exists universal constants

C1,C2 > 0, such that for any ρ̄ ∈ P(�d)

Eρ̄⊗N

[
exp

(
N

∣∣∣∣
∫

�d
φ(x) ( dμN (x) − dρ̄(x))

∣∣∣∣
2

/C1

)]
≤ C2.

123



Quantitative estimates of propagation of chaos 549

where the expectation is taken with respect to the joint distribution ρ̄⊗N .

The proof of Proposition 3 can for example be found in [7,77,90].
We further remark that

∫

�d
φ(x)( dμN (x) − dρ̄(x)) = 1

N

N∑

i=1

φ̃(Xi )

where φ̃(x) = φ(x) − ∫
�d φ(x)ρ̄( dx) has mean zero on �d and the previous

expectation under ρ̄⊗N is simply

∫

�dN
exp

⎛

⎝ 1

C1N

N∑

i, j=1

φ̃(xi )φ̃(x j )

⎞

⎠ ρ̄⊗N ( dx1 · · · dxN ).

Hence Proposition 3 implies our Theorem 3.
The counterpart of our Theorem 4 in the classical Large Deviation Principle

can be found in [2], based on the classical results in [13,87]. See also some
applications in the context of Log and Riesz Gases in [64]. Let us reformulate
as above by using the empirical measure, so that estimate (25) in Theorem 4
then becomes a bound on

ZN = Eρ̄⊗N exp
[
N
∫

�2d
φ(x, y) dμN (x) dμN (y)

]
, (27)

which should of course be interpreted as a partition function but in our case
for a potential that is not the original one. If φ is continuous, the expression
makes perfect sense (and is otherwise trickier to justify).

The results in [2] show that limN→∞ eN m0 ZN exists and is finite; and can
even be fully characterized through the right quadratic form on L2

ρ̄ . A fortiori

eN m0 ZN is bounded.
The key parameter m0 is obtained through the study of the large deviation

functional

m0 = inf
μ∈P(�d )

(∫
log

dμ(x)

dρ̄(x)
dμ(x) −

∫
φ(x, y) dμ(dx) dμ(dy)

)
,

where dμ(x)
dρ̄(x) is +∞ unless μ is absolutely continuous w.r.t. ρ̄ in which case

dμ(x)
dρ̄(x) is just the Radon–Nikodym derivative.
The cancellation assumptions (24) in Theorem 4 which we recall are
∫

�d
φ(x, z) ρ̄(x) dx = 0 ∀z,

∫

�d
φ(x, z) ρ̄(z) dz = 0 ∀x,
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precisely allow to write

m0 = inf
μ∈P(�d )

(∫
log

dμ(x)

dρ̄(x)
μ( dx)

−
∫

φ(x, y) ( dμ(x) − ρ̄(x) dx) ( dμ(y) − ρ̄(y) dy)

)
.

But now the uniform convexity of
∫
log dμ(x)

dρ̄(x) μ( dx) dominates the second
part provided for example that ‖φ‖L∞ is small enough. In that case m0 = 0
and the result in [2] not only implies our Theorem 4 but also provides a much
more precise characterization of the limit.

Unfortunately [2] imposes that φ be continuous and we do not know of
another comparable result without that condition. In that sense Theorem 4
appear to be new. It also seems to be an open question whether the assumptions
onφ in this theorem are optimal or could be pushed further. Andwe finally note
that even though we have a uniform bound in N , we cannot for the moment
characterize the limit as in [2] if we have so little regularity on φ.

2.3 Time evolution of the relative entropy

The first step in the proof is to estimate the time evolution of the relative
entropy,

Lemma 2 Assume that ρN is an entropy solution to Eq. (6) as per Definition 2.
Assume that ρ̄ ∈ W 1,∞([0, T ] × �d) solves Eq. (2) with inf ρ̄ > 0 and∫
�d ρ̄ = 1. Then

HN (ρN | ρ̄N )(t) = 1

N

∫

�d N
ρN (t, XN ) log

ρN (t, XN )

ρ̄N (t, XN )
dXN ≤ HN

(
ρ0
N | ρ̄0

N

)

− 1

N 2

N∑

i, j=1

∫ t

0

∫

�d N
ρN
(
K (xi − x j ) − K �x ρ̄(xi )

) · ∇xi log ρ̄N dXN ds

− 1

N 2

N∑

i, j=1

∫ t

0

∫

�d N
ρN
(
div K (xi − x j ) − div K �x ρ̄(xi )

)
dXN ds

− σ

N

N∑

i=1

∫ t

0

∫

�d N
ρN

∣∣∣∇xi log
ρN

ρ̄N

∣∣∣
2 + C1 t |σ − σN |,

where we recall that ρ̄N (t, XN ) = �N
i=1ρ̄(t, xi ) and with
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C1 = 1

N t

2

σ

∫

�d N
ρ0
N log ρ0

N + 2 ‖ log ρ̄‖2W 1,∞ + ‖ div K‖2
Ẇ−1,∞

σ 2 + 2‖ div F‖L∞

σ
.

Proof From the limiting Eq. (2), one can readily check that log ρ̄N solves

∂t log ρ̄N +
N∑

i=1

1

N

N∑

j=1

(F(xi ) + K (xi − x j )) · ∇xi log ρ̄N =
N∑

i=1

σ
Δxi ρ̄N

ρ̄N

+
N∑

i=1

⎛

⎝ 1

N

N∑

j=1

K (xi − x j ) − K �x ρ̄(xi )

⎞

⎠ · ∇xi log ρ̄N

−
N∑

i=1

( div F(xi ) + div K �x ρ̄(xi )). (28)

Remark that log ρ̄N ∈ W 1,∞([0, T ] × �d N ) since ρ̄ ∈ W 1,∞([0, T ] × �d)

and ρ̄ is bounded from below. Therefore log ρ̄N can be used as a test function
against ρN in Eq. (6). This implies that

∫

�d N
ρN log ρ̄N dXN =

∫

�d N
ρ0
N log ρ̄0

N dXN

+
∫ t

0

∫

�d N
ρN

⎛

⎝∂t log ρ̄N + 1

N

N∑

i, j=1

(F(xi )+K (xi −x j )) · ∇xi log ρ̄N

⎞

⎠ dXN ds

− σN

N∑

i=1

∫ t

0

∫

�d N
∇xi log ρ̄N ∇xi ρN dXN ds.

Using the Eq. (28) on log ρ̄N , we obtain

∫

�d N
ρN log ρ̄N dXN =

∫

�d N
ρ0
N log ρ̄0

N dXN

+
N∑

i=1

∫ t

0

∫

�d N
ρN

⎛

⎝ 1

N

N∑

j=1

K (xi − x j ) − K �x ρ̄(xi )

⎞

⎠ · ∇xi log ρ̄N dXN ds

−
∫ t

0

∫

�d N
ρN

N∑

i=1

( div F(xi ) + div K �x ρ̄(xi )) dX
N ds

+
N∑

i=1

∫ t

0

∫

�d N

(
σ ρN

Δxi ρ̄N

ρ̄N
− σN∇xi ρN · ∇xi ρ̄N

ρ̄N

)
dXN ds.
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Using the entropy dissipation for ρN given by (8), we have that

HN (ρN | ρ̄N )(t) ≤ HN (ρN | ρ̄N )(0) + 1

N
DN

− 1

N 2

N∑

i, j=1

∫ t

0

∫

�d N
ρN
(
K (xi − x j ) − K �x ρ̄(xi )

) · ∇xi log ρ̄N dXN ds

− 1

N 2

N∑

i, j=1

∫ t

0

∫

�d N
ρN
(
div K (xi − x j ) − div K �x ρ̄(xi )

)
dXN ds, (29)

with

DN =
N∑

i=1

∫ t

0

∫

�d N

(
−σ ρN

Δxi ρ̄N

ρ̄N
+ σN∇xiρN · ∇xi ρ̄N

ρ̄N
− σN

|∇xiρN |2
ρN

)
.

By integration by parts

∫

�d N

(
−ρN

Δxi ρ̄N

ρ̄N
+ ∇xiρN · ∇xi ρ̄N

ρ̄N
− |∇xiρN |2

ρN

)

= −
∫

�d N

(
ρN

|∇xi ρ̄N |2
ρ̄2
N

− 2∇xiρN · ∇xi ρ̄N

ρ̄N
+ |∇xiρN |2

ρN

)

= −
∫

�d N
ρN

∣∣∣∣∇xi log
ρN

ρ̄N

∣∣∣∣
2

. (30)

On the other hand,

(σ − σN )

N∑

i=1

∫

�d N
ρN

Δxi ρ̄N

ρ̄N

= (σ − σN )

N∑

i=1

∫

�d N

(
−∇xiρN · ∇xi ρ̄N

ρ̄N
+ ρN

|∇xi ρ̄N |2
ρ̄2
N

)
.

Of course

N∑

i=1

∫

�d N
ρN

|∇xi ρ̄N |2
ρ̄2
N

=
N∑

i=1

∫

�d N
ρN

|∇xi ρ̄(xi )|2
ρ̄(xi )2

≤ N ‖ log ρ̄‖2W 1,∞,
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while by Cauchy–Schwartz

N∑

i=1

∫ t

0

∫

�d N
∇xiρN · ∇xi ρ̄N

ρ̄N
≤ N t ‖ log ρ̄‖2W 1,∞ +

N∑

i=1

∫ t

0

∫

�d N

|∇xiρN |2
ρN

≤ N t ‖ log ρ̄‖2W 1,∞ + 2

σ

∫

�d N
ρ0
N log ρ0

N + N t ‖ div K‖2
Ẇ−1,∞

σ 2

+ N t
2‖ div F‖L∞

σ
,

by Proposition 1 based on the entropy dissipation.
This leads to

(σ − σN )

N∑

i=1

∫ t

0

∫

�d N
ρN

Δxi ρ̄N

ρ̄N

≤ |σ − σN |
(
N t

[
2 ‖ log ρ̄‖2W 1,∞ + ‖ div K‖2

Ẇ−1,∞
σ 2 + 2‖ div F‖L∞

σ

]

+ 2

σ

∫

�d N
ρ0
N log ρ0

N

)
. (31)

Finally combining (31) with (30)

DN ≤ −σ

N∑

i=1

∫ t

0

∫

�d N
ρN

∣∣∣∇xi log
ρN

ρ̄N

∣∣∣
2 + |σ − σN |

(
2

σ

∫

�d N
ρ0
N log ρ0

N

+ N t

[
2 ‖ log ρ̄‖2W 1,∞ + ‖ div K‖2

Ẇ−1,∞
σ 2 + 2‖ div F‖L∞

σ

])
,

which inserted in (29) concludes the proof. ��

2.4 Bounding the interaction terms: the bounded divergence term

We now have to obtain the main estimates, starting with the case where the
kernel belongs to Ẇ−1,∞(�d) and has bounded divergence.

123



554 P.-E. Jabin, Z. Wang

Lemma 3 Assume that ρ̄ ∈ W 2,p(�d) for any p < ∞, then for any kernel
L ∈ Ẇ−1,∞(�d) with div L ∈ L∞, one has that

− 1

N 2

N∑

i, j=1

∫

�d N
ρN
(
L(xi − x j ) − L �x ρ̄(xi )

) · ∇xi log ρ̄N dXN

− 1

N 2

N∑

i, j=1

∫

�d N
ρN
(
div L(xi − x j ) − div L �x ρ̄(xi )

)
dXN

≤ σ

4 N

N∑

i=1

∫

�d N
ρN |∇xi log

ρN

ρ̄N
|2 dXN + C M1

L

(
HN (ρN |ρ̄N ) + 1

N

)
,

where C is a universal constant and

M1
L = d3

‖ρ̄‖2
W 1,∞ ‖L‖2

Ẇ−1,∞
σ (inf ρ̄)2

+ ‖L‖Ẇ−1,∞
inf ρ̄

sup
p≥1

‖∇2ρ̄‖L p

p
+ ‖ div L‖L∞ .

Proof Remark that in this estimate, time is now only a fixed parameter and
will hence not be specified in this proof.

DenoteV ∈ L∞(�d) s.t. L = div V or using coordinates Lα =∑β ∂βVαβ .

By the definition of Ẇ−1,∞ we assume that ‖V ‖L∞ ≤ 2 ‖L‖Ẇ−1,∞ . Rewriting

− 1

N 2

N∑

i, j=1

∫

�d N
ρN
(
L(xi − x j ) − L �x ρ̄(xi )

) · ∇xi log ρ̄N dXN

= − 1

N 2

∑

αβ

N∑

i, j=1

∫

�d N

(
∂
xβ
i
Vαβ(xi−x j ) − ∂

xβ
i
Vαβ �x ρ̄(xi )

)

× ρN

ρ̄N
∂xα

i
ρ̄N dXN .

By integration by parts, this is equal to

= 1

N 2

∑

αβ

N∑

i, j=1

∫

�d N

(
Vαβ(xi − x j ) − Vαβ �x ρ̄(xi )

) ρN

ρ̄N
∂2
xα
i xβ

i

ρ̄N dXN

+ 1

N 2

∑

αβ

N∑

i, j=1

∫

�d N

(
Vαβ(xi − x j ) − Vαβ �x ρ̄(xi )

)
∂
xβ
i

ρN

ρ̄N
∂xα

i
ρ̄N dXN .
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When one adds the divergence term, one obtains in tensor form

− 1

N 2

N∑

i, j=1

∫

�d N
ρN
(
L(xi − x j ) − L �x ρ̄(xi )

) · ∇xi log ρ̄N dXN

− 1

N 2

N∑

i, j=1

∫

�d N
ρN
(
div L(xi − x j ) − div L �x ρ̄(xi )

)
dXN = A + B,

with

A = 1

N 2

N∑

i, j=1

∫

�d N

(
V (xi − x j ) − V �x ρ̄(xi )

) : ∇xi ρ̄N ⊗ ∇xi
ρN

ρ̄N
dXN ,

B = 1

N 2

N∑

i, j=1

∫

�d N
ρN

[
(
V (xi − x j ) − V �x ρ̄(xi )

) : ∇2
xi ρ̄N

ρ̄N

− div L(xi − x j ) + div L �x ρ̄(xi )
]
dXN .

We treat independently A and B.
The bound on A. First by Cauchy–Schwartz and by using a b ≤ a2/4 + b2

A ≤ σ

4 N

N∑

i=1

∫

�d N

ρ̄2N
ρN

∣∣∣∣∇xi
ρN

ρ̄N

∣∣∣∣
2
dXN

+ d

N σ

N∑

i=1

∫

�d N

⎛

⎝ 1

N

N∑

j=1

(
V (xi − x j ) − V �x ρ̄(xi )

)
⎞

⎠
2 ∣∣∣∣

∇xi ρ̄N

ρ̄N

∣∣∣∣
2

ρN dXN .

Remark that

∣∣∣∣
∇xi ρ̄N

ρ̄N

∣∣∣∣
2

= |∇xi log ρ̄(xi )|2 ≤ ‖ρ̄‖2
W 1,∞

(inf ρ̄)2
.

Hence one has that

A ≤ σ

4 N

N∑

i=1

∫

�d N
ρN |∇xi log

ρN

ρ̄N
|2 dXN

+ d‖ρ̄‖2
W 1,∞

N σ (inf ρ̄)2

N∑

i=1

d∑

α,β=1

∫

�d N

⎛

⎝ 1

N

N∑

j=1

(
Vα,β(xi −x j ) − Vα,β �x ρ̄(xi )

)
⎞

⎠
2

ρN dXN , (32)

where Vα,β is the corresponding coordinate of the matrix field V .
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For some η > 0 to be chosen later, we apply Lemma 1 with

Φ =
⎛

⎝ 1

N

N∑

j=1

η
(
Vα,β(xi − x j ) − Vα,β �x ρ̄(xi )

)
⎞

⎠
2

,

to find

1

N

N∑

i=1

d∑

α,β=1

∫

�d N

⎛

⎝ 1

N

N∑

j=1

(
Vα,β (xi − x j ) − Vα,β �x ρ̄(xi )

)
⎞

⎠
2

ρN dXN

≤ d2

η2
HN (ρN | ρ̄N ) + 1

N 2 η2

N∑

i=1

N∑

α,β=1

log
∫

�d N
ρ̄N e

N
(

1
N

∑
j η (Vα,β (xi−x j )−Vα,β �x ρ̄(xi ))

)2
dXN .

(33)

By symmetry

1

N

N∑

i=1

log
∫

�d N
ρ̄N e

N
(

1
N

∑
j η (Vα,β(xi−x j )−Vα,β�x ρ̄(xi ))

)2
dXN

= log
∫

�d N
ρ̄N e

N
(

1
N

∑
j η(Vα,β(x1−x j )−Vα,β�x ρ̄(x1))

)2
dXN .

Define ψ(z, x) = η Vα,β(z − x) − η Vα,β � ρ̄(z). Choose η = 1/(4 e ‖V ‖L∞)

and note that ‖ψ‖L∞ ≤ 1
4 e and that for a fixed z,

∫
ρ̄(x) ψ(z, x) dx = 0.

Since

N

⎛

⎝ 1

N

N∑

j=1

η
(
Vα,β(x1 − x j ) − Vα,β �x ρ̄(x1)

)
⎞

⎠
2

= 1

N

N∑

j1, j2=1

ψ(x1, x j1) ψ(x1, x j2),

we may apply Theorem 3 to obtain that

∫

�d N
ρ̄N e

N
(

1
N

∑
j η(Vα,β(x1−x j )−Vα,β�x ρ̄(x1))

)2
dXN ≤ C,

for some explicit universal constant C .
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Combining (32)–(33) with this bound yields the final estimate on A

A ≤ σ

4 N

N∑

i=1

∫

�d N
ρN

∣∣∣∣∇xi log
ρN

ρ̄N

∣∣∣∣
2

dXN

+C d3
‖ρ̄‖2

W 1,∞ ‖V ‖2L∞

σ (inf ρ̄)2

(
HN (ρN |ρ̄N ) + 1

N

)
, (34)

again for some universal constant C .
The bound on B. Define

φ(x, z) = (V (x − z) − V �x ρ̄(x)) : ∇2
x ρ̄(x)

ρ̄(x)
− div L(x − z) + div L �x ρ̄(x), (35)

so that

B = 1

N 2

N∑

i, j=1

∫

�d N
ρN

[
(
V (xi − x j ) − V �x ρ̄(xi )

) : ∇2
xi ρ̄N

ρ̄N

− div L(xi − x j ) + div L �x ρ̄(xi )

]
dXN

= 1

N 2

N∑

i, j=1

∫

�d N
ρN φ(xi , x j ) dX

N .

Apply Lemma 1 with

Φ = 1

N 2

N∑

i, j=1

η φ(xi , x j ),

so that

B ≤ 1

η
HN (ρN | ρ̄N ) + 1

N η

∫

�d N
ρ̄N e

1
N

∑
i, j η φ(xi ,x j ) dXN . (36)

Observe that
∫
�d φ(x, z) ρ̄(z) dz = 0. While by integration by parts

∫

�d
(V (x − z) − V �x ρ̄(x)) : ∇2

x ρ̄(x)

ρ̄(x)
ρ̄(x) dx

=
∫

�d
( div L(x − z) − div L �x ρ̄(x)) ρ̄(x) dx,
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implying that
∫
�d φ(x, z) ρ̄(x) dx = 0. Note as well from (35) that

‖ sup
z

|φ(., z)|‖L p(ρ̄ dx) ≤ 2
‖V ‖L∞

inf ρ̄
‖∇2ρ̄‖L p + 2 ‖ div L‖L∞ .

Hence choosing

η = 1

C
(‖V ‖L∞

inf ρ̄
supp

‖∇2ρ̄‖L p
p + ‖ div L‖L∞

) ,

we may apply Theorem 4 to bound
∫

�d N
ρ̄N e

1
N

∑
i, j η φ(xi ,x j ) dXN ≤ C,

for some universal constant C . Hence from (36), we conclude that

B ≤ C

(‖V ‖L∞

inf ρ̄
sup
p

‖∇2ρ̄‖L p

p
+ ‖ div L‖L∞

) (
HN (ρN | ρ̄N ) + 1

N

)
.

(37)

To finish the proof of the lemma, we simply have to add (34) and (37),
recalling that ‖V ‖L∞ ≤ 2‖L‖Ẇ−1,∞ . ��

2.5 Bounding the interaction terms: the divergence term only in Ẇ−1,∞

Lemma 4 Assume that ρ̄ ∈ W 1,p(�d) for any p < ∞, then for any kernel
L ∈ L∞(�d) with div L ∈ Ẇ−1,∞, one has that

− 1

N 2

N∑

i, j=1

∫

�d N
ρN
(
L(xi − x j ) − L �x ρ̄(xi )

) · ∇xi log ρ̄N dXN

− 1

N 2

N∑

i, j=1

∫

�d N
ρN
(
div L(xi − x j ) − div L �x ρ̄(xi )

)
dXN

≤ σ

4 N

∑

i

∫

�d N
ρN |∇xi log

ρN

ρ̄N
|2 dXN + C M2

L

(
HN (ρN |ρ̄N ) + 1

N

)
,

where C is a universal constant and

M2
L = (‖L‖L∞ + ‖ div L‖Ẇ−1,∞

) ‖∇ρ̄‖L∞

inf ρ̄
+ d

σ
‖ div L‖2

Ẇ−1,∞ .
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Proof The proof follows similar ideas to the proof of Lemma 3 but now we
have to integrate by parts the term with div L instead of the term with L .
Denote L̃ ∈ L∞ s.t. div L̃ = div L and ‖ div L‖Ẇ−1,∞ = ‖L̃‖L∞ . Write

− 1

N 2

N∑

i, j=1

∫

�d N
ρN
(
div L(xi − x j ) − div L �x ρ̄(xi )

)
dXN

= 1

N 2

N∑

i, j=1

∫

�d N
∇xi

ρN

ρ̄N
·
(
L̃(xi − x j ) − L̃ �x ρ̄(xi )

)
ρ̄N dXN

+ 1

N 2

N∑

i, j=1

∫

�d N
ρN

(
L̃(xi − x j ) − L̃ �x ρ̄(xi )

)
· ∇xi log ρ̄N dXN .

Hence

− 1

N 2

N∑

i, j=1

∫

�d N
ρN
(
L(xi − x j ) − L �x ρ̄(xi )

) · ∇xi log ρ̄N dXN

− 1

N 2

N∑

i, j=1

∫

�d N
ρN
(
div L(xi − x j ) − div L �x ρ̄(xi )

)
dXN = A + B,

(38)

with

A = 1

N 2

N∑

i, j=1

∫

�d N
∇xi

ρN

ρ̄N
·
(
L̃(xi − x j ) − L̃ �x ρ̄(xi )

)
ρ̄N dXN ,

and

B = 1

N 2

N∑

i, j=1

∫

�d N
ρN
(
L̄(xi − x j ) − L̄ �x ρ̄(xi )

) · ∇xi log ρ̄N dXN ,

for L̄ = L̃ − L .
Bound for A. We start with Cauchy–Schwartz to bound

A ≤ σ

4 N

N∑

i=1

∫

�d N

∣∣∣∣∇xi
ρN

ρ̄N

∣∣∣∣
2 ρ̄2

N

ρN

+ 1

N σ

N∑

i=1

d∑

α=1

∫

�d N
ρN

∣∣∣∣∣∣
1

N

N∑

j=1

(L̃α(xi − x j ) − L̃α �x ρ̄(xi )

∣∣∣∣∣∣

2

dXN ,

123



560 P.-E. Jabin, Z. Wang

where L̃α is the α coordinate of L̃ .
Denote ψ(z, x) = η (L̃α(z − x) − L̃α � ρ̄(z)), and use Lemma 1 for Φ =∣∣∣ 1N
∑N

j=1 ψ(xi , x j )
∣∣∣
2
to obtain

1

N

N∑

i=1

∫

�d N
ρN

∣∣∣∣∣∣
1

N

N∑

j=1

(L̃α(xi − x j ) − L̃α �x ρ̄(xi )

∣∣∣∣∣∣

2

dXN

≤ 1

η2
HN (ρN | ρ̄N ) + 1

N 2 η2

N∑

i=1

log
∫

�d N
ρ̄N e

∣∣∣ 1N
∑

j ψ(xi ,x j )
∣∣∣
2

dXN .

Of course
∫
�d ψ(z, x) ρ̄(x) dx = 0 so that taking

η = 1

4 e ‖L̃‖L∞
= 1

4 e ‖ div L‖Ẇ−1,∞
,

and applying Theorem 3, we find

A ≤ σ

4 N

N∑

i=1

∫

�d N
ρN

∣∣∣∣∇xi log
ρN

ρ̄N

∣∣∣∣
2

dXN

+ C d
‖ div L‖2

Ẇ−1,∞
σ

(
HN (ρN | ρ̄N ) + 1

N

)
.

(39)

Bound for B. We follow the same steps as before, define

φ(x, z) = (L̄(x − z) − L̄ �x ρ̄(x)
) · ∇x log ρ̄(x),

and first apply Lemma 1 with Φ = η

N2

∑N
i, j=1 φ(xi , x j ) to find

B ≤ 1

η
HN (ρN | ρ̄N ) + 1

N η
log
∫

�d N
ρ̄N e

1
N

∑
i, j φ(xi ,x j ) dXN .

Since div L̄ = div L̃ − div L = 0, we have that
∫

�d
φ(x, z) ρ̄(z) dz =

∫

�d
φ(x, z) ρ̄(x) dx = 0.

Choose

η = 1

C ‖L̄‖L∞ supp
‖∇ log ρ̄‖L p(ρ̄ dx)

p

= inf ρ̄

C (‖L‖L∞ + ‖ div L‖Ẇ−1,∞) ‖∇ρ̄‖L∞
,
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and apply now Theorem 4 to conclude that

B ≤ C (‖L‖L∞ + ‖ div L‖Ẇ−1,∞)
‖∇ρ̄‖L∞

inf ρ̄

(
HN (ρN | ρ̄N ) + 1

N

)
.

(40)

Combining (39) and (40) concludes the proof. ��

2.6 Conclusion of the proof of Theorem 1

The proof of Theorem 1 follows from the previous estimates through a careful
decomposition of the kernel K .

By the assumption of Theorem 1, we have that Kα = ∂βVαβ where V ∈
L∞(�d) is a matrix field, and that there exists K̃ ∈ L∞ s.t. div K = div K̃
and ‖K̃‖L∞(�d ) ≤ 2 ‖ div K‖Ẇ−1,∞ . For convenience, we use the notation

‖K‖ = ‖K̃‖L∞(�d ) + ‖V ‖L∞(�d ) ≤ 2 ‖ div K‖Ẇ−1,∞ + 2 ‖K‖Ẇ−1,∞ .

Define K̄ = div V − K̃ . Note that div K̄ = 0 and obviously since K̃ ∈ L∞
and we can choose K̃ s.t.

∫
K̃ = 0, then K̄ ∈ Ẇ−1,∞ with ‖K̄‖Ẇ−1,∞ ≤

Cd ‖K‖.
We combine Lemma 2 with Lemma 3 for L = K̄ , and finally with Lemma

4 for L = K̃ . We obtain

HN (ρN | ρ̄N )(t) ≤ HN (ρ0
N | ρ̄0

N ) + C1 t |σ − σN |
+ C

∫ t

0

(
M1

K̄
+ M2

K̃

) (
HN (ρN | ρ̄N )(s) + 1

N

)
ds.

(41)

With our specific bounds

M1
K̄

≤ d3 ‖K̄‖2
Ẇ−1,∞

‖ρ̄‖2
W 1,∞

σ (inf ρ̄)2
+ ‖K̄‖Ẇ−1,∞

inf ρ̄
sup
p

‖∇2ρ̄‖L p

p
,

M2
K̃

≤
(
‖K̃‖L∞ + ‖ div K̃‖Ẇ−1,∞

) ‖∇ρ̄‖L∞

inf ρ̄
+ d

σ
‖ div K̃‖2

Ẇ−1,∞ .

To keep calculations simple, we do not try here to obtain fully explicit bounds
(which would still be possible) and simplify (41) in

HN (ρN | ρ̄N )(t) ≤ HN (ρ0
N | ρ̄0

N ) + M̄ (1 + t (1 + ‖K‖2)) |σ − σN |
+ M̄ (‖K‖ + ‖K‖2)

∫ t

0

(
HN (ρN | ρ̄N )(s) + 1

N

)
,

(42)

123



562 P.-E. Jabin, Z. Wang

where we only kept explicit a simplified dependence on K and where the
constant M̄ depends only on

M̄

(
d, σ , inf ρ̄, ‖ρ̄‖W 1,∞ , sup

p

‖∇2ρ̄‖L p

p
,

1

N

∫

�d N
ρ0
N log ρ0

N , ‖ div F‖L∞
)

.

By Gronwall lemma, (42) implies that

HN (ρN | ρ̄N )(t) ≤eM̄ (‖K‖+‖K‖2) t
(
HN (ρ0

N | ρ̄0
N ) + 1

N

+M̄(1 + t (1 + ‖K‖2)) |σ − σN |) ,

which concludes the proof of Theorem 1.

2.7 Proof of Theorem 2

The proof of our result for vanishing viscosity is in fact now straightforward
as it uses our previous analysis.

First of all, we have an direct equivalent of Lemma 2

HN (ρN | ρ̄N )(t) = 1

N

∫

�d N
ρN (t, XN ) log

ρN (t, XN )

ρ̄N (t, XN )
dXN ≤ HN (ρ0

N | ρ̄0
N )

− 1

N 2

N∑

i, j=1

∫ t

0

∫

�d N
ρN
(
K (xi − x j ) − K �x ρ̄(xi )

) · ∇xi log ρ̄N dXN ds

− 1

N 2

N∑

i, j=1

∫ t

0

∫

�d N
ρN
(
div K (xi − x j ) − div K �x ρ̄(xi )

)
dXN ds + αN

(43)

where when σN → σ = 0,

αN = σN

4N

N∑

i=1

∫ t

0

∫

�d N
ρN |∇xi log ρ̄(xi )|2 dXN ds≤ t |σ − σN | ‖ log ρ̄‖2W 1,∞,

while when σN → σ > 0 as N → ∞, we can take σ = σ/2 as in Lemma 2
but use the entropy bound (15) which gives

αN = C2 t |σ − σN |

123



Quantitative estimates of propagation of chaos 563

with C2 given by

C2= 2

σN t

∫

�d N
ρ0
N log ρ0

N + 2

σ
‖ div K‖L∞ + 2

σ
‖ div F‖L∞ +2‖ log ρ̄‖2W 1,∞ .

There is no need for any integration by part on the other terms in (43).When
K ∈ L∞ and div K ∈ L∞, one simply denotes for some η > 0

1

η
φ(x, z) = − (K (x − z) − K �x ρ̄(x)) · ∇x log ρ̄(x) − ( div K (x − z)

− div K �x ρ̄(x)). (44)

But for more singular kernels K with K (−x) = −K (x), |x |K (x) ∈ L∞
and div K ∈ L∞, we have to do a symmetrization first as in [24]. Indeed, for
any η > 0,

1

η
φ(x, z) = −1

2

{
(K (x − z) − K �x ρ̄(x)) · ∇x log ρ̄(x)

+ div K (x − z) − div K �x ρ̄(x)

+ (K (z − x) − K �x ρ̄(z)) · ∇z log ρ̄(z)

+ div K (z − x) − div K �x ρ̄(z)
}
.

Using K (−x) = −K (x), we then obtain

− 2

η
φ(x, z) = K (x − z) · (∇x log ρ̄(x) − ∇z log ρ̄(z))

− K �x ρ̄(x) · ∇x log ρ̄(x) − K �x ρ̄(z) · ∇z log ρ̄(z)

+ div K (x − z) − div K �x ρ̄(x)

+ div K (z − x) − div K �x ρ̄(z). (45)

We then directly apply Lemma 1 to

Φ = 1

N 2

N∑

i, j=1

φ(xi , x j ),
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and find

− 1

N 2

N∑

i, j=1

∫ t

0

∫

�d N
ρN
(
K (xi − x j ) − K �x ρ̄(xi )

) · ∇xi log ρ̄N dXN ds

− 1

N 2

N∑

i, j=1

∫ t

0

∫

�d N
ρN
(
div K (xi − x j ) − div K �x ρ̄(xi )

)
dXN ds

≤ 1

η
HN (ρN | ρ̄N ) + 1

ηN
log
∫

�d N
ρ̄N exp

⎛

⎝ 1

N

N∑

i, j=1

φ(xi , x j )

⎞

⎠ dXN .

We use Theorem 4 and observe if K ∈ L∞ then one directly has that

γ = C

(
sup
p≥1

‖ supz |φ(., z)| ‖L p(ρ̄ dx)

p

)2

≤ C η2 ‖K‖2∞
(
1 + sup

p≥1

‖∇ log ρ̄‖L p(ρ̄ dx)

p

)2

< 1,

provided that one chooses

η <
1

C ‖K‖∞
(
1 + supp

‖∇ log ρ̄‖L p(ρ̄ dx)
p

) ,

and where we recall that

‖K‖∞ = ‖K‖L∞ + ‖ div K‖L∞ .

If K (x) = −K (−x) with |x | K ∈ L∞, one now has to be careful in
estimating

sup
p≥1

‖ supz |φ(., z)| ‖L p(ρ̄ dx)

p
,

as φ is now symmetric in x and z.
First we recall the well known estimate, of which we give a short proof at

the end of the subsection

Lemma 5 For any function f in Lq with q > d, one has that for any x, z

| f (x) − f (z)| ≤ Cd |x − z| (M |∇ f |q(x))1/q ,
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where M is the maximal operator.

By Lemma 5, for some q > d, two terms in (45) can be estimated as

|K (x − z) · (∇x log ρ̄(x) − ∇z log ρ̄(z)) |
≤ Cd‖|x |K (x)‖L∞(M |∇2

x log ρ̄|q(x))1/q ,

and

|K �x ρ̄(x) · ∇x log ρ̄(x) + K �x ρ̄(z) · ∇z log ρ̄(z)|
≤ |K �x ρ̄(x) + K �x ρ̄(z)| |∇x log ρ̄(x)|

+ |K �x ρ̄(z)| |∇x log ρ̄(x) − ∇z log ρ̄(z)|
≤ Cd ‖|x |K (x)‖L∞‖ρ̄‖L∞

(|∇x log ρ̄(x)| + (M |∇2
x log ρ̄|q(x))1/q) .

Combining with the trivial estimates for terms involving div K , i.e.

| div K (x − z) − div K �x ρ̄(x)|, | div K (z − x)

− div K �x ρ̄(z)| ≤ 2‖ div K‖L∞,

we finally obtain that

sup
z

|φ(x, z)| ≤ ηCd ‖K‖∞ (1 + ‖ρ̄‖L∞|∇x log ρ̄(x)|
+(1 + ‖ρ̄‖L∞)(M |∇2

x log ρ̄|q(x))1/q) ,

where we recall that now

‖K‖∞ = ‖ |x |K (x)‖L∞ + ‖ div K‖L∞ .

Assuming that ρ̄ ∈ Ap is a Muckenhoupt weight then for p > q

∥∥(M |∇2 log ρ̄|q)1/q∥∥L p(ρ̄ dx) ≤ ‖ρ̄‖Ap

∥∥∇2 log ρ̄
∥∥
L p(ρ̄ dx) ,

where we write, through a slight abuse of notation

‖ρ̄‖Ap = sup
B ball

1

|B|
∫

B
ρ̄(x) dx

(
1

|B|
∫

B
ρ̄(x)−p∗/p dx

)p/p∗

.

But in addition Ar ⊂ Ap if r ≥ p while we only need to work with large p.
On the other hand (see Chapter 5 in [84] for example), if log ρ̄ ∈ BMO then
ρ̄ ∈ Ap for some p.
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Thus we finally find, similarly to the previous case, that

γ ≤C η2 ‖K‖2∞ · (1 + ‖ρ̄‖L∞)2

(
1 + sup

p≥1

‖∇ log ρ̄‖L p(ρ̄ dx)

p

+C(‖ log ρ̄‖BMO) sup
p≥1

‖∇2 log ρ̄‖L p(ρ̄ dx)

p

)2

< 1,

provided again that η is chosen small enough, and by Theorem 4, we hence
have

− 1

N 2

N∑

i, j=1

∫ t

0

∫

�d N
ρN
(
K (xi − x j ) − K �x ρ̄(xi )

) · ∇xi log ρ̄N dXN ds

− 1

N 2

N∑

i, j=1

∫ t

0

∫

�d N
ρN
(
div K (xi − x j ) − div K �x ρ̄(xi )

)
dXN ds

≤ M̄2 ‖K‖∞
∫ t

0

(
HN (ρN | ρ̄N )(s) + 1

N

)
ds.

Inserting this in (43), we find that

HN (ρN | ρ̄N ) ≤HN (ρ0
N | ρ̄0

N ) + M̄2 ‖K‖∞
∫ t

0

(
HN (ρN | ρ̄N )(s) + 1

N

)
ds

+ M̄2 (1 + t‖K‖∞) |σ − σN |

for some constant M̄2 depending only on

M̄2

(
σ, ‖ρ̄‖L∞ , ‖ log ρ̄‖BMO , sup

p≥1

‖∇ log ρ̄‖L p(ρ̄ dx)

p
, sup

p≥1

‖∇2 log ρ̄‖L p(ρ̄ dx)

p
,

‖ log ρ̄‖W 1,∞ ,
1

N

∫

�d N
ρ0
N log ρ0

N , ‖ div F‖L∞
)

.

This concludes the proof by Gronwall lemma.

Proof (Proof of Lemma 5) Note that this estimate is also connected to the clas-
sical Rademacher theorem for a.e. differentiability of functions in W 1,q for
q > d.

First we recall the very classical (see again [84] for example)

| f (x) − f (z)| ≤ Cd

∫

|y−x |≤2 |x−z|
|∇ f (y)|

(
dy

|y − x |d−1 + dy

|z − y|d−1

)
,
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which can be simply derived by integrating |∇ f | over arcs if circles between x
and z and averaging over all such arcs that belong to the ball |y−x | ≤ 2 |x−z|.

Now we can just observe that for q > d

∫

|y−x |≤2 |x−z|
|∇ f (y)| dy

|z − y|d−1 ≤
(∫

|y−x |≤2 |x−z|
|∇ f (y)|q dy

)1/q

(∫

|y−x |≤2 |x−z|
dy

|z − y|(d−1) q/(q−1)

)(q−1)/q

≤ Cd |x − z|1−d/q
(∫

|y−x |≤2 |x−z|
|∇ f (y)|q dy

)1/q

≤ Cd |x − z| (M |∇ f |q(x))1/q .
The other term may be bounded in the same manner (and is in fact better as it
could be controlled by M |∇ f |(x) directly), thus concluding the proof. ��

3 Preliminary of combinatorics

Before the proof of the main estimates Theorem 3 and Theorem 4, we list
some useful combinatorics results used throughout this article. We first recall
Stirling’s formula

n! = λn
√
2πn

(n
e

)n
, (46)

where 1 < λn < 11
10 and λn → 1 as n → ∞.

We have the elementary bound following from (46)

Lemma 6 For any 1 ≤ p ≤ q, one has

(
q

p

)
≤ epq p p−p.

One also has the basic combinatorics on p-tuples

Lemma 7 For any 1 ≤ p ≤ q, one has

|{(b1, . . . , bp) ∈ N
p | ∀l 1 ≤ bl ≤ q and b1 + b2 + · · · + bp = q}| =

(
q − 1

p − 1

)
.

Proof (Proof of Lemma 7) When p = 1, the lemma trivially holds true with
the convention

(0
0

) = 1 if p = q = 1. We thus assume p ≥ 2 in the follow-
ing. Since each p-tuple (b1, b2, . . . , bp) uniquely determines a (p − 1)-tuple
(c1, c2, . . . , cp−1) and reciprocally via
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c1 = b1, c2 = b1 + b2, . . . , cp−1 = b1 + b2 + · · · + bp−1,

it suffices to verify that

|{(c1, c2, . . . , cp−1) | 1 ≤ c1 < c2 < · · · < cp−1 ≤ q − 1}| =
(
q − 1

p − 1

)
.

This is simply obtained by choosing p − 1 distinct integers from the set
{1, 2, . . . , q − 1} and assigning the smallest one to c1, the second smallest
to c2, and so on. ��

Much of the combinatorics that we handle is based only on the multiplicity
in themulti-indices. It is therefore convenient to know howmanymulti-indices
can have the same multiplicity signature

Lemma 8 For any a1, . . . , aq ∈ N s.t. a1+· · ·+aq = p, then the set of multi-
indices Ip = (i1, . . . , i p) with 1 ≤ ik ≤ q and corresponding multiplicities
has cardinal

∣∣{(i1, . . . , i p) ∈ {1, . . . , q}p | ∀l al = |{k , ik = l}|}∣∣ = p!
a1! · · · aq ! .

Proof This is the basic multinomial relation: we have to choose 1 a1 times
among p positions, 2 a2 times among the remaining positions and so on... ��
Similarly as for the binomial coefficients, p!

a1!···aq ! is the coefficient of

xa11 . . . x
aq
q in the expansion of (x1+· · ·+xq)p leading to the obvious estimate

∑

a1,...,aq≥0, a1+···+aq=p

p!
a1! · · · aq ! = q p. (47)

Let us fix some notations here. We write the integer valued p-tuple as
Ip = (i1, . . . , i p) . The overall set Tq,p of those indices is defined as

Tq,p = {Ip = (i1, . . . , i p)|1 ≤ iν ≤ q, for all 1 ≤ ν ≤ p}. (48)

We thus define the multiplicity function Φq,p : Tq,p → {0, 1, . . . , p}q with
Φq,p(Ip) = Aq = (a1, a2, . . . , aq), where

al = |{1 ≤ ν ≤ p | iν = l}|.

In many of our proofs, we use cancellations so that any Ip which has an index
of multiplicity exactly 1 leads to a vanishing term.
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This leads to the definition of the “effective set” Eq,p by

Eq,p = {Ip ∈ Tq,p |Φq,p(Ip) = Aq = (a1, . . . , aq)

with aν �= 1 for any 1 ≤ ν ≤ q.}

One has the following combinatorics result

Lemma 9 Assume that 1 ≤ p ≤ q. Then

|Eq,p| ≤
� p
2 �∑

l=1

(
q

l

)
l p ≤ � p

2
�
(

q

� p
2 �
)(

� p
2

�
)p ≤ p

2
e

p
2 q

p
2

( p
2

) p
2
. (49)

Proof (Proof of Lemma 9) Pick any multi-index Ip = (i1, . . . , i p) ∈ Eq,p and
write that |Ip| = |{i1, . . . , i p}|. Each element in Ip appears at least twice and
hence |Ip| ≤ � p

2 �.
If p = 1, then Eq,p = ∅. The estimate (49) holds trivially. In the following

we assume that p ≥ 2.
Denote l = |Ip| which can be 1, 2, . . . , � p

2 �. Consequently, one has by
summing all possible choices for |Ip|

|Eq,p| =
� p
2 �∑

l=1

|{Ip ∈ Eq,p| |Ip| = l}|.

For a fixed |Ip| = l, there are
(q
l

)
many choices of numbers l from S =

{1, 2, . . . , q} to compose Ip.
Having already chosen those l numbers from S, without loss of generality

we may assume that Ip as a set coincides with {1, 2, . . . , l}. The total choices
of p-tuple Ip can be bounded by l p trivially since each iν has at most l choices.

Remark that 1 ≤ l ≤ � p
2 � ≤ �q2 �, so that

(
q

l

)
≤
(

q

� p
2 �
)

.

Hence one has

|Eq,p| ≤
� p
2 �∑

l=1

(
q

l

)
l p ≤ � p

2
�
(

q

� p
2 �
)(

� p
2

�
)p

.
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The last inequality in (49) is now ensured by Lemma 6, in particular the
following inequality

(
q

� p
2 �
)

≤ e� p
2 �q� p

2 �(� p
2

�)−� p
2 �.

This finishes the proof of Lemma 9. ��

4 Proof of Theorem 3

The goal here is to bound

∫

�d N
ρ̄N exp

⎛

⎝ 1

N

N∑

j1, j2=1

ψ(x1, x j1) ψ(x1, x j2)

⎞

⎠ dXN ,

for any bounded ψ with vanishing average against ρ̄.
Since

exp(A) ≤ exp(A) + exp(−A) = 2
∞∑

k=0

1

(2k)! A
2k,

it suffices only to bound the series with even terms

∫

�d N
ρ̄N exp

⎛

⎝ 1

N

N∑

j1, j2=1

ψ(x1, x j1) ψ(x1, x j2)

⎞

⎠ dXN

≤ 2
∞∑

k=0

1

(2k)!
∫

�d N
ρ̄N

⎛

⎝ 1

N

N∑

j1, j2=1

ψ(x1, x j1) ψ(x1, x j2)

⎞

⎠
2k

dXN ,

(50)

where in general the k-th even term can be expanded as

1

(2k)!
∫

�d N
ρ̄N

⎛

⎝ 1

N

N∑

j1, j2=1

ψ(x1, x j1) ψ(x1, x j2)

⎞

⎠
2k

dXN

= 1

(2k)!
1

N 2k

N∑

j1,..., j4k=1

∫

�d N
ρ̄N ψ(x1, x j1) · · ·ψ(x1, x j4k ) dX

N .

(51)
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We divide the proof in two different cases: where k is small compared to N
and in the simpler case where k is comparable to or larger than N .

Case 4 ≤ 4k ≤ N First observe that for any particular choice of indices
j1, . . . , j4k , one has

∫

�d N
ρ̄N ψ(x1, x j1) · · ·ψ(x1, x j4k ) dX

N ≤ ‖ψ‖4kL∞ . (52)

The whole estimate hence relies on counting how many choices of multi-
indices ( j1, . . . , j4k) lead to a non-vanishing term. Denote hence NN ,4k the
set of multi-indices ( j1, . . . , j4k) s.t.

∫

�d N
ρ̄N ψ(x1, x j1) · · ·ψ(x1, x j4k ) dX

N �= 0.

Denote by (a1, . . . , aN ) the multiplicity for ( j1, . . . , j4k),

al = |{ν ∈ {1, . . . , 4k}, jν = l}|.

If there exists l �= 1 s.t. al = 1, then the variable xl enters exactly once in the
integration. Assume for simplicity that j1 = l then

∫

�d N
ρ̄N ψ(x1, x j1) · · ·ψ(x1, x j4k ) dX

N

=
∫

�d (N−1)
ψ(x1, x j2) · · ·ψ(x1, x j4k ) �i �=l ρ̄(xi ) dxi

∫

�d
ρ̄(x j1) ψ(x1, x j1) dx j1 = 0,

by the assumption of vanishing mean average for ψ , provided l = j1 �= 1.
Recall the definitions of the overall set [see (48)] and the effective set

Eq,p = {Ip ∈ Tq,p |(a1, . . . , aq) = Φq,p(Ip)

with aν �= 1 for any 1 ≤ ν ≤ q},
where (a1, . . . , aq) denotes the multiplicity of the multi-index Ip.

Therefore the integral

∫

�d N
ρ̄N ψ(x1, x j1) · · ·ψ(x1, x j4k ) dX

N

vanishes unless j1, . . . , j4k belongs to EN ,4k (all multiplicities are different
from 1) or satisfies a1 = 1 and every al �= 1 for l > 1.
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In that last case, we have to choose one index n s.t. jn = 1, with 4k possibil-
ities. The rest of the multi-index ( j1, . . . , jn−1, jn+1, . . . , j4k) must have all
multiplicities different from 1. This multi-index hence belongs to EN−1,4k−1.

Consequently,

|NN ,4k | ≤ |EN ,4k | + 4k |EN−1,4k−1|.
We now apply Lemma 9

NN ,4k ≤ (1 + 4k) |EN ,4k | ≤ 10 k2 e2k N 2k (2k)2k .

Using (52) , for 1 ≤ k ≤ � N
4 �, we obtain

1

(2k)!
1

N 2k

N∑

j1,..., j4k=1

∫

�d N
ρ̄N ψ(x1, x j1) · · ·ψ(x1, x j4k ) dX

N

≤ 1

(2k)!
10

N 2k k
2 e2k N 2k (2k)2k ‖ψ‖4kL∞

≤ 5 e4k k
3
2 ‖ψ‖4kL∞,

(53)

by Stirling’s formula for n = 2k.

Case 4k > N . In this case, we do not need to use any combinatorics. We
simply remark that there can be at most N 4k multi-indices. From (52), we
have for k > � N

4 �

1

(2k)!
1

N 2k

N∑

j1,..., j4k=1

∫

�d N
ρ̄N ψ(x1, x j1) · · ·ψ(x1, x j4k ) dX

N

≤ 1

(2k)!
1

N 2k N 4k ‖ψ‖4kL∞ ≤ k− 1
2 22k e2k ‖ψ‖4kL∞,

(54)

still by Stirling’s formula.

Conclusion of the proof. Combining (53), (54) and (50), we have that

∫

�d N
ρ̄N exp

⎛

⎝ 1

N

N∑

j1, j2=1

ψ(x1, x j1) ψ(x1, x j2)

⎞

⎠ dXN

≤ 2

⎛

⎜⎝1 +
� N
4 �∑

k=1

5 e4k k
3
2 ‖ψ‖4kL∞ +

∞∑

k=� N
4 �+1

k− 1
2 22k e2k ‖ψ‖4kL∞

⎞

⎟⎠ .
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The proof of Theorem 3 is completed by

� N
4 �∑

k=1

5 e4k k
3
2 ‖ψ‖4kL∞ ≤ 5α

∞∑

k=1

k(k + 1)αk−1

= 5α
d2

dα2

( ∞∑

k=0

αk

)
= 5α

(
1

1 − α

)′′

= 10 α

(1 − α)3
< ∞,

while

∞∑

k=� N
4 �+1

k− 1
2 22k e2k ‖ψ‖4kL∞ ≤

∞∑

k=1

βk = 1

1 − β
− 1

= β

1 − β
< ∞,

where we recall

α = (e ‖ψ‖L∞)4 < 1, β =
(√

2e ‖ψ‖L∞
)4

< 1.

5 Proof of Theorem 4

We recall that our goal is to bound

∫

�d N
ρ̄N exp

⎛

⎝ 1

N

N∑

i, j=1

φ(xi , x j )

⎞

⎠ dXN

with the assumptions
∫

�d
φ(x, z) ρ̄(x) dx = 0 ∀z,

∫

�d
φ(x, z) ρ̄(z) dz = 0 ∀x . (55)

As in the proof of Theorem 3, one expands the exponential in series and only
needs to bound the even terms

∫

�d N
ρ̄N exp

⎛

⎝ 1

N

N∑

i, j=1

φ(xi , x j )

⎞

⎠ dXN

≤ 2
∞∑

k=0

1

(2k)!
∫

�d N
ρ̄N

∣∣∣∣∣∣
1

N

N∑

i, j=1

φ(xi , x j )

∣∣∣∣∣∣

2k

dXN .

(56)
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As in the proof of Theorem 3, we separate the proof into two cases: the case
where k is relatively small compared to N which requires a careful combinato-
rial analysis to take vanishing terms into account and the more straightforward
case when k is comparable to or larger than N .

Accordingly Theorem 4 is a consequence of the following two propositions.

Proposition 4 If 4k > N, one has

1

(2k)!
∫

�d N
ρ̄N

∣∣∣∣∣∣
1

N

N∑

i, j=1

φ(xi , x j )

∣∣∣∣∣∣

2k

dXN

≤
(
6e2 sup

p≥1

‖ supz |φ(., z)|‖L p(ρ̄ dx)

p

)2k

.

Proposition 5 For 4 ≤ 4k ≤ N, one has

1

(2k)!
∫

�d N
ρ̄N

∣∣∣∣∣∣
1

N

N∑

i, j=1

φ(xi , x j )

∣∣∣∣∣∣

2k

dXN

≤
(
1600 sup

p≥1

‖ supz |φ(., z)|‖L p(ρ̄ dx)

p

)2k

.

Let us give a quick proof of Theorem 4 assuming Proposition 4 and Proposi-
tion 5.

Proof (Proof of Theorem 4) By (56) and Proposition 4 and Proposition 5, one
has

∫

�d N
ρ̄N exp

⎛

⎝ 1

N

N∑

i, j=1

φ(xi , x j )

⎞

⎠ dXN

≤ 2

⎛

⎜⎝1 +
� N
4 �∑

k=1

(
1600 sup

p≥1

‖ supz |φ(., z)|‖L p(ρ̄ dx)

p

)2k

+
∞∑

k=� N
4 �+1

(
6e2 sup

p≥1

‖ supz |φ(., z)|‖L p(ρ̄ dx)

p

)2k
⎞

⎟⎠ .
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We defined γ = C
(
supp≥1

‖ supz |φ(.,z)|‖L p(ρ̄ dx)
p

)2
< 1. One obtains, taking

C = 16002 + 36 e4,

∫

�d N
ρ̄N exp

⎛

⎝ 1

N

N∑

i, j=1

φ(xi , x j )

⎞

⎠ dXN ≤ 2
∞∑

k=0

γ k = 2

1 − γ
< ∞,

completing the proof of Theorem 4. ��

5.1 The case 4k > N: Proof of Proposition 4

For k > N
4 the k-th even term can be estimated by

1

(2k)!
∫

�d N
ρ̄N

∣∣∣∣∣∣
1

N

N∑

i, j=1

φ(xi , x j )

∣∣∣∣∣∣

2k

dXN

≤ 1

(2k)!
1

N 2k

N∑

i1, j1,...,i2k , j2k=1

∫

�d N
ρ̄N sup

z
|φ(xi1 , z)| · · · sup

z
|φ(xi2k , z)| dXN

= 1

(2k)!
∫

�d N
ρ̄N

(
N∑

i=1

sup
z

|φ(xi , z)|
)2k

dXN .

Hence

1

(2k)!
∫

�d N
ρ̄N

∣∣∣∣∣∣
1

N

N∑

i, j=1

φ(xi , x j )

∣∣∣∣∣∣

2k

dXN

≤ 1

(2k)!
∑

a1+···+aN=2k,
a1≥0,...aN≥0

(2k)!
(a1)! · · · (aN )!M

a1
a1 · · · MaN

aN ,

(57)

where we denote

Mai
ai =

∫

�d
sup
z

|φ(x, z)|ai ρ̄(x) dx
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with the convention that M0
0 = 1. Remark that

Mai
ai ≤ aaii

(
sup
p≥1

‖ supz |φ(x, z)|‖L p(ρ̄ dx)

p

)ai

≤ eai (ai )!
(
sup
p≥1

‖ supz |φ(x, z)|‖L p(ρ̄ dx)

p

)ai

,

where the last inequality nn ≤ enn! can be easily verified by Stirling’s formula.
Inserting it into (57), one obtains

1

(2k)!
∫

�d N
ρ̄N

∣∣∣∣∣∣
1

N

N∑

i, j=1

φ(xi , x j )

∣∣∣∣∣∣

2k

dXN

≤ e2k
(
sup
p≥1

‖ supz |φ(xi1, z)|‖L p(ρ̄ dx)

p

)2k ∑

a1+···+aN=2k,
a1≥0,...aN≥0

1.

(58)

The quantity
∑

a1+···+aN=2k
a1≥0,...aN≥0

1 is equal to the cardinality of the set

{(a1, a2, . . . , aN )|a1 + · · · + aN = 2k, ai ≥ 0 for 1 ≤ i ≤ N }

or the cardinality of the following equinumerous set

{(b1, b2, . . . , bN )|b1 + · · · + bN = 2k + N , bi ≥ 1 for 1 ≤ i ≤ N }.

Applying Lemma 7 in Sect. 3 by taking p = N and q = 2k + N , this cardinal
is exactly

(2k+N−1
N−1

)
.

This expression can be simplified.Note that if a ≥ b/2 byStirling’s formula

(
a + b

b

)
≤

√
a + b√
π a b

(a + b)a+ba−ab−b ≤ (1 + b/a)a (1 + a/b)b

≤ 3a (1 + a/b)b.

Since (1 + 1
s )

s < e for any s > 0, this gives

(
a + b

b

)
≤ (3 e)a.
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Since 4k > N ,
(2k+N−1

N−1

) ≤ 32k e2k and therefore from (58), one obtains that

1

(2k)!
∫

�d N
ρ̄N

∣∣∣∣∣∣
1

N

N∑

i, j=1

φ(xi , x j )

∣∣∣∣∣∣

2k

dXN

≤ 32k e4k
(
sup
p≥1

‖ supz |φ(x, z)|‖L p(ρ̄ dx)

p

)2k

.

(59)

This proves Proposition 4.

5.2 The case 4 ≤ 4k ≤ N: Proof of Proposition 5

In this case, the previous straightforward approach fails, even assuming that
φ ∈ L∞ as we would only get

1

(2k)!
∫

�d N
ρ̄N

∣∣∣∣∣∣
1

N

N∑

i, j=1

φ(xi , x j )

∣∣∣∣∣∣

2k

dXN ≤ N 2k

(2k)! ‖φ‖2kL∞,

which blows up when N goes to infinity. The key here, as is in the proof of
Theorem 3, is to identify the right cancellations in the expansion

1

(2k)!
∫

�d N
ρ̄N

∣∣∣∣∣∣
1

N

N∑

i, j=1

φ(xi , x j )

∣∣∣∣∣∣

2k

dXN

≤ 1

(2k)!
1

N 2k

N∑

i1, j1··· ,i2k , j2k=1

∫

�d N
ρ̄N φ(xi1, x j1) · · ·φ(xi2k , x j2k ) dX

N .

(60)

5.2.1 Notations and preliminary considerations

We denote by I2k = (i1, . . . , i2k) the i-indices and by J2k = ( j1, . . . , j2k)
similarly the j-indices, where all iν, jν are in {1, 2, . . . , N } for 1 ≤ ν ≤ 2k.

We denote by (a1, a2, . . . , aN ) the multiplicities of I2k ,

al = |{1 ≤ ν ≤ 2k|iν = l}|, l = 1, 2, . . . , N ,

and by (b1, . . . , bN ) the multiplicities of J2k .
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For the study of cancellations, the critical parameter will be the number of
multiplicities which are exactly 1 in I2k , so that we denote

mI = |{l | al = 1}|, nI = |{l | al > 1}|. (61)

Note that mI + nI is exactly the number of integers present in I2k : mI + nI =
|{l | al ≥ 1}|.

We start by the following lemma which, for every I2k , identifies the only
possible J2k s.t. the integral does not vanish.

First we simplify the possible expression of I2k which makes the counting
easier by using the natural symmetry by permutation of the problem. For any
τ ∈ SN , we simply define τ(I2k) = (τ (i1), . . . , τ (i2k)). Thus τ is a one-to-one
application on the I2k and moreover

∫

�d N
ρ̄N φ(xi1, x j1) · · ·φ(xi2k , x j2k ) dX

N

=
∫

�d N
ρ̄Nφ(xτ(i1), xτ( j1)) · · ·φ(xτ(i2k), xτ( j2k)) dX

N .

Therefore to identify cancellations, we only need to consider one I2k in each
of the equivalence classes {τ(I2k), ∀τ ∈ SN }, leading to
Definition 3 A multi-index I2k belongs to the reduced form set RN ,2k iff
0 < a1 ≤ a2 . . . ≤ an and an+1 = · · · = aN = 0, with n = mI + nI in (61).

Note that for any I2k there exists only one Ĩ2k ∈ RN ,2k that belongs to the same
class, even though there can be several τ s.t. τ(I2k) = Ĩ2k (as any repeated
index leaves Ĩ2k invariant under the corresponding transposition).

5.2.2 Identifying the “right” indices J2k

Remark that by the definition of mI and nI in (61), if I2k ∈ RN ,2k is under its
reduced form, one has

al = 1 for l = 1, . . . ,mI ,

al > 1 for l = mI + 1, . . . ,mI + nI ,

al = 0 for l > mI + nI .

Based on this simple structure, we can prove that

Lemma 10 For any m, n, define as Jm,n the set of indices J2k with multiplic-
ities (b1, . . . , bN ) satisfying

– bl ≥ 1 for any l = 1 . . .m;
– bl �= 1 for any l > m + n.
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Then for any I2k ∈ RN ,2k and any J2k /∈ JmI ,nI , one has that

∫

�d N
ρ̄N φ(xi1, x j1) · · ·φ(xi2k , x j2k ) dX

N = 0.

This lemma identifies, for each I2k ∈ RN ,2k , a relevant subset of indices
JmI ,nI ; in the sense that any multi-index J2k out of this set leads to a vanishing
integral and hence can be removed from our summation. Lemma 10 is not an
equivalence though: There can still be indices J2k ∈ JmI ,nI giving a vanishing
integral. But the formulation above allows for simpler combinatorics and in
particular JmI ,nI only depends in a basic manner on I2k through the two
integers mI and nI .

Proof (Proof of Lemma 10) Choose any I2k ∈ RN ,2k , up to a permutation, we
may freely assume that I2k has the following form

I2k =
(
1, 2, . . . ,mI ,mI + 1, . . . ,mI + 1︸ ︷︷ ︸

amI+1

, . . . ,mI + nI , . . . ,mI + nI︸ ︷︷ ︸
amI+nI

)
.

Choose any J2k /∈ JmI ,nI . That means that there exists l ≤ mI s.t. bl = 0 or
that there exists l > mI + nI s.t. bl = 1. Each case corresponds to a different
cancellation in the integral.

The case bl = 0 for some l ≤ mI . By the definition of the reduced form,
al = 1 and therefore the index l appears only once in I2k and never in J2k
thus being present exactly once in the product inside the integral. Assume that
iν = l for some ν so

∫

�d N
ρ̄N φ(xi1 , x j1) · · ·φ(xi2k , x j2k ) dX

N

=
∫

�d (N−1)

ρ̄N

ρ̄(xiν )

( ∫

�d
ρ̄(xiν ) φ(xiν , x jν ) dxiν

)
�ν′ �=νφ(xiν′ , x jν′ ) �l ′ �=l dxl ′ .

Now it is enough to remark that for any i and j �= i , as is the case here since
all jν′ �= l,

∫

�d
ρ̄(xi ) ψ(xi , x j ) dxi = 0,

which is exactly the first assumption in (55).

The case bl = 1 for some l > mI + nI . By definition, this means that al = 0.
The index l appears only once in J2k and never in I2k . Again it is present
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exactly once in the product inside the integral. Assume that jν = l for some ν

so

∫

�d N
ρ̄N φ(xi1 , x j1) · · ·φ(xi2k , x j2k ) dX

N

=
∫

�d (N−1)

ρ̄N

ρ̄(x jν )

( ∫

�d
ρ̄(x jν ) φ(xiν , x jν ) dx jν

)
�ν′ �=νφ(xiν′ , x jν′ ) �l ′ �=l dxl ′ .

The results then follows from the fact that for i �= j

∫

�d
ρ̄(x j ) φ(xi , x j ) dx j = 0,

which is the second equality in (55). ��

5.2.3 The cardinality of Jm,n

Our next step is to show that |Jm,n| is much less than the total number of
multi-indices J2k , namely N 2k ,

Lemma 11 One has that for some universal constant C

|Jm,n| ≤ Ck Nk−m/2 kk+m/2,

where C can be chosen as 512 e or roughly 1400.

Proof (Proof of Lemma 11) A multi-index J2k belongs to Jm,n iff bl ≥ 1 for
l ≤ m and bl = 0, 2, 3, . . . for l > m + n. Let us distinguish further between
those l > m + n where bl = 0 and those for which bl ≥ 2.

Choose first p = 0, 1, . . . , �2k−m
2 � and choose then p indices l1, . . . , l p

between m + n + 1 and N which exactly correspond to bl ≥ 2. There are(N−m−n
p

)
such possibilities.

Once these l1, . . . , l p have been chosen, the set of possible multiplicities
for J2k ∈ Jm,n is given by

Bm,n,p,l1,...,l p =
{
(b1, . . . , bN ) | b1, . . . , bm ≥ 1, bl1, . . . , blp ≥ 2,

bl = 0 if l > m + n and l �= l1, . . . , l p, and b1 + b2 + · · · + bN = 2k
}
.
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After the multiplicities are known it is straightforward to obtain the number
of J2k in Jm,n , using Lemma 8. Decomposing all the possible J2k according
to those possibilities, one hence finds

|Jm,n| =
� 2k−m

2 �∑

p=0

∑

l1,...,l p=m+n+1,...,N

∑

(b1,...,bN )∈Bm,n,p,l1,...,l p

(2k)!
b1! · · · bN ! .

Note that since bl1, . . . , blp ≥ 2 and b1, . . . , bm ≥ 1 one has that m + 2p ≤
b1 + · · · + bN = 2k, leading to the upper bound p ≤ k − m/2.

Furthermore using the invariance by permutation, one may immediately
reduce this expression by assuming that l1 = m + n + 1, l2 = m + n + 2...
Denoting the partial sums sm = b1+· · ·+bm and sn = bm+n+1+·+bm+n+p,
one has

|Jm,n| =
k−m/2∑

p=0

(
N − m − n

p

) 2k−2p∑

sm=m

∑

b1 ...bm≥1, b1+···+bm=sm

2k−sm∑

sn=2p

∑

bm+n+1,...,bm+n+p≥2, bm+n+1+···+bm+n+p=sn
∑

bm+1,...,bm+n≥0, bm+1+···+bm+n=2k−sm−sn

(2k)!
b1! · · · bm+n+p! .

Using the standard multinomial summation (47), one can easily calculate the
last sum to obtain

|Jm,n| =
k−m/2∑

p=0

(
N − m − n

p

)

2k−2p∑

sm=m

∑

b1 ...bm≥1, b1+···+bm=sm

2k−sm∑

sn=2p

n2k−sm−sn

(2k − sm − sn)!
∑

bm+n+1,...,bm+n+p≥2, bm+n+1+···+bm+n+p=sn

(2k)!
b1! · · · bm ! bm+n+1! · · · bm+n+p! .
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Now bound the sum on b1 . . . bm by the sum starting at b1, . . . , bm = 0 and
similarly for the sum on bm+n+1 . . . bm+n+p to obtain

|Jm,n| ≤
k−m/2∑

p=0

(
N − m − n

p

)

2k−2p∑

sm=m

2k−sm∑

sn=2p

(2k)! n2k−sm−sn msm psn

(2k − sm − sn)! sm ! sn! .

We recall the obvious bound
(a
b

) ≤ 2a so that

(2k)!
(2k − sm − sn)! sm ! sn! = (2k − sm)!

(2k − sm − sn)! sn!
(2k)!

(2k − sm)! sm !
=
(
2k

sm

)(
2k − sm

sn

)
≤ 24k .

Furthermore by Lemma 6,
(N−m−n

p

) ≤ ep N p p−p. Thus

|Jm,n| ≤ 24k
k−m/2∑

p=0

ep N p
2k−2p∑

sm=m

2k−sm∑

sn=2p

n2k−sm−sn psn−p msm .

Note that 2k − sm − sn ≥ 0 and sn − p ≥ 0 and m, n, p ≤ 2k so

n2k−sm−sn psn−p msm ≤ (2k)2k−p.

Therefore finally

|Jm,n| ≤ 26k ek (2k)2
k−m/2∑

p=0

N p k2k−p

≤ 26k ek (2k)2 k Nk−m/2 kk+m/2 ≤ (29e)k Nk−m/2 kk+m/2,

since N ≥ k, the maximum of N p k2k−p is attained for the maximal value of
p. ��
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5.2.4 Conclusion of the proof of the Proposition 5

Observe that for a particular choice of I2k and J2k

∫

�d N
ρ̄N φ(xi1, x j1) · · ·φ(xi2k , x j2k ) dX

N

≤
∫

�d N
ρ̄N �2k

ν=1 sup
z

|φ(xiν , z)| dXN

≤
∫

�d N
ρ̄N (sup

z
|φ(x1, z)|)a1 . . . (sup

z
|φ(xN , z)|)aN dXN .

(62)

As one readily sees this bound only depends on the multiplicity in I2k .
We use the cancellations obtained in Lemma 10 to deduce from (62),

∫

�d N
ρ̄N

∣∣∣
1

N

N∑

i, j=1

φ(xi , x j )
∣∣∣
2k

dXN

≤ 1

N 2k

∑

a1+···+aN=2k,
a1≥0,...,aN≥0.

|Jma,na | |{I2k | ΦN ,2k(I2k) = (a1, . . . , aN )}|

·
∫

�d N
ρ̄N (sup

z
|φ(x1, z)|)a1 . . . (sup

z
|φ(xN , z)|)aN dXN ,

where we denote ma = m(a1,...,aN ) = |{l | al = 1}|, na = n(a1,...,aN ) =
|{l | al > 1}| and we recall that ΦN ,2k(I2k) is the multiplicity function associ-
ating to each I2k the vector (a1, . . . , aN ) of multiplicities.

Remark that

∫

�d N
ρ̄N (sup

z
|φ(x1, z)|)a1 . . . (sup

z
|φ(xN , z)|)aN dXN

≤ e2k
(
sup
p≥1

‖ supz |φ(., z)|‖L p(ρ̄ dx)

p

)2k

a1! · · · aN !,

since aa ≤ ea a!.
On the other hand by Lemma 8

|{I2k | ΦN ,2k(I2k) = (a1, . . . , aN )}| ≤ (2k)!
a1! · · · aN ! ,
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which implies that

1

(2k)!
∫

�d N
ρ̄N

∣∣∣
1

N

N∑

i, j=1

φ(xi , x j )
∣∣∣
2k

dXN

≤ e2k

N 2k

(
sup
p≥1

‖ supz |φ(., z)|‖L p(ρ̄ dx)

p

)2k ∑

a1+···+aN=2k,
a1≥0,...,aN≥0.

|Jma,na |.

We apply Lemma 11

1

(2k)!
∫

�d N
ρ̄N

∣∣∣
1

N

N∑

i, j=1

φ(xi , x j )
∣∣∣
2k

dXN ≤ e2k

N 2k

·
(
sup
p≥1

‖ supz |φ(., z)|‖L p(ρ̄ dx)

p

)2k ∑

a1+···+aN=2k,
a1≥0,...,aN≥0.

Ck Nk−ma/2 kk+ma/2.

Consider any (a1, . . . , aN ) with exactly p coefficients al ≥ 1. Up to
(N
p

)

permutations, we can actually assume that a1, . . . , ap ≥ 1. All the other al are
0. Since we have ma + na = p and ma + 2 na ≤ 2k then ma ≥ 2 (p − k). As
N ≥ k then

Nk−ma/2 kk+ma/2 ≤ Nk−(p−k)+ kk+(p−k)+ .

Hence
∑

a1+···aN=2k

Nk−ma/2 kk+ma/2

=
2k∑

p=1

(
N

p

) ∑

a1,...,ap≥1, a1+···+ap=2k

Nk−(p−k)+ kk+(p−k)+

≤
2k∑

p=1

(
N

p

)(
2k − 1

p − 1

)
Nk−(p−k)+ kk+(p−k)+,

by Lemma 7. Since
(2k−1
p−1

) ≤ 22k and for p ≤ k,
(N
p

)
is maximumwhen p = k,

k∑

p=1

(
N

p

)(
2k − 1

p − 1

)
Nk−(p−k)+ kk+(p−k)+ ≤ 22k k

(
N

k

)
Nk kk ≤ (8e)k N 2k,
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by Lemma 6. Still by Lemma 6 for p > k,

(
N

p

)
Nk−(p−k)+ kk+(p−k)+ ≤ ep N p p−p N 2k−p k p ≤ ep N 2k .

Hence again

2k∑

p=k+1

(
N

p

)(
2k − 1

p − 1

)
Nk−(p−k)+ kk+(p−k)+ ≤ k22ke2k N 2k ≤ 1

2
(8e2)k N 2k .

Finally,

1

(2k)!
∫

�d N
ρ̄N

∣∣∣
1

N

N∑

i, j=1

φ(xi , x j )
∣∣∣
2k

dXN

≤ (8 e4C)k

(
sup
p≥1

‖ supz |φ(., z)|‖L p(ρ̄ dx)

p

)2k

≤ 8002k
(
sup
p≥1

‖ supz |φ(., z)|‖L p(ρ̄ dx)

p

)2k

,

concluding the proof of Proposition 5.

6 Conclusion

We have presented a new approach to the mean-field limit based on relative
entropies at the level of the Liouville equations. While the role of the entropy
had long been recognized (for example in [36] and later in [40,66]), ourmethod
allows to quantitatively estimate the convergence of each marginal at the opti-
mal rate N−1/2. The key for the technical argument is a large deviation bound

sup
N

∫

�d N
e

1
N

∑N
i, j=1 φ(xi ,x j ) ρ̄N dXN < 0, (63)

for a modified potential φ that is not the potential of the dynamics and that is
not continuous.

While this allows us to treat a large class of interaction kernels, there are
many questions left open by the present work that we mention briefly below.

– Going from the casewith periodic boundary conditions to non-compact set-
tings or boundary condition. Choosing to study the dynamics in the torus
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�d , as we did here, is convenient but somewhat artificial. The main diffi-
culty to extending our theory to more realistic domains are the assumption
inf ρ̄ > 0 in Theorem 1 and log ρ̄ ∈ BMO (more precisely when σN ≡ σ )
in Theorem 2.
inf ρ̄ > 0 is simply not compatible with any unbounded domain (and
keeping finite mass), while log ρ̄ ∈ BMO would limit the application
to slowly decaying (polynomially) densities. A possible solution would
involve introducing appropriate weights in the relative entropy.
The case of smooth bounded domains Ω ⊂ R

d depends much on the pre-
cise boundary condition that is imposed; Reflective and incoming boundary
conditions for example are generally compatible with our relative entropy
method. But we may still sometimes have difficulties with the previous
assumption inf ρ̄ > 0, if for instance the incoming density vanishes.

– Extending the large deviation estimate. It is not clear to us at this point
what would be an optimal assumption on φ for (63) to hold. An important
issue is how important a lower bound on φ is and whether we need less on
φ− (the negative part) than on φ+. For the classical large deviation result
for example if φ is continuous, then the smallness of φ+ is enough. Clearly
the negative part of φ only helps in (63) but our combinatorial analysis
does not easily allow us to differentiate between φ+ and φ−.

– Gradient flow dynamics. Theorems 1 and 2 do not performwell for gradient
flows: This is due to the assumptions div K inW−1,∞ or L∞. If K = −∇V
then this almost imposes K ∈ L∞ orW 1,∞ in that case. If the dynamics is
attractive then some difficulties are expected. The repulsive case is however
connected to the previous remark as φ in (63) includes a div K term: If
we did not need to impose conditions on φ− then we would not need to
impose conditions either on div K . We would then be able to derive the
Keller-Segel equations, i.e. the Poisson case.

– Better use of the energy of the dynamics. We are not employing in this
article the energy or other dissipated or invariant quantities of the system,
which could obviously be useful.
In particular, [26,82,83] recently introduced a relative entropy method at
the the level of the empirical measure based on the energy of the system.
This allows to obtain quantitative estimates, in particular for deterministic
settings, with quite singular interactions of Riesz potential form.
We should also mention here the techniques developed by [79,81] for non-
convex setting. For the case of hydrodynamics for Ginzburg–Landau spin
systems, we also refer to [28] for a quantitative convergence results of
relative entropy of particles systems towards its counterpart in the scaling
limit.

– Is it possible to make fluctuations explicit? This would for example mean
making explicit the O(N ) term in our relative entropy estimates. In the
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smooth case (K ∈ W 1,∞), large deviations from the limiting PDE were
notably established in [23]. In the framework developed here, this would
likely require being more precise than the bound (63) and so impose more
regularity onφ and then K . There are several applications of entropybounds
and super-exponential estimates in scaling limits for instance [47].
There are nevertheless results on fluctuations for singular kernels, in partic-
ular [33] where a large deviation estimate is obtained from the limiting law
for systems introduced in [21], i.e. stochastic interacting particle systems
in 1D with K (x) = 1/x .

– Other settings: Collisional models, quantum systems... The notion of prop-
agation of chaos is of course critical in many other frameworks. First come
tomind the collisional regime, with Boltzmann or Landau equations.While
Theorem 1 allows for kernels K leading to collision dynamics, this requires
a fully non-degenerate diffusion and a different scaling.
The stochastic particles approximation of theBoltzmann equation had been
studied in [46]. The propagation of chaos for the Landau equation was
obtained in [15,35], with the so-called Nanbu particles investigated in [38].
We also refer to the review [78] for a discussion of the role of exchange-
ability and entropy for systems of particles in a larger context; to [39] more
specifically for a thorough discussion derivation of the Boltzmann equation
from deterministic (Newton) particles dynamics and to the recent [9] for
the derivation of Brownian dynamics from hard spheres in realistic time
scales.
The discussion of the mean-field limit for many particles quantum systems
would of course deserve a review of its own. The Von Neumann entropy is
the direct equivalent of the relative entropy that we are using, but it is not
clear to us how the strategy of the present paper could be extended to that
setting.
We do note that quantitative estimates and rates of convergence are well
known for quantum systems with singular interactions such as in [42,60,
75].
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