

1 Composition and formation age of the amorphous silica coating
2 glacially polished surfaces

3 **Terrence Blackburn¹, Shalev Siman-Tov², Matthew A. Coble³, Greg M. Stock⁴, Emily E.**
4 **Brodsky¹, Bernard Hallet⁵**

5 ¹*University of California Santa Cruz, CA, USA*

6 ²*Geological Survey of Israel, Jerusalem, Israel*

7 ³*Stanford University, Stanford, CA, USA*

8 ⁴*National Park Service, Yosemite National Park, El Portal, CA, USA*

9 ⁵*University of Washington, Seattle, WA, USA*

10

11 **ABSTRACT**

12 Recent micrographs of smooth, glacially abraded silicic bedrock reveal an amorphous coating
13 layer adhering to the bedrock, with structures that tie its formation to glacial abrasion. What
14 remains unclear is whether this coating is formed by the physical comminution of bedrock,
15 resulting in amorphous material with a bedrock composition, or by chemical dissolution of
16 silicate minerals followed by precipitation of an amorphous layer enriched in silica and depleted
17 in cations relative to the bedrock. Here we report the composition and formation age of the
18 amorphous coatings in Yosemite National Park, California. The coatings are depleted in base
19 cations (50-90%) and enriched in silica (10-50%) as well as trace Fe and U (4-100-fold) relative
20 to the bedrock, reflecting dissolution by and precipitation from subglacial waters. The $^{234}\text{U}/^{238}\text{U}$
21 activity ratio of the amorphous layer is 200-600% above secular equilibrium, reflecting a
22 surficial U-source enriched by α -recoil processes and consistent with the ^{234}U enrichment

23 observed in subglacial waters. The $^{230}\text{Th}/^{238}\text{U}$ activity ratio is 30-100% below secular
24 equilibrium and records thorium-uranium fractionation in subglacial waters at 10-30 ka,
25 consistent with coating formation during the Last Glacial Maximum (LGM). These amorphous
26 coatings are subglacial precipitates that record the chemical weathering of silicates beneath
27 glaciers during the LGM. Collectively, these observations link silicate dissolution and
28 amorphous silica production to physical processes at the glacier bed, a result that may well have
29 significant implications for the global Si and CO₂ budgets on glacial-interglacial timescales.

30

31 INTRODUCTION

32 Glaciers are renowned for their ability to physically erode landscapes. This physical erosion
33 occurs beneath glacial ice through sliding at the base of warm-based glaciers by both quarrying
34 and abrasion of bedrock, which produces large volumes of glacial silt and clay-sized particles.
35 Particle comminution greatly increases the surface area of minerals on which chemical
36 weathering can operate, a process that has been inferred to increase chemical denudation rates
37 above average rates for non-glaciated catchments (Anderson et al., 1997). The composition of
38 subglacial water is distinct from those of non-glaciated catchments and reflects a unique
39 chemical weathering regime beneath glaciers (Anderson et al., 1997; Torres et al., 2017).

40 How glaciers chemically interact with the continental crust globally, and the types of
41 weathering reactions that occur, are fundamental to understanding whether glaciers operate as a
42 net CO₂ source or sink. This balance ultimately determines the feedbacks between glacial
43 processes and Earth's climate over interglacial-glacial cycles. In studies of modern alpine
44 glaciers, the most abundant solutes in glacial runoff, Ca²⁺ and HCO₃⁻ and SO₄²⁻ (e.g. Sharp et al.,
45 1995; Torres et al., 2017) have led to the interpretation that the primary chemical weathering

46 reaction beneath glaciers is the dissolution of carbonates and oxidation of sulfides, a result that
47 holds even though calcite and pyrite are found only in trace abundances in granitic or gneissic
48 catchments (Erel et al., 2004). If the extent of chemical weathering beneath glaciers is indeed
49 limited to reactions with trace carbonate and sulfate, phases that release CO₂ upon dissolving,
50 glaciers are a source of CO₂ and potentially buffer the net cooling that occurs during glacial
51 intervals (Sharp et al., 1995; Torres et al., 2017). Reactions such as the dissolution of silicates
52 would have the opposite effect, releasing both Si and alkaline metals, the former drawing down
53 CO₂ during diatom blooms on shorter timescales, whereas the latter may contribute to carbonate
54 formation and CO₂ sequestration on longer timescales (Graly et al., 2017). Yet the degree to
55 which silicate weathering occurs beneath glaciers has, based on low dissolved Si concentration in
56 glacial runoff, previously been regarded as highly limited (Anderson et al., 1997; Torres et al.,
57 2017).

58 Emerging data suggest that these observations collected from modern alpine glaciers may
59 not apply to all subglacial settings. Beneath Greenland ice masses, for example, glacial waters
60 can indeed carry significant loads of Si to global oceans, in the form of undissolved amorphous
61 Si grains suspended within turbid glacial runoff, which dissolve upon reaching the saline ocean
62 (Hawkings et al., 2017). Though there is at present no known connection between the formation
63 of these amorphous grains and any specific glacial process, this observation hints that any
64 chemical interaction between glaciers and the siliceous continental crust may be underestimated
65 by a factor of 10 (Hawkings et al., 2017; Torres et al., 2017).

66 One place to examine the chemical interaction between glacial ice and silicate crust is
67 where rocky outcrops have been eroded and polished by glacial action to a smooth, glossy
68 bedrock surface known as glacial polish. It has been commonly assumed that these mirror-like

69 surfaces are generated by the mechanical process of abrasion during which basal debris-rich ice
70 and rock removes protrusions until a surface is optically smooth (Iverson, 1991). A recent
71 investigation by Siman-Tov and others (2017) of glaciated crystalline rocks, however, identified
72 a ~1-4 μm thick layer of predominantly amorphous material supporting sub-micron mineral
73 fragments, collectively coating the abraded bedrock. This coating was interpreted to record
74 polish formation by a combination of abrasion, removal, and adhesion of mechanically abraded
75 host rock, ground to submicron mineral fragments, and non-crystalline amorphous material that
76 are spread over the overlying host rock. Though mechanical processes alone could reduce grain
77 size, yielding amorphous material, as observed in experimental granite gouge (Yund et al.,
78 1990), the amorphous coatings on silicate rock can also occur as a result of chemical weathering,
79 specifically the dissolution of silicates and reprecipitation amorphous silica. In experimental
80 studies, nanometer thick layers ($< 0.1 \mu\text{m}$) of hydrated silica form upon silicates from exposure
81 to fluids (Hellmann et al., 2012). These layers are chemically distinct, with high total silica and
82 low base cations relative to the underlying host mineral. If the amorphous material occurring on
83 glacially polished surfaces exhibits similar compositional traits, it suggests: 1) a significant role
84 of chemical weathering in polish formation; 2) a likely mechanism for the formation of
85 amorphous silica particles in glacial runoff, which are also found to be enriched in Si and
86 depleted in cations (Hawkings et al., 2017), and 3) a previously unrecognized archive of former
87 glacier sliding and silicate chemical weathering occurring beneath glaciers that has implications
88 for the global Si and CO₂ budgets.

89

90 **METHODS & RESULTS**

91 Here we present the results of a geochemical and isotopic investigation that utilized *in-situ*
92 analytical techniques (LA-ICPMS and SHRIMP-RG) to determine the major, trace, and U-series
93 isotopic composition of the microns thick amorphous layer within glacially polished surfaces
94 collected from Yosemite National Park, California (Appendix DR1). Samples were collected
95 from Lyell Canyon and Tuolumne Meadows, areas dominated by crystalline granodiorite that
96 deglaciated ~10-15 ka (Dünnforth et al., 2010) ago at the end of the Last Glacial Maximum. In a
97 prior study, these samples were the focus of a microstructural investigation using TEM imaging
98 (Siman-Tov et al., 2017) that complements and provides a visual reference to the new
99 geochemical data presented below.

100

101 **The composition of the glacial polish layer**

102 The composition of the glacial polish layer was determined using the UCSC LA-ICPMS system
103 (see Appendix DR2 for methods). A single laser spot analysis collected from Daff Dome
104 (Daff01) in Tuolumne Meadows provides a representative example of a continuous major and
105 trace elemental profile from the polish surface down into the underlying bedrock. In the example
106 shown in Figure 1A, the mineral grain beneath the polish is plagioclase feldspar with high Si, Al,
107 Na, and Ca, but also with detectable K, Fe, Mg. U and Th concentrations are < 5 ppm.
108 Approximately 3 μ m below the coating surface, the abundances of all measured elements
109 change. The total silica increases toward the surface, while concentrations of base cations
110 abundant in the underlying mineral (Na, Ca) decrease. Cations not abundant in host plagioclase
111 (K, Mg, Fe, U, Th), are found at higher concentrations near the surface. Comparison to TEM
112 images from a nearby plagioclase grain (Fig. 1B) reveals a plagioclase capped by a ~3 μ m thick

113 layer of predominantly amorphous material supporting loosely aligned, sub-micron fragments of
114 mostly quartz, plagioclase and alkali feldspars, as well as Fe oxides.

115 Multiple laser spot analyses collected from a centimeter-sized glacial polish sample from
116 Daff Dome (Daff01) reveal compositional changes above each rock-forming mineral within the
117 bedrock. A comparison of cation to SiO_2 concentrations for all spot analyses, color coded by
118 ablation depth, permits identification of: 1) the composition of the underlying bedrock minerals
119 (Fig. 2 yellow) and; 2) the composition of the polish layer (Fig. 2 green & blue). Na_2O at $>3\mu\text{m}$
120 depths (Fig. 2A, yellow), for example, reveals bedrock minerals beneath the polish layer of both
121 Na- enriched and depleted feldspars ($\sim 65\%$ SiO_2) along with quartz ($\sim 100\%$ SiO_2). At shallow
122 depths (Fig. 2, blue) the composition is relatively uniform ($\sim 70\text{-}80$ wt% SiO_2 , ~ 1 wt% Na_2O) for
123 the polish layer, independent of the underlying mineral. This observation extends to all measured
124 major elements, suggesting that the polish occupies a relatively narrow compositional space that
125 is distinct from all of the underlying minerals (Fig. 2 A-F).

126 To determine what chemical processes are operating to generate the glacial polish layer,
127 we define the polish composition using a cluster analysis for each laser ablation spot analysis and
128 compare it to the bulk composition of the underlying host rock. Polish compositions for each
129 laser spot are shown as red circles for Daff Dome (Fig. 2) and five additional samples from Lyell
130 Canyon (see Appendix DR2). Comparison between polish and bedrock compositions reveals
131 compositional trends that include the enrichment in Si by up to 30 wt% relative to the whole rock
132 values (Fig. 3). This Si enrichment is coupled with loss of 50-90% of Na, K, Mg, and Ca relative
133 to bulk bedrock compositions (Fig. 3A-D). In contrast, Uranium can be enriched in some
134 locations up to 100-fold relative to the bedrock (Fig. 3F).

135

136 **Subglacial processes and the formation age of the glacial polish layer**

137 The U-series decay chain members such as ^{234}U and ^{230}Th can, by chemical or physical
138 processes, be enriched or depleted relative to parent ^{238}U . Fractionation of these “intermediate
139 daughters” can be utilized to measure geologic time and/or reflect the formation environment.
140 U-series (^{230}Th - ^{232}Th - ^{234}U - ^{238}U) determinations of the glacially polished surface from Daff
141 Dome (Daff01) were collected using the SHRIMP-RG ion microprobe. See Appendix DR3 for
142 methods and data table. Multiple spot analyses all occupy a distinct isotopic space where
143 $^{234}\text{U}/^{238}\text{U}$ activity ratios are 200-600% above secular equilibrium, whereas the $^{230}\text{Th}/^{238}\text{U}$ activity
144 ratios are 30-100% below. These isotopic compositions can be bracketed by isochronous curves
145 that place ^{230}Th fractionation from ^{234}U over a range of timescales from ~10 to 30 ka (Fig. 4).

146

147 **DISCUSSION**

148 **The Formation of the Amorphous Layer**

149 The compositional comparison of the polish layer and underlying bedrock suggests that the
150 amorphous layer is not directly related to the underlying bedrock (Fig. 1). Rather, the amorphous
151 layer occupies a relatively narrow compositional space, distinct from all underlying minerals
152 (Fig. 2), with compositional variability likely attributed to mineral fragments within the layer
153 (e.g. Fig 1B). Next, the loss of nearly all cations coupled with an increase in SiO_2 (Fig. 3)
154 corresponding to depths imaged as structurally amorphous (Fig 1B) is consistent with silicate
155 dissolution at the fluid-rock interface followed by the precipitation of amorphous silica from
156 subglacial water (Hallet, 1975; Hellmann et al., 2012; Rutledge et al., 2018).

157 The role of subglacial fluids is further supported by the high concentrations of uranium in
158 the polish relative to the bedrock, an observation that requires sourcing outside of the bedrock.

159 This hypothesis is supported by the high $^{234}\text{U}/^{238}\text{U}$ in the amorphous layer (Fig. 4), an
160 observation that indicates a surficial, non-bedrock U-source where ^{234}U is enriched by the
161 physical fractionation from ^{238}U . The high-energy α -decay of parent ^{238}U housed within silicates,
162 results in the ejection of ^{234}U from fine-grained sediments into subglacial fluids or ice. Elevated
163 $^{234}\text{U}/^{238}\text{U}$ values have been observed in glacial runoff (Arendt et al., 2018; von Strandmann et al.,
164 2006) and reflect interaction between rock and ice. A subglacial water source is also supported
165 by the ^{230}Th -U data, which suggests, that insoluble ^{230}Th was absent from subglacial waters
166 relative to fluid-mobile U. The isotopic space defined by the amorphous layer records chemical
167 fractionation in subglacial fluids occurring over 10 to 30 ka, consistent with the formation of
168 amorphous material over a time range spanning the Last Glacial Maximum (Clark et al., 2009) to
169 deglaciation in Yosemite (Dünnforth et al., 2010).

170 Collectively, we interpret the compositional and isotopic data presented here to record the
171 subglacial dissolution of silicate rock and production of amorphous silica during the LGM. We
172 propose that glacial action comminutes particles at the ice-rock interface, increasing the surface
173 area of silicate wear particles. Glacial sliding is one possible driver for chemical activity at the
174 glacier bed; local pressure melting in high pressure areas produce undersaturated subglacial
175 waters which can dissolve minerals, while local freezing in low pressure areas can consume
176 subglacial water, concentrating solutes to the point of precipitation (Hallet, 1975). Base cations
177 (Na, K, Mg, Ca) largely remain within subglacial waters, while amorphous Si is precipitated,
178 incorporating Fe, U and the U-series composition of subglacial waters.

179

180 **Potential implications for global element cycles**

181 The compositional data and direct images from the glacial polish layer produced at the ice-rock
182 interface suggest a likely location for the generation of amorphous silica grains and coatings to
183 particles observed within glacial runoff (Hawkings et al., 2017). Such a mechanism is of special
184 interest because enhanced Si delivery to the oceans during glacial intervals could produce diatom
185 blooms, previously hypothesized to account for decreased atmospheric CO₂ during glacial
186 periods (Harrison, 2000), which is consistent with both low Ge/Si values in marine opals
187 (Froelich et al., 1992) and higher Si concentrations in marine sponges (Jochum et al., 2017)
188 formed during glacial intervals. Finally, the data presented here shows that the generation of
189 amorphous silica must include the delivery of alkaline metals (e.g. Ca²⁺, Mg²⁺) to global oceans,
190 a reaction that could sequester CO₂ on longer timescales should these contributions outweigh
191 subaerial ones.

192 |
193 **CONCLUSIONS**
194 We interpret the compositional and isotopic data presented here to record the subglacial
195 dissolution of silicate rock and production of amorphous silica beneath glaciers in the Sierra
196 Nevada, California, during the Last Glacial Maximum. Glacial polish, a ubiquitous feature of
197 glaciated landscapes, is now recognized as being constructed of subglacial chemical precipitates
198 that archive the composition of subglacial waters and permit geochronologic constraints to be
199 placed on the timing of temperate ice cover and subglacial chemical weathering of silicates.

200
201 **ACKNOWLEDGMENTS**
202 We thank Joseph Graly, Kurt Cuffey and an anonymous reader for their constructive reviews.
203 Thanks also to Rob Franks for assisting in data collection and to Ken Ferrier and Joel Blum for

204 insightful discussions. This work was supported by a UCSC SRG grant to Blackburn and
205 Brodsky.

206

207 **REFERENCES CITED**

208 Aciego, S., Bourdon, B., Schwander, J., Baur, H., and Forieri, A., 2011, Toward a radiometric
209 ice clock: uranium ages of the Dome C ice core: *Quaternary Science Reviews*,30, 2389-
210 2397.

211 Anderson, S., Drever, J. I., and Humphrey, N. F., 1997, Chemical weathering in glacial
212 environments: *Geology*,25, 399-402.

213 Arendt, C. A., Aciego, S. M., Sims, K. W. W., Das, S. B., Sheik, C., and Stevenson, E. I., 2018,
214 Influence of glacial meltwater on global seawater δ 234 U: *Geochimica et Cosmochimica
215 Acta*,225, 102-115.

216 Bateman, P. C., Chappell, B. W., Kistler, R. W., Peck, D. L., and Busacca, A., 1988, Tuolumne
217 Meadows quadrangle, California; analytic data: USGPO.

218 Clark, P. U., Dyke, A. s., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X.,
219 Hostetler, S. W., and McCabe, A. M., 2009, The Last Glacial Maximum: *Science*,325,
220 710-714.

221 Dühnforth, M., Anderson, R. S., Ward, D., and Stock, G. M., 2010, Bedrock fracture control of
222 glacial erosion processes and rates: *Geology*,38, 423-426.

223 Erel, Y., Blum, J. D., Roueff, E., and Ganor, J., 2004, Lead and strontium isotopes as monitors of
224 experimental granitoid mineral dissolution: *Geochimica et Cosmochimica Acta*,68, 4649-
225 4663.

226 Froelich, P. N., Blanc, V., Mortlock, R. A., Chillrud, S. N., Dunstan, W., Udomkit, A., and Peng,
227 T. H., 1992, River fluxes of dissolved silica to the ocean were higher during glacials:
228 Ge/Si in diatoms, rivers, and oceans: *Paleoceanography and Paleoclimatology*,7, 739-
229 767.

230 Graly, J. A., Drever, J. I., and Humphrey, N. F., 2017, Calculating the balance between
231 atmospheric CO₂ drawdown and organic carbon oxidation in subglacial hydrochemical
232 systems: *Global Biogeochemical Cycles*,31, 709-727.

233 Graly, J. A., Humphrey, N. F., Landowski, C. M., and Harper, J. T., 2014, Chemical weathering
234 under the Greenland ice sheet: *Geology*,42, 551-554.

235 Gray, W., Glazner, A. F., Coleman, D. S., and Bartley, J. M., 2008, Long-term geochemical
236 variability of the Late Cretaceous Tuolumne intrusive suite, central Sierra Nevada,
237 California: *Geological Society, London, Special Publications*,304, 183-201.

238 Hallet, B., 1975, Subglacial silica deposits: *Nature*,254, 682.

239 Harrison, K. G., 2000, Role of increased marine silica input on paleo- pCO₂ levels:
240 *Paleoceanography*,15, 292-298.

241 Hawkings, J. R., Wadham, J. L., Benning, L. G., Hendry, K. R., Tranter, M., Tedstone, A.,
242 Nienow, P., and Raiswell, R., 2017, Ice sheets as a missing source of silica to the polar
243 oceans: *Nature communications*,8, 14198.

244 Hellmann, R., Wirth, R., Daval, D., Barnes, J.-P., Penisson, J.-M., Tisserand, D., Epicier, T.,
245 Florin, B., and Hervig, R. L., 2012, Unifying natural and laboratory chemical weathering

246 with interfacial dissolution–reprecipitation: a study based on the nanometer-scale
247 chemistry of fluid–silicate interfaces: *Chemical Geology*,294, 203-216.

248 Iverson, N. R., 1991, Morphology of glacial striae: implications for abrasion of glacier beds and
249 fault surfaces: *Geological Society of America Bulletin*,103, 1308-1316.

250 Jochum, K. P., Schuessler, J. A., Wang, X. H., Stoll, B., Weis, U., Müller, W. E. G., Haug, G.
251 H., Andreae, M. O., and Froelich, P. N., 2017, Whole-Ocean Changes in Silica and Ge/Si
252 Ratios During the Last Deglacial Deduced From Long-Lived Giant Glass Sponges:
253 *Geophysical Research Letters*,44, 22.

254 Rutledge, A. M., Horgan, B. H. N., Havig, J. R., Rampe, E. B., Scudder, N. A., and Hamilton, T.
255 L., 2018, Silica Dissolution and Precipitation in Glaciated Volcanic Environments and
256 Implications for Mars: *Geophysical Research Letters*,45, 7371-7381.

257 Sharp, M., Tranter, M., Brown, G. H., and Skidmore, M., 1995, Rates of chemical denudation
258 and CO₂ drawdown in a glacier-covered alpine catchment: *Geology*,23, 61-64.

259 Siman-Tov, S., Stock, G. M., Brodsky, E. E., and White, J. C., 2017, The coating layer of glacial
260 polish: *Geology*,45, 987-990.

261 Torres, M. A., Moosdorf, N., Hartmann, J., Adkins, J. F., and West, A. J., 2017, Glacial
262 weathering, sulfide oxidation, and global carbon cycle feedbacks: *Proceedings of the
263 National Academy of Sciences*,114, 8716-8721.

264 von Strandmann, P. A. E. P., Burton, K. W., James, R. H., van Calsteren, P., Gíslason, S. R., and
265 Mokadem, F., 2006, Riverine behaviour of uranium and lithium isotopes in an actively
266 glaciated basaltic terrain: *Earth and Planetary Science Letters*,251, 134-147.

267 Yund, R. A., Blanpied, M. L., Tullis, T. E., and Weeks, J. D., 1990, Amorphous material in high
268 strain experimental fault gouges: *Journal of Geophysical Research: Solid Earth*,95,
269 15589-15602.

270

271 **FIGURE CAPTIONS**

272 Figure 1. **A.** Representative LA-ICPMS element profile for Daff Dome. Note the break in scale
273 after 50 ppm and 25 wt%. See appendix DR 4 for depth calibration. The gradual chemical
274 transitions are an artifact of mixing between suspended mineral fragments and variations in
275 polish thickness which can vary by 1-2 μ m on horizontal scales less than the 25 μ m spot size. **B.**
276 TEM image from Daff dome reveal mostly amorphous silica (aSi) supporting fragments of
277 quartz (qtz), Fe-oxide (FeO), illite (ilt), alkali (kfs) and plagioclase (plg) feldspars above the host
278 plagioclase and capped by a layer of phyllosilicates (ph). Note the differing vertical scales for **A**
279 and **B**, connected at 3 μ m by the white dashed arrow.

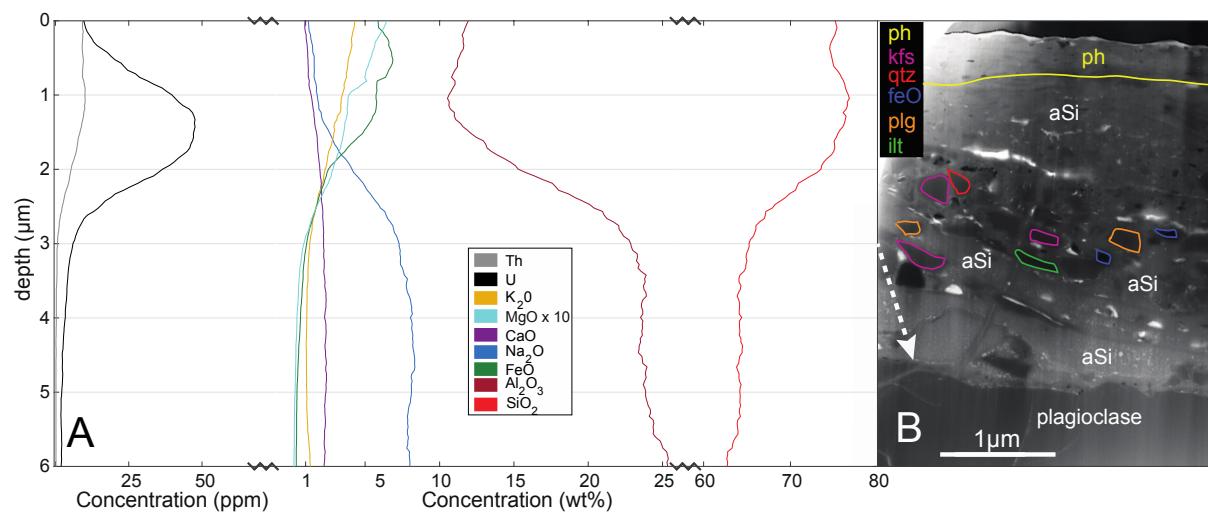
280

281 Figure 2. Harker diagrams displaying multiple laser spot analyses from Daff dome colored by
282 ablation depth. Abbreviations: underlying host mineral (HM) and polish (P). Red open circles are
283 the averaged polish compositions for major elements (A-E) and maximum concentration for
284 uranium (E) identified for each laser spot. These polish compositions (open red circles) are
285 compared to whole rock data in figure 3.

286

287 Figure 3. Glacial polish composition for Daff dome (open red circles, Fig. 2) and 5 samples
288 within Lyell Canyon (DR2). In comparison to whole rock values (stars), polish compositions
289 reflect Si (10-50%) enrichment and cation loss (50-90%) relative to whole rock values (stars)
290 Whole rock values from:(Bateman et al., 1988; Gray et al., 2008). Note that Daff dome polish
291 (red circles) should be compared to Cathedral Peak Granodiorite (red star), while all Lyell
292 canyon polish formed upon the Kuna Crest Granodiorite (blue star).

293


294 Figure 4. ^{230}Th - ^{234}U - ^{238}U data for multiple spots (1σ) measured by SHRIMP-RG on U-rich
295 polish from Daff Dome. Standard BZVV is included. Precipitates forming in the absence of
296 ^{230}Th , with a range of ^{234}U / ^{238}U initial values (e.g. system starts along Y-axis), evolve to the
297 right, as a result of ^{230}Th ingrowth, following the blue curves towards secular equilibrium (solid
298 line).

299

300 ¹GSA Data Repository item 201Xxxxx, including sample location and compositional data as well
301 as laboratory methodologies, is available online at www.geosociety.org/pubs/ft20XX.htm, or on
302 request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder,
303 CO 80301, USA

304 FIGURE 1:

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

Figure 2

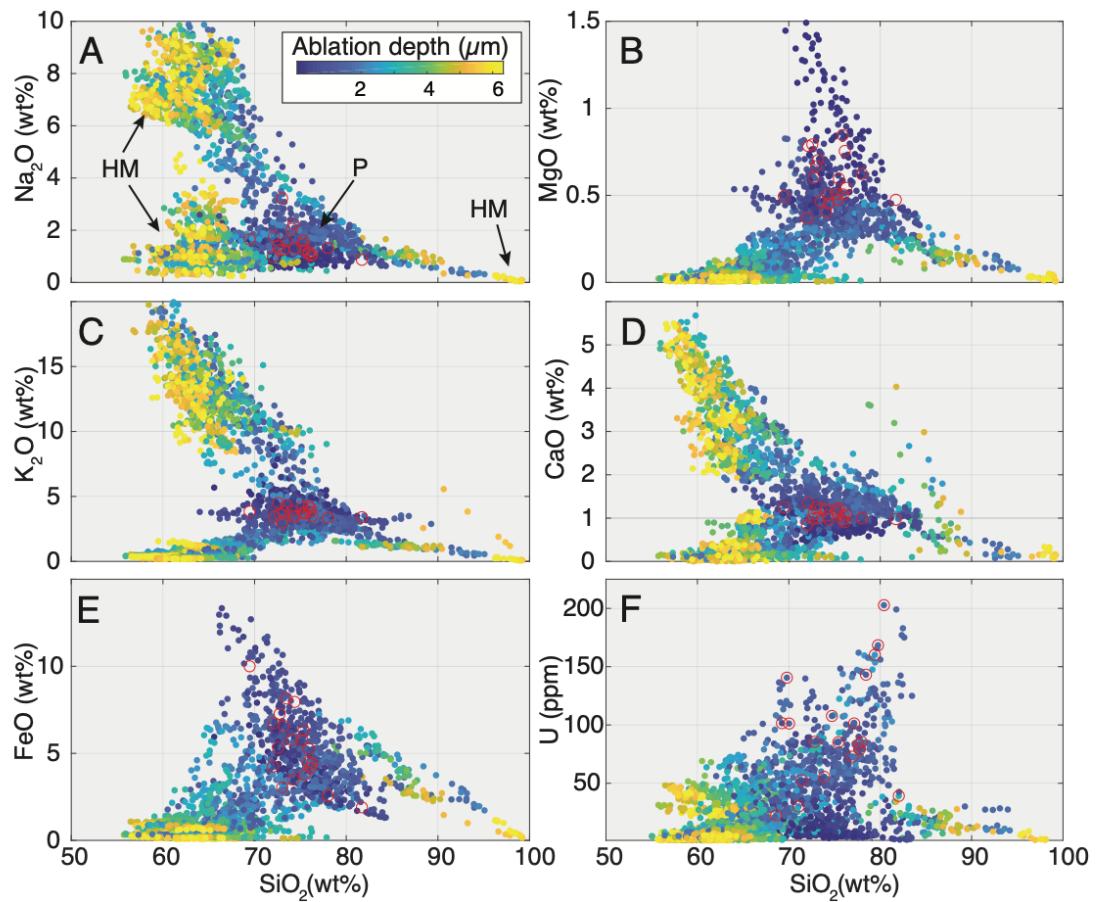
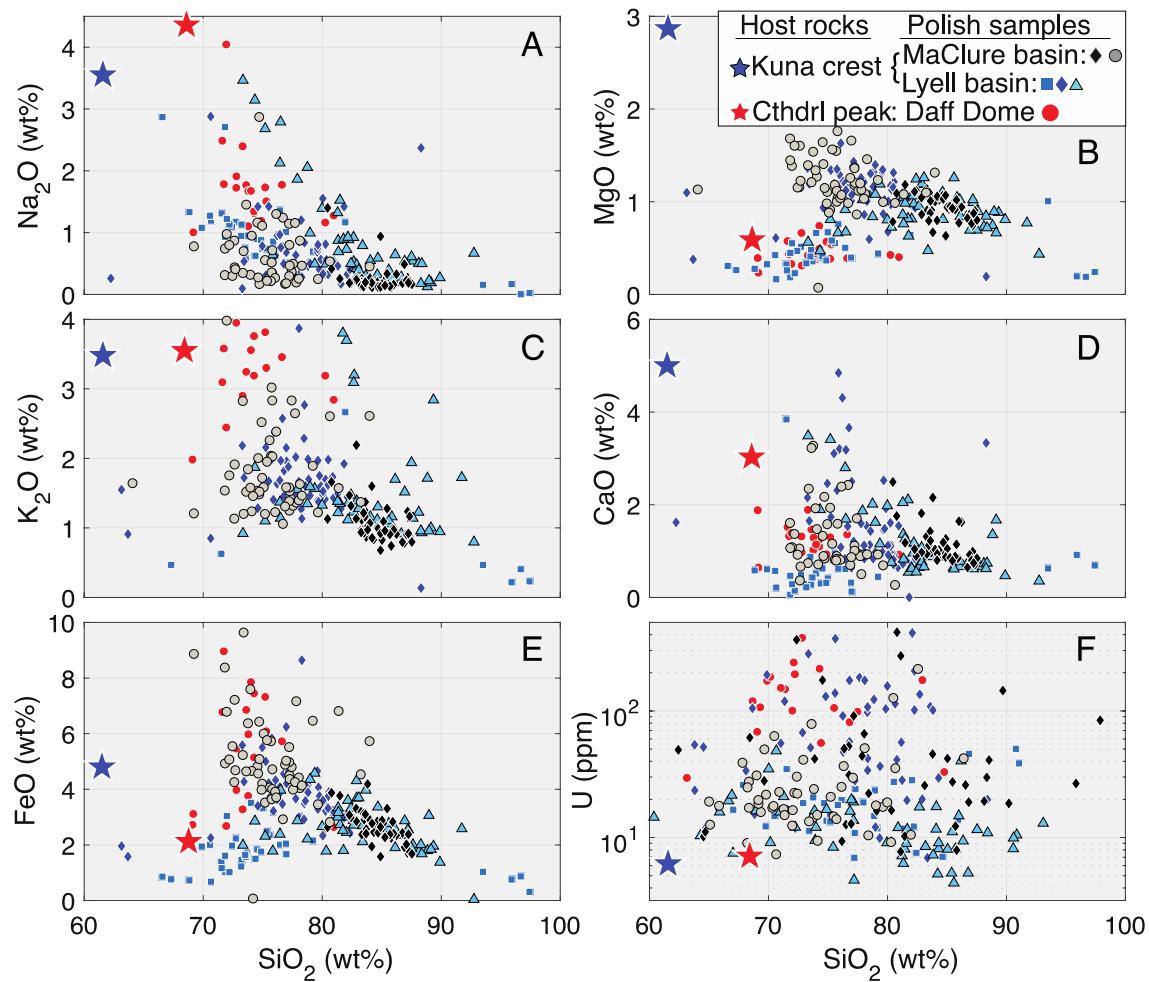
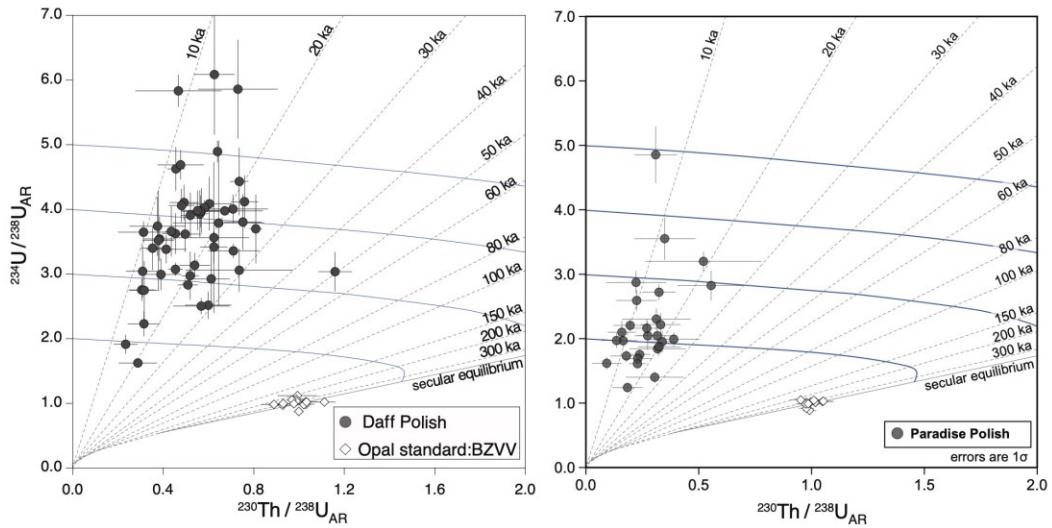




Figure 3

324

325 FIGURE 4:

326