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ABSTRACT

Recent micrographs of smooth, glacially abraded silicic bedrock reveal an amorphous coating
layer adhering to the bedrock, with structures that tie its formation to glacial abrasion. What
remains unclear is whether this coating is formed by the physical comminution of bedrock,
resulting in amorphous material with a bedrock composition, or by chemical dissolution of
silicate minerals followed by precipitation of an amorphous layer enriched in silica and depleted
in cations relative to the bedrock. Here we report the composition and formation age of the
amorphous coatings in Yosemite National Park, California. The coatings are depleted in base
cations (50-90%) and enriched in silica (10-50%) as well as trace Fe and U (4-100-fold) relative
to the bedrock, reflecting dissolution by and precipitation from subglacial waters. The **U/>*U
activity ratio of the amorphous layer is 200-600% above secular equilibrium, reflecting a

surficial U-source enriched by o-recoil processes and consistent with the ***U enrichment
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observed in subglacial waters. The “°Th/**U activity ratio is 30-100% below secular
equilibrium and records thorium-uranium fractionation in subglacial waters at 10-30 ka,
consistent with coating formation during the Last Glacial Maximum (LGM). These amorphous
coatings are subglacial precipitates that record the chemical weathering of silicates beneath
glaciers during the LGM. Collectively, these observations link silicate dissolution and
amorphous silica production to physical processes at the glacier bed, a result that may well have

significant implications for the global Si and CO, budgets on glacial-interglacial timescales.

INTRODUCTION

Glaciers are renowned for their ability to physically erode landscapes. This physical erosion
occurs beneath glacial ice through sliding at the base of warm-based glaciers by both quarrying
and abrasion of bedrock, which produces large volumes of glacial silt and clay-sized particles.
Particle comminution greatly increases the surface area of minerals on which chemical
weathering can operate, a process that has been inferred to increase chemical denudation rates
above average rates for non-glaciated catchments (Anderson et al., 1997). The composition of
subglacial water is distinct from those of non-glaciated catchments and reflects a unique
chemical weathering regime beneath glaciers (Anderson et al., 1997; Torres et al., 2017).

How glaciers chemically interact with the continental crust globally, and the types of
weathering reactions that occur, are fundamental to understanding whether glaciers operate as a
net CO, source or sink. This balance ultimately determines the feedbacks between glacial
processes and Earth’s climate over interglacial-glacial cycles. In studies of modern alpine
glaciers, the most abundant solutes in glacial runoff, Ca®" and HCO5 and SO4> (e.g. Sharp et al.,

1995; Torres et al., 2017) have led to the interpretation that the primary chemical weathering
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reaction beneath glaciers is the dissolution of carbonates and oxidation of sulfides, a result that
holds even though calcite and pyrite are found only in trace abundances in granitic or gneissic
catchments (Erel et al., 2004). If the extent of chemical weathering beneath glaciers is indeed
limited to reactions with trace carbonate and sulfate, phases that release CO, upon dissolving,
glaciers are a source of CO, and potentially buffer the net cooling that occurs during glacial
intervals (Sharp et al., 1995; Torres et al., 2017). Reactions such as the dissolution of silicates
would have the opposite effect, releasing both Si and alkaline metals, the former drawing down
CO; during diatom blooms on shorter timescales, whereas the latter may contribute to carbonate
formation and CO, sequestration on longer timescales (Graly et al., 2017). Yet the degree to
which silicate weathering occurs beneath glaciers has, based on low dissolved Si concentration in
glacial runoff, previously been regarded as highly limited (Anderson et al., 1997; Torres et al.,
2017).

Emerging data suggest that these observations collected from modern alpine glaciers may
not apply to all subglacial settings. Beneath Greenland ice masses, for example, glacial waters
can indeed carry significant loads of Si to global oceans, in the form of undissolved amorphous
Si grains suspended within turbid glacial runoff, which dissolve upon reaching the saline ocean
(Hawkings et al., 2017). Though there is at present no known connection between the formation
of these amorphous grains and any specific glacial process, this observation hints that any
chemical interaction between glaciers and the siliceous continental crust may be underestimated
by a factor of 10 (Hawkings et al., 2017; Torres et al., 2017).

One place to examine the chemical interaction between glacial ice and silicate crust is
where rocky outcrops have been eroded and polished by glacial action to a smooth, glossy

bedrock surface known as glacial polish. It has been commonly assumed that these mirror-like
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surfaces are generated by the mechanical process of abrasion during which basal debris-rich ice
and rock removes protrusions until a surface is optically smooth (Iverson, 1991). A recent
investigation by Siman-Tov and others (2017) of glaciated crystalline rocks, however, identified
a ~1-4 pum thick layer of predominantly amorphous material supporting sub-micron mineral
fragments, collectively coating the abraded bedrock. This coating was interpreted to record
polish formation by a combination of abrasion, removal, and adhesion of mechanically abraded
host rock, ground to submicron mineral fragments, and non-crystalline amorphous material that
are spread over the overlying host rock. Though mechanical processes alone could reduce grain
size, yielding amorphous material, as observed in experimental granite gouge (Yund et al.,
1990), the amorphous coatings on silicate rock can also occur as a result of chemical weathering,
specifically the dissolution of silicates and reprecipitation amorphous silica. In experimental
studies, nanometer thick layers (< 0.1 um) of hydrated silica form upon silicates from exposure
to fluids (Hellmann et al., 2012). These layers are chemically distinct, with high total silica and
low base cations relative to the underlying host mineral. If the amorphous material occurring on
glacially polished surfaces exhibits similar compositional traits, it suggests: 1) a significant role
of chemical weathering in polish formation; 2) a likely mechanism for the formation of
amorphous silica particles in glacial runoff, which are also found to be enriched in Si and
depleted in cations (Hawkings et al., 2017), and 3) a previously unrecognized archive of former
glacier sliding and silicate chemical weathering occurring beneath glaciers that has implications

for the global Si and CO, budgets.

METHODS & RESULTS
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Here we present the results of a geochemical and isotopic investigation that utilized in-situ
analytical techniques (LA-ICPMS and SHRIMP-RG) to determine the major, trace, and U-series
isotopic composition of the microns thick amorphous layer within glacially polished surfaces
collected from Yosemite National Park, California (Appendix DR1). Samples were collected
from Lyell Canyon and Tuolumne Meadows, areas dominated by crystalline granodiorite that
deglaciated ~10-15 ka (Diihnforth et al., 2010) ago at the end of the Last Glacial Maximum. In a
prior study, these samples were the focus of a microstructural investigation using TEM imaging
(Siman-Tov et al., 2017) that complements and provides a visual reference to the new

geochemical data presented below.

The composition of the glacial polish layer

The composition of the glacial polish layer was determined using the UCSC LA-ICPMS system
(see Appendix DR2 for methods). A single laser spot analysis collected from Daff Dome
(Daff01) in Tuolumne Meadows provides a representative example of a continuous major and
trace elemental profile from the polish surface down into the underlying bedrock. In the example
shown in Figure 1A, the mineral grain beneath the polish is plagioclase feldspar with high Si, Al,
Na, and Ca, but also with detectable K, Fe, Mg. U and Th concentrations are < 5 ppm.
Approximately 3 um below the coating surface, the abundances of all measured elements
change. The total silica increases toward the surface, while concentrations of base cations
abundant in the underlying mineral (Na, Ca) decrease. Cations not abundant in host plagioclase
(K, Mg, Fe, U, Th), are found at higher concentrations near the surface. Comparison to TEM

images from a nearby plagioclase grain (Fig. 1B) reveals a plagioclase capped by a ~3 um thick
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layer of predominantly amorphous material supporting loosely aligned, sub-micron fragments of
mostly quartz, plagioclase and alkali feldspars, as well as Fe oxides.

Multiple laser spot analyses collected from a centimeter-sized glacial polish sample from
Daff Dome (Daff01) reveal compositional changes above each rock-forming mineral within the
bedrock. A comparison of cation to SiO, concentrations for all spot analyses, color coded by
ablation depth, permits identification of: 1) the composition of the underlying bedrock minerals
(Fig. 2 yellow) and; 2) the composition of the polish layer (Fig. 2 green & blue). Na,O at >3um
depths (Fig. 2A, yellow), for example, reveals bedrock minerals beneath the polish layer of both
Na- enriched and depleted feldspars (~65% Si0O,) along with quartz (~100% SiO,). At shallow
depths (Fig. 2, blue) the composition is relatively uniform (~70-80 wt% SiO,, ~1 wt% Na,O) for
the polish layer, independent of the underlying mineral. This observation extends to all measured
major elements, suggesting that the polish occupies a relatively narrow compositional space that
is distinct from all of the underlying minerals (Fig. 2 A-F).

To determine what chemical processes are operating to generate the glacial polish layer,
we define the polish composition using a cluster analysis for each laser ablation spot analysis and
compare it to the bulk composition of the underlying host rock. Polish compositions for each
laser spot are shown as red circles for Daff Dome (Fig. 2) and five additional samples from Lyell
Canyon (see Appendix DR2). Comparison between polish and bedrock compositions reveals
compositional trends that include the enrichment in Si by up to 30 wt% relative to the whole rock
values (Fig. 3). This Si enrichment is coupled with loss of 50-90% of Na, K, Mg, and Ca relative
to bulk bedrock compositions (Fig. 3A-D). In contrast, Uranium can be enriched in some

locations up to 100-fold relative to the bedrock (Fig. 3F).
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Subglacial processes and the formation age of the glacial polish layer
The U-series decay chain members such as ***U and **°Th can, by chemical or physical

2331, Fractionation of these “intermediate

processes, be enriched or depleted relative to parent
daughters” can be utilized to measure geologic time and/or reflect the formation environment.
U-series (**°Th-"*Th-**U-**U) determinations of the glacially polished surface from Daff
Dome (Daff01) were collected using the SHRIMP-RG ion microprobe. See Appendix DR3 for
methods and data table. Multiple spot analyses all occupy a distinct isotopic space where
24U/P8U activity ratios are 200-600% above secular equilibrium, whereas the **°Th/**U activity

ratios are 30-100% below. These isotopic compositions can be bracketed by isochronous curves

that place >**Th fractionation from ***U over a range of timescales from ~10 to 30 ka (Fig. 4).

DISCUSSION
The Formation of the Amorphous Layer
The compositional comparison of the polish layer and underlying bedrock suggests that the
amorphous layer is not directly related to the underlying bedrock (Fig. 1). Rather, the amorphous
layer occupies a relatively narrow compositional space, distinct from all underlying minerals
(Fig. 2), with compositional variability likely attributed to mineral fragments within the layer
(e.g. Fig 1B). Next, the loss of nearly all cations coupled with an increase in SiO; (Fig. 3)
corresponding to depths imaged as structurally amorphous (Fig 1B) is consistent with silicate
dissolution at the fluid-rock interface followed by the precipitation of amorphous silica from
subglacial water (Hallet, 1975; Hellmann et al., 2012; Rutledge et al., 2018).

The role of subglacial fluids is further supported by the high concentrations of uranium in

the polish relative to the bedrock, an observation that requires sourcing outside of the bedrock.
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This hypothesis is supported by the high ***U/**U in the amorphous layer (Fig. 4), an

observation that indicates a surficial, non-bedrock U-source where ***U is enriched by the

28U, The high-energy a-decay of parent “**U housed within silicates,

physical fractionation from
results in the ejection of 2**U from fine-grained sediments into subglacial fluids or ice. Elevated
24U/%8U values have been observed in glacial runoff (Arendt et al., 2018; von Strandmann et al.,
2006) and reflect interaction between rock and ice. A subglacial water source is also supported

by the **°Th-U data, which suggests, that insoluble **°

Th was absent from subglacial waters
relative to fluid-mobile U. The isotopic space defined by the amorphous layer records chemical
fractionation in subglacial fluids occurring over 10 to 30 ka, consistent with the formation of
amorphous material over a time range spanning the Last Glacial Maximum (Clark et al., 2009) to
deglaciation in Yosemite (Diihnforth et al., 2010).

Collectively, we interpret the compositional and isotopic data presented here to record the
subglacial dissolution of silicate rock and production of amorphous silica during the LGM. We
propose that glacial action comminutes particles at the ice-rock interface, increasing the surface
area of silicate wear particles. Glacial sliding is one possible driver for chemical activity at the
glacier bed; local pressure melting in high pressure areas produce undersaturated subglacial
waters which can dissolve minerals, while local freezing in low pressure areas can consume
subglacial water, concentrating solutes to the point of precipitation (Hallet, 1975). Base cations

(Na, K, Mg, Ca) largely remain within subglacial waters, while amorphous Si is precipitated,

incorporating Fe, U and the U-series composition of subglacial waters.

Potential implications for global element cycles
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The compositional data and direct images from the glacial polish layer produced at the ice-rock
interface suggest a likely location for the generation of amorphous silica grains and coatings to
particles observed within glacial runoff (Hawkings et al., 2017). Such a mechanism is of special
interest because enhanced Si delivery to the oceans during glacial intervals could produce diatom
blooms, previously hypothesized to account for decreased atmospheric CO; during glacial
periods (Harrison, 2000), which is consistent with both low Ge/Si values in marine opals
(Froelich et al., 1992) and higher Si concentrations in marine sponges (Jochum et al., 2017)
formed during glacial intervals. Finally, the data presented here shows that the generation of
amorphous silica must include the delivery of alkaline metals (e.g. Ca*", Mg”") to global oceans,
a reaction that could sequester CO, on longer timescales should these contributions outweigh

subaerial ones.

CONCLUSIONS

We interpret the compositional and isotopic data presented here to record the subglacial
dissolution of silicate rock and production of amorphous silica beneath glaciers in the Sierra
Nevada, California, during the Last Glacial Maximum. Glacial polish, a ubiquitous feature of
glaciated landscapes, is now recognized as being constructed of subglacial chemical precipitates
that archive the composition of subglacial waters and permit geochronologic constraints to be

placed on the timing of temperate ice cover and subglacial chemical weathering of silicates.
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FIGURE CAPTIONS

Figure 1. A. Representative LA-ICPMS element profile for Daff Dome. Note the break in scale
after 50 ppm and 25 wt%. See appendix DR 4 for depth calibration. The gradual chemical
transitions are an artifact of mixing between suspended mineral fragments and variations in
polish thickness which can vary by 1-2 um on horizontal scales less than the 25um spot size. B.
TEM image from Daff dome reveal mostly amorphous silica (aSi) supporting fragments of
quartz (qtz), Fe-oxide (FeO), illite (ilt), alkali (kfs) and plagioclase (plg) feldspars above the host
plagioclase and capped by a layer of phylosilicates (ph). Note the differing vertical scales for A

and B, connected at 3um by the white dashed arrow.
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Figure 2. Harker diagrams displaying multiple laser spot analyses from Daff dome colored by
ablation depth. Abbreviations: underlying host mineral (HM) and polish (P). Red open circles are
the averaged polish compositions for major elements (A-E) and maximum concentration for
uranium (E) identified for each laser spot. These polish compositions (open red circles) are

compared to whole rock data in figure 3.

Figure 3. Glacial polish composition for Daff dome (open red circles, Fig. 2) and 5 samples
within Lyell Canyon (DR2). In comparison to whole rock values (stars), polish compositions
reflect Si (10-50%) enrichment and cation loss (50-90%) relative to whole rock values (stars)
Whole rock values from:(Bateman et al., 1988; Gray et al., 2008). Note that Daff dome polish
(red circles) should be compared to Cathedral Peak Granodiorite (red star), while all Lyell

canyon polish formed upon the Kuna Crest Granodiorite (blue star).

Figure 4. 2°Th-*U-***U data for multiple spots (1o) measured by SHRIMP-RG on U-rich
polish from Daff Dome. Standard BZVV is included. Precipitates forming in the absence of
20T, with a range of Z**U/*"U initial values (e.g. system starts along Y-axis), evolve to the
right, as a result of 2*°Th ingrowth, following the blue curves towards secular equilibrium (solid

line).

'GSA Data Repository item 201Xxxx, including sample location and compositional data as well
as laboratory methodologies, is available online at www.geosociety.org/pubs/ft20XX.htm, or on
request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder,

CO 80301, USA
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