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CELLULOSE BIODEGRADATION MODELS; AN EXAMPLE OF COOPERATIVE

INTERACTIONS IN STRUCTURED POPULATIONS

Pierre-Emmanuel Jabin1, Alexey Miroshnikov2 and Robin Young3

Abstract. We introduce various models for cellulose bio-degradation by micro-organisms. Those
models rely on complex chemical mechanisms, involve the structure of the cellulose chains and are
allowed to depend on the phenotypical traits of the population of micro-organisms. We then use the
corresponding models in the context of multiple-trait populations. This leads to classical, logistic type,
reproduction rates limiting the growth of large populations but also, and more surprisingly, limiting
the growth of populations which are too small in a manner similar to the effects seen in populations
requiring cooperative interactions (or sexual reproduction). This study thus offers a striking example
of how some mechanisms resembling cooperation can occur in structured biological populations, even
in the absence of any actual cooperation.
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1. Introduction

The goal of this article is to derive models for structured populations of micro-organisms living off cellulose
degradation. Our first step is to study the mechanisms by which some micro-organisms can use cellulose. The
full process is obviously complex and we have to abstract its most important features. This gives us a hierarchy
of models, depending on the level of simplification that one desires.

The second step is to couple those models with the population dynamics of the corresponding micro-
organisms. While the mechanism of bio-degradation that we consider is similar for each species of micro-
organisms, we allow for some variability from one species to another, in the enzymes involved for instance. This
leads to a population structured by a phenomenological trait that describes the exact path of bio-degradation.

As the amount of cellulose is limited, the total growth of the population is, unsurprisingly, limited as well.
More interesting are the effects when the total population or the population in a given species is small. The
model does not include any actual cooperation between micro-organisms but as the bio-degradation occurs in
several steps, the process is nonlinear in the population size even if cellulose is abundant. This puts small
populations at a disadvantage, introducing an effect similar to classical cooperation.
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Cellulose Bio-degradation. Mechanisms and Models. Cellulose is the structural component of many
plants and is therefore the most abundantly produced bio-polymer; it is a homo-polymer consisting of a vast
number of glucose units. The most important feature of cellulose as a substrate is its insolubility. As such,
bacterial and fungal degradation of cellulose, (e.g. by fungi Trichoderma reesei or bacteria Clostridium thermo-
cellum), occurs exocellularly. The products of cellulose hydrolysis are available as carbon and energy sources
for microbes that inhabit environments in which cellulose is biodegraded [31,32].

In this work we model cellulose bio-degradation as a multiple-step process, reflecting realistic mechanisms
described in [32]. Let %(t) denote the mass of cellulose. The biodegrading microorganism is unable to consume
(degrade) the cellulose % directly. Instead, the individuals produce two enzyme complexes e1(t) and e2(t) that
act in a two-stage process.

During the first stage, the (endoglucanase) enzyme e1 weakens cellulose fibers in %: that is, it randomly
cuts the fibers, creating the so-called reducing and non-reducing ends which serve as landing sites for the
(exoglucanase) enzyme e2. During the second stage, the enzyme e2 locates a landing site and attaches itself to
it. Once attached, it cleaves off cellobiose (a major energy source for the microorganisms) from the chain of
polysaccharides. Some portion θp ∈ [0, 1] of cellobiose is consumed directly by the microorganism that produced
the enzymes, and the rest is available for other individual microorganisms in the population due to diffusion.
The above mechanisms can be viewed as follows:

Growth of micro-organisms + influx of cellulose %(t)
↓

Production of enzyme complexes e1(t) and e2(t)
↓

Weakening of %(t) by e1(t)
↓

Production of cellobiose p(t) by e2(t) acting on %(t).

The last two steps in the above diagram constitute the so-called cleaving mechanism. In our work we present two
different cleaving mechanisms that differ in complexity (see Section 2). In Cleaving Mechanism 1 the enzyme e2

that cuts off cellobiose units has two states, ‘attached to’ and ‘detached from’ cellulose. In Cleaving Mechanism
2, however, the enzyme e2 is always detached. In this mechanism cleaving happens instantaneously once the
enzyme e2 finds a spot on the cellulose where it is able to cut off cellobiose.

In the present work we develop several models of varying complexity which incorporate these mechanisms.
Even in the simplest model the aforementioned cascade of events produces a cooperative effect, which appears
due to the fact that the cellobiose units cleaved off by the enzyme of one microorganism are available for
consumption by other individuals located nearby. Mathematically, these effects are encoded in the reproduction
rate B(n) of the population n. In particular, for small populations, the population size n(t) turns out to behave
as

∂tn(·, t) ∼ n
(
B(n)− d

)
with B(n) ∼ Cn2 when n� n̄,

where n̄ is a critical threshold.
In general, the population includes various species of micro-organisms. In that case, the exact enzyme

complexes used may change across species. We represent the different species xj by traits j ∈ {1, . . . ,M},
where the population with trait j uses enzymes complexes denoted e1,j and e2,j . This can be included in a more
general framework by considering continuous traits x with sub-populations n(t, x) with a model of the form

∂tn(x, t) =
(
B[n](x, t)− d(x)

)
n(x, t) , (1)

where B[n] is now an integral operator; see (68) for the precise formula. The case of discrete traits is included
in this framework by taking n(t, x) =

∑
j nj(t) δxj

(x) with nj(t) the population of individuals with trait xj .
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Hierarchy of Models. Let us give a brief description of the models developed in our work and their relations.

Mechanism 1︷ ︸︸ ︷
(N -S-model)→ (S-model)→

Mechanism 2︷ ︸︸ ︷
(T -model)← (multiple-trait T -model) .

The most complex model that explicitly takes the kinetics of enzymatic reactions into account is the N -S-
model. We monitor the evolution of the cellulose chains N , structured by polymer length and the total number
of landing sites where the enzyme e2 can be attached. This model incorporates cleaving Mechanism 1, in
which the enzyme e2 is either ‘attached’ (e2A) or ‘detached’ (e2D). In addition, the model tracks the evolution
of unoccupied landing sites S and the total number of landing sites T ; these two variables are related via
T = S + e2A. Under the assumption that the cleaving rates are independent of the polymer structure, the
N -S-model reduces to the S-model. The next reduction occurs when cleaving Mechanism 1 is replaced with
Mechanism 2 in which the two stages of cleaving are combined into one. Here, the enzyme e2 is always detached
(the attachment and cleaving of cellobiose occur instantaneously) while the number of unoccupied landing sites
and total number of sites coincide T = S, leading to the T -model. Though this is the simplest model it still
captures the basic features of cellulose biodegradation. For this reason we extend it to a multiple-trait T -model
which allows for species structured by a parameter. Finally to study more specifically cooperative effects we
modify the above models to take only time scales on which the population changes into account (see Section 4).

This framework has some interest for the analysis even when it is only applied for a finite number of traits
as is the case here. Indeed our traits correspond to possible enzyme complexes and while some of them may
still be unknown, we do not expect their number to be very large. We also refer to [18] for the reason that
in general one can only expect a finite (if possibly very large) number of traits at the ecological equilibrium,
Evolutionarily Stable Strategy or ESS.

Our model therefore resembles systems of population dynamics, see [25] for instance. However, in contrast to
many of those systems, the cellulose bio-degradation process leads to both competition between individuals and
species (for the resource) and cooperative interactions. This occurs at the interspecies level as the byproduct of
the process, cellobiose, is the same independent of the enzyme complexes involved, and can benefit any individual
in the population (and not only individuals using the same complexes). Cooperation also occurs specifically
within each species (or between species that are close enough). This follows from the fact that an individual with
similar enough enzyme complexes can use a landing site created in the cellulose by the endoglucanase enzyme
complex of another individual. The mathematical models developed in our work thus lead to different (and
hopefully improved) phenomenological results for small populations (in deterministic models) since cooperation
significantly affects the dynamics, as discussed in more detail below. Those differences of behaviour for small
populations may not impact the final ESS, but they are important in the transitory regime, in particular in the
presence of mutations.

From the ecological point of view, an important conclusion of our modeling is that as soon as minimally
complex biochemical processes are involved, one cannot simply interpret the relation between the individuals
in the population (or in different sub-populations) as competitive or cooperative. When the population is very
large, the interaction looks competitive because resources are limited. On the other hand when the population
is very small, the interaction seems to be cooperative as the limitation on growth mostly comes from the ability
of the individuals to process efficiently the several steps of the biochemical process. But this is only a caricature
of the actual interaction which cannot be reduced to pure cooperation or competition.

Tail issue in deterministic selection dynamics. The cooperative nature of the interaction when populations
are small also becomes important for deterministic selection models. As sub-populations may grow or decrease
exponentially, there typically are several orders of magnitude between the large populations of dominant traits
and smaller ones. This poses an acute problem for modeling as one would need to use deterministic model for
the larger populations. But such deterministic equations do not adequately capture the stochastic nature of the
dynamics of smaller populations. This problem can however be alleviated if such small populations go extinct
since accurately modeling their behavior loses its relevance. This is precisely what happens if cooperation
is needed when the population goes below a certain threshold: The birth rate of a small population is then
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necessarily too small ensuring a negative reproduction rate and extinction. We further discuss this phenomenon
in the appendix.

Structure of the paper. In Section 2, we set notation and, following the seminal article [32], introduce
basic processes and mechanisms that constitute cellulose biodegradation. In Section 3, we develop a series of
mathematical models, that differ in complexity, for the coevolution between microorganisms which consume
cellulose and the cellulose chains. In Section 4, we carry out a qualitative analysis of the models developed in
Section 3 under the assumption that cellulose dynamics and enzymatic reactions occur on a faster time scale
than the dynamics of the microbial population. In Section 5, the multiple-trait model, developed earlier in
Section 3, is extended to a continuous-trait model. We carry out some numerical experiments in Section 6, in
which we compare the models and demonstrate that the T -model can be regarded as a limit of the S-model.
Finally, we discuss the tail issue in more detail in the appendix.

2. Cellulose bio-degradation: structure and mechanisms

2.1. Cellulose structure and enzyme systems

Cellulose is the most abundantly produced bio-polymer. It is a homo-polymer consisting of glucose units
joined by β-1, 4 bonds. In secondary walls of plants, the size of cellulose molecules (degree of polymerization)
varies from seven thousand to fourteen thousand glucose moieties per molecule. Cellulose molecules are strongly
associated through inter- and intra-molecular hydrogen-binding and van der Waals forces that result in the
formation of microfibrils, which in turn form fibrils. Cellulose molecules are oriented in parallel, with reducing
ends of adjacent glucan chains located at the same end of a micro-fibril. These molecules form highly ordered
crystalline domains interspersed with more disordered, amorphous regions. Although cellulose forms a distinct
crystalline structure, cellulose fibers in nature are not purely crystalline. The degree of crystallinity varies from
purely crystalline to purely amorphous.

To degrade plant cell material, microorganisms produce multiple enzymes known as enzyme systems [32]. For
microorganisms to hydrolyze and metabolize insoluble cellulose, extra-cellular cellulases (degradation enzymes)
must be produced that are either free or cell associated. Microorganisms have adapted different approaches to
effectively hydrolyze cellulose, naturally occurring in insoluble particles. Cellulosic filamentous fungi (and some
types of aerobic bacteria) have the ability to penetrate cellulosic substrates through hyphal extensions, thus
often presenting their free cellulase systems in confined cavities within cellulosic particles. In contrast, anaerobic
bacteria lack the ability to effectively penetrate cellulosic material and perhaps had to find alternative mecha-
nisms for degrading cellulose. This led to the development of complexed cellulase systems (called cellulosomes)
which position cellulase producing cells at the site of hydrolysis, as observed for clostridia and ruminal bacteria.

Overall there are three major components of cellulase systems: (i) endoglucanases, which randomly hydrolyze
β-1, 4 bonds within cellulose molecules, thereby producing reducing and non-reducing ends; (ii) exoglucanases,
which liberate (cleave off) either glucose (glucanohydrolases) or cellobiose (cellobiohydrolase) that serve as
major products from reducing or non-reducing ends of cellulose polysaccharide chains; and (iii) β−glucosidases
which hydrolyze cellobiose yielding glucose (the major product of cellulose hydrolysis used by microorganisms
as energy source). For details see [32].

2.2. Quantities to monitor and two basic bio-mechanisms

We first consider the case of populations with one trait. In our analysis we let n = n(t) denote the total num-
ber of the microorganism that degrades cellulose, while the total number of endoglucanases and exoglucanases
produced by the microorganism are denoted by e1 = e1(t) and e2 = e2(t), respectively.

We view cellulose as a crystalline conglomerate of fibers (chains of polysaccharides). According to our
discussion above, during the first stage of the degradation the endoglucanase enzyme e1 weakens fibers, which
means that e1 randomly cuts the fibers by creating reducing and non-reducing ends that then serve as landing
sites for exoglucanases e2. Viewing cellulose as a three-dimensional structure, one can imagine that structure
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with punctures or cuts after the first stage. It is still the same cellulose but with more ‘cuts’ that serve as
landing sites for the exoglucanase enzymes e2.

There are two different complexes of exoglucanases that are able to cleave off (liberate) cellobiose units from
the cellulose chains. These are exoglucanase CBHI and exoglucanase CBHII. The enzymes of the first type are
able to attach to reducing ends, and the second to non-reducing ends (see [32, p. 512]). In our models, for
simplicity, we do not distinguish between the two types; both are represented by e2. For this reason, we do not
differentiate between reducing and non-reducing ends, and call them ‘landing sites’ instead. We add that each
landing site (created by the endoglucanase e1) always contains one reducing end and one non-reducing end. In
our model, however, we allow each landing site to host only one enzyme. Once the exoglucanase e2 lands on
the chain, it cleaves off cellobiose from the chain of polysaccharides. In this treatment we do not consider the
third type of enzyme (β−glucosidase) and treat cellobiose as the major product of degradation. We instead
assume that some portion θp ∈ [0, 1] of cellobiose is consumed by the microorganism that produced it, while the
rest diffuses and is freely available for general consumption. We let p(t) denote the total of the freely available
cellobiose.

Thus in our model, there are two main stages in which the exoglucanase e2 produces cellobiose p(t): first,
the enzyme locates a landing site and attaches itself to the chain there; next, it keeps cleaving off cellobiose
units at a certain rate until it either disintegrates or detaches from the chain. This leads to two basic modeling
approaches, which we call cleaving mechanisms.

2.2.1. Cleaving Mechanism 1

Since the time spent by an individual exoglucanase enzyme e2 locating a landing site may differ significantly
from the time it is attached to the landing site, it is useful to consider two states for exoglucanase, namely
detached and attached states. In the first mechanism we distinguish them, letting e2D(t) represent the amount
of detached e2 (which may wander freely or on a leash, that is attached to a bacterial cell wall), and e2A(t)
the amount attached to a landing site. Denoting the total number of landing sites by T (t) and the number of
unoccupied landing sites by S(t), it then follows that

T (t) = S(t) + e2A(t) . (2)

We suppose that, at any moment of time, unoccupied spots S(t) become occupied (or attacked) by the
detached enzymes e2D at a certain rate to be described. Next, we assume that an individual attached enzyme
e2A cleaves off cellobiose units from the cellulose chain, again with a given rate. Also, we assume that some
proportion of the (attached) enzyme e2A detaches from a landing site, and that some fraction θr ∈ [0, 1] of those
sitesbecome unavailable for landing, that is, the landing sites are destroyed.

2.2.2. Cleaving Mechanism 2

The second mechanism is somewhat simplified. It may be used to describe complex cellulases where exog-
lucanases are not entirely free (they are attached to bacterial cell walls, and once bacteria leaves the spot the
enzyme becomes detached from the landing site as well). Here we suppose that at any moment of time, all
existing T (t) landing sites are available for an attack by the enzyme e2. The landing sites T (t) are attacked with
a certain rate b(T (t)) and a certain (average) amount q > 0 of cellobiose units is cleaved off by each individual
enzyme e2, after which the enzyme e2 detaches itself. We view such an attack as instantaneous. Thus, after
such an (instantaneous) attack, all T (t) landing sites are again unoccupied. We will assume that after the
attack a certain portion θr ∈ [0, 1] of the (attacked) landing sites become unavailable, that is, destroyed. In
that scenario the two processes, finding a landing site and cleaving off cellobiose, are lumped together (with a
hidden assumption that enzymes cannot remain attached to a chain for a very long time).

Remark 2.1. This first mechanism is more realistic since it takes into account time spent by the enzyme on a
site. This mechanism can be employed for modeling systems where both non-complex and complex cellulases
are present.
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Remark 2.2. In the second mechanism the landing sites T (t) serve as ”prey” and e2 as ”predators”, with one
difference: the enzymes attack the prey, use it and leave it alone. After an attack only a certain proportion of
the sites is destroyed, while the rest is still usable.

3. Cleaving Models

We now develop several models of varying complexity to describe cellulose biodegradation. We begin with
a one-trait model describing cleaving mechanism 1, which retains the most detailed cellulose structure. This
N -S system is too cumbersome to be effectively analyzed, so we reduce it by removing the detailed cellulose
structure, to obtain the S system, a set of 7 equations which models cleaving mechanism 1. We then modify
the S system to model cleaving mechanism 2, which yields the T system, consisting of 6 equations. Finally, we
adapt the simplest of these, the T system, to a multiple trait model, in which there can be several species of
microorganism consuming the same cellulose.

3.1. N-S-model

We first consider a model in which we monitor groups of cellulose chains consisting of l ≥ 1 cellobiose units;
in that case we say that the chain has length l. This allows us to develop a fundamental model incorporating
cleaving mechanism 1.
Assumptions and notation. Cellulose chains may have different topological configurations: they could be linear
or rectangular (when fibers are embedded in a lignin matrix) or they could have a random three-dimensional
structure. Monitoring the topology increases the complexity, but it does not provide a better tool for studying
the population dynamics. After all, it is the number of landing spots that matters rather than the configuration
of the cellulose chains. Thus we make no assumption about the configuration and monitor only the length of
its constituent pieces. Another assumption we make is that the enzyme e1 produces a landing site without
physically cutting the chain. This assumption decreases complexity in the model while it does not change the
dynamics. Indeed, if we allow e1 to physically cut a chain in the model, then the chain could be split into two
parts when e1 acts. In that case, the number of landing sites would be the same as in the scenario when the
landing site is created without a physical cut. Finally, we impose the requirement that at most one landing site
per unit of cellobiose is allowed; this reflects the fact that cellulose chains represent systems of discrete units.

We say that a cellulose chain is in the (l, i)-state, or is an (l, i)-chain, if it has length l (so consists of l ≥ 1
cellobiose units) and i ∈ {0, 1, . . . , l} landing sites (previously made by enzyme e1), and let N l,i(t) denote the
number of (l, i)-chains. Recall that p denotes the number of cellobiose units available for general consumption,
e1 denotes the number of endoglucanase enzymes, which produce landing sites, and e2D denotes the number
of detached exoglucanase enzymes. We refine the attached exoglucanase to refer to those enzymes attached to

chains in the (l, i)-state by el,i2A, where the superscripted indices (l, i) are in the set

(l, i) ∈ IL := {(l̃, ĩ) ∈ Z× Z : 1 ≤ l̃ ≤ L, 0 ≤ ĩ ≤ l̃} . (3)

Here L stands for the maximal number of cellobiose units in cellulose chains. We also use the convention that

N l,i ≡ 0 if (l, i) 6∈ IL,

el,i2A ≡ 0 if (l, i) 6∈ IL or i = 0 .
(4)

Enzyme dynamics. We assume that the rates of production of the enzymes e1, e2 by the microorganism and
their degradation rates are fixed. The enzymes e1 and e2 are catalyzers which stay in the system as long as
they “live”. Then e1 satisfies

∂t e1(t) = b1n(t)− d1e1(t) with b1, d1 > 0 . (5)
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Next, the number of landing sites on (l, i)-chains is T l,i = iN l,i, so the number of unoccupied landing sites
Sl,i(t) is

Sl,i(t) = T l,i(t)− el,i2A(t) = iN l,i(t)− el,i2A(t). (6)

Neglecting saturation effects, we suppose that unoccupied sites Sl,i are attacked by e2D with the rate βl,iSl,i.
Also, we assume that enzyme e2 located on a chain in (l, i)-state (randomly) detaches from the chain with rate
σl,i > 0. We let γl,ir > 0 denote the decay rate of an individual landing site (whether it is occupied or not) and
assume that if an occupied landing site degrades then the attached enzyme e2A disintegrates together with it.
This leads to the following set of equations that monitor the dynamics of the enzyme e2:

∂te2D(t) = b2n(t)−
∑
l,i

βl,iSl,i(t) e2D(t) +
∑
l,i

σl,i el,i2A(t)− d2D e2D(t)

= b2n(t)−
∑
l,i

[
βl,i
(
iN l,i(t)− el,i2A(t)

)
e2D(t)− σl,i el,i2A(t)

]
− d2D e2D(t)

∂te
l,i
2A(t) = βl,iSl,i(t) e2D(t)−

(
σl,i + d l,i2A + γl,ir

)
el,i2A

= βl,i
(
iN l,i(t)− el,i2A(t)

)
e2D(t)−

(
σl,i + d l,i2A + γl,ir

)
el,i2A

(7)

where d2D > 0 and d l,i2A > 0 are the degradation rates of e2D and el,i2A, respectively, and b2 > 0 is the production
rate of e2, which equals that of e2D.

Chain dynamics. We neglect saturation effects and assume that the rate with which enzymes e1 produce landing
sites on chains in the (l, i)-state is

αl,i(l − i)N l,i(t)e1(t) = α̂l,iN l,i(t)e1(t) , with α̂l,i = αl,i(l − i) (8)

where the multiplier (l − i) reflects the requirement that only one landing site per cellobiose unit is allowed.
We assume that a freshly made landing site cannot be instantaneously occupied and different cuts don’t occur
simultaneously, so that (8) is the transition rate of states (l, i)→ (l, i+ 1) due to the action of e1.

Recall that γl,ir > 0 is the decay rate of an individual landing site on a chain in (l, i)-state, so that the rate
of transition (l, i)→ (l, i− 1) due to degradation of landing sites is

γ̂l,iN l,i(t), with γ̂l,i = iγl,ir . (9)

Let ql,i > 0 denote the rate of production of cellobiose by an individual enzyme attached to an (l, i)-chain.

Then, the total rate of cellobiose production by the enzymes el,i2A is

ql,iel,i2A(t). (10)

The rate ql,i can be expressed as
ql,i = cl,i + pl,i

where, cl,i is the rate of cleaving that results in the transition (l, i) → (l − 1, i) and pl,i is the rate of cleaving

that results in the transition (l, i)→ (l− 1, i− 1). The latter transition occurs when an enzyme el,i2A cleaves off
a cellobiose unit and when moving along the chain reaches the next cellobiose unit that also contains a landing
site (this results in the decrease of landing sites by one on the given chain). We note that cl,l = cl,0 = 0 and
pl,0 = pl,1 = 0 for any l.

Let θr > 0 denote the proportion of landing sites that get destroyed after el,i2A detaches from a chain or dies.
This contributes to the transition (l, i)→ (l, i− 1) and the corresponding rate is

θ̂l,i el,i2A(t) with θ̂l,i = θr(σ
l,i + d l,i2A) (11)
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Combining (8)–(11) we obtain the equations that monitor the dynamics of N l,i(t), namely

∂tN
l,i(t) = rl,i +

(
α̂l,i−1N l,i−1(t)− α̂l,iN l,i(t)

)
e1(t) +

(
γ̂l,i+1N l,i+1(t)− γ̂l,iN l,i(t)

)
+
(
cl+1,iel+1,i

2A + pl+1,i+1el+1,i+1
2A − (cl,i + pl,i)el,i2A

)
+
(
θ̂l,i+1 el,i+1

2A (t)− θ̂l,i el,i2A(t)
)
− γl,i% N l,i(t),

(12)

where rl,i is the unit rate of production of cellulose, and γl,i% is the rate at which the cellulose naturally decays or
becomes unavailable to the microorganism (that is, decay not directly attributable to the bacteria). We assume
for simplicity that the cellulose provided by the environment has no landing sites, so that rl,i = 0 for i ≥ 1, and
in particular, the sum

∑
i i r

l,i = 0.
When polymer chains are long, that is l is large, and the landing sites are spaced out, which happens when i

is small relative to l, the coefficients pl,i can be neglected. To simplify the equation (12) we drop the coefficients
pl,i except when i = l, corresponding to the boundary case when the number of sites l equals to the number of
cellobiose units. The coefficients pl,l cannot be dropped because cleaving cellobiose on the chain in state (l, l)
always leads to (l− 1, l− 1). Moreover, dropping the coefficients pl,l would lead to a loss of conservation of the
total cellulose in the system when consumers are not present. This assumption leads to

ql,i = cl,i for l 6= i and ql,l = pl,l

and hence (12) becomes

∂tN
l,i(t) = rl,i +

(
α̂l,i−1N l,i−1(t)− α̂l,iN l,i(t)

)
e1(t) +

(
γ̂l,i+1N l,i+1(t)− γ̂l,iN l,i(t)

)
+
(
ql+1,i el+1,i

2A (t) + δliq
l+1,i+1el+1,i+1

2A − ql,i el,i2A(t)
)

+
(
θ̂l,i+1 el,i+1

2A (t)− θ̂l,i el,i2A(t)
)
− γl,i% N l,i(t).

(13)

where δli denotes the Kronecker delta.

Population dynamics. Let θp ∈ [0, 1] denote the proportion of produced cellobiose that becomes available for
everyone. Then, using (10), the equations for the total amount p(t) of cellobiose available for everyone, and the
total population n(t) of the microorganism are respectively

∂tp(t) = θp
∑
l,i

ql,iel,i2A(t)− γ n(t) p(t)− γp p(t), and

∂tn(t) =
µn(t)

n̄+ n(t)

(
γ p(t) + (1− θp)

∑
l,i

ql,i el,i2A(t)

)
− γn n(t),

(14)

where γ is the consumption rate, µ is the conversion efficiency, and γp, γn are decay rates of p and n, respectively.
Here n̄ represents a critical population threshold: if n is large, n = O(n̄), the growth depends only on the
cellobiose supply, while if n is small, n� n̄, the growth is linear but with small growth rate, so the population
is unlikely to survive (since µ/n̄ < γn).

Summary. Figure 1 shows possible states of the resource, state transitions and the rates at which these occur.
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N l,iN l,i−1 N l,i+1

N l−1,iN l−1,i−1

N l+1,i N l+1,i+1

δliq
l,iel,i2A (1 − δli)q

l,iel,i2A

α̂l,iN l,ie1θ̂l,iel,i2A + γ̂l,iN l,i

α̂l,i−1N l,i−1e1 θ̂l,i+1el,i+1
2A + γ̂l,i+1N l,i+1

ql+1,iel+1,i
2A δliq

l+1,i+1el+1,i+1
2A

Figure 1. Transition of cellulose chains.

Remark 3.1. The processes of creating a landing site or cleaving off a cellobiose unit may depend on the
configuration of the chain, the crystallinity of the cellulose as well as the lifetime of the enzymes. Thus it is
possible that within a given period of time (no matter how short) more than one landing site is created or two
or more cellobiose units are cleaved off from the same chain. For simplicity, we discount transitions other than
(l, i)→ (l, i+ 1) and (l, i)→ (l− 1, i), essentially assuming instantaneous transition. This approach is justified
provided that the number and size of chains is very large compared to the amount of enzymes e1, e2, and the
likelihood that two landing sites are created or more than two cellobiose units are cleaved off from the same
chain simultaneously (or during a short period of time) is extremely small.

Another way to justify this assumption is to consider a time-continuous Poisson counting process, that
corresponds to the events of creating a landing site and/or cleaving off cellobiose. Any instance when a landing
site is created (that is the moment it becomes available for use by e2) or cellobiose unit is cleaved off the chain can
be counted as an event. It is well-known that the probability of two or more events happening instantaneously is
zero (in other words the probability that two events take place over the time ∆t is o(∆t); for details see [33,40].

3.2. Reduction to S-model for Cleaving Mechanism 1

We now develop a simpler model by reducing the N -S-model, consisting of (5), (7), (13) and (14). It is
convenient to allow the indices l and i to run through all of Z. This augments the previously defined system,

but by choosing appropriate constants, we can ensure that N l,i and el,i2A vanish for all times whenever l ≤ 0,

i < 0, or i > l and , in addition, el,02A = 0 for any l. We then define the quantities

%(t) =
∑
l,i

lN l,i(t), e2A(t) =
∑
l,i

el,i2A(t),

T (t) =
∑
l,i

T l,i(t) =
∑
l,i

iN l,i(t), S(t) =
∑
l,i

Sl,i(t),
(15)

which represent the total number of cellulose units, attached exoglucanase enzymes, landing sites and unoccupied
sites, respectively. Note that each of these sums is finite provided we specify appropriate initial conditions. We
next assume that the constants are independent of l and i, so that for each l, i ∈ Z,

βl,i = β , σl,i = σ , γl,ir = γr , d l,i2A = d2A, αl,i = α, ql,i = q , γl,i% = γ% . (16)
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Summing over l, i in (7) and using (6), we get

∂te2D(t) = b2n(t)− βS(t)e2D(t) + σe2A(t)− d2D e2D(t),

∂te2A(t) = βS(t)e2D(t)−
(
σ + d2A + γr

)
e2A(t) .

(17)

To obtain equations for % and T , we scale and add equations (13). First, we recall∑
l,i

i rl,i = 0 and define r =
∑
l,i

l rl,i =
∑
l

l rl,0 , (18)

so that r represents the total production of cellulose by the environment. Using (8) and making the change of
variable j = i− 1 we obtain∑

l,i

i
(
α̂l,i−1N l,i−1(t)− α̂l,iN l,i(t)

)
= α

∑
l,i

(
i(l − (i− 1))N l,i−1(t)− i(l − i)N l,i(t)

)
= α

(∑
l,j

(j + 1)(l − j)N l,j(t)−
∑
l,i

i(l − i)N l,i(t)
)

= α
(∑
l,j

(l − j)N l,j(t)
)

= α
(
%(t)− T (t)

)
and similarly, using (9) and j = i+ 1,∑

l,i

i
(
γ̂l,i+1N l,i+1(t)− γ̂l,iN l,i(t)

)
= γr

∑
l,i

(
i(i+ 1)N l,i+1(t)− i2N l,i(t)

)
= γr

(∑
l,j

(j − 1)jN l,j(t)−
∑
l,i

i2N l,i(t)
)

= −γr
∑
l,j

jN l,j(t) = −γrT (t) .

Next, recalling that eL+1,i
2A ≡ 0 for all i, we compute

L∑
l=1

l∑
i=0

i
(
ql+1,i el+1,i

2A + δliq
l+1,i+1el+1,i+1

2A − ql,i el,i2A

)
= q

L∑
k=2

k−1∑
i=0

iek,i2A − q
L∑
l=1

l∑
i=0

iel,i2A + q

L−1∑
l=1

lel+1,l+1
2A

= −q
L∑
l=1

l el,l2A + q

L∑
l=2

(l − 1)el,l2A

= −q
L∑
l=1

el,l2A.

(19)
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and, using (11), ∑
l,i

i
(
θ̂l,i+1 el,i+1

2A (t)− θ̂l,i el,i2A(t)
)

= θr(σ + d2A)
∑
l,i

(
i el,i+1

2A (t)− i el,i2A(t)
)

= θr(σ + d2A)
(∑
l,j

(j − 1) el,j2A(t)−
∑
l,i

i el,i2A(t)
)

= −θr(σ + d2A)
∑
l,j

el,j2A(t) = −θr(σ + d2A)e2A(t) .

Combining the above identities with (13) and (15) we conclude

∂tT (t) = ∂t

(∑
l,i

iN l,i(t)
)

= α
(
%(t)− T (t)

)
e1(t)− θr(σ + d2A) e2A(t)− (γr + γ%)T (t)− q

L∑
l=1

el,l2A.

(20)

Next, referring to (6), subtracting ∂te2A from (20) and using (17), we obtain

∂tS(t) = α
(
%(t)− S(t)− e2A(t)

)
e1(t)− q

L∑
l=1

el,l2A − βS(t)e2D(t)

+
(

(1− θr)(σ + d2A)− γ%
)
e2A(t)− (γr + γ%)S(t) .

(21)

We now multiply each term on the right-hand side of (13) by l and sum to get an equation for %(t). First,
using (8) and (9), we get∑

l,i

l
(
α̂l,i−1N l,i−1(t)− α̂l,iN l,i(t)

)
= α

(∑
i,j

(l − j)N l,j(t)−
∑
l,i

(l − i)N l,i(t)
)

= 0 ,

∑
l,i

l
(
γ̂l,i+1N l,i+1(t)− γ̂l,iN l,i(t)

)
= γr

(∑
l,j

l j N l,j(t)−
∑
l,i

l iN l,i(t)
)

= 0 .

Similarly, we compute

L∑
l=1

l∑
i=0

l
(
ql+1,i el+1,i

2A + δliq
l+1,i+1el+1,i+1

2A − ql,i el,i2A

)
= q

L∑
l=2

l−1∑
i=0

(l − 1)el,i2A − q
L∑
l=1

l∑
i=0

l el,i2A + q

L−1∑
l=1

lel+1,l+1
2A

= q

L∑
l=2

l−1∑
i=0

(l − 1)el,i2A − q
L∑
l=1

l∑
i=0

(l − 1)el,i2A − qe2A + q

L∑
l=2

(l − 1)el,l2A

= −qe2A.

(22)

and, using (11),∑
l,i

l
(
θ̂l,i+1 el,i+1

2A (t)− θ̂l,i el,i2A(t)
)

= θr(σ + d2A)
∑
l

l
[∑

i

el,i+1
2A (t)−

∑
i

el,i2A(t)
]

= 0.
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Combining the above expressions and using (15),(16) and (18), we obtain

∂t%(t) = ∂t

(∑
l,i

lN l,i(t)
)

= r − q e2A(t)− γ% %(t) . (23)

Finally, by (10), (15) and (16), equations (14) become

∂tp(t) = θp q e2A(t)− γ n(t) p(t)− γp p(t)

∂tn(t) =
µn(t)

n̄+ n(t)

(
γ p(t) + (1− θp) q e2A(t)

)
− γn n(t).

(24)

S-system. Note that the equation for S in (21) can be expressed as
∂tS(t) = α

(
%(t)− S(t)− e2A(t)

(
1 +

qeb2A
αe1e2A

))
e1(t)− β S(t) e2D(t)

+
(

(1− θr) (σ + d2A)− γ%
)
e2A(t)− (γr + γ%)S(t) , eb2A :=

L∑
l=1

el,l2A.

(25)

When the polymer chains are large, that is L >> 1, one would expect that the proportion of cellobiose units
lN l,l would be small compared to the total number of cellobiose % =

∑
l,iN

l,i and therefore one can expect

e2Ae1 >> eb2A. Then, combining the above equations and dropping the term
q eb2A
αe1e2A

in (25) we obtain the
S-system,

Combining the above equations we obtain the S-system,

∂t e1(t) = b1 n(t)− d1 e1(t)

∂te2D(t) = b2 n(t)− β S(t) e2D(t) + σ e2A(t)− d2D e2D(t)

∂te2A(t) = βS(t) e2D(t)−
(
σ + d2A + γr

)
e2A(t)

∂tS(t) = α
(
%(t)− S(t)− e2A(t)

)
e1(t)− β S(t) e2D(t)

+
(

(1− θr) (σ + d2A)− γ%
)
e2A(t)− (γr + γ%)S(t)

∂t%(t) = r − q e2A(t)− γ% %(t)

∂tp(t) = θp q e2A(t)− γ n(t) p(t)− γp p(t)

∂tn(t) =
µn(t)

n̄+ n(t)

(
γ p(t) + (1− θp) q e2A(t)

)
− γn n(t).

(26)

Remark 3.2. Note that system (26) is obtained by reduction under the assumption that rates are independent
of the length of the chain and the number of landing sites. It is a closed system of seven ODE’s which still keeps
the important cascading structure of enzymes acting one after another on the cellulose. However, this model
assumes that the topology of the cellulose chains (their length and the location of landing sites) does not affect
the biodegradation process.

Remark 3.3. We make the assumption that the coefficients are constant to derive the S-system. Although
this assumption is clearly non-physical, it yields a useful model. We justify dropping the extra correction term
which is small relative to other terms, in the expectation that the mathematical error in doing so is much smaller
than the modeling errors made by taking the mean coefficient; this is justified by the numerical experiments in
Section 6.
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3.2.1. S-system with fast transitions of e2A and e2D

In this section we will get a modified version of the S-system given by (26) assuming that the transitions
e2D → e2A and e2A → e2D are fast.

Recall that βS is the rate of transition of e2D to e2A and σ is the rate of transition to e2D. Thus, if one
assumes that β, σ →∞ so that β

σ stays bounded, then the equation (26)3 tends to the equilibrium relation

0 = (β/σ)S(t) e2D(t)− e2A(t) or e2A(t) = ωS(t) e2D(t) with ω :=
β

σ
. (27)

Thus, the total number of enzymes e2 can be written as

e2 = e2D + e2A = e2D + ωSe2D = e2D(1 + ωS),

so we obtain

e2D = e2RD(ωS) and e2A = e2RA(ωS) where RD(x) :=
1

1 + x
, RA(x) :=

x

1 + x
. (28)

Assume next that d2A = d2D. Then the total number of enzymes e2 satisfies the equation

∂te2 = b2n− d2e2 − γre2A = b2n− (d2 + γrRA(ωS))e2 (29)

where we have set d2 = d2A = d2D.
Thus, replacing (26)2,3 with (27) and (29) we obtain the system, called the S2 system,

∂t e1(t) = b1 n(t)− d1 e1(t)

∂te2(t) = b2 n(t)− (d2 + γrRA(ωS))e2

∂tS(t) = α
(
%(t)− S(t)− e2RA(ωS)

)
e1(t)− β S(t) e2RD(ωS)

+
(

(1− θr) (σ + d2A)− γ%
)
e2RA(ωS)− (γr + γ%)S(t)

∂t%(t) = r − q e2RA(ωS)− γ% %(t)

∂tp(t) = θp q e2RA(ωS)− γ n(t) p(t)− γp p(t)

∂tn(t) =
µn(t)

n̄+ n(t)

(
γ p(t) + (1− θp) q e2RA(ωS)

)
− γn n(t).

(30)

The system (30) is a version of the S-system with fast transitions of e2A and e2D.

3.3. Cleaving Mechanism 2: T -model

We now modify the S2-system derived for the cleaving Mechanism 1 to a model derived for the cleaving
Mechanism 2. We directly work from the already reduced S2-system (30). Note that it is of course possible
to derive this model from a more fundamental model in which we directly implement a corresponding cleaving
mechanism on chains of length l, similar to our derivation of the N -S model above.

In Mechanism 2, we do not distinguish between attached and detached enzymes e2. In addition, we do not
distinguish between occupied and unoccupied sites, preferring to count the total number of available landing
sites T (t), which satisfies (2). Our goal is to rewrite the S2-system (26) in terms of T (t) rather than S(t).

Recall that the S2-system (30) is a version of the S-system obtained under the assumption that transitions
of the enzyme e2 happen fast, which is equivalent to the requirement (27). Thus, adding (26)3 and (26)4 and
using the equilibrium relation (27), we conclude that the total number of landing sites T = S + e2A (with fast
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e2 transitions) satisfies the equation

∂tT (t) = α
(
%(t)− T (t)

)
e1(t)− θr (σ + d2) e2(t)RA(ωS)− (γr + γ%)T (t) , (31)

where we employed the relationship e2A = e2RA(ωS) and e2D = e2RD(ωS), and the assumption d2 = d2D =
d2A.

We next consider the action of the enzyme e2 in the Mechanism 2. In this model, the concentration of e2A

enzymes is always low as those enzymes are used and degraded immediately after they are produced. The
landing, cleaving off of a cellobiose unit, and detaching all occur at approximately the same instant. Thus all
enzymes e2 should be considered unattached, so should most closely resemble e2D. To model this scenario we
consider the S2-system in the asymptotic regime in which

ω =
β

σ
→ 0 and qω = q

β

σ
→ q̂ . (32)

The first assumption makes sure that the enzyme e2 detaches immediately after the attack and as a consequence
the proportion between e2A and e2D tends to zero, while the second one is necessary for the population n(t) to
survive.

Observe that under assumptions (32)

R2A(ωS) ∼ ωS , T = S + e2RA(ωS) ∼ S , (σ + d2)e2RA(ωS) ∼ βe2T , qe2RA(ωS) ∼ q(β/σ)e2T

and so the S2-system transforms into the T -system for Mechanism 2:

∂t e1(t) = b1 n(t)− d1 e1(t)

∂te2(t) = b2 n(t)− d2e2(t)

∂tT (t) = α
(
%(t)− T (t)

)
e1(t)− θr βe2(t)T (t)− γ̂T T (t)

∂t%(t) = r − q̂ T (t)e2(t)− γ% %(t)

∂tp(t) = θp q̂ T (t)e2(t)− γ n(t) p(t)− γp p(t)

∂tn(t) =
µn(t)

n̄+ n(t)

(
γ p(t) + (1− θp) q̂e2(t)T (t))

)
− γn n(t).

(33)

where we have set q̂ = q (β/σ) and γ̂T = γr + γ%.
Comparing this system to (26) modeling Mechanism 1, we make the following observations: first, the dynamics

of e2 and T are simpler than those of e2A, e2D and S, because we do not have to account for the different processes
for e2D and e2A. On the other hand, the cleaving rate changes from the linear term q e2A in the S-system,
to the nonlinear term q̂ T e2 which models simultaneously finding and attacking a landing site. Note that the
coefficient q̂ = q (β/σ) combines those coefficients corresponding to finding sites and cleaving off in Mechanism
1, while γ̂T = γr + γ% is the combined rate of degradation of landing sites.

3.4. Multiple trait T -model

We now extend the T -model to a model that allows for several species of microorganisms feeding on the
same cellulose. Specifically, we introduce populations ni, with i ∈ {1, ...M}, equipped with different traits xi;
throughout this section, we use superscripts to distinguish traits. We assume that Mechanism 2 is used by each
population to cleave off cellobiose, while the different populations have different rates for the various actions.

As in the T -model, we assume that microorganism ni produces endoglucanases enzymes ei1 that make landing
sites, and exoglucanases enzymes ei2 that cleave off cellobiose from the cellulose chains. In analogy with (33)1,2,
we suppose that the enzymes ei1, ei2 are produced by the microorganism ni and degrade with fixed rates. This
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gives the equations

∂te
i
1(t) = bi1 n

i(t)− di1 ei1(t)

∂te
i
2(t) = bi1 n

i(t)− di2 ei2(t)
(34)

where bi1, bi2 and di1, di2 are, respectively, the enzyme generation and death rates, i ∈ {1, ...M}.
Next, for simplicity we will not differentiate between landing sites created by the enzymes of different species.

In other words, the landing sites made by ei1 are allowed to be used by any enzyme ej2 for all j. Then, following
Mechanism 2, and neglecting saturation effects, we assume that enzymes ei1 make landing sites on the cellulose
% with the rate

αi
(
%(t)− T (t)

)
ei1(t),

where αi is the probability of an individual enzyme ei1 finding a spot among the %(t) − T available cellobiose
units (reflecting the requirement that only one landing site per cellobiose unit is allowed), and making a landing
site. Next, we suppose that the landing sites T are attacked by enzymes ei2 with the rate

βi T (t) ei2(t)

where βi is the probability of an individual ei2 finding and attaching to a landing spot. Finally, as above, we let
γr > 0 be the decay rate of an individual landing site and suppose that the portion θir ∈ [0, 1] of those ends is
not usable after an attack by ei2. Then, in analogy with (33)3, we obtain the equation for T for multiple trait
populations:

∂tT (t) =
∑
j

αj
(
%(t)− T (t)

)
ej1(t)−

∑
j

θjr β
j T (t) ej2(t)− γ̂T T (t). (35)

Next, we let qi be the number of cellobiose units cleaved off by ei2 during an attack. In analogy with (33)4,
the dynamics of cellulose % is then given by

∂t%(t) = r −
∑
j

q̂j T (t) ej2(t)− γ% %(t) (36)

where we set q̂i = qi βi, the combined rate of attack of ei2.
We next let θip ∈ [0, 1] denote the proportion of produced cellobiose produced by ei2 that is made available to

everyone. Then, as in (33)5, the equation for the total amount p(t) of cellobiose available to everyone is

∂tp(t) =
∑
j

θjp q̂
j ej2(t)T (t)−

∑
j

γj nj(t) p(t)− γp p(t) . (37)

where γj is the predation rate of p by nj , and γp is the decay rate of p.
Finally, we consider the dynamics of the population ni. First, recall that cellobiose p(t) is available to all

species nj , j = 1, . . . ,M . Since every species nj hunts with the predation rate γj on the cellobiose p, the growth
rate of ni may be expressed via the logistic term

µi ni(t)
γi p(t)

n̄i + 1
γi

∑
j γ

j nj
(38)

where µi is the conversion efficiency.
Next, comparing to (37), the production rate of cellobiose which is produced by ej2 and consumed directly

on the spot is given by

(1− θjp) q̂j e
j
2(t)T (t).
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We assume that in view of the homogeneity and close proximity of species, the cellobiose produced by ej2,
j = 1, . . . ,M , can be consumed by the ni; this manifests the cross species interaction. We express this as

µi (1− θjp)
νij ni

νij n̄i +
∑
s ν

sjns
q̂j ej2(t)T (t), with

∑
s

νsj = 1,

representing the contribution of the energy obtained from the direct consumption of cellobiose cleaved off by ej2
to the growth rate of ni. Combining these leads to the equation for the dynamics of the population ni,

∂tn
i(t) = µini(t)

 γip(t)

n̄i + 1
γi

∑
j γ

j nj
+
∑
j

(1− θjp) νij

νij n̄i +
∑
s ν

sj ns
q̂j ej2(t)T (t)

− γin ni(t) (39)

where γin is the death rate of the population ni.
We collect the above equations to obtain the multiple trait T -system,

∂te
i
1(t) = bi1 n

i(t)− di1 ei1(t)

∂te
i
2(t) = bi2 n

i(t)− di2 ei2(t)

∂tT (t) =
(
%(t)− T (t)

) ∑
j

αj ej1(t)−
∑
j

θjrβ
j ej2(t)T (t)− γ̂TT (t)

∂t%(t) = r −
∑
j

q̂j ej2(t)T (t)− γ% %(t)

∂tp(t) =
∑
j

θjp q̂
j ej2(t)T (t)−

∑
j

γj nj(t) p(t)− γp p(t)

∂tn
i(t) = µi ni(t)

γi p(t)

n̄i + 1
γi

∑
j γ

j nj

+ µini(t)
∑
j

(1− θjp)
νij

νij n̄i +
∑
s ν

sj ns
q̂j ej2(t)T (t)− γin ni(t)

(40)

where i = 1, . . . ,M .

3.4.1. Compatibility with the single trait model

We now show that the multiple trait T -model directly generalizes the single trait T -model by considering
two special cases of the multiple trait model, and confirming that these reduce to the single trait model.

Our first test is to assume that all but one species (say the i-th) are absent. That is, we begin with data

nj(0) = 0, and similarly ej1(0) = ej2(0) = 0, for j 6= i. Then (40) implies that for all t > 0, j 6= i, we have
nj(t) = 0. It is then evident that equations (40)1,2,3,4,5 reduce to (33)1,2,3,4,5 (for n = ni, etc), and (40)6

becomes

∂tn
i(t) = µi ni

γi p

n̄i + ni
+ µini (1− θip)

q̂i ei2 T

n̄i + ni
− γin ni,

which is exactly (33)6.
Our second test is to assume that even though there are M different traits, the coefficients are independent

of i, j, so there is no way to distinguish different populations in the model. In this case, we check the dynamics
for the total population n(t) =

∑
i n

i(t), and similarly e1 =
∑
i e
i
1 and e2 =

∑
i e
i
2. It is then clear that (40)3,4,5

become (33)3,4,5, and adding (40)1,2 over i gives (33)1,2. Finally, adding (40)6 over i yields

∂t(
∑
in
i) = µ

∑
in
i γ p

n̄+
∑
jn
j

+ µ
∑
in
i 1− θp
n̄+

∑
sn
s
q̂
∑
je
j
2 T − γn

∑
in
i,
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which is again exactly (33)6.

4. Cooperation

4.1. Cooperation in the T -model

In this section we consider the system (33) on different time scales. We assume that production of enzymes,
consumption and creation of landing sites occurs at a much faster rate than changes in the population of the
microorganism. In this case, over time scales on which the population changes, we can assume that equations
(33)1,2,3,4,5 are at equilibrium, and the dynamics is driven by the population change (33)6. This gives the system

0 = b1 n(t)− d1 e1(t)

0 = b2 n(t)− d2 e2(t)

0 = α
(
%(t)− T (t)

)
e1(t)− θr β T (t) e2(t)− γ̂T T (t)

0 = r − q̂ T (t) e2(t)− γ% %(t)

0 = θp q̂ T (t) e2(t)− γ n(t) p(t)− γp p(t)

∂tn(t) =
µn(t)

n̄+ n(t)

(
γ p(t) + (1− θp) q̂ T (t) e2(t)

)
− γn n(t).

(41)

We use (41) to eliminate all the fast variables, to obtain a single equation for the population n, so that the
population growth rate can be understood. The first two equations give

ei = ki n with ki :=
bi
di
, i = 1, 2 , (42)

and from (41)4, we have

% =
r

γ%
− q̂

γ%
T e2 =

r

γ%
− q̂ k2

γ%
T n.

Plugging these into (41)3, we get

0 =
α r k1

γ%
n− T

(α q̂ k2 k1

γ%
n2 + (αk1 + θrβ k2)n+ γ̂r

)
,

so that

T =
α r k1

γ%

n

P2(n)
, (43)

where P2(n) is the quadratic polynomial

P2(n) = c2 n
2 + c1 n+ c0,

c2 =
α q̂ k2 k1

γ%
, c1 = αk1 + θr β k2, c0 = γ̂r.

(44)

Next, using these in (33)5, it follows that

p = θp q̂ k2
T n

γ n+ γp
= θp q̂ k2

α r k1

γ%

n2

(γ n+ γp)P2(n)
. (45)

Finally, we use (43), (45) in (41)6 to get the scalar population equation

∂tn(t) = n(t)
[
B(n)− γn

]
, (46)
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where

B(n) =
µ

n̄+ n

(
γ p+ (1− θp) q̂ k2 T n

)
= µ q̂ k2

T n

n̄+ n

(
γ θp

γ n+ γp
+ (1− θp)

)
= K n2 Φ(n),

(47)

where the function Φ(n) and constant K are given by

Φ(n) =

(
θp

n+ γp/γ
+ 1− θp

)
1

(n+ n̄)P2(n)
,

K = µ q̂ k2
α r k1

γ%
=
µ q β α r b1 b2
γ% d1 d2

.

(48)

4.2. Asymptotics of B(n)

We are interested in the structure of B(n) for small populations, n � n̄. First, we note that the birth rate
B(n) is positive and satisfies

B(0) = 0 and lim
n→∞

B(n) = 0,

so that B is globally bounded.
For n small, using (47), (48) and (44), we have

B(n)

n2
= K Φ(n) ≈ K Φ(0) =

K

n̄ γ̂r

(
θp

γ

γp
+ 1− θp

)
, (49)

so that B(n) ∼ n2 for n� n̄. Thus for small populations, B(n) is convex, and so superlinear. This superlinear
birth rate is indicative of cooperative behavior.

More generally, the growth rate B(n)/n increases as long as log
(
nΦ(n)

)
does, and

∂

∂n

(B(n)

n

)
=

∂

∂n

(
K nΦ(n)

)
= K nΦ(n)

( 1

n
+
∂nΦ

Φ

)
= K nΦ(n)

( ∂

∂n
log(nΦ)

)
,

so the system exhibits cooperative behavior as long as

∂

∂n
log(nΦ) =

1

n
− θp

(n+ γp/γ)2

(
θp

1

n+ γp/γ
+ 1− θp

)−1

− 1

n+ n̄
− 2c2n+ c1

P2(n)
> 0 .

This condition is at least true for n ∈ (0, n∗), where n∗ is the smallest positive root of this expression; combining
the fractions, it is evident that n∗ is the smallest positive root of a fifth-order polynomial.

Moreover, referring to (49), we see that

∂

∂θp
K Φ(n)

∣∣∣
n=0

=
K

n̄ γ̂r

( γ
γp
− 1
)
,

which is positive if and only if γ > γp. For small population n, we expect this to persist: that is,

∂

∂θp

(B(n)

n2

)
=

∂

∂θp
K Φ(n) > 0 if and only if γ > γp.

Since θp ∈ [0, 1] is the proportion of produced cellulose which is shared, this last inequality suggests that for
small populations sharing food is beneficial in terms of growth as long as the consumption rate γ is greater than
the decay rate γp of the cleaved off cellobiose.
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4.3. Cooperation in multiple-trait T -model

As in Section 4.1, we consider the system (40) on a generational time scale. We again assume that production
of enzymes, consumption and creation of landing sites happens at a much faster rate then change in the
populations ni. In other words, we assume that the equations (40)1,2,3,4,5 are at equilibrium, and the dynamics
of the system is driven by the population equations (40)6. This results in the system

0 = bi1 n
i(t)− di1 ei1(t),

0 = bi2 n
i(t)− di2 ei2(t),

0 =
(
%(t)− T (t)

) ∑
j

αj ej1(t)−
∑
j

θjr β
j ej2(t)T (t)− γ̂T T (t),

0 = r −
∑
j

q̂j ej2(t)T (t)− γ% %(t),

0 =
∑
j

θjp q̂
j ej2(t)T (t)−

∑
j

γj nj(t) p(t)− γp p(t),

∂tn
i(t) = µi ni(t)

γip(t)

n̄i + 1
γi

∑
j γ

j nj
,

+ µi ni(t)
∑
j

(1− θjp)
νij

νij n̄i +
∑
s ν

sj ns
q̂j ej2(t)T (t)− γin ni(t).

(50)

We wish to understand the growth rate of ni as a function of n = (n1, . . . , nM ) ∈ RM . The first two equations
of (50) give

ei1(t) = ki1n
i(t), ei2 = ki2n

i, with ki :=
bi

di
, i = 1, . . . ,M . (51)

We next write n as a vector and introduce the coefficient vectors

A =
(
αj kj1

)
, B =

(
θjr β

j kj2

)
, Q =

(
q̂j kj2

)
,

Θ =
(
θjp q̂

j kj2

)
, Γ =

(
γj
)
, Nk =

(
νjk
)
,

(52)

and denote the scalar product by 〈·, ·〉. We can then rewrite (50)3,4,5 as

0 =
(
%(t)− T (t)

)
〈A,n〉 − 〈B,n〉T (t)− γ̂T T (t),

0 = r − 〈Q,n〉T (t)− γ% %(t),

0 = 〈Θ, n〉T (t)− 〈Γ, n〉 p(t)− γp p(t).

These immediately yield

%(t) =
1

γ%

(
r − T (t) 〈Q,n〉

)
and p(t) =

〈Θ, n〉
〈Γ, n〉+ γp

T (t), (53)

and, plugging in, we get

0 =
r

γ%
〈A,n〉 − τ(n)T (t), so that T (t) =

r

γ%

〈A,n〉
τ(n)

, (54)

where we have set

τ(n) =
1

γ%
〈A,n〉 〈Q,n〉+ 〈A,n〉+ 〈B,n〉+ γ̂T . (55)
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Finally, using (53) and (54) in (50)6, we can write our population system as

∂tn
i = ni

(
Bi(n)− γin

)
, (56)

where the i-th population’s birth rate is

Bi(n) =
µi γi p(t)

n̄i + 1
γi 〈Γ, n〉

+ µi
∑
j

(1− θjp) νij q̂j k
j
2 n

j

νij n̄i + 〈N j , n〉
T (t)

= µi T (t)

(
γi 〈Θ, n〉

(n̄i + 1
γi 〈Γ, n〉) (〈Γ, n〉+ γp)

+
∑
j

(1− θjp) νij q̂j k
j
2 n

j

νij n̄i + 〈N j , n〉

)

=
µi r

γ%

〈A,n〉
τ(n)

(
γi 〈Θ, n〉

(n̄i + 1
γi 〈Γ, n〉) (〈Γ, n〉+ γp)

+
∑
j

(1− θjp) νij q̂j k
j
2 n

j

νij n̄i + 〈N j , n〉

)
.

(57)

Here the two terms in the growth rate correspond to intentionally shared food and food consumed as it’s
produced, respectively.

Asymptotic behavior of Bi(n). Assuming the coefficients are positive, we make the following observations
about the birth rate Bi(n). According to (55) τ(n) is quadratic in n, while all inner products in (56) are linear.
It follows immediately that Bi(n)→ 0, and in fact Bi(n) = O( 1

n ) as n→∞.
We are more interested in the behavior for small populations, n ∼ 0. Since τ(0) = γ̂T , no denominators

vanish, and (57) yields

Bi(n) = O
(
(
∑
n)2
)

for n ∼ 0.

More precisely, recalling that

∇n〈V, n〉 = V and D2
n

(
〈V, n〉 〈W,n〉

)
= V WT +W V T ,

we see that at n = 0, the gradient of Bi vanishes, ∇nBi(0) = 0, and the Hessian of Bi is the symmetric matrix

D2
nB

i(0) =
µi r

γ% γ̂T n̄i

(
γi

γp
(AΘT + ΘAT ) +A(Q−Θ)T + (Q−Θ)AT

)
.

We cannot conclude that Bi is convex as the matrix D2
nB

i(0) is not positive definite, but because all the entries
are positive, we can conclude that the directional derivative is increasing in any direction in the positive orthant
{nk ≥ 0}, which indicates cooperative behavior.

Special Case. Now, we consider the special case when νij = 0 for i 6= j; in this case, there is no competition
for cellobiose that is not intentionally shared. In this special case, (57) becomes

Bi(n) =
µi r

γ%

〈A,n〉
τ(n)

(
γi 〈Θ, n〉

(n̄i + 1
γi 〈Γ, n〉) (〈Γ, n〉+ γp)

+
(1− θip) q̂i ki2 ni

n̄i + ni

)
=: Bi1(n) +Bi2(n).

As in the single-trait case, we again see an indication that for small populations, more sharing (represented
by the coefficient vector Θ) would be beneficial for the i-th population provided γi > γp, because it increases
the derivative ∇nBi(n): this can be seen by differentiating with respect to the vector parameter Θ. Recall that
γi > γp means that cellobiose is consumed (by ni) faster than it decays.
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Lemma 4.1. Suppose that νij = 0 for i 6= j. Let i ∈ {1, . . . ,M} be fixed and let

n0 = (n1
0, n

2
0, . . . , n

i−1
0 , 0, ni+1

0 , . . . , nM0 ) ∈ RM with nj0 ≥ 0.

Then

∂Bi2
∂ni

(n0) =
µi r

γ%

〈A,n0〉
τ(n0)

(1− θip) q̂i ki2
n̄i

> 0. (58)

Furthermore, suppose minj ᾱ
j > 0 and minj γ

j > 0. Then there exists ε > 0 such that for all maxj θ
j
p < ε, we

have
∂Bi

∂ni
(n0) > 0 for all n0 6= 0 .

Idea of proof. Equation (58) follows immediately by differentiation. When we differentiate Bi1, we introduce
negative terms each time the derivative falls on a denominator. However, each such term introduces a higher
power in the denominator, so each of those terms can be represented as a product of 〈A,n0〉/τ(n0) with terms
uniformly bounded in n0. Comparing these to (58), it follows that by choosing maxj θ

j
p < ε with ε small enough,

the sum will be positive. �

Remark 4.1. The key conclusion in Lemma 4.1 is that the birth rate Bi(n) includes some form of cooperation.
Namely, the cooperative effect is not eliminated in the multiple trait population T -model provided that νij = 0
for i 6= j. In other words, when interspecies competition for ‘ready to be digested’ resource p is not involved
then there is an Allee effect for each species. Compare it for instance with simple logistic terms like r − ni0
which decreases with ni0. In contrast Bi(n) actually penalizes populations which are too small (and populations
which are too large of course just like a logistic term). Finally, even if the conditions of Lemma 4.1 do not hold
a cooperative effect still maybe present depending on the differential DB(0).

4.4. Cooperative interactions in N-S-model

We now consider cooperation in the N -S-model as we did for the simpler models. We are interested in the
situation that the production of enzymes, consumption and creation of landing sites occurs much faster than
changes in the population of the microorganism. Thus we again assume that equations (5), (7), (13) and (14)1

are at equilibrium, and the dynamics is driven by the population change (14)2. We also assume that the length
of the cellulose chains does not exceed a given number L > 0. Then we obtain the system

0 = b1n(t)− d1e1(t)

0 = b2n(t)−
∑
l,i

[
βl,i
(
iN l,i(t)− el,i2A(t)

)
e2D(t)− σl,i el,i2A(t)

]
− d2D e2D(t)

0 = βl,i
(
iN l,i(t)− el,i2A(t)

)
e2D(t)−

(
σl,i + d l,i2A + γl,ir

)
el,i2A(t)

0 = rl,i +
(
α̂l,i−1N l,i−1(t)− α̂l,iN l,i(t)

)
e1(t) +

(
γ̂l,i+1N l,i+1(t)− γ̂l,iN l,i(t)

)
+
(
ql+1,i el+1,i

2A (t)− ql,i el,i2A(t)
)

+ δliq
l+1,l+1el+1,l+1

2A

+
(
θ̂l,i+1 el,i+1

2A (t)− θ̂l,i el,i2A(t)
)
− γl,i% N l,i(t)

0 = θp
∑
l,i

ql,i el,i2A(t)− γn(t)p(t)− γpp(t)

∂tn(t) =
µn(t)

n̄+ n(t)

(
γ +

1− θp
θp

(γn(t) + γp)
)
p(t)− γnn(t) ,

(59)
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for (l, i) ∈ IL, where δli is the Kronecker delta, the rates rl,i = 0 when i 6= 0 and we use the convention (4);
here we have used (59)5 to simplify (59)6.

To describe the dynamics, it is sufficient to express p in terms of n, which will in turn provide a scalar
autonomous differential equation for n(t). For small populations the equations (59)1−5 can be solved uniquely
in terms of n, yielding the following theorem.

Theorem 4.1. There are m, m̄ > 0 and C∞ functions

ê1(n), ê2D(n), êl,i2A(n), N̂ l,i(n), p̂(n) : (−m, m̄)→ R (60)

such that:

(i) For each n ∈ (−m, m̄) the equations (59)1−5 can be solved uniquely for e1, e2D, el,i2A, N , p in terms of
n,

e1 = ê1(n), e2D = ê2D(n), el,i2A = êl,i2A(n), N l,i = N̂ l,i(n), p = p̂(n).

(ii) The functions from (60) are given to leading order as

N̂ l,i(n) = νl,ini +O(ni+1) , (61)

with

νl,0 =
rl,0

γl,0%
and νl,i = νl,i−1 α̂l,i−1

γ̂l,i + γl,i%

b1
d1
, i ≥ 1 ,

and with

ê1(n) =
b1
d1
n, ê2D(n) =

b2
d2D

n+O(n2)

êl,i2A(n) = i

(
b2β

l,i νl,i

d2D(σl,i + d l,i2A + γl,ir )
+O(n)

)
ni+1

γp
θp
p̂(n) = p̄(n)n2, where p̄(n) =

b2
d2D

∑
l

ql,1
βl,1 νl,1

(σl,1 + d l,12A + γl,1r )
+O(n) . (62)

Proof. For fixed t, we regard (59)1-(59)5 as an algebraic system, which can be solved uniformly in t, for small
n. First, (59)1 yields

e1 = k1 n, with k1 =
d1

b1
,

and subtracting all of (59)3 from (59)2 and solving gives

e2D =
b2
d2D

n−
∑
l,i

d l,i2A + γl,ir
d2D

el,i2A. (63)

Next, (59)5 yields

p =
θp

γn+ γp

∑
l,i

ql,i el,i2A,

while (59)3 gives

el,i2A = iN l,i

(
1 +

σl,i + d l,i2A + γl,ir
βl,i e2D

)−1

= ηl,iN l,i, (64)
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where we have set

ηl,i = i
(

1− 1

1 + ζl,i e2D

)
= i ζl,i e2D

(
1 +O(e2D)

)
, with

ζl,i =
βl,i

σl,i + d l,i2A + γl,ir
.

Now, regarding n and e2D as fixed, we use (64) in (59)4 to get

0 = rl,i +
(
α̂l,i−1N l,i−1 − α̂l,iN l,i

)
k1 n+

(
γ̂l,i+1N l,i+1 − γ̂l,iN l,i

)
+
(
ql+1,i ηl+1,iN l+1,i − ql,i ηl,iN l,i

)
+ δl,i q

l+1,l+1 ηl+1,l+1N l+1,l+1

+
(
θ̂l,i+1 ηl,i+1N l,i+1 − θ̂l,i ηl+1,iN l,i

)
− γl,i% N l,i,

(65)

which we regard as a linear system,

AN = r, for NT =
(
N1,0, N1,1, N2,0, N2,1, N2,2, N3,0, . . . NL,L

)
.

When expressed in matrix form, the matrix A is sparse and upper Hessenberg, with subdiagonal entries
−α̂l,i−1k1n. It follows that the matrix is upper triangular for n = 0, so invertible for small n, and we get
a unique solution N l,i = N l,i(n, e2D).

Setting n = e2D = 0, and recalling that rl,i = 0 for i > 0 and γ̂l,0 = 0, (65) gives the initial solution

N l,0(0, 0) =
rl,0

γl,0%
, N l,i(0, 0) = 0, i > 0,

and so using (64) and (63), we get in particular el,i2A = ηl,i = 0 whenever n = e2D = 0.
We now plug the solution N l,i = N l,i(n, e2D) into (64), (63) to get

G(n, e2D) := e2D −
b2
d2D

n+
∑
l,i

d l,i2A + γl,ir
d2D

ηl,iN l,i(n, e2D) = 0,

relating e2D to n. We calculate
∂G

∂e2D

∣∣∣
(0,0)

= 1,

so the implicit function theorem implies that, for n small enough, there is a unique function e2D(n) such that
G(n, e2D(n)) = 0, and moreover,

e2D =
b2
d2D

n+O(n2).

Finally, we have

N l,i(n) = N l,i(0, 0) +O(n) and ηl,i = i
b2 ζ

l,i

d2D
n+O(n2),

so according to (64), we have

el,i2A = O(n2), so also p = O(n2).

Moreover, for small n, we can write (65) for i ≥ 1 as

0 =α̂l,i−1 k1 nN
l,i−1 −

(
γ̂l,i + γl,i% +O(n)

)
N l,i

+
(
γ̂l,i+1 +O(n)

)
N l,i+1 + δl,i q

l+1,l+1 ηl+1,l+1N l+1,l+1,
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and we can solve this inductively in i, to get

N l,i =
α̂l,i−1 k1

γ̂l,i + γl,i%
N l,i−1 n

(
1 +O(n)

)
,

from which the result follows. �

Birth rate B[n]. By Theorem 4.1, and using (59)6 and (62), we conclude that for small populations n ∈ [0, m̄),
the dynamics is again driven by the equation

∂tn(t) = n(t)
(
B(n)− γn

)
,

where now the birth rate B(n) is given by

B(n) =
µ

n̄+ n(t)

(
γ +

θp − 1

θp
(γn+ γp)

)
p̂(n)

=
µn2

n̄+ n(t)

( γ
γp
θp +

(
1− θp

)
(
γ

γp
n+ 1)

)
p̄(n) .

(66)

We now divide B(n) by n2 and differentiate with respect to θp. Since p̄ is independent of θp, we obtain

∂

∂θp

(
B(n)

n2

)∣∣∣∣
n=0

=
µ

n̄

( γ
γp
− 1
) b2
d2D

mc

∑
l

ql,1
βl,1 νl,1

(σl,1 + d l,12A + γl,1r )
,

so that
∂

∂θp

(
B(n)

n2

)∣∣∣∣
n=0

> 0 if and only if γ > γp .

Thus we arrive at a similar conclusion to that of the T -model: that is, for small populations, sharing food
(within the species) is beneficial in terms of growth as long as the consumption rate γ is greater than the decay
rate γp of the cleaved off cellobiose.

5. A Model in the Continuous Setting

In this section, by analogy with our multiple trait T -model (56), we develop a model for a population with
any number of traits, which we write for convenience in the continuous setting. We should say again that in
our context, we do not expect the number of possible enzymes for cellulose degradation to be that large but
note that this model includes finite trait models by appropriate use of δ-functions,

n(t, x) =
∑
j

nj(t) δxj (x).

We hence present the continuous model here for its generality and because the resulting equation may be more
amenable to analysis.

We think of the multiple-trait population as having M traits indexed by x1 < · · · < xM , so we write

ni(t) = n(xi, t)∆x, ei1(t) = e1(xi, t), ei2(t) = e2(xi, t),

for some functions n(x, t), e1(x, t), e2(x, t), representing the population and enzyme densities. We now simply
assume that the variable x takes on a continuous range of values.
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We similarly translate the coefficient vectors (52), so that these become continuous parameters: that is, we
allow the parameters bi, di, α, β, q̂, θp, etc, to depend on x, and in analogy to (52)1,2,3 we set

A(x) = α(x)
b1(x)

d1(x)
, B(x) = θr(x)β(x)

b2(x)

d2(x)
, Q(x) = q̂(x)

b2(x)

d2(x)
, (67)

where these are now positive functions. In particular, we interpret α, β and q̂ as the rates of landing site
generation, occupation, and the rate of cellobiose production, per individual, respectively.

We now simply follow the development that led to (56), but reinterpreting the inner product, so that for
each function W (x),

〈W,n〉 =

∫
W (y)n(y, t) dy.

Then (53), (54) and (55) are unchanged. To express the population equation, we define the functional

τ [n] :=
1

γ%mc
〈A,n〉〈Q,n〉+ 〈A,n〉+ 〈B,n〉+ γp,

and the convolution

N [n](x, t) =

∫
ν(s, x)n(s, t) ds,

which is an inner product in the first variable.
We must now model the last term in (57). In analogy with that term, we define

Ξ(z;x, t) =
ν(x, z)Q(z)

ν(x, z) n̄(x, t) +N [n](z, t)
.

Now, in analogy with (56), (57), we write the population equation as

∂tn(x, t) = n(x, t)
(
B[n](x, t)− γn(x)

)
,

where the birth rate is now the functional

B[n] =
µ(x) r

γ%mc

〈A,n〉
τ [n]

(
〈θpQ,n〉γ(x)(

n̄(x) + 1
γ(x) 〈γ, n〉

) (
〈γ, n〉+ γp

) +
〈

(1− θp) Ξ(· ;x, t) , n
〉)

. (68)

6. Numerical experiments

In this section we use numerical experiments to test and compare the various models that we have derived.

N -S and S models. First, we compare the N -S-model with the S-model. The results of the numerical compu-
tations are presented in Figure 2. The coefficients of the S-system are chosen as

b1 = 0.5, b2 = 0.5, d1 = 0.5, d2A = 0.5, d2D = 0.5

β = 0.5, σ = 0.1, γr = 0.01, γp = 0.001, γ% = 0.001

γn = 0.1, α = 0.05, r = 1000, θr = 0.05, θp = 0.75

q = 1, γ = 0.005, µ = 0.5, n̄ = 100.

(69)

The coefficients of the N -S-system are chosen randomly as follows. For each coefficient of the S-system, let
us call it ‘c’, the corresponding coefficient cl,i of the N -S-system (which explicitly depends on the state of the
chain (l, i)) is chosen as

cl,i = cX where X ∼ gamma(k, θ), k = p−2, θ = p2 . (70)
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Here the value p is the standard deviation of X. Thus all samples approximately lie in (c− 3p, c+ 3p).

Figure 2. Solutions of S and NS systems with 3p = 0.05

S and T models. We next compare the T and S systems numerically. The coefficients of the S-system are
chosen as

b1 = 0.1, b2 = 0.1, d1 = 0.1, d2A = 0.1, d2D = 0.1

γr = 0.01, γp = 0.005, γ% = 0.005, γn = 0.01, α = 0.05

r = 1000, θr = 0.05, θp = 0.75, γ = 0.01, µ = 0.5,

n̄ = 100

(71)

and
{β}6i=1 = {0.6668, 0.8394, 1.0567, 1.3304, 1.6748, 2.1085}
{σ}6i=1 = {17.7828, 177.828, 1778.28, 17782.8, 177828, 1778280}
{q}6i=1 = {0.0007, 0.0053, 0.0421, 0.3342, 2.6544, 21.0848}.

(72)

The pictures on Figure 3 correspond to the limiting procedure where

qi
βi
σi

= q0 = 0.000025 and
βi
σi
→ 0.
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(a) i = 1, βi
σi

= 0.11857 (b) i = 2, βi
σi

= 0.03749 (c) i = 3, βi
σi

= 0.01185

(d) i = 4, βi
σi

= 0.00374 (e) i = 5, βi
σi

= 0.00118 (f) i = 6, βi
σi

= 0.00037

Figure 3. T (t) of T -model and S-model for qi
βi

σi
= q0 = 0.000025 and βi

σi
→ 0.

7. Appendix

7.1. Tail issue in deterministic selection dynamics

Models in population dynamics focus on selection because it is rightfully viewed as the main mechanism to
explain the survival of populations and the evolution of traits. The selection mechanism in these models is often
driven by competition between individuals, possibly combined with mutations to create new traits. In addition
competition is well understood from the modeling point of view.

On the other hand cooperative effects are harder to model, especially at the level of micro-organisms. Several
well-known cooperative effects (such as sexual reproduction for large animals) do not take place for all micro-
organisms. Nevertheless, the importance of such effects has long been recognized: see for instance the works
[14,23,24,28] on mutualism that discuss interspecies interactions yielding reciprocal benefits.

In this paper we introduce biological mechanisms, by the example of cellulose bio-degradation, that lead to
reproduction rates encoding both (intra-species) cooperative effects and competition between individuals; see
Section 4. This suggests that reproduction rates that only incorporate competition may fail to describe many
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biochemical processes, especially at the level when B[n] significantly deviates from traditional logistic terms,
that is for small populations.

There are several approaches to study the phenotypical evolution driven by small mutations in replication,
the main objective being to describe the dynamics of the fittest (or dominant) trait in the population. The main
mechanisms affecting dynamics are usually a) the selection principle (due to competition, birth and death), and
b) small mutations. These two mechanisms influence the trait dynamics on two different scales. The selection
effect becomes evident on the reproduction timescale tR, while the effect of small mutations is evident on a
generation timescale tM � tR. The drastic difference between the two scales introduces both small and large
parameters into models (mutations can be small or rare for instance, population is usually large and death rates
could vary) and this causes various difficulties.

One of the best known approaches is the so-called adaptive dynamics theory, see for instance [3,10,12,16,36].
Adaptive dynamics considers evolution as a series of invasions by a small mutant population of the dominant
trait population, a process which is classically modeled by a system of ODE’s. Depending on the relative fitness
of the mutant, this can lead to the replacement of the dominant trait or the extinction of the invading population
(the cases of co-existence are usually harder to handle at this level).

Other very popular models are stochastic, or individual-centered models, see for instance [5, 5, 14] among
many. Probabilistic models are natural because they take natural fluctuations of births, deaths, and mutations
into account at the individual level, and are therefore considered to be the most realistic. They consist in life
and death processes for each individual Xi. A typical example consists in taking Poisson processes with birth
rates b(Xi) and death rates increasing with the competition between individuals, for example di = d(Xi) +∑
j 6=i I(Xi −Xj).
When a birth occurs, it simply adds another individual with the same trait, unless a mutation takes place,

generally with small probability. In that case, the new individual has a different random trait, obtained through
some distribution. In general of course competition could influence both the birth rate and the mortality rate.
Under the right scalings, stochastic models can lead to the classical adaptive dynamics [26,34].

When the total number of individuals is too large (it can easily reach 1010− 1012 for some micro-organisms),
stochastic models can become cumbersome and prohibitive to compute numerically for instance. In that case,
one expects to be able to derive a deterministic model as a limit of large populations which would be simpler
to use. Such a derivation was provided in [7] for example, leading to integro-differential equations such as

∂tn(x, t) =
(
r(x)−

∫
I(x− y)n(t, y) dy

)
n(x, t) +M [n](t, x), (73)

where r(x) = b(x) − d(x) and M [·] is the mutation kernel, a diffusion or integral operator. This is the level of
modeling that we are interested in this article.

Even though deterministic models of type (73) are obtained from stochastic ones, simulations for these two
types of models typically produce different behaviors in terms of evolutionary speeds and branching patterns. In
stochastic simulations, in which a single individual represents a minimal unit necessary for survival, demographic
stochasticity (the variability in population growth rates among individuals) acts drastically on small populations,
leading to complete extinction of small populations with negative reproduction rates. In deterministic models
however, sub-populations can never go completely extinct and can “rebound” later on if their reproduction rate
becomes positive.

It is an open and difficult question of how to keep the stochastic effects for the small populations in the
deterministic models. Perthame and Gauduchon [26] made an attempt in truncating the populations with less
than one individual by introducing an analog of stochastic mortality for models of type (73), a survival threshold,
which allows phenotypical traits in the small population to vanish in finite time. In [26] this is achieved by
modifying (73) as follows

∂tn(x, t) =
(
r(x)− I ? n

)
n−

√
n

n̄
+M [n](t, x) . (74)
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The new term enables the population to vanish for some traits when the population density is too low in
comparison with n̄, which disallows densities corresponding to fewer than one individual.

As one wishes to see the evolution of traits generated by mutations, one needs to rescale the above equation in
time. This leads to large deviation type phenomena which can be observed by defining nε(t, x) = exp(φε(t, x)/ε),
with ε the ratio of the reproduction and mutation time scales (see [13, 26]). One now has two scales for the
populations, the small population threshold n̄ and the exponential scale expφ/ε.

Often, the aim is to analyze the population behavior in the limit as ε→ 0 and therefore n̄ should be chosen
in terms of ε. Numerical simulations for the corresponding equation with initial data of monomorphic type,
see [26], indicate that the evolution speeds and time of branching depend on this choice of n̄ in terms of ε.
When ε is fixed, too large a value of n̄ leads to extinction, while too small a value of n̄ leads to spontaneous
jumps in branching, see [13,26].

A complete mathematical analysis of the general equations is currently intractable. One of the few situations
that is currently understood [26] is when the mortality threshold is chosen as n̄ε = exp(− ϕ̄ε ). However, the

scaling n̄ε = exp(− ϕ̄ε ) for a fixed ϕ̄ is often much too small. Recall that the threshold n̄ε should correspond to
a single individual in stochastic modeling. Thus, if we come back to the starting point, which means a total
population

∫
n(x, t) dx of 1010 − 1012, then for ε = 10−4 (a typical value for many applications) and threshold

n̄ε of order exp(− 1
ε ), an aggregate population over any fixed interval of traits would still represent much less

than one individual.
Another type of correction has been proposed by Jabin [22]. The author allows the threshold n̄ε to be

polynomial in ε and introduces special cooperative term Dε in the (rescaled) model

∂tnε(x, t) =
(
r(x)−

∫
I(x− y)n(t, y)−Dε[n]

)
n(x, t) +M [n](t, x). (75)

This term does not handle the small populations as precisely, but the new model still corrects all the abnormal
behaviors of (73) near the limit. The cooperative effects in [22] were, however, more intuited than derived. For
example, the typical cooperative term Dε has the form

−Dε[nε](x, t) = −D0 + max
(
0, D0 −K(x)d(x, {nε ≥ n̄ε)

)
(76)

where K(x) is a symmetric positive kernel. In that respect, the present work puts the approach in [22] on a
more solid framework by actually deriving those effects from realistic biochemical processes.

The present work aims at introducing cooperative terms, similar to those of [22], that arise naturally (directly
from biological processes), rather than ad hoc mathematical terms. The cooperative effects in the integral
operator B[n] in (1) appear naturally in the process of model construction and give a hint of what such terms
should look like.
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