
JID:TCS AID:12053 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:4/07/2019; 8:29] P.1 (1-12)

Theoretical Computer Science ••• (••••) •••–•••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Power domination throttling

Boris Brimkov a,∗, Joshua Carlson b, Illya V. Hicks a, Rutvik Patel a, Logan Smith a

a Department of Computational and Applied Mathematics, Rice University, Houston, TX, 77005, USA
b Department of Mathematics, Iowa State University, Ames, IA, 50011, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 October 2018
Received in revised form 6 June 2019
Accepted 17 June 2019
Available online xxxx
Communicated by V.Th. Paschos

Keywords:
Power domination throttling
Power domination
Power propagation time
Zero forcing

A power dominating set of a graph G = (V , E) is a set S ⊂ V that colors every vertex of 
G according to the following rules: in the first timestep, every vertex in N[S] becomes 
colored; in each subsequent timestep, every vertex which is the only non-colored neighbor 
of some colored vertex becomes colored. The power domination throttling number of 
G is the minimum sum of the size of a power dominating set S and the number of 
timesteps it takes S to color the graph. In this paper, we determine the complexity 
of power domination throttling and give some tools for computing and bounding the 
power domination throttling number. Some of our results apply to very general variants 
of throttling and to other aspects of power domination.

 2019 Published by Elsevier B.V.

1. Introduction

A power dominating set of a graph G = (V , E) is a set S ⊂ V that colors every vertex of G according to the following 
rules: in the first timestep, every vertex in N[S] becomes colored; in each subsequent timestep, every vertex which is the 
only non-colored neighbor of some colored vertex becomes colored. The first timestep is called the domination step and 
each subsequent timestep is called a forcing step. The power domination number of G , denoted γP (G), is the cardinality of a 
minimum power dominating set. The power propagation time of G using S , denoted ppt(G; S), is the number of timesteps it 
takes for a power dominating set S to color all of G; when S = V , ppt(G; S) = 0. The power propagation time of G is defined 
as

ppt(G)=min{ppt(G; S) : S is a minimum power dominating set}.
It is well-known that larger power dominating sets do not necessarily yield smaller power propagation times. The power 
domination throttling number of G is defined as

thγP (G)=min{|S| + ppt(G; S) : S is a power dominating set}.
S is a power throttling set of G if S is a power dominating set of G and |S| + ppt(G; S) = thγP (G).

Power domination arises from a graph theoretic model of the Phase Measurement Unit (PMU) placement problem from 
electrical engineering. Electrical power companies place PMUs at select locations in a power network in order to moni-
tor its performance; the physical laws by which PMUs observe the network give rise to the color change rules described 
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above (cf. [15,26]). This PMU placement problem has been explored extensively in the electrical engineering literature; see 
[4,5,14,30,35–38], and the bibliographies therein for various placement strategies and computational results. The PMU place-
ment literature also considers various other properties of power dominating sets, such as redundancy, controlled islanding, 
and connectedness, and optimizes over them in addition to the cardinality of the set (see, e.g., [3,13,34,41]).

Power domination has also been widely studied from a purely graph theoretic perspective. See, e.g., [6,10–13,20,21,29,42,
44] for various structural and computational results about power domination and related variants. The power propagation 
time of a graph has previously been studied in [1,19,24,31]. Other variants of propagation time arising from similar dynamic 
graph coloring processes have also been studied; these include zero forcing propagation time [7,23,27,28] and positive 
semidefinite propagation time [40]. Throttling for other problems such as zero forcing [16], positive semidefinite zero forcing 
[18], minor monotone floor of zero forcing [17], and the game of Cops and Robbers [9] has been studied as well.

Notably missing from the literature on throttling (for power domination as well as other variants) is the computational 
complexity of the problems. In this paper, we determine the complexity of a large, abstract class of throttling problems, 
including power domination throttling. We also give explicit formulas and tight bounds for the power domination throttling 
numbers of certain graphs, and characterizations of graphs with extremal power domination throttling numbers.

2. Preliminaries

A graph G = (V , E) consists of a vertex set V = V (G) and an edge set E = E(G) of two-element subsets of V . The order
of G is denoted by n(G) = |V |. We will assume that the order of G is nonzero, and when there is no scope for confusion, 
dependence on G will be omitted. Two vertices v, w ∈ V are adjacent, or neighbors, if {v, w} ∈ E; we will sometimes write 
vw to denote an edge {v, w}. The neighborhood of v ∈ V is the set of all vertices which are adjacent to v , denoted N(v); 
the degree of v ∈ V is defined as d(v) = |N(v)|. The maximum degree of G is defined as �(G) =maxv∈V d(v); when there is 
no scope for confusion, dependence on G will be omitted. The closed neighborhood of v is the set N[v] = N(v) ∪ {v}.

Contracting an edge e of a graph G , denoted G/e, is the operation of removing e from G and identifying the endpoints 
of e into a single vertex. A graph H is a subgraph of a graph G , denoted H ≤ G , if H can be obtained from G by deleting 
vertices and deleting edges of G; H is a minor of G , denoted H � G , if H can be obtained from G by deleting vertices, 
deleting edges, and contracting edges of G . Given S ⊂ V , N[S] =⋃

v∈S N[v], and the induced subgraph G[S] is the subgraph 
of G whose vertex set is S and whose edge set consists of all edges of G which have both endpoints in S . An isomorphism 
between graphs G1 and G2 will be denoted by G1 � G2. Given a graph G = (V , E), and sets V ′ ⊂ V and E ′ ⊂ E , we say 
the vertices in V ′ are saturated by the edges in E ′ if every vertex of V ′ is incident to some edge in E ′ . An isolated vertex, 
or isolate, is a vertex of degree 0. A dominating vertex is a vertex which is adjacent to all other vertices. The path, cycle, 
complete graph, and empty graph on n vertices will respectively be denoted Pn , Cn , Kn , Kn .

Given two graphs G1 and G2, the disjoint union G1∪̇G2 is the graph with vertex set V (G1)∪̇V (G2) and edge set 
E(G1)∪̇E(G2). With a slight abuse in notation, given a set S ⊂ V (G1∪̇G2), we will use, e.g., S ∩ V (G1) to denote the set of 
vertices in G1∪̇G2 originating from G1 (instead of specifying the unique index created by the disjoint union operation). The 
intersection of G1 and G2, denoted G1 ∩ G2, is the graph with vertex set V (G1) ∩ V (G2) and edge set E(G1) ∩ E(G2). The 
Cartesian product of G1 and G2, denoted G1�G2, is the graph with vertex set V (G1) × V (G2), where vertices (u, u′) and 
(v, v ′) are adjacent in G1�G2 if and only if either u = v and u′ is adjacent to v ′ in G2, or u′ = v ′ and u is adjacent to v in 
G1. The join of G1 and G2, denoted G1 ∨ G2, is the graph obtained from G1∪̇G2 by adding an edge between each vertex of 
G1 and each vertex of G2. The complete bipartite graph with parts of size a and b, denoted Ka,b , is the graph Ka ∨ Kb . The 
graph Kn−1,1, n ≥ 3, will be called a star. For other graph theoretic terminology and definitions, we refer the reader to [8].

A zero forcing set of a graph G = (V , E) is a set S ⊂ V that colors every vertex of G according to the following color 
change rule: initially, every vertex in S is colored; then, in each timestep, every vertex which is the only non-colored 
neighbor of some colored vertex becomes colored. Note that in a given forcing step, it may happen that a vertex v is the 
only non-colored neighbor of several colored vertices. In this case, we may arbitrarily choose one of those colored vertices 
u, and say that u is the one which forces v; making such choices in every forcing step will be called “fixing a chronological 
list of forces”. The notions of zero forcing number of G , denoted Z(G), zero forcing propagation time of G using S , denoted 
pt(G; S), zero forcing propagation time of G , denoted pt(G), and zero forcing throttling number, denoted th(G), are defined 
analogously to γP (G), ppt(G; S), ppt(G), and thγP (G). A positive semidefinite (PSD) zero forcing set of G is a set S ⊂ V which 
colors every vertex of G according to the following color change rule: initially, in timestep 0, every vertex in S0 := S is 
colored; then, in each timestep i ≥ 1, if Si−1 is the set of colored vertices in timestep i − 1, and W1, . . . , Wk are the vertex 
sets of the components of G − Si−1, then every vertex which is the only non-colored neighbor of some colored vertex in 
G[W j ∪ Si−1], 1 ≤ j ≤ k, becomes colored. As with zero forcing, the PSD zero forcing notation Z+(G), pt+(G; S), pt+(G), 
and th+(G) is analogous to γP (G), ppt(G; S), ppt(G), and thγP (G), respectively. For every graph G , γP (G) ≤ thγP (G) ≤ th(G). 
Moreover, in general, thγP (G) and th+(G) are not comparable; for example, thγP (K7) < th+(K7), while thγP (G) > th+(G) for 
G = ({1, 2, 3, 4, 5, 6, 7}, {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 7}}).

3. Complexity results

A number of NP-Completeness results have been presented for power domination, zero forcing, and positive semidefinite 
zero forcing. For example, power domination was shown to be NP-Complete for general graphs [26], planar graphs [25], 
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Table 1
Notation for abstract problems and corresponding notation for power 
domination.

Abstract notation Power domination notation

X(G) Set of power dominating sets of G
x(G) γP (G)
p(G; S) ppt(G; S)
p(G) ppt(G)
minS∈X(G){|S| + p(G; S)} thγP (G)

Table 2
NP-Complete set minimization problems and corresponding throttling problems.

Set minimization problem Throttling problem
Minimum X set
Instance: Graph G , integer k
Question: Is x(G) < k?

(X, p)-Throttling
Instance: Graph G , integer k
Question: Is minS∈X(G){|S| + p(G; S)} < k?

Power Domination
Instance: Graph G , integer k
Question: Is γP (G) < k?

Power Domination Throttling
Instance: Graph G , integer k
Question: Is thγP (G) < k?

Zero Forcing
Instance: Graph G , integer k
Question: Is Z(G) < k?

Zero Forcing Throttling
Instance: Graph G , integer k
Question: Is th(G) < k?

PSD Zero Forcing
Instance: Graph G , integer k
Question: Is Z+(G) < k?

PSD Zero Forcing Throttling
Instance: Graph G , integer k
Question: Is th+(G) < k?

chordal graphs [26], bipartite graphs [26], split graphs [25,32], and circle graphs [25]; zero forcing was shown to be NP-
Complete for general graphs [2,22] and planar graphs [2]; PSD zero forcing was shown to be NP-complete for general graphs 
[43] and line graphs [39]. However, despite recent interest in the corresponding throttling problems, to our knowledge there 
are no complexity results for any of those problems. In this section, we provide sufficient conditions which ensure that given 
an NP-Complete vertex minimization problem, the corresponding throttling problem is also NP-Complete.

To facilitate the upcoming discussion, we recall three categories of graph parameters introduced by Lovász [33]. Let 
φ be a graph parameter and G1 and G2 be two graphs on which φ is defined. Then, φ is called maxing if φ(G1∪̇G2) =
max{φ(G1), φ(G2)}, additive if φ(G1∪̇G2) = φ(G1) + φ(G2), and multiplicative if φ(G1∪̇G2) = φ(G1)φ(G2). For example, 
γP (G) is an additive parameter, ppt(G) is a maxing parameter, and the number of distinct power dominating sets admitted 
by G is a multiplicative parameter. We will show that with only minor additional assumptions, a minimization problem de-
fined as the sum of a maxing parameter and an additive parameter inherits the NP-Completeness of the additive parameter 
for any family of graphs.

Definition 1. Given a graph G = (V , E), let X(G) be a set of subsets of V and let p(G; · ) be a function which maps a 
member of X(G) to a nonnegative integer. Define the parameters x(G) :=minS∈X(G) |S| and p(G) :=min S∈X(G)

|S|=x(G)
p(G; S), and 

define arg p(G) := argmin S∈X(G)
|S|=x(G)

p(G; S).

Note that the function p and the parameter p are differentiated by their inputs. Table 1 shows the power domination 
notation corresponding to the abstract notation of Definition 1. Table 2 gives a pair of abstract decision problems that can 
be defined for X , x, and p, as well as three instances which have been studied in the literature. We now give sufficient 
conditions to relate the complexity of these problems.

Theorem 1. Let X and p (as in Definition 1) satisfy the following:

1) For any graph G, there exist constants b, c such that for any set S ∈ X(G), p(G; S) < b = O (|V (G)|c), and p(G; S) and b can be 
computed in O (|V (G)|c) time.

2) For any graphs G1 and G2 , X(G1∪̇G2) = {S1∪̇S2 : S1 ∈ X(G1), S2 ∈ X(G2)}.
3) For any graphs G1 and G2 , and for any S1 ∈ X(G1) and S2 ∈ X(G2), p(G1∪̇G2; S1∪̇S2) =max{p(G1; S1), p(G2; S2)}.
4) Minimum X Set is NP-Complete.

Then, (X, p)-Throttling is NP-Complete.
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Proof. We will first show that x is an additive parameter and p is a maxing parameter. Let G1 and G2 be graphs. By 2),

x(G1∪̇G2)=min{|S ′| : S ′ ∈ X(G1∪̇G2)}
=min{|S ′| : S ′ ∈ {S1∪̇S2 : S1 ∈ X(G1), S2 ∈ X(G2)}}
=min{|S1| + |S2| : S1 ∈ X(G1), S2 ∈ X(G2)}
=min{|S1| : S1 ∈ X(G1)} +min{|S2| : S2 ∈ X(G2)} = x(G1)+ x(G2).

Thus, x is additive by definition. Now let S∗ be a set in arg p(G1∪̇G2). By 2), there exist sets S1 ∈ X(G1) and S2 ∈ X(G2)

such that S∗ = S1∪̇S2. By definition, |S1| ≥ x(G1) and |S2| ≥ x(G2), and since x is additive, |S∗| = x(G1∪̇G2) = x(G1) + x(G2). 
Thus, |S1| = x(G1) and |S2| = x(G2). Then,

p(G1∪̇G2)= p(G1∪̇G2; S∗)= p(G1∪̇G2; S1∪̇S2)=max{p(G1; S1), p(G2; S2)}

≥max




 min
S∈X(G1)
|S|=x(G1)

p(G1; S), min
S∈X(G2)
|S|=x(G2)

p(G2; S)




=max{p(G1), p(G2)},

where the third equality follows from 3), and the inequality follows from the fact that |S1| = x(G1) and |S2| = x(G2). Now, 
let S∗1 ∈ arg p(G1) and S∗2 ∈ arg p(G2). Then,

p(G1∪̇G2)= min
S ′∈X(G1∪̇G2)

|S ′|=x(G1∪̇G2)

p(G1∪̇G2; S ′)≤ p(G1∪̇G2; S∗1∪̇S∗2)

=max{p(G1; S∗1), p(G2; S∗2)} =max{p(G1), p(G2)},
where the inequality follows from 2) and the fact that x is additive, and the second equality follows from 3). Thus, 
p(G1∪̇G2) =max{p(G1), p(G2)}, so p is maxing by definition.

Next we will show that (X, p)-Throttling is in NP. By 1), for any S ∈ X(G), p(G; S) can be computed in polynomial 
time. By 4), Minimum X Set is in NP, so there exists a polynomial time algorithm to verify that S is in X(G). Thus, for any 
S ⊂ V (G), |S| + p(G; S) can be computed or found to be undefined in polynomial time. Therefore, (X, p)-Throttling is in 
NP.

We will now show that (X, p)-Throttling is NP-Hard, by providing a polynomial reduction from Minimum X Set. Let 
〈G, k〉 be an instance of Minimum X Set. Let B = b + 1, where b is the bound on p(G; S) in 1). Let G1, . . . , GB be disjoint 
copies of G , and let G ′ = ∪̇B

i=1Gi . We will show 〈G, k〉 is a ‘yes’-instance of Minimum X Set if and only if 〈G ′, Bk + b〉 is a 
‘yes’-instance of (X, p)-Throttling. Note that by 1), 〈G ′, Bk + b〉 can be constructed in a number of steps that is polynomial 
in n. Since x is an additive parameter, x(G ′) = x(∪̇B

i=1Gi) =
∑B

i=1 x(Gi) = Bx(G). Thus,

min
S ′∈X(G ′)

{|S ′| + p(G ′; S ′)}≤ min
S ′∈X(G ′)
|S ′|=x(G ′)

{|S ′| + p(G ′; S ′)}

= min
S ′∈X(G ′)
|S ′|=x(G ′)

{Bx(G)+ p(G ′; S ′)}

= Bx(G)+ p(G ′)= Bx(G)+ p(G),

where the last equality follows from the fact that p is maxing, and p(G ′) = p(∪̇B
i=1Gi) =max{p(G1), . . . , p(GB)} = p(G).

Now consider any S ′ ∈ X(G ′). Clearly |S ′| ≥ x(G ′) = Bx(G). Suppose first that |S ′| ≥ B(x(G) + 1); then,

|S ′| + p(G ′; S ′)≥ B(x(G)+ 1)+ p(G ′; S ′)≥ Bx(G)+ B > Bx(G)+ p(G).

Now suppose that |S ′| < B(x(G) + 1). Since S ′ ∈ X(G ′) = {∪̇B
i=1Si : Si ∈ X(Gi)}, |S ′ ∩ V (Gi)| ≥ x(G) for all i ∈ {1, . . . , B}. By 

the pigeonhole principle, |S ′ ∩ V (G j)| = |S j | = x(G) for some j ∈ {1, . . . , B}. By 3),

p(G ′; S ′)=max{p(G j; S j), p(G
′ − G j; S ′\S j)}≥ p(G j; S j)≥ p(G).

Thus in all cases, |S ′| + p(G ′; S ′) ≥ Bx(G) + p(G). Hence, it follows that

min
S ′∈X(G ′)

{|S ′| + p(G ′; S ′)} = Bx(G)+ p(G). (1)

We will now show that x(G) < k if and only if minS ′∈X(G ′){|S ′| + p(G ′; S ′)} < Bk + b. First, suppose that x(G) < k. Then by 
(1), minS ′∈X(G ′){|S ′| + p(G ′; S ′)} = Bx(G) + p(G) < Bk + b. Now suppose that minS ′∈X(G ′){|S ′| + p(G ′; S ′)} < Bk + b. Then, by 
(1), Bx(G) + p(G) < Bk + b. Rearranging, dividing by B , and taking the floor yields
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x(G)= �x(G)�<
⌊
k+ b− p(G)

B

⌋
= k+

⌊
B − 1− p(G)

B

⌋
= k.

Thus, 〈G, k〉 is a ‘yes’-instance of Minimum X Set if and only if 〈G ′, Bk + b〉 is a ‘yes’-instance of (X, p)-Throttling. �

We now show that Theorem 1 can be applied to the specific throttling problems posed for power domination, zero 
forcing, and positive semidefinite zero forcing.

Corollary 2. Power Domination Throttling, Zero Forcing Throttling, and PSD Zero Forcing Throttling are NP-Complete.

Proof. Given a graph G , let X(G) denote the set of power dominating sets of G and for S ∈ X(G), let p(G; S) denote the 
power propagation time of G using S . Clearly, for any power dominating set S , ppt(G; S) is bounded above by |V (G)|, and 
can be computed in polynomial time. Thus, assumption 1) of Theorem 1 is satisfied. For any graphs G1 and G2, it is easy 
to see that S is a power dominating set of G1∪̇G2 if and only if S ∩ V (G1) is a power dominating set of G1 and S ∩ V (G2)

is a power dominating set of G2. Thus, assumption 2) of Theorem 1 is satisfied. Let G1 and G2 be graphs, and let S1 be a 
power dominating set of G1 and S2 be a power dominating set of G2. Then, the same vertices which are dominated in G1
by S1 and in G2 by S2 can be dominated in G1∪̇G2 by S1∪̇S2, and all forces that occur in timestep i ≥ 2 in G1 and G2
will occur in G1∪̇G2 at the same timestep. Thus, ppt(G1∪̇G2; S1∪̇S2) =max{ppt(G1; S1), ppt(G2; S2)}, so assumption 3) of 
Theorem 1 is satisfied. Finally, since Power Domination is NP-Complete (cf. [26]), assumption 4) of Theorem 1 is satisfied. 
Thus, Power Domination Throttling is NP-Complete. By a similar reasoning, it can be shown that the assumptions of 
Theorem 1 also hold for zero forcing and positive semidefinite zero forcing; thus, Zero Forcing Throttling and PSD Zero 
Forcing Throttling are also NP-Complete. �

Some graph properties are preserved under disjoint unions; we will call a graph property P additive if for any two 
graphs G1, G2 with property P , G1∪̇G2 also has property P . Let 〈G,k〉 be an instance of Minimum X Set in the special 
case that G has property P . In the proof of Theorem 1, a polynomial reduction from 〈G,k〉 to an instance 

〈
G ′, Bk+ b

〉

of (X, p)-Throttling is given, where G ′ is the disjoint union of copies of G . If property P is additive, then G ′ also has 
property P . Thus, special cases of (X, p)-Throttling in graphs with property P reduce from instances of Minimum X Set
with property P , by the proof of Theorem 1. It is easy to see that planarity, chordality, and bipartiteness are additive 
properties. As noted at the beginning of this section, Power Domination is NP-Complete for graphs with these properties. 
Thus, these NP-Completeness results can be extended to the corresponding throttling problem.

Corollary 3. Power Domination Throttling is NP-Complete even for planar graphs, chordal graphs, and bipartite graphs.

4. Bounds and exact results for thγP (G)

In this section, we derive several tight bounds and exact results for the power domination throttling number of a graph. 
We have also implemented a brute force algorithm for computing the power domination throttling number of arbitrary 
graphs (cf. https://github .com /rsp7 /Power-Domination -Throttling), and used it to compute the power domination throttling 
numbers of all graphs on fewer than 10 vertices. Recall the following well-known bound on the power propagation time.

Lemma 4 ([24,27]). Let G be a graph and S be a power dominating set of G. Then ppt(G; S) ≥ 1
�

(
n
|S| − 1

)
.

Theorem 5. Let G be a nonempty graph. Then, thγP (G) ≥
⌈
2
√

n
�
− 1

�

⌉
, and this bound is tight.

Proof. Since G is nonempty, we have � > 0. Let P(G) denote the set of all power dominating sets of G . By Lemma 4,

thγP (G)= min
S∈P(G)

{|S| + ppt(G; S)}≥ min
S∈P(G)

{
|S| + 1

�

(
n

|S| − 1

)}
≥min

s>0

{
s+ 1

�

(n
s
− 1

)}
.

To compute the last minimum, let us minimize t(s) := s + 1
�
(ns − 1), s > 0. Since t′(s) = 1 − n

�s2
, s =

√
n
�

is the only critical 

point of t(s). Since t′′(s) = 2n
�s3

> 0 for s > 0, we have that t(
√

n
�
) =

√
n
�
+ 1

�
(n/

√
n
�
−1) = 2

√
n
�
− 1

�
is the global minimum 

of t(s). Thus, thγP (G) = �thγP (G)
 ≥
⌈
2
√

n
�
− 1

�

⌉
. The bound is tight, e.g., for paths and cycles; see Proposition 7. �

Theorem 6 ([18]). th+(Pn) =
⌈√

2n− 1
2

⌉
for n ≥ 1 and th+(Cn) =

⌈√
2n− 1

2

⌉
for n ≥ 4.

Proposition 7. thγP (Pn) =
⌈√

2n− 1
2

⌉
for n ≥ 1 and thγP (Cn) =

⌈√
2n− 1

2

⌉
for n ≥ 3.
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Proof. Let S be an arbitrary nonempty subset of V (Pn). If any vertex in S has two neighbors which are not in S , then 
both of these neighbors are in different components of Pn − S . Moreover, each vertex in N[S] has at most one neighbor 
which is not in N[S]. Thus, the PSD zero forcing color change rules and the power domination color change rules both 
dictate that at each timestep, the non-colored neighbors of every colored vertex of Pn will be colored. Hence, since any 
nonempty subset S of V (Pn) is both a power dominating set and a PSD zero forcing set, ppt(Pn; S) = pt+(Pn; S). Thus, 
thγP (Pn) = min{|S| + ppt(Pn; S) : S ⊂ V (Pn), |S| ≥ 1} = min{|S| + pt+(Pn; S) : S ⊂ V (Pn), |S| ≥ 1} = th+(Pn) =

⌈√
2n − 1

2

⌉
, 

where the last equality follows from Theorem 6.
Clearly thγP (Cn) =

⌈√
2n− 1

2

⌉
for n = 3, so suppose that n ≥ 4. By a similar reasoning as above, and since any set S ⊂

V (Cn) of size at least 2 is both a power dominating set and a PSD zero forcing set, it follows that ppt(Pn; S) = pt+(Pn; S). If 
{v} ⊂ V (Cn) is a power throttling set of Cn and u is a vertex of Cn at maximum distance from v , then {u, v} is also a power 
throttling set, since ppt(Cn; {u, v}) ≤ ppt(Cn; {v}) − 1 for n ≥ 4. Thus, thγP (Cn) =min{|S| + ppt(Cn; S) : S ⊂ V (Cn), |S| ≥ 1} =
min{|S| +ppt(Cn; S) : S ⊂ V (Cn), |S| ≥ 2} =min{|S| +pt+(Cn; S) : S ⊂ V (Cn), |S| ≥ 2} = th+(Cn) =

⌈√
2n− 1

2

⌉
, where the last 

equality follows from Theorem 6. �

Proposition 8. Let G1, G2 be graphs and G = G1∪̇G2 . Then,

thγP (G)≥max{γP (G1)+ thγP (G2),γP (G2)+ thγP (G1)},
thγP (G)≤ γP (G1)+ γP (G2)+max{ppt(G1),ppt(G2)},

and these bounds are tight.

Proof. We first establish the lower bound. Suppose for contradiction that thγP (G) < γP (G1) + thγP (G2), and let S be a 
power throttling set of G . Thus, |S| + ppt(G; S) < γP (G1) + thγP (G2). Note that |S ∩ V (G2)| ≤ |S| − γP (G1), since S ∩ V (G1)

must be a power dominating set of G1. Moreover, ppt(G2; S ∩ V (G2)) ≤ ppt(G; S). Thus,

thγP (G2)≤ |S ∩ V (G2)| + ppt(G2; S ∩ V (G2))

≤ |S|− γP (G1)+ ppt(G; S)
< thγP (G2),

a contradiction. Thus, thγP (G) ≥ γP (G1) + thγP (G2). Similarly, thγP (G) ≥ γP (G2) + thγP (G1). We now establish the upper 
bound. Let S1 ⊂ V (G1) and S2 ⊂ V (G2) be power dominating sets such that ppt(G1; S1) = ppt(G1) and ppt(G2; S2) =
ppt(G2). Let S = S1 ∪ S2. Then thγP (G) ≤ |S| +ppt(G; S) = |S1| +|S2| +max{ppt(G1; S1) +ppt(G2; S2)} = γP (G1) +γP (G2) +
max{ppt(G1), ppt(G2)}. Both bounds are tight, e.g., when G is the disjoint union of two stars. �

Theorem 9. Let G1 and G2 be graphs such that G1 ∩ G2 � Kk. Then

max{thγP (G1), thγP (G2)}≤ thγP (G1 ∪ G2)≤ γP (G1)+ γP (G2)+ k+max{ppt(G1),ppt(G2)},
and these bounds are tight.

Proof. Let K = V (G1 ∩ G2). We will first establish the upper bound. Let S1 ⊂ V (G1) and S2 ⊂ V (G2) be minimum power 
dominating sets such that ppt(G1; S1) = ppt(G1) and ppt(G2; S2) = ppt(G2). Let S = S1 ∪ S2 ∪ K . S is a power dominating 
set of G1∪G2, since all vertices which are dominated in G1 by S1 and in G2 by S2 are dominated in G1∪G2 by S1∪ S2, and 
all forces which occur in G1 and in G2 can also occur in G1∪G2 (or are not necessary); this is because N[K ] is colored after 
the domination step, and the non-colored neighbors of any vertex v ∈ V (G1 ∪ G2) at any forcing step are a subset of the 
non-colored neighbors of v at the same timestep in G1 or G2. For the same reason, a force which occurs in timestep i ≥ 2
in G1 or G2 occurs in a timestep j ≤ i in G1 ∪ G2 (or is not necessary). Therefore, ppt(G1 ∪ G2; S) ≤max{ppt(G1), ppt(G2)}, 
and |S| ≤ γP (G1) + γP (G2) + k. Thus, thγP (G1 ∪ G2) ≤ |S| + ppt(G1 ∪ G2; S) ≤ γP (G1) + γP (G2) + k +max{ppt(G1), ppt(G2)}.

We will now establish the lower bound. Let S be a power throttling set of G1 ∪ G2 and let w be any vertex in K . We 
will consider four cases.

Case 1: S ∩ K �= ∅. In this case, let S1 = S ∩ V (G1) and S2 = S ∩ V (G2).
Case 2: S ∩ K = ∅ but S ∩ V (G1) �= ∅ and S ∩ V (G2) �= ∅. In this case, let S1 = (S ∩ V (G1)) ∪ {w} and S2 = (S ∩ V (G2)) ∪ {w}.
Case 3: S ⊂ V (G1)\V (G2). In this case, let S1 = S and S2 = {w}.
Case 4: S ⊂ V (G2)\V (G1). In this case, let S1 = {w} and S2 = S .

Note that in all cases, S1 ⊂ V (G1), S2 ⊂ V (G2), |S1| ≤ |S|, and |S2| ≤ |S|. In Cases 1 and 2, K is dominated by S1 in 
G1 and by S2 in G2. Subsequently, at any forcing step, the non-colored neighbors of any vertex v in G1 or G2 are a 
subset of the non-colored neighbors of v at the same timestep in G1 ∪ G2. Thus, S1 is a power dominating set of G1 and 
S2 is a power dominating set of G2. Moreover, a force which occurs in timestep i ≥ 2 in G1 ∪ G2 occurs in a timestep 
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Fig. 1. Graphs G1 and G1 ∪ G2 for which the upper bound in Theorem 9 holds with equality.

j ≤ i in G1 or G2. Therefore, ppt(G1; S1) ≤ ppt(G1 ∪ G2; S), and ppt(G2; S2) ≤ ppt(G1 ∪ G2; S). In Case 3, since no vertex 
of K is in S , no vertex of K colors another vertex of G1 ∪ G2 in the domination step. Thus, in G1 ∪ G2, no vertex in 
V (G2)\K can force a vertex of K , since this would mean a vertex in K forced some vertex in V (G2)\K in a previous 
timestep, which would require all vertices of K to already be colored. Moreover, in G1 ∪ G2, all vertices in V (G2)\K can 
be forced after the vertices in K get colored. Thus, S1 is a power dominating set of G1 and S2 is a power dominating 
set of G2. Furthermore, since S1 and S2 can color G1 and G2 using a subset of the forces that are used by S to color 
G1 ∪ G2, it follows that ppt(G1; S1) ≤ ppt(G1 ∪ G2; S) and ppt(G2; S2) ≤ ppt(G1 ∪ G2; S). Case 4 is symmetric to Case 3. 
Thus, in all cases, thγP (G1) ≤ |S1| + ppt(G1; S1) ≤ |S| + ppt(G1 ∪ G2; S) = thγP (G1 ∪ G2) and thγP (G2) ≤ |S2| + ppt(G2; S2) ≤
|S| + ppt(G1 ∪ G2; S) = thγP (G1 ∪ G2), so max{thγP (G1), thγP (G2)} ≤ thγP (G1 ∪ G2).

To see that the upper bound is tight, let K be a complete graph with vertex set {v1, . . . , vk}, let G1 be the graph obtained 
by appending two leaves, ui and wi , to each vertex vi of K , 1 ≤ i ≤ k, and then appending three paths of length 1 to each 
wi , 1 ≤ i ≤ k. Let G2 be a copy of G1 labeled so that G1 ∩ G2 = K and the vertex in G2 corresponding to wi in G1 is w ′

i , 
1 ≤ i ≤ k; see Fig. 1 for an illustration. Let S = {w1, . . . , wk}. Since every minimum power dominating set of G1 must contain 
S , and S is itself a power dominating set of G1, γP (G1) = γP (G2) = |S| = k. Furthermore, max{ppt(G1), ppt(G2)} = 2, so 
γP (G1) +γP (G2) +k +max{ppt(G1), ppt(G2)} = 3k +2. In G1∪G2, for 1 ≤ i ≤ k, vi has two leaves appended to it; thus, either 
vi or one of these two leaves must be contained in any power dominating set of G1 ∪G2. Likewise, since each vertex wi has 
three paths appended to it, either wi or at least one vertex in those paths must be contained in any power dominating set. 
Similarly, either w ′

i or at least one vertex in the paths appended to w ′
i must be contained in any power dominating set. Thus, 

γP (G1 ∪G2) ≥ 3k. If thγP (G1 ∪G2) ≤ 3k +1, then there must exist a power dominating set S ′ such that ppt(G1 ∪G2; S ′) = 1, 
and |S ′| = 3k. However, if ppt(G1 ∪ G2; S ′) = 1, then S ′ must be a dominating set, and it is easy to see that G1 ∪ G2 does 
not have a dominating set of size 3k. Therefore thγP (G1 ∪ G2) = 3k + 2 = γP (G1) + γP (G2) + k +max{ppt(G1), ppt(G2)}.

To see that the lower bound is tight, let K be a complete graph on k vertices, let G1 be the graph obtained by appending 
three leaves to each vertex of K , and let G2 be a copy of G1 labeled so that G1 ∩ G2 = K . Then, V (K ) is a power throttling 
set of G1, G2 and G1 ∪ G2, since V (K ) is a minimum power dominating set in all three graphs, and the power propagation 
time in all three graphs using V (K ) is 1. Thus, thγP (G1 ∪ G2) = k + 1 =max{thγP (G1), thγP (G2)}. �

We conclude this section by deriving tight bounds on the power domination throttling numbers of trees; some ideas in 
the following results are adapted from [18].

Lemma 10. Let G be a connected graph on at least 3 vertices. Then there exists a power throttling set of G that contains no leaves.

Proof. Let S ′ be a power throttling set of G , and suppose that v ∈ S ′ is a leaf with neighbor u (which cannot be a leaf 
since G is connected and n(G) ≥ 3). If u ∈ S ′ , then S := S ′ \ {v} is also a power throttling set of G , since |S| = |S ′| − 1 and 
ppt(G; S) ≤ ppt(G; S ′) + 1. Otherwise, if u /∈ S ′ , then let S = (S ′ \ {v}) ∪ {u}. Note that N[S ′] ⊂ N[S], and so pt(G; N[S]) ≤
pt(G; N[S ′]). Since ppt(G; S), ppt(G; S ′) ≥ 1, this implies that ppt(G; S) ≤ ppt(G; S ′). Since |S| = |S ′|, S must also achieve 
throttling. This process of replacing leaves with non-leaf vertices in power throttling sets of G can be repeated until a 
power throttling set is obtained which has no leaves. �

Proposition 11. If T is a tree with subtree T ′ , then thγP (T
′) ≤ thγP (T ). That is, power domination throttling is subtree monotone for 

trees.

Proof. Clearly the claim is true for trees with at most 2 vertices, so suppose that T is a tree with at least 3 vertices. By 
Lemma 10, T has a power throttling set S which does not contain leaves. Let v be a leaf of T ; then, S ⊂ V (T − v), so 
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Fig. 2. The graph G(s, a, b) with s = 3, a = 4, and b = 5. The dashed edges are the cross edges, the solid edges are the complete edges, the thick edges are 
the path edges, the black vertices are s-vertices and the grey vertices are a-vertices.

ppt(T − v; S) ≤ ppt(T ; S). Thus, thγP (T − v) ≤ |S| + ppt(T − v; S) ≤ |S| + ppt(T ; S) = thγP (T ). Since any subtree T ′ of T
can be attained by repeated removal of leaves, and since each removal of a leaf does not increase the power domination 
throttling number, it follows that thγP (T

′) ≤ thγP (T ). �

Theorem 12. Let T be a tree on at least 3 vertices. Then,
⌈√

2(diam(T )+ 1)− 1/2
⌉
≤ thγP (T )≤ diam(T )− 1+ γP (T ),

and these bounds are tight.

Proof. Since T has diameter d := diam(T ) and at least 3 vertices, T contains a path of length d ≥ 2. Thus Pd+1 is a subtree 
of T , and �(Pd+1) = 2. Then, the lower bound follows from Theorem 5 and Proposition 11. In Theorem 2.5 of [24], it 
is shown that for every tree with at least 3 vertices, ppt(T ) ≤ d − 1. Let S∗ be a power throttling set of T and S be a 
minimum power dominating set of T such that ppt(T ; S) = ppt(T ). Then, thγP (T ) = |S∗| + ppt(T ; S∗) ≤ |S| + ppt(T ; S) =
γP (T ) + ppt(T ) ≤ γP (T ) + d − 1. Both bounds are tight, e.g., for stars, since 

⌈√
2(2+ 1)− 1/2

⌉
= 2 − 1 + 1. �

5. Extremal power domination throttling numbers

In this section, we give a characterization of graphs whose power domination throttling number is at least n − 1 or at 
most t , for any constant t . We begin by showing that graphs with thγP (G) ≤ t are minors of the graph in the following 
definition.

Definition 2. Let a ≥ 0, b ≥ 0, and s ≥ 1 be integers and let G(s, a, b) be the graph obtained from Ks∪̇(Ka�Pb) by adding 
every possible edge between the disjoint copy of Ks and a copy of Ka in Ka�Pb whose vertices have minimum degree. If 
either a = 0 or b = 0, then G(s, a, b) � Ks . A path edge of G(s, a, b) is an edge that belongs to one of the copies of Pb ; a 
complete edge is an edge that belongs to one of the copies of Ka , or to Ks; a cross edge is an edge between Ks and Ka�Pb . 
The vertices in Ks and Ka that are incident to cross edges are called s-vertices and a-vertices, respectively. See Fig. 2 for an 
illustration.

Theorem 13. Let G be a graph and t be a positive integer. Then, thγP (G) ≤ t if and only if there exist integers a ≥ 0, b ≥ 0, and s ≥ 1
such that s + b = t, and G can be obtained from G(s, a, b) by

1. contracting path edges,
2. deleting complete edges, and/or
3. deleting cross edges so that the remaining cross edges saturate the a-vertices.

Moreover, for a fixed t, these conditions can be verified in polynomial time.

Proof. Suppose first that thγP (G) ≤ t . Let S be a power throttling set of G , and fix some chronological list of forces by 
which N[S] colors G . Let s = |S|, let b′ = ppt(G; S) = thγP (G) − s, and let b = t − s; note that b′ ≤ b. Let A = N[S] \ S =
{v1,1, v2,1, . . . , va,1}, where a = |A|. Clearly, a ≤ s�(G). We will show that G can be obtained from G(s, a, b) by contracting 
path edges, deleting complete edges, and/or deleting cross edges so that the remaining cross edges saturate the a-vertices. 
First, note that G(s, a, b′) can be obtained from G(s, a, b) by contracting path edges. Thus, it suffices to show that G can be 
obtained from G(s, a, b′) by the above operations.

Label the s-vertices of G(s, a, b′) with the elements of S , and label the a-vertices of G(s, a, b′) with the elements of 
{v11,1, v12,1, . . . , v1a,1}. For each s-vertex u and a-vertex v1i,1, delete the edge uv

1
i,1 unless uvi,1 ∈ E(G). Note that all edges 

deleted this way are cross edges, and that after these deletions, the remaining cross edges must saturate the a-vertices, 
since by definition the vertices in S dominate the vertices in A. Also, for each pair of s-vertices u1, u2, delete the edge u1u2
unless u1u2 ∈ E(G); note that all edges deleted this way are complete edges.
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For 1 ≤ i ≤ a, let vi,1, . . . , vi,pi be a maximal sequence of vertices of G such that vi, j forces vi, j+1 for 1 ≤ j < pi (after 
the domination step using S , for the fixed chronological list of forces). Note that since A = N[S]\S , A is a zero forcing set of 
G − S , and hence each vertex of G − S belongs to exactly one such sequence. For 1 ≤ i ≤ a and 1 ≤ j ≤ pi , if vi, j performs 
a force (according to the fixed chronological list of forces), let τi, j be the timestep at which vi, j performs a force minus 
the timestep at which vi, j gets forced or dominated; if vi, j does not perform a force, let τi, j be b′ + 1 minus the timestep 
at which vi, j gets forced or dominated. Note that since S is a power throttling set, each vi, j gets forced or dominated 
at some timestep, and for each i ∈ {1, . . . , a}, ∑pi

j=1 τi, j = b′ . Then, if P1, . . . , Pa are the paths used in the construction of 
G(s, a, b′), we can label the vertices of P i , 1 ≤ i ≤ a, in order starting from the endpoint which is an a-vertex toward the 
other endpoint, as

v1i,1, . . . , v
τi,1
i,1 , v

1
i,2, . . . , v

τi,2
i,2 , v

1
i,3, . . . , v

τi,3
i,3 , . . . , v

1
i,pi

, . . . , v
τi,pi
i,pi

.

In other words, the labels of the vertices of P i consist of τi,1 copies of vi,1, followed by τi,2 copies of vi,2, . . ., followed by 
τi,pi copies of vi,pi , for a total of b

′ vertices.
Let K 1, . . . , Kb′ be the cliques of size a used in the construction of G(s, a, b′), where V (K 1) = {v11,1, . . . , v1a,1}, and the 

vertices of K � are collectively adjacent to the vertices of K �+1 for 1 ≤ � < b′ . Each such clique corresponds to a timestep in 
the forcing process of G − S using A (for the fixed chronological list of forces). Let e = {vi1, j1 , vi2, j2 } be an arbitrary edge of 
G − S with i1 �= i2. Since S is a power throttling set of G , vi1, j1 and vi2, j2 both eventually get forced or dominated; let �∗

be the earliest timestep at which vi1, j1 and vi2, j2 are both colored. Then, the clique K �∗ contains vαi1, j1 and vβi2, j2 , for some 
α ∈ {1, . . . , τi1, j1 } and β ∈ {1, . . . , τi2, j2 }. Denote the edge {vαi1, j1 , v

β

i2, j2
} by φ(e), and note that φ(e) is uniquely determined 

for e.
Delete all edges in K 1, . . . , Kb′ from G(s, a, b′) except the edges {φ(e) : e = {vi1, j1 , vi2, j2 } ∈ E(G − S), with i1 �= i2}. Next, 

for 1 ≤ i ≤ a and 1 ≤ j ≤ pi , contract the edges {v1i, j, v2i, j}, {v2i, j, v3i, j}, . . . , {v
τi, j−1
i, j , vτi, ji, j } in G(s, a, b′) and let ψ(vi, j) be the 

vertex corresponding to {v1i, j, . . . , v
τi, j
i, j } obtained from the contraction of these edges. See Fig. 3 for an illustration. Note that 

these operations delete complete edges and contract path edges. Moreover, note that there is a bijection between edges of 
G − S of the form e = {vi1, j1 , vi2, j2 } with i1 �= i2 and the edges φ(e) of G(s, a, b′), as well as between edges of the form 
{vi, j, vi, j+1} of G − S and the edges {ψ(vi, j), ψ(vi, j+1)} of G(s, a, b′). Thus, the obtained graph is isomorphic to G , so G
can be obtained from G(s, a, b′) by contracting path edges, deleting complete edges, and/or deleting cross edges so that the 
remaining cross edges saturate the a-vertices.

Conversely, suppose there exist integers a ≥ 0, b ≥ 0, and s ≥ 1 such that s +b = t , and G can be obtained from G(s, a, b)
by contracting path edges, deleting complete edges, and/or deleting cross edges so that the remaining cross edges saturate 
the a-vertices. Let S be the set of s-vertices in G(s, a, b) and A be the set of a-vertices. Clearly S is a power dominating set 
of G(s, a, b), and ppt(G(s, a, b); S) = b.

In the power domination process of G(s, a, b) using S , complete edges are not required in the domination step and are 
not used in any forcing step, since any vertex which is adjacent to a non-colored vertex via a complete edge is also adjacent 
to a non-colored vertex via a path edge. Therefore, S remains a power dominating set after any number of complete edges 
are deleted from G(s, a, b); moreover, deleting complete edges from G(s, a, b) cannot increase the power propagation time 
using S , since all the forces can occur in the same order as in the original graph, via the path edges.

It is also easy to see that if any path edges of G(s, a, b) are contracted, S remains a power dominating set of the resulting 
graph, since all the forces can occur in the same relative order along the new paths. Moreover, note that G(s, a, b) −
S � Ka�Pb , and that A is a zero forcing set of Ka�Pb . Thus, the power domination process of G(s, a, b) using S after 
the domination step is identical to the zero forcing process of Ka�Pb using A. It follows from Lemma 3.15 of [17] that 
contracting path edges of Ka�Pb does not increase the zero forcing propagation time using A. Thus, contracting path edges 
of G(s, a, b) does not increase the power propagation time using S .

Finally, deleting cross edges so that the remaining cross edges saturate the a-vertices ensures that every a-vertex will 
still be dominated by an s-vertex in the first timestep. Thus, since S remains a power dominating set of G , and since G is 
obtained from G(s, a, b) by operations that do not increase the power propagation time using S , it follows that thγP (G) ≤
|S| + ppt(G; S) ≤ |S| + ppt(G(s, a, b); S) = s + b = t .

To see that it can be verified in polynomial time whether a graph G = (V , E) satisfies the conditions of the theorem, 
note that for a fixed constant t , there are O (nt) subsets of V of size at most t . Given a set S ⊂ V , it can be verified in 
O (n2) time whether S is a power dominating set of G , and if so, ppt(G; S) can be computed in O (n2) time. Thus, it can 
be verified in O (nt+2) time whether there exists a power dominating set S with |S| ≤ t − ppt(G; S), and hence whether 
thγP (G) ≤ t . �

We can use Theorem 13 to quickly characterize graphs with low power domination throttling numbers.

Corollary 14. Let G be a graph. Then thγP (G) = 1 if and only if G � K1 .

Corollary 15. Let G be a graph. Then thγP (G) = 2 if and only if G � K 2 or G has a dominating vertex and G �� K1 .
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Fig. 3. Top left: A graph G; the shaded vertices are a power throttling set of G . Top right: The graph G(2, 8, 3) is constructed and its vertices are labeled; 
shaded ovals represent complete edges. Bottom left: The necessary cross edges and complete edges are deleted, and the path edges to be contracted are 
shown in dashed ovals. Bottom right: After the path edges are contracted, the original graph G is obtained.

We conclude this section by characterizing graphs whose power domination throttling numbers are large.

Proposition 16. Let G be a graph. Then thγP (G) = n if and only if G � Kn or G � K2∪̇Kn−2 .

Proof. If G � Kn or G � K2∪̇Kn−2, it is easy to see that thγP (G) = n. Let G be a graph with thγP (G) = n. If |E(G)| = 0, then 
G � Kn . If |E(G)| = 1, then G � K2∪̇Kn−2. If |E(G)| ≥ 2, then let u and v be distinct endpoints of distinct edges of G . Let 
S = V \ {u, v}, so that |S| = n − 2 and ppt(G; S) = 1. This implies that thγP (G) ≤ n − 1, a contradiction. �

Theorem 17. Let G be a graph. Then thγP (G) = n −1 if and only if G � P3∪̇Kn−3 or G � C3∪̇Kn−3 or G � P4∪̇Kn−4 or G � C4∪̇Kn−4

or G � K2∪̇K2∪̇Kn−4 .

Proof. If G is any of the graphs in the statement of the theorem, then it is easy to see that thγP (G) = n − 1. Let G be a 
graph with thγP (G) = n − 1 and suppose G has connected components G1, . . . , Gk . By Proposition 8, n(G) − 1 = thγP (G) ≤
thγP (G1) + . . .+ thγP (Gk), so thγP (Gi) ≥ n(Gi) − 1 for 1 ≤ i ≤ k.

Let Gi be an arbitrary component of G . We will show that thγP (Gi) = n(Gi) − 1 if and only if Gi ∈ {P3, C3, P4, C4}. 
If Gi ∈ {P3, C3, P4, C4}, then it is easy to see that thγP (Gi) = n(Gi) − 1. Now suppose thγP (Gi) = n(Gi) − 1. Since Gi is 
connected and Gi �� K1, �(Gi) ≥ 1. If �(Gi) = 1, then connectedness implies that Gi � K2, but then thγP (Gi) = 2 = n(Gi), a 
contradiction. If �(Gi) = 2, then connectedness implies that n(Gi) ≥ 3 and Gi � Pn(Gi) or Gi � Cn(Gi) . However, if n(Gi) ≥ 5, 
and if we label the vertices of Gi v1, . . . , v5, . . . , vn(Gi) in order along the path or cycle, then taking S = V (Gi) \ {v1, v3, v4}
yields thγP (Gi) ≤ |S| + ppt(Gi; S) = n(Gi) − 3 + 1, a contradiction. Finally, if �(Gi) ≥ 3 and v is a vertex with d(v) =�(Gi), 
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then taking S = V (Gi) \ N(v) yields thγP (Gi) ≤ |S| + ppt(Gi; S) ≤ n(Gi) − 2, a contradiction. Moreover, by Proposition 16, 
thγP (Gi) = n(Gi) if and only if Gi ∈ {K1, K2}. Thus, each component of G is one of the following: K1, K2, P3, C3, P4, C4.

If one of the components of G , say G1, is P3, C3, P4, or C4, then all other components of G must be K1. To see why, let 
v be a degree 2 vertex in G1, and let w be a non-isolate vertex in another component; then, taking S = V (G) \ (N(v) ∪ {w})
yields thγP (G) ≤ |S| + ppt(G; S) = n(G) − 3 + 1, a contradiction. If one of the components of G , say G1, is K2, then exactly 
one other component must be K2, and all other components must be K1. To see why, note that by the argument above, no 
other component can be P3, C3, P4, or C4, and by Proposition 16, there must be a component different from K1. Thus, this 
component must also be a K2 component. If there are at least three K2 components, then let v1, v2, v3 be degree 1 vertices, 
each belonging to a distinct K2 component; taking S = V (G) \ {v1, v2, v3} yields thγP (G) ≤ |S| + ppt(G; S) = n(G) − 3 + 1, a 
contradiction. Thus, there are exactly two K2 components. �

6. Conclusion

In this paper, we presented complexity results, tight bounds, and extremal characterizations for the power domination 
throttling number. Our complexity results apply not only to power domination throttling, but also to a general class of 
minimization problems defined as the sum of two graph parameters. One direction for future work is to determine the 
largest value of thγP (G) for a connected graph G . For example, thγP (G) ≥ γP (G), and there are graphs for which γP (G) = n

3 . 
Is there an infinite family of connected graphs for which thγP (G) = n

2 ? It would also be interesting to find operations which 
affect the power domination throttling number monotonely, or conditions which guarantee that the power domination 
throttling number of a graph is no less than or no greater than the power domination throttling number of an induced 
subgraph. We partially answered this question by showing that power domination throttling is subtree monotone for trees. 
Finding an exact polynomial time algorithm for the power domination throttling number of trees would also be of interest.
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[20] P. Dorbec, M. Mollard, S. Klavžar, S. Špacapan, Power domination in product graphs, SIAM J. Discrete Math. 22 (2) (2008) 554–567.
[21] M. Dorfling, M.A. Henning, A note on power domination in grid graphs, Discrete Appl. Math. 154 (6) (2006) 1023–1027.
[22] S. Fallat, K. Meagher, B. Yang, On the complexity of the positive semidefinite zero forcing number, Linear Algebra Appl. 491 (2016) 101–122.
[23] C.C. Fast, I.V. Hicks, Effects of vertex degrees on the zero-forcing number and propagation time of a graph, Discrete Appl. Math. 250 (2018) 215–226.
[24] D. Ferrero, L. Hogben, F.H.J. Kenter, M. Young, Note on power propagation time and lower bounds for the power domination number, J. Comb. Optim. 

34 (3) (2017) 736–741.
[25] J. Guo, R. Niedermeier, D. Raible, Improved algorithms and complexity results for power domination in graphs, Algorithmica 52 (2) (2008) 177–202.



JID:TCS AID:12053 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.260; Prn:4/07/2019; 8:29] P.12 (1-12)

12 B. Brimkov et al. / Theoretical Computer Science ••• (••••) •••–•••

[26] T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, M.A. Henning, Domination in graphs applied to electric power networks, SIAM J. Discrete Math. 15 (4) 
(2002) 519–529.

[27] L. Hogben, M. Huynh, N. Kingsley, S. Meyer, S. Walker, M. Young, Propagation time for zero forcing on a graph, Discrete Appl. Math. 160 (13–14) (2012) 
1994–2005.

[28] F.H. Kenter, J.C.H. Lin, On the error of a priori sampling: zero forcing sets and propagation time, Linear Algebra Appl. 576 (2019) 124–141.
[29] J. Kneis, D. Mölle, S. Richter, P. Rossmanith, Parameterized power domination complexity, Inf. Process. Lett. 98 (4) (2006) 145–149.
[30] Q. Li, T. Cui, Y. Weng, R. Negi, F. Franchetti, M.D. Ilic, An information-theoretic approach to PMU placement in electric power systems, IEEE Trans. Smart 

Grid 4 (1) (2013) 446–456.
[31] C.S. Liao, Power domination with bounded time constraints, J. Comb. Optim. 31 (2) (2016) 725–742.
[32] C.S. Liao, D.T. Lee, Power domination problem in graphs, in: International Computing and Combinatorics Conference, 2005, pp. 818–828.
[33] L. Lovász, Large Networks and Graph Limits, vol. 60, American Mathematical Society, 2012.
[34] A. Mahari, H. Seyedi, Optimal PMU placement for power system observability using BICA, considering measurement redundancy, Electr. Power Syst. 

Res. 103 (2013) 78–85.
[35] N.M. Manousakis, G.N. Korres, P.S. Georgilakis, Taxonomy of PMU placement methodologies, IEEE Trans. Power Syst. 27 (2) (2012) 1070–1077.
[36] L. Mili, T. Baldwin, A. Phadke, Phasor measurements for voltage and transient stability monitoring and control, in: Workshop on Application of Ad-

vanced Mathematics to Power Systems, San Francisco, 1991.
[37] J. Peng, Y. Sun, H. Wang, Optimal PMU placement for full network observability using Tabu search algorithm, Int. J. Electr. Power Energy Syst. 28 (4) 

(2006) 223–231.
[38] R. Sodhi, S. Srivastava, S. Singh, Multi-criteria decision-making approach for multi-stage optimal placement of phasor measurement units, IET Gener. 

Transm. Distrib. 5 (2) (2011) 181–190.
[39] L. Wang, B. Yang, Positive semidefinite zero forcing numbers of two classes of graphs, Theor. Comput. Sci. (2018).
[40] N. Warnberg, Positive semidefinite propagation time, Discrete Appl. Math. 198 (2016) 274–290.
[41] N. Xia, H.B. Gooi, S.X. Chen, M.Q. Wang, Redundancy based PMU placement in state estimation, Sustain. Energy Grids Netw. 2 (2015) 23–31.
[42] G. Xu, L. Kang, E. Shan, M. Zhao, Power domination in block graphs, Theor. Comput. Sci. 359 (2006) 299–305.
[43] B. Yang, Positive semidefinite zero forcing: complexity and lower bounds, in: Workshop on Algorithms and Data Structures, 2015, pp. 629–639.
[44] M. Zhao, L. Kang, G.J. Chang, Power domination in graphs, Discrete Math. 306 (15) (2006) 1812–1816.


