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of some colored vertex becomes colored. The power domination throttling number of
G is the minimum sum of the size of a power dominating set S and the number of
timesteps it takes S to color the graph. In this paper, we determine the complexity
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1. Introduction

A power dominating set of a graph G = (V,E) is a set S C V that colors every vertex of G according to the following
rules: in the first timestep, every vertex in N[S] becomes colored; in each subsequent timestep, every vertex which is the
only non-colored neighbor of some colored vertex becomes colored. The first timestep is called the domination step and
each subsequent timestep is called a forcing step. The power domination number of G, denoted yp(G), is the cardinality of a
minimum power dominating set. The power propagation time of G using S, denoted ppt(G; S), is the number of timesteps it
takes for a power dominating set S to color all of G; when S =V, ppt(G; S) = 0. The power propagation time of G is defined
as

ppt(G) = min{ppt(G; S) : S is a minimum power dominating set}.

It is well-known that larger power dominating sets do not necessarily yield smaller power propagation times. The power
domination throttling number of G is defined as

thy, (G) = min{|S| + ppt(G; S) : S is a power dominating set}.

S is a power throttling set of G if S is a power dominating set of G and |S| + ppt(G; S) = thy, (G).

Power domination arises from a graph theoretic model of the Phase Measurement Unit (PMU) placement problem from
electrical engineering. Electrical power companies place PMUs at select locations in a power network in order to moni-
tor its performance; the physical laws by which PMUs observe the network give rise to the color change rules described

* Corresponding author.
E-mail addresses: boris.brimkov@rice.edu (B. Brimkov), jmsdg7@iastate.edu (J. Carlson), ivhicks@rice.edu (L.V. Hicks), rsp7@rice.edu (R. Patel),
logan.smith@rice.edu (L. Smith).

https://doi.org/10.1016/j.tcs.2019.06.008
0304-3975/© 2019 Published by Elsevier B.V.

Please cite this article in press as: B. Brimkov et al., Power domination throttling, Theoret. Comput. Sci. (2019), https://doi.org/10.1016/j.tcs.2019.06.008




Doctopic: Algorithms, automata, complexity and games TCS:12053

2 B. Brimkov et al. / Theoretical Computer Science eee (eeee) ecee—eoe

above (cf. [15,26]). This PMU placement problem has been explored extensively in the electrical engineering literature; see
[4,5,14,30,35-38], and the bibliographies therein for various placement strategies and computational results. The PMU place-
ment literature also considers various other properties of power dominating sets, such as redundancy, controlled islanding,
and connectedness, and optimizes over them in addition to the cardinality of the set (see, e.g., [3,13,34,41]).

Power domination has also been widely studied from a purely graph theoretic perspective. See, e.g., [6,10-13,20,21,29,42,
44] for various structural and computational results about power domination and related variants. The power propagation
time of a graph has previously been studied in [1,19,24,31]. Other variants of propagation time arising from similar dynamic
graph coloring processes have also been studied; these include zero forcing propagation time [7,23,27,28] and positive
semidefinite propagation time [40]. Throttling for other problems such as zero forcing [16], positive semidefinite zero forcing
[18], minor monotone floor of zero forcing [17], and the game of Cops and Robbers [9] has been studied as well.

Notably missing from the literature on throttling (for power domination as well as other variants) is the computational
complexity of the problems. In this paper, we determine the complexity of a large, abstract class of throttling problems,
including power domination throttling. We also give explicit formulas and tight bounds for the power domination throttling
numbers of certain graphs, and characterizations of graphs with extremal power domination throttling numbers.

2. Preliminaries

A graph G = (V, E) consists of a vertex set V = V(G) and an edge set E = E(G) of two-element subsets of V. The order
of G is denoted by n(G) = |V|. We will assume that the order of G is nonzero, and when there is no scope for confusion,
dependence on G will be omitted. Two vertices v, w € V are adjacent, or neighbors, if {v, w} € E; we will sometimes write
vw to denote an edge {v, w}. The neighborhood of v € V is the set of all vertices which are adjacent to v, denoted N(v);
the degree of v € V is defined as d(v) = |N(v)|. The maximum degree of G is defined as A(G) = maxycy d(v); when there is
no scope for confusion, dependence on G will be omitted. The closed neighborhood of v is the set N[v] = N(v) U {v}.

Contracting an edge e of a graph G, denoted G/e, is the operation of removing e from G and identifying the endpoints
of e into a single vertex. A graph H is a subgraph of a graph G, denoted H < G, if H can be obtained from G by deleting
vertices and deleting edges of G; H is a minor of G, denoted H < G, if H can be obtained from G by deleting vertices,
deleting edges, and contracting edges of G. Given S C V, N[S]=J,cs N[v], and the induced subgraph G[S] is the subgraph
of G whose vertex set is S and whose edge set consists of all edges of G which have both endpoints in S. An isomorphism
between graphs G; and G, will be denoted by Gi >~ G». Given a graph G = (V,E), and sets V' C V and E’ C E, we say
the vertices in V' are saturated by the edges in E’ if every vertex of V' is incident to some edge in E’. An isolated vertex,
or isolate, is a vertex of degree 0. A dominating vertex is a vertex which is adjacent to all other vertices. The path, cycle,
complete graph, and empty graph on n vertices will respectively be denoted P, Cy, Ku, K.

Given two graphs G; and G, the disjoint union G{UG, is the graph with vertex set V(G{)UV(G,) and edge set
E(G1)UE(Gy). With a slight abuse in notation, given a set S ¢ V(G1UG,), we will use, e.g., SN V(G1) to denote the set of
vertices in G{UG> originating from G (instead of specifying the unique index created by the disjoint union operation). The
intersection of G1 and G, denoted G N Gy, is the graph with vertex set V(G1) NV (G,) and edge set E(G1) N E(G3). The
Cartesian product of G; and G, denoted G{LJG5, is the graph with vertex set V(G1) x V(G3), where vertices (u, u’) and
(v, v") are adjacent in G10G; if and only if either u = v and u’ is adjacent to v’ in G, or u’ = v’ and u is adjacent to v in
G1. The join of Gy and Gy, denoted G; Vv G, is the graph obtained from G{UG, by adding an edge between each vertex of
G1 and each vertex of G,. The complete bipartite graph with parts of size a and b, denoted K, is the graph K, v Kj. The
graph K,_1 1, n >3, will be called a star. For other graph theoretic terminology and definitions, we refer the reader to [3].

A zero forcing set of a graph G = (V,E) is a set S C V that colors every vertex of G according to the following color
change rule: initially, every vertex in S is colored; then, in each timestep, every vertex which is the only non-colored
neighbor of some colored vertex becomes colored. Note that in a given forcing step, it may happen that a vertex v is the
only non-colored neighbor of several colored vertices. In this case, we may arbitrarily choose one of those colored vertices
u, and say that u is the one which forces v; making such choices in every forcing step will be called “fixing a chronological
list of forces”. The notions of zero forcing number of G, denoted Z(G), zero forcing propagation time of G using S, denoted
pt(G; S), zero forcing propagation time of G, denoted pt(G), and zero forcing throttling number, denoted th(G), are defined
analogously to yp(G), ppt(G; S), ppt(G), and thy, (G). A positive semidefinite (PSD) zero forcing set of G is a set S C V which
colors every vertex of G according to the following color change rule: initially, in timestep 0, every vertex in Sp:=S is
colored; then, in each timestep i > 1, if S;_q is the set of colored vertices in timestep i — 1, and W1, ..., W}, are the vertex
sets of the components of G — S;_1, then every vertex which is the only non-colored neighbor of some colored vertex in
G[W;USi_1], 1 < j <k, becomes colored. As with zero forcing, the PSD zero forcing notation Z,(G), pt,(G; S), pt, (G),
and th (G) is analogous to yp(G), ppt(G; S), ppt(G), and thy,, (G), respectively. For every graph G, yp(G) < th,, (G) < th(G).
Moreover, in general, thy, (G) and th, (G) are not comparable; for example, thy, (K7) < th(K7), while thy, (G) > th, (G) for
G=({1,2,3,4,5,6,7}, {{1,2}. (1,3}, (1,4}, {2, 5}, (2,6}, (3, 7}}).

3. Complexity results

A number of NP-Completeness results have been presented for power domination, zero forcing, and positive semidefinite
zero forcing. For example, power domination was shown to be NP-Complete for general graphs [26], planar graphs [25],
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Table 1
Notation for abstract problems and corresponding notation for power
domination.

Abstract notation Power domination notation

X(G) Set of power dominating sets of G

x(G) ¥p(G)

p(G; S) ppt(G; S)

p(G) ppt(G)

minsexc){IS| + p(G; S)} thy, (G)

Table 2
NP-Complete set minimization problems and corresponding throttling problems.
Set minimization problem Throttling problem
MINIMUM X SET (X, p)-THROTTLING
Instance: Graph G, integer k Instance: Graph G, integer k
Question: Is x(G) < k? Question: Is minsex){|S|+ p(G; S)} <k?
POWER DOMINATION POWER DOMINATION THROTTLING
Instance: Graph G, integer k Instance: Graph G, integer k
Question: Is yp(G) < k? Question: Is thy, (G) <k?
ZERO FORCING ZERO FORCING THROTTLING
Instance: Graph G, integer k Instance: Graph G, integer k
Question: Is Z(G) < k? Question: s th(G) < k?
PSD ZERO FORCING PSD ZERO FORCING THROTTLING
Instance: Graph G, integer k Instance: Graph G, integer k
Question: Is Z (G) < k? Question: s th; (G) < k?

chordal graphs [26], bipartite graphs [26], split graphs [25,32], and circle graphs [25]; zero forcing was shown to be NP-
Complete for general graphs [2,22] and planar graphs [2]; PSD zero forcing was shown to be NP-complete for general graphs
[43] and line graphs [39]. However, despite recent interest in the corresponding throttling problems, to our knowledge there
are no complexity results for any of those problems. In this section, we provide sufficient conditions which ensure that given
an NP-Complete vertex minimization problem, the corresponding throttling problem is also NP-Complete.

To facilitate the upcoming discussion, we recall three categories of graph parameters introduced by Lovasz [33]. Let
¢ be a graph parameter and G; and G, be two graphs on which ¢ is defined. Then, ¢ is called maxing if $(G1UG;) =
max{¢(G1), $(G2)}, additive if $(G1UG2) = ¢(G1) + ¢(G>), and multiplicative if ¢(G1UG2) = ¢(G1)¢(G2). For example,
yp(G) is an additive parameter, ppt(G) is a maxing parameter, and the number of distinct power dominating sets admitted
by G is a multiplicative parameter. We will show that with only minor additional assumptions, a minimization problem de-
fined as the sum of a maxing parameter and an additive parameter inherits the NP-Completeness of the additive parameter
for any family of graphs.

Definition 1. Given a graph G = (V,E), let X(G) be a set of subsets of V and let p(G; -) be a function which maps a

member of X(G) to a nonnegative integer. Define the parameters x(G) := minsex(c) |S| and p(G) :=minsex(c) p(G; S), and
[S|=x(G)
define arg p(G) :=argmin sex) p(G; S).
[SI=x(G)

Note that the function p and the parameter p are differentiated by their inputs. Table 1 shows the power domination
notation corresponding to the abstract notation of Definition 1. Table 2 gives a pair of abstract decision problems that can
be defined for X, x, and p, as well as three instances which have been studied in the literature. We now give sufficient
conditions to relate the complexity of these problems.

Theorem 1. Let X and p (as in Definition 1) satisfy the following:

1) For any graph G, there exist constants b, c such that for any set S € X(G), p(G;S) <b = 0(]V(G)|°), and p(G; S) and b can be
computed in O (|V (G)|°) time.

2) For any graphs Gy and G, X(G1UG2) = {S1US3 : S1 € X(G1), S € X(G)}.

3) For any graphs Gy and G», and for any S1 € X(G1) and S € X(G2), p(G1UG>2; S1US3) = max{p(G1; S1), p(G2; S2)}.

4) MINIMUM X SET is NP-Complete.

Then, (X, p)-THROTTLING is NP-Complete.
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Proof. We will first show that x is an additive parameter and p is a maxing parameter. Let G; and G, be graphs. By 2),

x(G1UGy) = min{|S’| : " € X(G1UG3)}
=min{|S’|: S’ € {S1US3 : S1 € X(G1), S2 € X(G2)}}
=min{|S1| + [S2|: S1 € X(G1), S2 € X(G2)}
=min{|S1]: S1 € X(G1)} + min{|S2| : 52 € X(G2)} = x(G1) + x(G2).

Thus, x is additive by definition. Now let $* be a set in arg p(G1UG>). By 2), there exist sets S; € X(G1) and S; € X(G2)
such that S* = S;US,. By definition, |S1| > x(G1) and |S2| > x(G>), and since x is additive, |S*| = x(G1UG2) = x(G1) +x(G2).
Thus, |S1] =x(G1) and |S2| = x(G>3). Then,

p(G1UG2) = p(G1UGy; S*) = p(G1UG2; S1US7) = max{p(G1; S1), p(G2; S2)}

> max min G1;S), min Go:; S) ¢ =max{p(Gq), p(G2)},

> sdnin p(G13S) somn p(G2;S) {p(G1), p(G2)}
[S1=x(G1) [S|=x(G2)

where the third equality follows from 3), and the inequality follows from the fact that |S1] =x(G1) and |S2| = x(G3). Now,

let ST e argp(Gy) and S% € arg p(Gy). Then,

p(G1UG2)=  min  p(G1UGy2; ') < p(G1UGy; STUS3)
§'eX(G1UGy)
|'|=x(G1UG2)

=max{p(G1; S7), p(Gz; S3)} = max{p(G1), p(G2)},

where the inequality follows from 2) and the fact that x is additive, and the second equality follows from 3). Thus,
p(G1UG,) = max{p(G1), p(G2)}, so p is maxing by definition.

Next we will show that (X, p)-THROTTLING is in NP. By 1), for any S € X(G), p(G; S) can be computed in polynomial
time. By 4), MINIMUM X SET is in NP, so there exists a polynomial time algorithm to verify that S is in X(G). Thus, for any
S c V(G), |S|+ p(G; S) can be computed or found to be undefined in polynomial time. Therefore, (X, p)-THROTTLING is in
NP.

We will now show that (X, p)-THROTTLING is NP-Hard, by providing a polynomial reduction from MiNIMUM X SET. Let
(G, k) be an instance of MINIMUM X SET. Let B =b + 1, where b is the bound on p(G;S) in 1). Let G1,..., Gp be disjoint
copies of G, and let G’ = L'JIB:]G,-. We will show (G, k) is a ‘yes’-instance of MiNiMuM X SET if and only if (G’, Bk + b) is a
‘yes’-instance of (X, p)-THROTTLING. Note that by 1), (G’, Bk +b) can be constructed in a number of steps that is polynomial
in n. Since x is an additive parameter, x(G') = x(U?:]Gi) = 21'3:1 x(G;) = Bx(G). Thus,

min {|S'[+p(G’; SN} < min {|S'| 4 p(G; S)}
S'eX(G) S'eX(G')
IS"|=x(G")
= min {Bx(G)+ p(G;S")}
S'eX(G")
IS"|=x(G")

= Bx(G) + p(G") = Bx(G) + p(G),
where the last equality follows from the fact that p is maxing, and p(G’) = p(L'J,B:lG,-) =max{p(Gy),...,p(Gp)} =p(G).
Now consider any S’ € X(G'). Clearly |S’| > x(G") = Bx(G). Suppose first that |S’| > B(x(G) + 1); then,

IS+ p(G'; S') = B(x(G) + 1) + p(G'; ) = Bx(G) 4+ B > Bx(G) + p(G).
Now suppose that |S’| < B(x(G) + 1). Since S’ € X(G') = {L'J,les,- :Si € X(G))}, |1S'NV(Gy)| > x(G) for all i e {1,..., B}. By
the pigeonhole principle, |[S"NV (G;)| =S| =x(G) for some j e {1,..., B}. By 3),

p(G'; S =max{p(G;; Sj), p(G' = G; S'\Sj)} = p(Gj; Sj) = p(G).
Thus in all cases, |S'| + p(G’; S’) > Bx(G) + p(G). Hence, it follows that

min_{|S'| 4+ p(G; S")} = Bx(G) + p(G). (1)
S'eX(G")

We will now show that x(G) < k if and only if ming/cx(c){|S’| + p(G’; S')} < Bk + b. First, suppose that x(G) < k. Then by
(1), mingrexch{I1S'| + p(G’; S')} = Bx(G) + p(G) < Bk + b. Now suppose that mingexc){|S'| + p(G’; )} < Bk + b. Then, by
(1), Bx(G) + p(G) < Bk + b. Rearranging, dividing by B, and taking the floor yields
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X(G) = [X(G)] < Lk+ WJ —k+ L%J —k

Thus, (G, k) is a ‘yes’-instance of MiNiMUM X SET if and only if (G’, Bk + b) is a ‘yes’-instance of (X, p)-THROTTLING. O

We now show that Theorem 1 can be applied to the specific throttling problems posed for power domination, zero
forcing, and positive semidefinite zero forcing.

Corollary 2. POWER DOMINATION THROTTLING, ZERO FORCING THROTTLING, and PSD ZERO FORCING THROTTLING are NP-Complete.

Proof. Given a graph G, let X(G) denote the set of power dominating sets of G and for S € X(G), let p(G; S) denote the
power propagation time of G using S. Clearly, for any power dominating set S, ppt(G; S) is bounded above by |V (G)|, and
can be computed in polynomial time. Thus, assumption 1) of Theorem 1 is satisfied. For any graphs G; and Gy, it is easy
to see that S is a power dominating set of G1UG; if and only if SNV (G1) is a power dominating set of G; and SNV (Gy)
is a power dominating set of G,. Thus, assumption 2) of Theorem 1 is satisfied. Let G; and G, be graphs, and let S; be a
power dominating set of G1 and S, be a power dominating set of G,. Then, the same vertices which are dominated in Gq
by S1 and in G, by S can be dominated in G{UG, by S1US,, and all forces that occur in timestep i > 2 in G; and G,
will occur in G;UG, at the same timestep. Thus, ppt(G1UG>; S1US) = max{ppt(G1: S1), ppt(G2: S2)}, so assumption 3) of
Theorem 1 is satisfied. Finally, since POWER DoMINATION is NP-Complete (cf. [26]), assumption 4) of Theorem 1 is satisfied.
Thus, POWER DOMINATION THROTTLING is NP-Complete. By a similar reasoning, it can be shown that the assumptions of
Theorem 1 also hold for zero forcing and positive semidefinite zero forcing; thus, ZERO FORCING THROTTLING and PSD ZERO
FORCING THROTTLING are also NP-Complete. 0O

Some graph properties are preserved under disjoint unions; we will call a graph property P additive if for any two
graphs Gq, G, with property P, G1UG; also has property P. Let (G,k) be an instance of MINIMUM X SET in the special
case that G has property P. In the proof of Theorem 1, a polynomial reduction from (G,k) to an instance (G/, Bk+b)
of (X, p)-THROTTLING is given, where G’ is the disjoint union of copies of G. If property P is additive, then G’ also has
property P. Thus, special cases of (X, p)-THROTTLING in graphs with property P reduce from instances of MINIMUM X SET
with property P, by the proof of Theorem 1. It is easy to see that planarity, chordality, and bipartiteness are additive
properties. As noted at the beginning of this section, POWER DoMINATION is NP-Complete for graphs with these properties.
Thus, these NP-Completeness results can be extended to the corresponding throttling problem.

Corollary 3. POWER DOMINATION THROTTLING is NP-Complete even for planar graphs, chordal graphs, and bipartite graphs.

4. Bounds and exact results for th,, (G)

In this section, we derive several tight bounds and exact results for the power domination throttling number of a graph.
We have also implemented a brute force algorithm for computing the power domination throttling number of arbitrary
graphs (cf. https://github.com/rsp7/Power-Domination-Throttling), and used it to compute the power domination throttling
numbers of all graphs on fewer than 10 vertices. Recall the following well-known bound on the power propagation time.

Lemma 4 ([24,27]). Let G be a graph and S be a power dominating set of G. Then ppt(G; S) > % (‘”T‘ - 1).

Theorem 5. Let G be a nonempty graph. Then, thy, (G) > [2,/% — L7, and this bound is tight.

Proof. Since G is nonempty, we have A > 0. Let P(G) denote the set of all power dominating sets of G. By Lemma 4,

1 n 1 /n
th,,(G) = min {|S t(G;S)} > min {|S|+—(— —1 > minjs —(——1) .
v (G) Sep(c){l | + ppt( )}_SEP(G){I |+A< )}_ { +A S }

|S] 5>0
To compute the last minimum, let us minimize t(s) :=s + %(% —1),s>0.Since t/'(s) =1— #, s=,/% is the only critical
point of t(s). Since t”(s) = % > 0 for s > 0, we have that t(\/g) = \/g—k %(n/ % —-1)=2 % - % is the global minimum

of t(s). Thus, thy, (G) = [thy, (G)] > {2 % - %—‘ The bound is tight, e.g., for paths and cycles; see Proposition 7. O

Theorem 6 ([18]). thy (Py) = [v2n — 1] forn > 1 and th (Cy) = [v2n — 1] forn > 4.

Proposition 7. thy, (P;) = [v/2n — 1] forn > 1 and thy, (Cy) = [v2n — 1] forn > 3.
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Proof. Let S be an arbitrary nonempty subset of V(P;). If any vertex in S has two neighbors which are not in S, then
both of these neighbors are in different components of P, — S. Moreover, each vertex in N[S] has at most one neighbor
which is not in N[S]. Thus, the PSD zero forcing color change rules and the power domination color change rules both
dictate that at each timestep, the non-colored neighbors of every colored vertex of P, will be colored. Hence, since any
nonempty subset S of V(Py) is both a power dominating set and a PSD zero forcing set, ppt(Py; S) = pty(Pp; S). Thus,
thy, (Pn) = min{|S| + ppt(Pn; S): S C V(Py), S| = 1} = min{|S| + pt, (Pn; S): S C V(Pn), |S| = 1} = thy (Py) = [v2n — 3],
where the last equality follows from Theorem 6.

Clearly thy, (Cy) = [«/ﬁ — %1 for n = 3, so suppose that n > 4. By a similar reasoning as above, and since any set S C
V(Cp) of size at least 2 is both a power dominating set and a PSD zero forcing set, it follows that ppt(Py; S) = pt(Pp; S). If
{v} C V(Cp) is a power throttling set of C, and u is a vertex of C;; at maximum distance from v, then {u, v} is also a power
throttling set, since ppt(Cy; {u, v}) < ppt(Cp; {v}) — 1 for n > 4. Thus, th,, (C;) = min{|S| 4+ ppt(Cy; S): S C V(Cp), S| =1} =
min{|S|+ ppt(Ca; S): S C V(Cp), S| = 2} = min{|S| +pt, (Cn; S): S C V(Cp), IS| = 2} = th (Cn) = [v/2n— 1], where the last
equality follows from Theorem 6. O

Proposition 8. Let G1, G be graphs and G = G1UG>. Then,

thy, (G) > max{yp(G1) + thy, (G2), ¥p(G2) + thy, (G1)},
thy, (G) < yp(G1) + yp(G2) + max{ppt(G1), ppt(G2)},

and these bounds are tight.

Proof. We first establish the lower bound. Suppose for contradiction that thy,(G) < yp(G1) + thy,(G2), and let S be a
power throttling set of G. Thus, |S| 4 ppt(G; S) < yp(G1) + thy, (G2). Note that |[S NV (G2)| < |S| —yr(G1), since SNV (G1)
must be a power dominating set of G1. Moreover, ppt(G2; SNV (Gy)) < ppt(G; S). Thus,

thy, (G2) < SNV (G2)| + ppt(G2; SNV (G2))
<|S|—yp(G1) + ppt(G; S)
< thy, (Gy),

a contradiction. Thus, thy,(G) > yp(Gy) + thy, (G2). Similarly, thy,(G) > yp(G2) + thy,(G1). We now establish the upper
bound. Let S; € V(G1) and S; C V(G2) be power dominating sets such that ppt(Gq; S1) = ppt(G1) and ppt(Gy; S2) =
ppt(G2). Let S = S1 U S3. Then thy, (G) < |S|+ppt(G; S) = |S1|+ [S2| + max{ppt(G1; S1) + ppt(G2; S2)} = yp(G1) + ¥p(G2) +
max{ppt(G1), ppt(G2)}. Both bounds are tight, e.g., when G is the disjoint union of two stars. O

Theorem 9. Let G1 and G, be graphs such that Gy N G, =~ K. Then

max{thy, (G1), thy, (G2)} < thy, (G1 U G2) < ¥p(G1) + yp(G2) + k + max{ppt(G1), ppt(G2)},

and these bounds are tight.

Proof. Let K = V(G N G2). We will first establish the upper bound. Let S C V(G1) and S C V(G2) be minimum power
dominating sets such that ppt(G1; S1) = ppt(G1) and ppt(Gy; S2) = ppt(G2). Let S=S1 U S, UK. S is a power dominating
set of G1 U Ga, since all vertices which are dominated in G by S{ and in G by Sy are dominated in G1 UGy by S1US>, and
all forces which occur in G and in G, can also occur in G1 U G; (or are not necessary); this is because N[K] is colored after
the domination step, and the non-colored neighbors of any vertex v € V(G1 U G,) at any forcing step are a subset of the
non-colored neighbors of v at the same timestep in G1 or G,. For the same reason, a force which occurs in timestep i > 2
in G1 or G, occurs in a timestep j <i in G1 U G, (or is not necessary). Therefore, ppt(G1 U G2; S) < max{ppt(G1), ppt(G2)},
and |S| < yp(G1) + yp(G2) + k. Thus, thy, (G1 U G2) <|S|+ppt(G1UG2; S) < ¥p(G1) + ¥p(G2) +k+ max{ppt(G1), ppt(G2)}.

We will now establish the lower bound. Let S be a power throttling set of G; UG, and let w be any vertex in K. We
will consider four cases.

Case 1: SN K #@. In this case, let S1 =SNV(Gy1) and S =SNV(Gy).

Case2: SNK =0 but SNV (Gy)#¥ and SNV (Gy) # @. In this case, let S1 =(SNV(G1))U{w} and S, = (SNV(Gy)) U {w}.
Case 3: S C V(G1)\V(G>). In this case, let S1 =S and S, = {w}.

Case4: S C V(G2)\V(Gq). In this case, let S ={w} and S, =S.

Note that in all cases, S1 C V(G1), S2 € V(G2), |S1] <|S|, and |S2| < |S|. In Cases 1 and 2, K is dominated by S; in
G1 and by Sy in Gy. Subsequently, at any forcing step, the non-colored neighbors of any vertex v in G; or G, are a
subset of the non-colored neighbors of v at the same timestep in G; U G,. Thus, S; is a power dominating set of G; and
Sy is a power dominating set of G,. Moreover, a force which occurs in timestep i > 2 in G; U G, occurs in a timestep
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Fig. 1. Graphs G1 and G1 U G, for which the upper bound in Theorem 9 holds with equality.

j <iin Gy or Gy. Therefore, ppt(G1; S1) < ppt(G1 U G3; S), and ppt(Gy; S2) < ppt(G1 U Gy; S). In Case 3, since no vertex
of K is in S, no vertex of K colors another vertex of G; U G, in the domination step. Thus, in G; U G, no vertex in
V(G2)\K can force a vertex of K, since this would mean a vertex in K forced some vertex in V(G,)\K in a previous
timestep, which would require all vertices of K to already be colored. Moreover, in G1 U G, all vertices in V(G2)\K can
be forced after the vertices in K get colored. Thus, S1 is a power dominating set of G; and S, is a power dominating
set of G,. Furthermore, since S; and S, can color G; and G; using a subset of the forces that are used by S to color
G1 U G3, it follows that ppt(Gq; S1) < ppt(G1 U G2; S) and ppt(Ga; S2) < ppt(G1 U Gy; S). Case 4 is symmetric to Case 3.
Thus, in all cases, thy, (G1) <|S1|+ ppt(G1; S1) < |S|+ppt(G1 U Gy; S) =thy, (G1 UG3) and thy, (G2) < |S2]| 4 ppt(Gy; S2) <
IS| + ppt(G1 U Ga; S) = thy, (G1 U G2), so max{thy, (G1), thy, (G2)} < thy, (G1 U G2).

To see that the upper bound is tight, let K be a complete graph with vertex set {vq, ..., v}, let G1 be the graph obtained
by appending two leaves, u; and w;, to each vertex v; of K, 1 <i <k, and then appending three paths of length 1 to each
wij, 1 <i<k. Let Gy be a copy of G labeled so that G; N G, = K and the vertex in Gy corresponding to w; in Gy is W;,
1 <i <k; see Fig. 1 for an illustration. Let S = {w1, ..., wy}. Since every minimum power dominating set of G; must contain
S, and S is itself a power dominating set of G1, yp(G1) = yp(G2) = |S| = k. Furthermore, max{ppt(G1), ppt(G2)} = 2, so
yp(G1)+yp(G2) +k+max{ppt(G1), ppt(G2)} = 3k+2. In G1 UG, for 1 <i <k, v; has two leaves appended to it; thus, either
v; or one of these two leaves must be contained in any power dominating set of G1 U G,. Likewise, since each vertex w; has
three paths appended to it, either w; or at least one vertex in those paths must be contained in any power dominating set.
Similarly, either w/ or at least one vertex in the paths appended to w; must be contained in any power dominating set. Thus,
yp(G1UGy) = 3k. If thy, (G1 UG2) < 3k +1, then there must exist a power dominating set S" such that ppt(G,UGy; S") =1,
and |S’| = 3k. However, if ppt(G; U Go;S’) =1, then S’ must be a dominating set, and it is easy to see that G; U G, does
not have a dominating set of size 3k. Therefore thy, (G; U G2) =3k +2=yp(G1) + yp(G2) + k + max{ppt(G1), ppt(G2)}.

To see that the lower bound is tight, let K be a complete graph on k vertices, let G; be the graph obtained by appending
three leaves to each vertex of K, and let G, be a copy of G labeled so that G; NG, = K. Then, V (K) is a power throttling
set of G1, G and G1 U Gy, since V(K) is a minimum power dominating set in all three graphs, and the power propagation
time in all three graphs using V (K) is 1. Thus, thy, (G1 U G2) =k + 1 = max{th,, (G1), thy,(G2)}. O

We conclude this section by deriving tight bounds on the power domination throttling numbers of trees; some ideas in
the following results are adapted from [18].

Lemma 10. Let G be a connected graph on at least 3 vertices. Then there exists a power throttling set of G that contains no leaves.

Proof. Let S’ be a power throttling set of G, and suppose that v € S’ is a leaf with neighbor u (which cannot be a leaf
since G is connected and n(G) > 3). If u € §’, then S := 5"\ {v} is also a power throttling set of G, since |S| =1|S’| — 1 and
ppt(G; S) < ppt(G; S’) + 1. Otherwise, if u ¢ S’, then let S = (S'\ {v}) U {u}. Note that N[S’] C N[S], and so pt(G; N[S]) <
pt(G; N[S']). Since ppt(G; S), ppt(G; S’) > 1, this implies that ppt(G; S) < ppt(G; S’). Since |S| = |S’|, S must also achieve
throttling. This process of replacing leaves with non-leaf vertices in power throttling sets of G can be repeated until a
power throttling set is obtained which has no leaves. O

Proposition 11. If T is a tree with subtree T', then th,, (T') < th,, (T). That is, power domination throttling is subtree monotone for
trees.

Proof. Clearly the claim is true for trees with at most 2 vertices, so suppose that T is a tree with at least 3 vertices. By
Lemma 10, T has a power throttling set S which does not contain leaves. Let v be a leaf of T; then, S C V(T — v), so
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Fig. 2. The graph G(s,a, b) with s =3, a=4, and b =5. The dashed edges are the cross edges, the solid edges are the complete edges, the thick edges are
the path edges, the black vertices are s-vertices and the grey vertices are a-vertices.

ppt(T — v; S) < ppt(T; S). Thus, thy, (T —v) < |S| + ppt(T — v; S) < |S| 4 ppt(T; S) = thy, (T). Since any subtree T’ of T
can be attained by repeated removal of leaves, and since each removal of a leaf does not increase the power domination
throttling number, it follows that th,, (T") <th,,(T). O

Theorem 12. Let T be a tree on at least 3 vertices. Then,

[V2(diam(T) + 1) — 1/2] < thy,,(T) < diam(T) — 1+ yp(T),

and these bounds are tight.

Proof. Since T has diameter d :=diam(T) and at least 3 vertices, T contains a path of length d > 2. Thus P44 is a subtree
of T, and A(Pgy1) = 2. Then, the lower bound follows from Theorem 5 and Proposition 11. In Theorem 2.5 of [24], it
is shown that for every tree with at least 3 vertices, ppt(T) <d — 1. Let S* be a power throttling set of T and S be a
minimum power dominating set of T such that ppt(T; S) = ppt(T). Then, thy,(T) = |S*| + ppt(T; $*) < |S| + ppt(T; S) =
yp(T) +ppt(T) < yp(T) +d — 1. Both bounds are tight, e.g., for stars, since [ /22 +1)—1/2]=2-1+1. O

5. Extremal power domination throttling numbers

In this section, we give a characterization of graphs whose power domination throttling number is at least n — 1 or at
most ¢, for any constant t. We begin by showing that graphs with th,,(G) <t are minors of the graph in the following
definition.

Definition 2. Let a > 0, b > 0, and s > 1 be integers and let G(s, a, b) be the graph obtained from K;U(K,OPp) by adding
every possible edge between the disjoint copy of Ks and a copy of K, in K,[IP, whose vertices have minimum degree. If
either a =0 or b =0, then G(s,a,b) >~ K;. A path edge of G(s,a,b) is an edge that belongs to one of the copies of Pj; a
complete edge is an edge that belongs to one of the copies of K, or to Ks; a cross edge is an edge between K and K,[IPy.
The vertices in Ks and K, that are incident to cross edges are called s-vertices and a-vertices, respectively. See Fig. 2 for an
illustration.

Theorem 13. Let G be a graph and t be a positive integer. Then, thy, (G) <t if and only if there exist integersa >0, b >0, and s > 1
such that s +b =t, and G can be obtained from G(s, a, b) by

1. contracting path edges,
2. deleting complete edges, and/or
3. deleting cross edges so that the remaining cross edges saturate the a-vertices.

Moreover, for a fixed t, these conditions can be verified in polynomial time.

Proof. Suppose first that th,,(G) <t. Let S be a power throttling set of G, and fix some chronological list of forces by
which N[S] colors G. Let s = |S], let b’ = ppt(G; S) =th,,(G) —s, and let b=t —s; note that b’ <b. Let A=N[S]\S =
{vi1,v2.1,...,Vvq1}, where a=|A|. Clearly, a < sA(G). We will show that G can be obtained from G(s, a, b) by contracting
path edges, deleting complete edges, and/or deleting cross edges so that the remaining cross edges saturate the a-vertices.
First, note that G(s,a,b’) can be obtained from G(s, a, b) by contracting path edges. Thus, it suffices to show that G can be
obtained from G(s, a, b’) by the above operations.

Label the s- vertices of G(s,a,b’) with the elements of S, and label the a- vertices of G(s,a,b’) with the elements of
{v1 1 v2 1rees Vg, ]} For each s-vertex u and a-vertex vl 1» delete the edge uv,1 unless uv; 1 € E(G). Note that all edges
deleted this way are cross edges, and that after these deletions, the remaining cross edges must saturate the a-vertices,
since by definition the vertices in S dominate the vertices in A. Also, for each pair of s-vertices uq, u;, delete the edge uju;
unless uiuy € E(G); note that all edges deleted this way are complete edges.

Please cite this article in press as: B. Brimkov et al., Power domination throttling, Theoret. Comput. Sci. (2019), https://doi.org/10.1016/j.tcs.2019.06.008




Doctopic: Algorithms, automata, complexity and games TCS:12053

B. Brimkov et al. / Theoretical Computer Science eee (eeee) eee—eoe 9

For 1 <i<a, let vi1,...,V;p, be a maximal sequence of vertices of G such that v; j forces v; j;1 for 1 < j < p; (after
the domination step using S, for the fixed chronological list of forces). Note that since A= N[S]\S, A is a zero forcing set of
G — S, and hence each vertex of G — S belongs to exactly one such sequence. For 1 <i<a and 1< j < p;, if v; ; performs
a force (according to the fixed chronological list of forces), let 7; ; be the timestep at which v; ; performs a force minus
the timestep at which v; ; gets forced or dominated; if v; ; does not perform a force, let 7; j be b’ + 1 minus the timestep
at which v;; gets forced or dominated. Note that since S is a power throttling set, each v; j gets forced or dominated
at some timestep, and for each i € {1,...,a}, Z?L] 7,j=Db’. Then, if P',..., P are the paths used in the construction of

G(s,a,b’), we can label the vertices of P!, 1 <i <a, in order starting from the endpoint which is an a-vertex toward the
other endpoint, as

1 Ti1 o1 Ti2 1 i3 1 Ti,p;
Vidroo Vit s Vige oo Via s Vigooes Vigooos Vipooen Vil
In other words, the labels of the vertices of P! consist of 7i,1 copies of v; 1, followed by 7; > copies of v; 3, ..., followed by
T; p; copies of v; p,, for a total of b’ vertices.
Let K,...,K" be the cliques of size a used in the construction of G(s,a,b’), where V(K') = {v} ,,...,v},}, and the

vertices of K¢ are collectively adjacent to the vertices of K¢*! for 1 < ¢ < b’. Each such clique corresponds to a timestep in
the forcing process of G — S using A (for the fixed chronological list of forces). Let e = {v;, j,, Vi, j,} be an arbitrary edge of
G — S with iy #iy. Since S is a power throttling set of G, v;, j, and vy, j, both eventually get forced or dominated; let £*

be the earliest timestep at which v;, j, and vj, j, are both colored. Then, the clique K*" contains v j, and vg j,» for some

aef{l,...,7, j;}and B e{l,..., 7, j,}. Denote the edge {vﬁ.j1 , vf;jz} by ¢(e), and note that ¢ (e) is uniquely determined
for e. '

Delete all edges in K1, ..., K" from G(s,a,b’) except the edges {¢(e) :e ={vi, j,, Vi, j,} € E(G—S), with ij #i}. Next,
for 1<i<aand 1< j < p;, contract the edges {v},j, viz_j}, {vij, vij}, ...,{v;i}j_l, virff} in G(s,a,b’) and let ¥ (v; j) be the

vertex corresponding to {v}’ oo v; ’f } obtained from the contraction of these edges. See Fig. 3 for an illustration. Note that
these operations delete complete edges and contract path edges. Moreover, note that there is a bijection between edges of
G — S of the form e = {v;, j,, Vi, j,} With i; #1i, and the edges ¢(e) of G(s,a,b’), as well as between edges of the form
{vi j, Vi j+1} of G— S and the edges {¥(v; j), ¥ (vi j+1)} of G(s,a,b’). Thus, the obtained graph is isomorphic to G, so G
can be obtained from G(s, a, b’) by contracting path edges, deleting complete edges, and/or deleting cross edges so that the
remaining cross edges saturate the a-vertices.

Conversely, suppose there exist integers a >0, b >0, and s > 1 such that s+b =t, and G can be obtained from G(s, a, b)
by contracting path edges, deleting complete edges, and/or deleting cross edges so that the remaining cross edges saturate
the a-vertices. Let S be the set of s-vertices in G(s,a,b) and A be the set of a-vertices. Clearly S is a power dominating set
of G(s,a,b), and ppt(G(s,a,b); S) =b.

In the power domination process of G(s,a,b) using S, complete edges are not required in the domination step and are
not used in any forcing step, since any vertex which is adjacent to a non-colored vertex via a complete edge is also adjacent
to a non-colored vertex via a path edge. Therefore, S remains a power dominating set after any number of complete edges
are deleted from G(s, a, b); moreover, deleting complete edges from G(s, a, b) cannot increase the power propagation time
using S, since all the forces can occur in the same order as in the original graph, via the path edges.

It is also easy to see that if any path edges of G(s, a, b) are contracted, S remains a power dominating set of the resulting
graph, since all the forces can occur in the same relative order along the new paths. Moreover, note that G(s,a,b) —
S >~ K,OPp, and that A is a zero forcing set of K,[JP,. Thus, the power domination process of G(s,a,b) using S after
the domination step is identical to the zero forcing process of K,[(1P, using A. It follows from Lemma 3.15 of [17] that
contracting path edges of K,[O1P, does not increase the zero forcing propagation time using A. Thus, contracting path edges
of G(s,a,b) does not increase the power propagation time using S.

Finally, deleting cross edges so that the remaining cross edges saturate the a-vertices ensures that every a-vertex will
still be dominated by an s-vertex in the first timestep. Thus, since S remains a power dominating set of G, and since G is
obtained from G(s,a, b) by operations that do not increase the power propagation time using S, it follows that th,, (G) <
[S|+ppt(G; S) < |S|+ppt(G(s,a,b); S) =s+b=t.

To see that it can be verified in polynomial time whether a graph G = (V, E) satisfies the conditions of the theorem,
note that for a fixed constant t, there are O (n') subsets of V of size at most t. Given a set S C V, it can be verified in
0 (n?) time whether S is a power dominating set of G, and if so, ppt(G; S) can be computed in O (n?) time. Thus, it can
be verified in O (n*2) time whether there exists a power dominating set S with |S| <t — ppt(G: S), and hence whether
th,, (G) <t. O

We can use Theorem 13 to quickly characterize graphs with low power domination throttling numbers.

Corollary 14. Let G be a graph. Then th,,, (G) =1 if and only if G ~ K;.

Corollary 15. Let G be a graph. Then thy,, (G) =2 if and only if G =~ K> or G has a dominating vertex and G % Kj.
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Fig. 3. Top left: A graph G; the shaded vertices are a power throttling set of G. Top right: The graph G(2, 8, 3) is constructed and its vertices are labeled;
shaded ovals represent complete edges. Bottom left: The necessary cross edges and complete edges are deleted, and the path edges to be contracted are
shown in dashed ovals. Bottom right: After the path edges are contracted, the original graph G is obtained.

We conclude this section by characterizing graphs whose power domination throttling numbers are large.
Proposition 16. Let G be a graph. Then th,, (G) =n if and only if G ~ Ky or G =~ K2UKp_».

Proof. If G~ K, or G ~ K,UK,_», it is easy to see that thy, (G) =n. Let G be a graph with thy, (G) =n. If |[E(G)| =0, then
G~ Kp. If [E(G)| =1, then G ~ K2UKn_>. If |[E(G)| > 2, then let u and v be distinct endpoints of distinct edges of G. Let
S=V\{u, v}, so that |S| =n —2 and ppt(G; S) = 1. This implies that th,,(G) <n —1, a contradiction. O

Theorem 17. Let G be a graph. Then thy,, (G) =n—1ifand only if G > P3UKp_3 or G =~ C3UKp_3 0r G = P4UK_4 0r G == C4UK 4
or G ~ K2UKo UK y_4.

Proof. If G is any of the graphs in the statement of the theorem, then it is easy to see that thy,(G) =n—1. Let G be a
graph with th,, (G) =n —1 and suppose G has connected components Gi, ..., Gx. By Proposition 8, n(G) — 1 =th,,(G) <
thy, (G1) + ... +thy, (Gy), so thy, (G;) =n(G;) — 1 for 1 <i <k.

Let G; be an arbitrary component of G. We will show that th,, (G;) =n(G;) — 1 if and only if G; € {P3, C3, P4, C4}.
If G; € {P3, (3, P4, (4}, then it is easy to see that th,,(G;) =n(G;) — 1. Now suppose th,, (G;) =n(G;) — 1. Since G; is
connected and G; % K1, A(G;) > 1. If A(G;) =1, then connectedness implies that G; > K3, but then thy, (G;) =2 =n(G)), a
contradiction. If A(G;) =2, then connectedness implies that n(G;) > 3 and G; = Pn(;) or G; = Cy(c,). However, if n(G;) > 5,
and if we label the vertices of G; v1,..., Vs, ..., vy, in order along the path or cycle, then taking S = V(G;) \ {v1, v3, v4}
yields thy, (G;) < |S| + ppt(G;; S) =n(G;) — 3 + 1, a contradiction. Finally, if A(G;) >3 and v is a vertex with d(v) = A(G)),
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then taking S = V(G;) \ N(v) yields thy, (G;) < |S| + ppt(G;; S) <n(G;) — 2, a contradiction. Moreover, by Proposition 16,
thy, (G;) =n(G;) if and only if G; € {K1, K3}. Thus, each component of G is one of the following: K1, K3, P3, C3, P4, C4.

If one of the components of G, say Gq, is P3, C3, P4, or C4, then all other components of G must be K;. To see why, let
v be a degree 2 vertex in G1, and let w be a non-isolate vertex in another component; then, taking S =V (G) \ (N(v) U{w})
yields thy, (G) <|S|+ ppt(G; S) =n(G) — 3 + 1, a contradiction. If one of the components of G, say G1, is K3, then exactly
one other component must be K3, and all other components must be K;. To see why, note that by the argument above, no
other component can be P3, C3, P4, or C4, and by Proposition 16, there must be a component different from K;. Thus, this
component must also be a K, component. If there are at least three K, components, then let v{, vy, v3 be degree 1 vertices,
each belonging to a distinct K, component; taking S =V (G) \ {v1, v2, v3} yields thy, (G) < |S| +ppt(G; S) =n(G) -3 +1, a
contradiction. Thus, there are exactly two K, components. 0O

6. Conclusion

In this paper, we presented complexity results, tight bounds, and extremal characterizations for the power domination
throttling number. Our complexity results apply not only to power domination throttling, but also to a general class of
minimization problems defined as the sum of two graph parameters. One direction for future work is to determine the
largest value of thy, (G) for a connected graph G. For example, thy, (G) > yp(G), and there are graphs for which yp(G) = %
Is there an infinite family of connected graphs for which th,, (G) = %? It would also be interesting to find operations which
affect the power domination throttling number monotonely, or conditions which guarantee that the power domination
throttling number of a graph is no less than or no greater than the power domination throttling number of an induced
subgraph. We partially answered this question by showing that power domination throttling is subtree monotone for trees.
Finding an exact polynomial time algorithm for the power domination throttling number of trees would also be of interest.
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