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Statistical solutions are time-parameterized probability measures on spaces of integrable
functions, which have been proposed recently as a framework for global solutions and
uncertainty quantification for multi-dimensional hyperbolic system of conservation laws.
By combining high-resolution finite volume methods with a Monte Carlo sampling pro-
cedure, we present a numerical algorithm to approximate statistical solutions. Under
verifiable assumptions on the finite volume method, we prove that the approximations,
generated by the proposed algorithm, converge in an appropriate topology to a statis-
tical solution. Numerical experiments illustrating the convergence theory and revealing

interesting properties of statistical solutions are also presented.
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1. Introduction

Systems of conservation laws are a large class of nonlinear partial differential equa-

tions (PDEs) of the generic form

∂tu+∇x · f(u) = 0, (1.1a)

u(x, 0) = ū(x). (1.1b)

†Corresponding author.
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Here, the unknown u = u(x, t) : D×R+ → U is the vector of conserved variables and

f = (f1, . . . , fd) : RN → RN×d is the flux function. Here, we denote R+ := [0,∞)

and U := RN , and we let the physical domain D ⊂ Rd be some open, connected

set. ∇x · σ denotes the divergence of a vector field σ(x) = (σ1(x), . . . , σd(x)), i.e.

∇x · σ =
∑d

i=1 ∂xiσi, where x = (x1, . . . , xd). The system (1.1a) is hyperbolic if the

flux Jacobian ∂u(f · n) has real eigenvalues for all n ∈ Rd with |n| = 1.

Many important models in physics and engineering are described by hyperbolic

systems of conservation laws. Examples include the compressible Euler equations

of gas dynamics, the shallow water equations of oceanography, the Magneto hydro-

Dynamics (MHD) equations of plasma physics, and the equations of nonlinear

elastodynamics.10

1.1. Entropy Solutions

It is well known that even if the initial data u in (1.1) is smooth, solutions of

(1.1) develop discontinuities, such as shock waves and contact discontinuities, in

finite time. Therefore, solutions to (1.1) are sought in the sense of distributions: A

function u ∈ L∞(Rd × R+,R
N) is a weak solution of (1.1) if it satisfies∫

R+

∫
Rd

∂tϕ(x, t)u(x, t) +∇xϕ(x, t) · f(u(x, t))dx dt +
∫
Rd

ϕ(x, 0)u(x)dx = 0

(1.2)

for all test functions ϕ ∈ C1
c (R

d × R+).

As weak solutions are not unique,10 it is necessary to augment them with

additional admissibility criteria or entropy conditions to recover uniqueness. These

entropy conditions are based on the existence of a so-called entropy pair — a pair of

functions η : RN → R, q : RN → Rd, with η convex and q satisfying the compatibil-

ity condition q′ = η′ · f ′ (where f ′ and q′ are the Jacobian matrices of f and q). An

entropy solution of (1.1) is a weak solution that also satisfies the so-called entropy

inequality∫
R+

∫
Rd

∂tϕ(x, t)η(u(x, t)) +∇xϕ(x, t) · q(u(x, t))dx dt +
∫
Rd

ϕ(x, 0)η(ū(x))dx ≥ 0

(1.3)

for all nonnegative test functions ϕ ∈ C1
c (R

d × R+). Depending on the availability

of entropy pairs (η, q), the entropy condition leads to various a priori bounds on

u: If, say, η(u) = |u|p (or some perturbation thereof) for some p ≥ 1 then (1.3)

leads to ∫
Rd

|u(x, t)|p dx ≤
∫
Rd

|ū(x)|p dx, ∀ t > 0, (1.4)

see e.g. Refs. 10, 26 and 29.
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The global well posedness of entropy solutions of (1.1) has been addressed both

for (multi-dimensional) scalar conservation laws33 and for systems in one space

dimension (see Refs. 25, 4, 7 and 29 and references therein). However, there are no

global existence results for entropy solutions of multi-dimensional systems of con-

servation laws with generic initial data. On the other hand, it has been established

recently in Refs. 11 and 9 that entropy solutions for some systems of conserva-

tion laws (such as isentropic Euler equations in two space dimensions) may not

be unique. This is a strong indication that the paradigm of entropy solutions is

not the correct framework for the well posedness of multi-dimensional systems of

hyperbolic conservation laws.

1.2. Numerical schemes

A wide variety of numerical methods have been developed to approximate entropy

solutions of (1.1) in a robust and efficient manner. These include finite volume,

(conservative) finite difference, discontinuous Galerkin (DG) finite element and

spectral (viscosity) methods, see Refs. 26 and 28 for further details. Rigorous con-

vergence results of numerical methods to entropy solutions are only available for

scalar conservation laws (see e.g. Ref. 26 for monotone schemes and Ref. 14 for

high-order schemes) and for some specific numerical methods for one-dimensional

systems (Ref. 25 for Glimm’s scheme and Ref. 29 for front tracking).

There are no rigorous convergence results to entropy solutions for any numeri-

cal schemes approximating multi-dimensional systems of conservation laws. To the

contrary, several numerical experiments, such as those presented recently in Refs. 15

and 19, strongly suggest that there is no convergence of approximations generated

by standard numerical schemes for (1.1), as the mesh is refined. This has been

attributed to the emergence of turbulence-like structures at smaller and smaller

scales upon mesh refinement (see Fig. 4 of Ref. 15).

1.3. Measure-valued and Statistical solutions

Given the lack of well posedness of entropy solutions for multi-dimensional sys-

tems of conservation laws and the lack of convergence of numerical approximations

to them, it is natural to seek alternative solution paradigms for (1.1). A possible

solution framework is that of entropy measure-valued solutions, first proposed by

DiPerna in Ref. 13. Measure-valued solutions are Young measures,49 that is, space-

time-parameterized probability measures on the phase space RN of (1.1). Global

existence of entropy measure-valued solutions has been considered in Refs. 13, 8, 15

and 19 where the authors constructed entropy measure-valued solutions by proving

convergence of a Monte Carlo-type ensemble-averaging algorithm, based on under-

lying entropy stable finite difference schemes.

Although entropy measure-valued solutions for multi-dimensional systems of

conservation laws exist globally, it is well known that they are not necessarily

unique; see Refs. 43 and 19 and references therein. In particular, one can even
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construct multiple entropy measure-valued solutions for scalar conservation laws

for the same measure-valued initial data.19 Although generic measure-valued solu-

tions might not be unique, numerical experiments presented in Ref. 15 indicate

that measure-valued solutions of (1.1), computed with the ensemble-averaging algo-

rithm of Ref. 15, are stable with respect to initial perturbations and to the choice

of underlying numerical method. This suggests imposing additional constraints on

entropy measure-valued solutions in order to recover uniqueness.

In Ref. 16, the authors implicated the lack of information about (multi-point)

statistical correlations in Young measures as a possible cause of the non-uniqueness

of entropy measure-valued solutions. Consequently, they introduced a stronger solu-

tion paradigm termed statistical solutions for hyperbolic systems of conservation

laws (1.1). Statistical solutions are time-parameterized probability measures on

some Lebesgue space Lp(D;U) satisfying (1.1a) in an averaged sense. The choice of

the exponent p ≥ 1 depends on the available a priori bounds for solution of (1.1),

such as (1.4). It was shown in Ref. 16 that probability measures on Lp(D;U) can be

identified with (and indeed are equivalent to) correlation measures — a hierarchy

of Young measures defined on tensorized versions of the domain D and the phase

space U in (1.1). Statistical solutions have also been introduced in the context of the

incompressible Navier–Stokes equations by Foiaş et al.; see Ref. 21 and references

therein.

In Ref. 16, the authors defined statistical solutions of systems of conservation

laws (1.1a) by requiring that the moments of the time-parameterized probability

measure on Lp(D) (or equivalently, of the underlying correlation measure) satisfy

an infinite set of (tensorized) PDEs, consistent with (1.1a).

The first member of the hierarchy of correlation measures for a statistical solu-

tion is a (classical) Young measure and it can be shown to be an entropy measure-

valued solution of (1.1), in the sense of DiPerna.13 The kth member (k ≥ 2) of

the hierarchy represents k-point spatial correlations. Thus, a statistical solution

can be thought of as a measure-valued solution, augmented with information about

all possible (multi-point) spatial correlations.16 Consequently, statistical solutions

contain much more information than measure-valued solutions.

In Ref. 16, the authors constructed a canonical statistical solution for scalar

conservation laws in terms of the data-to-solution semi-group of Kruzkhov33 and

showed that this statistical solution is unique under a suitable entropy condi-

tion. Numerical approximation of statistical solutions of scalar conservation laws

was considered in,17 where the authors proposed Monte Carlo and multi-level

Monte Carlo (MLMC) algorithms to compute statistical solutions and showed their

convergence.

1.4. Aims and scope of this paper

Given this background, our main aim in this paper is to study statistical solutions

for multi-dimensional systems of conservation laws. To this end, we obtain the
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following results:

• We propose a Monte Carlo ensemble-averaging-based algorithm for computing

statistical solutions of systems of conservation laws. This algorithm is a variant

of the Monte Carlo algorithms presented in Refs. 15 and 17.

• Under reasonable assumptions on the underlying numerical scheme, we prove

convergence of the ensemble-averaging algorithm to a statistical solution. It is

highly non-trivial to identify an appropriate topology on time parameterized

probability measures on Lp(D) in order to prove convergence of the computed

statistical solutions. To this end, we find a suitable topology and prescribe novel

sufficient conditions that ensure convergence in this topology.

• We present several numerical experiments that illustrate the robustness of our

proposed algorithm and also reveal interesting properties of statistical solutions

of (1.1a).

As a consequence of our convergence theorem, we establish a conditional global

existence result for multi-dimensional systems of conservation laws. Moreover, we

also propose an entropy condition under which we prove a weak–strong uniqueness

result for statistical solutions, that is, we prove that if there exists a statistical

solution of sufficient regularity (in a sense made precise in Sec. 3), then all entropy

statistical solutions agree with it.

The rest of the paper is organized as follows: In Sec. 2, we provide the mathemat-

ical framework by describing the concepts of correlation measures and statistical

solutions. We also provide characterizations of the topology on probability mea-

sures on Lp(D), in which our subsequent numerical approximations will converge.

The entropy condition and the weak–strong uniqueness of statistical solutions are

presented in Sec. 3 and the Monte Carlo ensemble-averaging algorithm (and its

convergence) is presented in Sec. 4. Numerical experiments are presented in Sec. 5

and the results of the paper are summarized and discussed in Sec. 6.

2. Probability Measures on Lp(D;U) and Statistical Solutions

In the usual, deterministic interpretation of (1.1a), one attempts to find a function

u = u(t) : D → U satisfying (1.1a) in a weak or strong sense. (Here, as in the

introduction, we let D ⊂ Rd be an open, connected set and we denote U := RN .) By

contrast, a statistical solution of (1.1a) is a probability measure μ = μt distributed

over such functions u and satisfying (1.1a) in an averaged sense. Solutions of (1.1a)

are most naturally found in (a subspace of) Lp(D;U), so μt is required to be a

probability measure on Lp(D;U) at each time t. In order to write down constitutive

equations for μ, it is more natural to work with finite-dimensional projections or

marginals of μ; these are the so-called correlation measures.16 In this section, we

provide a self-contained description of correlation measures, probability measures

over Lp(D;U), and statistical solutions of (1.1a).
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In order to link probability measures on Lp to their finite-dimensional marginals,

we prove in Sec. 2.1 that a sequence of such measures converges weakly if and only

if it converges with respect to a certain class Cp of finite-dimensional observables. In

Sec. 2.2, we introduce correlation measures and we show that these are in a one-to-

one relationship with probability measures over Lp, and that they are linked pre-

cisely through the finite-dimensional observables Cp. We also prove a compactness

result for sequences of correlation measures. In Sec. 2.3, we treat time-parametrized

probability and correlation measures, and we prove measurability and compact-

ness results. Finally, in Sec. 2.4, we provide the definition of statistical solutions

of (1.1a).

For the sake of clarity, many of the proofs in this rather technical section have

been moved to Appendices A–C.

Notation 2.1. If X is a topological space, then we let B(X) denote the Borel σ-

algebra on X , we let M(X) denote the set of signed Radon measures on (X,B(X)),

and we let P(X) ⊂ M(X) denote the set of all probability measures on (X,B(X)),

i.e. all nonnegative μ ∈ M(X) with μ(X) = 1 (see e.g. Refs. 2, 5 and 31). For

k ∈ N and a multiindex α ∈ {0, 1}k we write |α| = α1 + · · · + αk and ᾱ =

� − α = (1 − α1, . . . , 1 − αk), and we let xα be the vector of length |α| consisting
of the elements xi of x for which αi is non-zero. For a vector x = (x1, . . . , xk)

we write x̂i = (x1, . . . , xi−1, xi+1, . . . , xk). For a vector ξ = (ξ1, . . . , ξk) we write

|ξα| = |ξ1|α1 · · · |ξk|αk with the convention ξαi = 1 if αi = 0.

2.1. Probability measures on Lp(D) and weak convergence

If X is any topological space and we are given a sequence μ1, μ2, . . . ∈ P(X) and

some μ ∈ P(X), then we say that {μn}n∈N converges weakly to μ, written μn ⇀ μ, if〈
μn, F

〉
→
〈
μ, F

〉
as n→ ∞ (2.1)

for every F ∈ Cb(X). (Here and elsewhere,
〈
μ, F

〉
=
∫
X
F (x)dμ(x) denotes the

expectation of F with respect to μ.) We will be particularly interested in the case

X = Lp(D;U), so to study weak convergence in this space we need to work with

the space Cb(L
p(D;U)). In this section, we will see that it is sufficient to prove

(2.1) for a much smaller class of functionals F , namely those which depend only on

finite-dimensional projections of u ∈ Lp(D;U).

If E and V are Euclidean spaces then a measurable function g : E × V → R

is called a Carathéodory function if ξ 
→ g(x, ξ) is continuous for a.e. x ∈ E and

x 
→ g(x, ξ) is measurable for every ξ ∈ V (see, e.g. Sec. 4.10 of Ref. 1). For a

number k ∈ N and a Carathéodory function g = g(x, ξ) : Dk × Uk → R we define

the functional Lg : Lp(D;U) → R by

Lg(u) :=

∫
Dk

g(x1, . . . , xk, u(x1), . . . , u(xk))dx. (2.2)
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(Here, Dk denotes the product space Dk = D× · · ·×D, and similarly for Uk.) The

above integral is clearly not well defined for every Carathéodory function g, so we

restrict our attention to the following class.

Definition 2.1. For every k ∈ N, we let Hk,p(D;U) denote the space of

Carathéodory functions g : Dk × Uk → R satisfying

|g(x, ξ)| ≤
∑

α∈{0,1}k

ϕ|ᾱ|(xᾱ)|ξα|p, ∀x ∈ Dk, ξ ∈ Uk (2.3)

for nonnegative functions ϕi ∈ L1(Di), i = 0, 1, . . . , k (with the convention that

L1(D0) ∼= R; see also Example 2.1). We let H
k,p
1 (D;U) ⊂ Hk,p(D;U) denote the

subspace of functions g which are locally Lipschitz continuous, in the sense that

there is some r > 0 and some nonnegative h ∈ Hk−1,p(D;U) such that

∣∣g(x, ζ) − g(y, ξ)
∣∣ ≤ k∑

i=1

|ζi − ξi|max
(
|ξi|, |ζi|

)p−1
h(x̂i, ξ̂i) (2.4)

for every x ∈ Dk, y ∈ Br(x) and ξ, ζ ∈ Uk. Last, we denote

Cp(D;U) :=
{
Lg : g ∈ Hk,p(D;U), k ∈ N

}
,

Cp
1 (D;U) :=

{
Lg : g ∈ H

k,p
1 (D;U), k ∈ N

}
,

where Lg is defined in (2.2).

Example 2.1. For k = 1 the condition (2.3) asserts that

|g(x, ξ)| ≤ ϕ1(x) + ϕ0|ξ|p

for 0 ≤ ϕ1 ∈ L1(D) and ϕ0 ∈ [0,∞), and for k = 2 that

|g(x1, x2, ξ1, ξ2)| ≤ ϕ2(x1, x2) + ϕ1(x1)|ξ2|p + ϕ1(x2)|ξ1|p + ϕ0|ξ1|p|ξ2|p

for 0 ≤ ϕ2 ∈ L1(D2), 0 ≤ ϕ1 ∈ L1(D) and ϕ0 ∈ [0,∞).

We will simply denote Hk,p = Hk,p(D;U), etc. when the domain and image

D,U are clear from the context.

Lemma 2.1. Every functional Lg ∈ Cp is well defined and finite on Lp(D;U).

Every functional Lg ∈ Cp
1 is continuous and is Lipschitz continuous on bounded

subsets of Lp(D;U).

Theorem 2.2. Let μn, μ ∈ P(Lp(D;U)) for n ∈ N satisfy suppμ, suppμn ⊂ B

for all n ∈ N, for some bounded set B ⊂ Lp(D;U). Then μn ⇀ μ if and only if〈
μn, F

〉
→
〈
μ, F

〉
for all F ∈ Cp

1 (D;U).

The proofs of the above results can be found in Appendix A. The “only if” part

of Theorem 2.2 is trivial, since every F ∈ Cp
1 belongs to Cb when restricted to a

bounded set; the converse relies on an approximation argument found in Ref. 2.
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2.2. Correlation measures

In short, a correlation measure prescribes the joint distribution of some uncer-

tain quantity u at any finite collection of spatial points x1, . . . , xk. Below we pro-

vide the rigorous definition of correlation measures and then state the result from

Ref. 16 on the equivalence between correlation measures and probability measures

on Lp(D;U).

We denoteHk
0 (D;U) := L1

(
Dk, C0(U

k)
)
. By identifying the expressions g(x)(ξ)

and g(x, ξ), we can view Hk
0 (D;U) as a subspace of Hk,p(D;U) for any p ≥ 1 (with

the choice ϕ0, . . . , ϕk−1 ≡ 0 and ϕk(x) = ‖g(x)‖C0(Uk) in (2.3)).

Theorem 2.3. The dual of Hk
0(D;U) is the space Hk∗

0 (D;U) := L∞
w

(
Dk,M(Uk)

)
,

the space of bounded, weak* measurable maps from Dk to M(Uk), under the duality

pairing

〈
νk, g

〉
Hk =

∫
Dk

〈
νkx , g(x)

〉
dx

(where
〈
νkx , g(x)

〉
=
∫
Uk g(x, ξ)dν

k
x(ξ) is the usual duality pairing between Radon

measures M(Uk) and continuous functions Cb(U
k)).

For more details and references for the above result, see Ref. 3.

Definition 2.2. (Fjordholm, Lanthaler, Mishra16) A correlation measure is a col-

lection ν = (ν1, ν2, . . .) of maps νk ∈ Hk∗
0 (D;U) satisfying for all k = 1, 2, . . . :

(i) νkx ∈ P(Uk) for a.e. x ∈ Dk, and the map x 
→
〈
νkx , f

〉
is measurable for every

f ∈ Cb(U
k). (In other words, νk is a Young measure from Dk to Uk.)

(ii) Symmetry: if σ is a permutation of {1, . . . , k} and f ∈ C0(U
k) then〈

νkσ(x), f(σ(ξ))
〉
=
〈
νkx , f(ξ)

〉
for a.e. x ∈ Dk.

(iii) Consistency: If f ∈ Cb(U
k) is of the form f(ξ1, . . . , ξk) = g(ξ1, . . . , ξk−1)

for some g ∈ C0(U
k−1), then

〈
νkx1,...,xk

, f
〉
=
〈
νk−1
x1,...,xk−1

, g
〉

Lebesgue-a.e.

(x1, . . . , xk) ∈ Dk.

(iv) Lp integrability: ∫
D

〈
ν1x, |ξ|p

〉
dx < +∞. (2.5)

(v) Diagonal continuity: limr→0 ω
p
r (ν

2) = 0, where

ωp
r (ν

2) :=

∫
D

−
∫
Br(x)

〈
ν2x,y, |ξ1 − ξ2|p

〉
dydx. (2.6)

Each element νk will be called a correlation marginal. The functional ωp
r is called

the modulus of continuity of ν. We let Lp(D;U) denote the set of all correlation

measures.
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The next result shows that there is a duality relation between correlation

marginals and the probability measures μ ∈ P(Lp) discussed in the previous section.

Theorem 2.4. (Fjordholm, Lanthaler, Mishra16) For every correlation measure

ν ∈ Lp(D;U) there is a unique probability measure μ ∈ P(Lp(D;U)) whose pth

moment is finite, ∫
Lp

‖u‖pLp dμ(u) <∞ (2.7)

and such that μ is dual to ν: the identity∫
Dk

〈
νk, g(x)

〉
dx =

∫
Lp

∫
Dk

g(x, u(x))dx dμ(u) (2.8)

holds for every g ∈ Hk
0 (D;U) and all k ∈ N. Conversely, for every μ ∈ P(Lp(D;U))

satisfying (2.7) there is a unique correlation measure ν ∈ Lp(D;U) that is dual

to μ.

Remark 2.1. By using Lebesgue’s dominated convergence theorem, it is not hard

to show that the identity (2.8) can be extended to all g ∈ Hk,p(D;U), as long as

both integrals are well defined. In particular, this is true if μ is supported on a

bounded subset of Lp(D;U).

Later on, we will be particularly interested in those μ∈P(Lp) that have bounded

support. The following lemma shows how the property of having bounded support

can be expressed in terms of the corresponding correlation measure.

Lemma 2.2. Let ν ∈ Lp(D;U) and μ ∈ P(Lp(D;U)) be dual to one another.

Then

ess sup
u∈Lp

‖u‖Lp = lim sup
k→∞

(∫
Dk

〈
νkx , |ξ1|p · · · |ξk|p

〉
dx

)1/kp

, (2.9)

where the “ess sup” is taken with respect to μ.

Proof. From the identity ‖f‖L∞(X;μ) = limk→∞ ‖f‖Lk(X;μ), valid for any finite

measure μ, we get

ess sup
u∈Lp

‖u‖pLp(D;U) = lim
k→∞

(∫
Lp(D;U)

‖u‖pkLp(D;U) dμ(u)

)1/k

= lim
k→∞

(∫
Lp(D;U)

∫
Dk

|u(x1)|p · · · |u(xk)|p dx dμ(u)
)1/k

= lim
k→∞

(∫
Dk

〈
νkx , |ξ1|p · · · |ξk|p

〉
dx

)1/k

.
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Definition 2.3. We let L
p
b(D;U) denote the subset of correlation measures ν ∈

Lp(D;U) with bounded support, in the sense that there is an M > 0 such that

lim sup
k→∞

(∫
Dk

〈
νkx , |ξ1|p · · · |ξk|p

〉
dx

)1/kp

≤M. (2.10)

Definition 2.4. If νn,ν ∈ Lp(D;U) for n ∈ N then we say that νn converges

weak* to ν as n → ∞ (written νn
∗
⇀ ν) if νkn

∗
⇀ νk as n → ∞, that is, if〈

νkn, g
〉
Hk →

〈
νk, g

〉
Hk for all g ∈ Hk

0 (D;U) and all k ∈ N.

If νn,ν ∈ L
p
b (D;U) for n ∈ N then we say that (νn)n∈N converges weakly to ν

as n→ ∞ (written νn ⇀ ν) if
〈
νkn, g

〉
Hk →

〈
νk, g

〉
Hk for every g ∈ H

k,p
1 (D;U).

Note that ν ∈ L
p
b implies that

〈
νk, g

〉
Hk is well defined and finite for any

g ∈ Hk,p (cf. Definition 2.1).

We next show a compactness result which can be thought of as Kolmogorov’s

compactness theorem (cf. Theorem A.5 of Ref. 29) for correlation measures.

Theorem 2.5. Let νn ∈ Lp(D;U) for n = 1, 2, . . . be a sequence of correlation

measures such that

sup
n∈N

〈
ν1n, |ξ|p

〉
H1 ≤ cp, (2.11)

lim
r→0

lim sup
n→∞

ωp
r

(
ν2n
)
= 0 (2.12)

for some c > 0 (where ωp
r is defined in Definition 2.2(v)). Then there exists a

subsequence (nj)
∞
j=1 and some ν ∈ Lp(D;U) such that:

(i) νnj

∗
⇀ ν as j → ∞, that is,

〈
νknj

, g
〉
Hk →

〈
νk, g

〉
Hk for every g ∈ Hk

0 (D;U)

and every k ∈ N.

(ii)
〈
ν1, |ξ|p

〉
H1 ≤ cp.

(iii) ωp
r (ν

2) ≤ lim infn→∞ ωp
r (ν

2
n) for every r > 0.

(iv) For k ∈ N, let ϕ ∈ L1
loc(D

k) and κ ∈ C(Uk) be nonnegative, and let g(x, ξ) :=

ϕ(x)κ(ξ). Then 〈
νk, g

〉
Hk ≤ lim inf

j→∞
〈
νknj

, g
〉
Hk . (2.13)

(v) Assume moreover that the domain D ⊂ Rd is bounded and that νn have uni-

formly bounded support, in the sense that (2.10) holds for all νn for a fixed

M > 0, or equivalently,

‖u‖Lp ≤M for μn-a.e. u ∈ Lp(D;U) for every n ∈ N. (2.14)

Then observables converge strongly:

lim
j→∞

∫
Dk

∣∣〈νknj ,x, g(x)
〉
−
〈
νkx , g(x)

〉∣∣ dx = 0 (2.15)

for every g ∈ H
k,p
1 (D;U). In particular, νnj ⇀ ν.
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The proof is given in Appendix B.

Remark 2.2. Equation (2.15) implies in particular that
〈
νknj

, g
〉
Hk =

〈
μnj , Lg

〉
converges for any g ∈ H

k,p
1 , where μn ∈ P(Lp) is dual to νn (see Theorem 2.4). By

Theorem 2.2, this is equivalent to saying that μnj converges weakly to μ. Since, by

hypothesis, the pth moment of μn is uniformly bounded, the sequence μn converges

to μ in the Wasserstein distance; see Definition 3.1 and Chap. 7 of Ref. 46.

Remark 2.3. Theorem 2.5 can most likely be extended to provide a complete

characterization of compact subsets of Lp(D;U). Since we only require sufficient

conditions for compactness, we do not pursue this generalization here.

2.3. Time-parameterized probability measures on Lp

Let T ∈ (0,∞]. To take into account the evolutionary nature of the PDE (1.1a),

we will add time-dependence to the probability measures considered in Sec. 2.1 by

considering maps μ : [0, T ) → P(Lp(D;U)). Note the distinction between time-

parametrized maps μ : [0, T ) → P(Lp(D;U)) and probability measures γ on, say,

the space L∞([0, T );Lp(D;U)). Every such measure γ would correspond to a unique

μ, but not vice versa; when “projecting” γ onto μ, any information about correlation

between function values u(t1), u(t2) at different times t1, t2 is lost. Given the

evolutionary nature of the PDE (1.1a), we have chosen to work with “μ” measures

in order to preserve the direction of time in the underlying PDE.

Notation 2.6. We denote the set of Carathéodory functions depending on space

and time by Hk
0([0, T ), D;U) := L1([0, T ) × Dk;C0(U

k)) and its dual space by

Hk∗
0 ([0, T ), D;U) := L∞

w ([0, T )×Dk;M(Uk)).

Analogously to Definition 2.1, we let Hk,p([0, T ), D;U) denote the space of

Carathéodory functions g : [0, T )×Dk × Uk → R satisfying

|g(t, x, ξ)| ≤
∑

α∈{0,1}k

ϕ|ᾱ|(t, xᾱ)|ξα|p, ∀x ∈ Dk, ξ ∈ Uk (2.16)

for nonnegative functions ϕi ∈ L∞([0, T );L1(Di)), i = 0, 1, . . . , k. We let H
k,p
1

([0, T ), D;U) ⊂ Hk,p([0, T ), D;U) denote the subspace of functions g satisfying the

local Lipschitz condition∣∣g(t, x, ζ) − g(t, y, ξ)
∣∣ ≤ ψ(t)

k∑
i=1

|ζi − ξi|max
(
|ξi|, |ζi|

)p−1
h(t, x̂i, ξ̂i) (2.17)

for every x ∈ Dk, y ∈ Br(x) for some r > 0, for some nonnegative h ∈ Hk−1,p

([0, T ), D;U) and 0 ≤ ψ(t) ∈ L∞([0, T )).

The following lemma shows that it is meaningful to “evaluate” an element νk ∈
Hk∗

0 ([0, T ), D;U) at (almost) any time t ∈ [0, T ).

Lemma 2.3. Let νk ∈ Hk∗
0 ([0, T ), D;U). Then there exists a map ρ : [0, T ) →

Hk∗
0 (D;U), uniquely defined for a.e. t ∈ [0, T ), such that t 
→

〈
ρ(t), g

〉
Hk

0
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measurable for all g ∈ Hk
0(D;U), and〈

νk, g
〉
Hk =

∫ T

0

〈
ρ(t), g(t, ·)

〉
Hk dt, ∀ g ∈ Hk

0([0, T ), D;U).

The proof of this lemma is given in Appendix C. Henceforth, we will not make

distinctions between these two representations of elements of Hk∗
0 ([0, T ), D;U), and

denote them both by νk.

Definition 2.5. A time-dependent correlation measure is a collection ν =

(ν1, ν2, . . .) of maps νk ∈ Hk∗
0 ([0, T ), D;U) such that:

(i) (ν1t , ν
2
t , . . .) ∈ Lp(D;U) for a.e. t ∈ [0, T ).

(ii) Lp integrability:

ess sup
t∈[0,T )

∫
D

〈
ν1t,x, |ξ|p

〉
dx ≤ cp < +∞. (2.18)

(iii) Diagonal continuity (DC):∫ T ′

0

ωp
r (ν

2
t )dt → 0 as r → 0 for all T ′ ∈ (0, T ), (2.19)

where ωp
r was defined in (2.6).

We denote the set of all time-dependent correlation measures by Lp([0, T ), D;U).

Remark 2.4. By Lemma 2.3, the objects νkt are well defined for a.e. t ∈ [0, T ).

Assertion (ii) requires that the Lp bound should be uniform in t, and assertion

(iii) requires that the modulus of continuity in the diagonal continuity requirement

should be integrable in t.

Next, we prove a time-dependent version of the duality result Theorem 2.4.

Theorem 2.7. For every time-dependent correlation measure ν ∈ Lp([0, T ), D;U)

there is a unique (up to subsets of [0, T ) of Lebesgue measure 0) map μ : [0, T ) →
P(Lp(D;U)) such that:

(i) The map

t 
→
〈
μt, Lg

〉
=

∫
Lp

∫
Dk

g(x, u(x))dx dμt(u) (2.20)

is measurable for all g ∈ Hk
0(D;U).

(ii) μ is Lp-bounded :

ess sup
t∈[0,T )

∫
Lp

‖u‖pLp dμt(u) ≤ cp <∞. (2.21)

(iii) μ is dual to ν: the identity∫
Dk

〈
νkt , g(x)

〉
dx =

∫
Lp

∫
Dk

g(x, u(x))dx dμt(u) (2.22)

holds for a.e. t ∈ [0, T ), every g ∈ Hk
0(D;U) and all k ∈ N.
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Conversely, for every μ : [0, T ) → P(Lp(D;U)) satisfying (i) and (ii), there is a

unique correlation measure ν ∈ Lp([0, T ), D;U) satisfying (iii).

Proof. Let ν be given. Then for a.e. t ∈ [0, T ) we have νt := (ν1t , ν
2
t , . . .) ∈

Lp(D;U), so by Theorem 2.4 there exists a unique μt ∈ P(Lp(D;U)) that is dual

to νt, in the sense that (iii) holds. From the previous remark we know that t 
→〈
νkt , g

〉
Hk is measurable for every g ∈ Hk

0 (D;U), which (using (iii)) is precisely (i).

Property (ii) follows by approximating ξ 
→ |ξ|p by functions in C0(U).

Conversely, given μ satisfying (i) and (ii), Theorem 2.4 gives, for a.e. t ∈ [0, T ),

the existence and uniqueness of νt ∈ Lp(D;U) satisfying (iii) as well as the Lp-

bound (2.18). We claim that (νt)t∈[0,T ) defines a time-dependent correlation mea-

sure ν ∈ Lp([0, T ), D;U). Indeed, define the linear functional νk by

〈
νk, θ ⊗ g

〉
Hk :=

∫ T

0

θ(t)
〈
νkt , g

〉
Hk dt, ∀ θ ∈ L1([0, T )), g ∈ Hk

0 (D;U), k ∈ N.

Then νk is well defined on tensor product test functions θ(t)g(x), and∣∣〈νk, θ ⊗ g
〉
Hk

∣∣ ≤ ‖θ‖L1([0,T ))

∥∥〈μ, Lg

〉∥∥
L∞([0,T ))

≤ ‖θ‖L1‖Lg‖C0(Lp)

= ‖θ‖L1‖g‖Hk
0
= ‖θ ⊗ g‖L1([0,T )×Dk;C0(Uk)).

Extending νk by linearity to all of L1([0, T )×Dk;C0(U
k)) produces a unique ele-

ment νk ∈ L1([0, T ) × Dk;C0(U
k))∗ ∼= L∞

w ([0, T ) × Dk;M(Uk)). Defining the

collection ν = (ν1, ν2, . . .), it only remains to show that ν2 satisfies the diagonal

continuity requirement (2.19). Indeed, since

ωp
r (ν

2
t ) =

∫
Lp

ωp
r (u)dμt(u) → 0 as r → 0

for a.e. t ∈ [0, T ), the requirement (2.19) follows from the dominated convergence

theorem.

We denote the set of all maps μ : [0, T ) → P(Lp(D;U)) that are dual to some

ν ∈ Lp([0, T ), D;U) as PT (L
p(D;U)).

We conclude this section by proving a version of the compactness theorem for

time-dependent correlation measures.

Theorem 2.8. Let νn ∈ Lp([0, T ), D;U) for n = 1, 2, . . . be a sequence of correla-

tion measures such that

sup
n∈N

ess sup
t∈[0,T )

∫
D

〈
ν1n;t,x, |ξ|p

〉
dx ≤ cp < +∞, (2.23)

lim
r→0

lim sup
n→∞

∫ T ′

0

ωp
r

(
ν2n,t
)
dt = 0 (2.24)
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for some c > 0 and all T ′ ∈ [0, T ). Then there exists a subsequence (nj)
∞
j=1 and

some ν ∈ Lp([0, T ), D;U) such that:

(i) νnj

∗
⇀ ν as j → ∞, that is,

〈
νknj

, g
〉
Hk →

〈
νk, g

〉
Hk for every g ∈

Hk
0 ([0, T ), D;U) and every k ∈ N.

(ii)
〈
ν1t , |ξ|p

〉
H1 ≤ cp for a.e. t ∈ [0, T ).

(iii)
∫ T ′

0 ωp
r

(
ν2t
)
dt ≤ lim infn→∞

∫ T ′

0 ωp
r

(
ν2n,t
)
dt for every r > 0 and T ′ ∈ [0, T ).

(iv) For k ∈ N, let ϕ ∈ L1
loc([0, T ) ×Dk) and κ ∈ C(Uk) be nonnegative, and let

g(t, x, ξ) := ϕ(t, x)κ(ξ). Then〈
νk, g

〉
Hk ≤ lim inf

j→∞
〈
νknj

, g
〉
Hk . (2.25)

(v) Assume moreover that D ⊂ Rd is bounded, T <∞ and that νn have uniformly

bounded support, in the sense that

‖u‖Lp ≤M for μn
t -a.e. u ∈ Lp(D;U) for every n ∈ N, a.e t ∈ (0, T ),

(2.26)

with μn
t ∈ PT (L

p(D;U)) being dual to νn, then the following observables con-

verge strongly:

lim
j→∞

∫
Dk

∣∣∣∣∣
∫ T

0

〈
νknj ;t,x − νkt,x, g(t, x)

〉
dt

∣∣∣∣∣ dx = 0 (2.27)

for every g ∈ H
k,p
1 ([0, T ), D;U).

We skip the proof of this theorem as is very similar to that of Theorem 2.5.

Remark 2.5. A closer look at the convergence statement (2.27) reveals that we

can expect pointwise a.e. convergence in space of the ensemble averages of the

observables g ∈ H
k,p
1 ([0, T ), D;U). On the other hand, time averaging in (2.27)

seems essential. In other words, we have convergence of time averages of ensemble

averages of the observables.

2.4. Statistical solutions

Using correlation measures we can now define statistical solutions of (1.1a). We

need the following assumptions on the flux function in (1.1a),

|f(u)| ≤ C(1 + |u|p), ∀ u ∈ U,

|f(u)− f(v)| ≤ C|u− v|max(|u|, |v|)p−1, ∀ u, v ∈ U,
(2.28)

for some constant C > 0 and 1 ≤ p < ∞. The value of p is given by available a

priori bounds for solutions of (1.1a), for instance, from the entropy condition (1.3)

(cf. (1.4)). For example, both the shallow water equations and the isentropic Euler

equations are L2-bounded, at least for solutions away from vacuum.10
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Statistical solutions are correlation measures (or equivalently, probability mea-

sures over Lp) satisfying the differential equation (1.1a) in a certain averaged sense.

The full derivation can be found in Ref. 16, and we only provide the definition here.

Definition 2.6. Let μ̄ ∈ P
(
Lp
(
D;U)

)
have bounded support,

‖u‖Lp(D;U) ≤M for μ̄-a.e. u ∈ Lp(D;U) (2.29)

for some M > 0. A statistical solution of (1.1a) with initial data μ̄ is a time-

dependent map μ : [0, T ) 
→ P(Lp(D;U)) such that each μt has bounded support,

and such that the corresponding correlation measures (νkt )k∈N satisfy

∂t
〈
νkt,x, ξ1 ⊗ · · · ⊗ ξk

〉
+

k∑
i=1

∇xi ·
〈
νkt,x, ξ1 ⊗ · · · ⊗ f(ξi)⊗ · · · ⊗ ξk

〉
= 0 (2.30)

in the sense of distributions, i.e.∫
R+

∫
Dk

〈
νkt,x, ξ1 ⊗ · · · ⊗ ξk

〉
: ∂tϕ

+

k∑
i=1

〈
νkt,x, ξ1 ⊗ · · · ⊗ f(ξi)⊗ · · · ⊗ ξk

〉
: ∇xiϕdxdt

+

∫
Dk

〈
ν̄kx , ξ1 ⊗ · · · ⊗ ξk

〉
: ϕ
∣∣
t=0

dx = 0

for every ϕ ∈ C∞
c

(
Dk × R+, U

⊗k
)
and for every k ∈ N. (Here, ν̄ denotes the

correlation measure associated with the initial probability measure μ̄.)

Remark 2.6. If the initial data μ̄ and a resulting statistical solution μt are both

atomic, i.e. μ̄ = δū and μt = δu with ū ∈ Lp(D;U) and u ∈ Lp((0, T ) × D;U),

then it is easy to see that a statistical solution in the above sense reduces to a weak

solution of (1.1a). Thus, weak solutions are statistical solutions.

Remark 2.7. The evolution equation for the first correlation marginal of the sta-

tistical solution, i.e. for k = 1 in (2.30), is equivalent to the definition of a measure-

valued solution of (1.1a).13,15 Thus, a statistical solution can be thought of as a

measure-valued solution augmented with information about all possible multi-point

correlations. Hence, a priori, a statistical solution contains significantly more infor-

mation than a measure-valued solution.

3. Dissipative Statistical Solutions and Weak–Strong Uniqueness

In analogy with weak solutions, it is necessary to impose additional admissibil-

ity criteria for statistical solutions in order to ensure uniqueness and stability. In

Ref. 16, the authors proposed an entropy condition for statistical solutions of scalar

conservation laws. This condition was based on a non-trivial generalization of the

Kruzkhov entropy condition to the framework of time-parameterized probability
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measures on L1(D). It was shown in Ref. 16 that these entropy statistical solutions

were unique and stable in the 1-Wasserstein metric on P(L1(D)), with respect to

perturbations of the initial data.

Although one can extend the entropy condition of Ref. 16 to statistical solutions

for systems of conservation laws (1.1a), it is not possible to obtain uniqueness and

stability of such entropy statistical solutions. Instead, one has to seek alternative

notions of stability for systems of conservation laws.

A possible weaker framework for uniqueness (stability) is that of weak–strong

uniqueness, see Refs. 48 and 10 and references therein. Within this framework, one

imposes certain entropy conditions and proves that the resulting entropy solutions

will coincide with a strong (classical) solution if such a solution exists. Weak–strong

uniqueness for systems of conservation laws with strictly convex entropy functions

is shown in Ref. 10. In fact, one can even prove weak–strong uniqueness results

for the much weaker notion of entropy or dissipative measure-valued solutions of

systems of conservation laws, see Refs. 12, 6 and 15.

Our aim in this section is to propose a suitable notion of dissipative statistical

solutions and prove a weak–strong uniqueness result for such solutions. Stability of

solutions will be measured in the Wasserstein distance, whose definition we recall

first.

Definition 3.1. Let X be a separable Banach space and let μ, ρ ∈ P(X) have finite

pth moments, i.e.
∫
X
|x|pdμ(x) < ∞ and

∫
X
|x|pdρ(x) < ∞. The p-Wasserstein

distance between μ and ρ is defined as

Wp(μ, ρ) =

(
inf

π∈Π(μ,ρ)

∫
X2

|x− y|p dπ(x, y)
) 1

p

; (3.1)

where the infimum is taken over the set Π(μ, ρ) ⊂ P(X2) of all transport plans

from μ to ρ, i.e. those π ∈ P(X2) satisfying∫
X2

F (x) +G(y)dπ(x, y) =

∫
X

F (x)dμ(x) +

∫
X

G(y)dρ(y), ∀ F,G ∈ Cb(X)

(see e.g. Ref. 46).

As in Sec. 4 of Ref. 16, our entropy condition for statistical solutions will rely

on a comparison with probability measures that are convex combinations of Dirac

masses, i.e. ρ ∈ P(L2(D)) such that ρ =
∑M

i=1 αiδui for coefficients αi ≥ 0,
∑

i αi =

1 and functions u1, . . . , uM ∈ L2(D). From Lemma 4.2 of Ref. 16, we observe that

whenever ρ is of this M -atomic form, there is a one-to-one correspondence between

transport plans π ∈ Π(μ, ρ) and elements of the set

Λ(α, μ) :=

{
(μ1, . . . , μM ):μ1, . . . , μM ∈ P(L2(D;U)) and

M∑
i=1

αiμi = μ

}
,

defined for any α = (α1, . . . , αM ) ∈ RM satisfying αi ≥ 0 and
∑M

i=1 αi = 1. The

set Λ(α, μ) is never empty since (μ, . . . , μ) ∈ Λ(α, μ) for any choice of coefficients
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α1, . . . , αM . Note that the set Λ(α, μ) depends on the target measure ρ only through

the weights α1, . . . , αM .

Using this decomposition of transport plans with respect to M-atomic probabil-

ity measures, we define the notion of dissipative statistical solution as follows.

Definition 3.2. Assume that the system of conservation laws (1.1a) is equipped

with an entropy function η. A statistical solution μ of (1.1a) is a dissipative statis-

tical solution if

(i) for every choice of coefficients α1, . . . , αM > 0 with
∑M

i=1 αi = 1 and for every

(μ̄1, . . . , μ̄M ) ∈ Λ(α, μ̄), there exists a function t 
→ (μ1,t, . . . , μM,t) ∈ Λ(α, μt),

such that each measure μi ∈ PT (L
p(D;U)) is a statistical solution of (1.1a)

with initial data μ̄i,

(ii) for all test functions 0 ≤ θ(t) ∈ C∞
c (R+),∫

R+

∫
Lp(D,U)

∫
D

η(u(x))θ′(t)dx dμt(u)dt

+

∫
Lp(D,U)

∫
D

η(ū(x))θ(0)dx dμ̄(ū) ≥ 0. (3.2)

We remark that the first condition in the above definition demands that the

decomposition of a statistical solution into the components μi is still consistent with

the underlying conservation law (1.1a). On the other hand, the second condition

(3.2) amounts to requiring that the total entropy of μ decreases in time.

First, we investigate the stability of a dissipative statistical solution of (1.1a)

with respect to statistical solutions built from finitely many classical solutions

of (1.1).

Lemma 3.1. Let T > 0, set p = 2, assume that

‖f ′′‖L∞(RN ) <∞ (3.3)

(where we denoted by f ′′ the Hessian of f, i.e. (f ′′(u))ijk = ∂uj∂ukf i(u), i, j, k =

1, . . . , N), and assume that the conservation law (1.1a) is equipped with an entropy

pair (η, q) for which

c ≤ (η′′(u)v, v) ≤ C, ∀ u ∈ RN , v ∈ RN with |v| = 1 (3.4)

(where η′′ denotes the Hessian matrix of η) for c, C > 0. Let μ ∈ PT (L
2(D;U)) be a

dissipative statistical solution of (1.1a), and for t ∈ [0, T ) let ρt =
∑M

i=1 αiδvi(t) for

coefficients αi > 0,
∑M

i=1 αi = 1, and classical solutions v1, . . . , vM ∈ W 1,∞(D ×
[0, T );U) of (1.1a). Then

W2(μt, ρt) ≤ eCtW2(μ0, ρ0), ∀ t ∈ [0, T ), (3.5)

where C =C(R) ≥ 0 is a constant only depending on R := maxi=1,...,M

‖vi‖W 1,∞(D×R+,U).
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Proof. It is straightforward to verify that ρt as defined above is a statistical solu-

tion of (1.1a) with initial data ρ̄ :=
∑M

i=1 αiδv̄i , where v̄i := vi(0).

Let μ̄∗ = (μ̄∗
1, . . . , μ̄

∗
M ) ∈ Λ(α, μ̄) define a transport plan that minimizes the

transport cost between μ̄ := μ0 and ρ̄, that is,

W2(μ̄, ρ̄) =

(
M∑
i=1

αi

∫
L2

‖u− v̄i‖2L2dμ̄∗
i (u)

) 1
2

. (3.6)

(Here and in the remainder of this proof, we denote L2 = L2(D;U).) As μt is a

dissipative statistical solution, there exists a map t 
→
(
μ∗
1,t, . . . , μ

∗
M,t

)
∈ Λ(α, μt)

such that

M∑
i=1

αi

(∫ T

0

∫
L2

∫
D

u(x)∂tϕi(x, t) + f(u(x)) · ∇xϕi(x, t)dx dμ
∗
i,t(u)dt

+

∫
L2

∫
D

ūϕi(x, 0)dx dμ̄
∗
i (ū)

)
= 0 (3.7)

for every ϕ1, . . . , ϕM ∈ C∞
c (D × [0, T )). For each 1 ≤ i ≤M , we have that∫ T

0

∫
L2

∫
D

vi(x, t)∂tϕi + f(vi(t, x)) · ∇xϕi dx dμ
∗
i,t(u)dt

+

∫
L2

∫
D

v̄i(x)ϕi(x, 0)dx dμ̄
∗
i (ū)

=

∫ T

0

∫
L2

∫
D

∂t(viϕi) +∇x · (f(vi)ϕi)dx dμ
∗
i,t(u)dt

+

∫
L2

∫
D

v̄i(x)ϕi(x, 0)dx dμ̄
∗
i (ū)

−
∫ T

0

∫
L2

∫
D

ϕi

(
∂tvi +∇x · f(vi)

)
dx dμ∗

i,t(u)dt︸ ︷︷ ︸
= 0, as vi is a classical solution of (1.1a)

= −
∫
D

vi(x, 0)ϕi(x, 0)dx+

∫
D

v̄i(x)ϕi(x, 0)dx = 0.

Multiplying the above with αi and summing over i, we obtain

M∑
i=1

αi

(∫ T

0

∫
L2

∫
D

vi∂tϕi + f(vi) · ∇xϕdxdμ
∗
i,t(u)dt

+

∫
L2

∫
D

v̄iϕi(x, 0)dx dμ̄
∗
i (ū)

)
= 0. (3.8)
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Subtracting (3.8) from (3.7) and choosing as a test function the vector-valued func-

tion ϕi = η′(vi(x, t))θ(t) for some scalar test function 0 ≤ θ(t) ∈ C∞
c (R+) (here, η

′

denotes the vector-valued derivative of η with respect to u), and using the fact that

∂tϕi = η′(vi)θ′(t) + θ(t)η′′(vi)∂tvi = η′(vi)θ′(t)− θ(t)f ′(vi) · ∇xη
′(vi),

∂jϕi = θ(t)∂jη
′(vi)

yields

0 =
M∑
i=1

αi

(∫ T

0

∫
L2

∫
D

(u− vi) · ∂tϕi + (f(u)− f(vi)) · ∇xϕi dx dμ
∗
i,t(u)dt

+

∫
L2

∫
D

(ū − v̄i) · ϕi(x, 0)dx dμ̄
∗
i (ū)

)

=
M∑
i=1

αi

(∫ T

0

∫
L2

∫
D

η′(vi) · (u− vi)θ
′(t)dx dμ∗

i,t(u)dt

+

∫
L2

∫
D

η′(v̄i) · (ū− v̄i)θ(0)dx dμ̄
∗
i (ū)

+

∫ T

0

∫
L2

∫
D

θ(t)
(
f(u)− f(vi)− f ′(vi)(u− vi)

)
· ∇xη

′(vi)︸ ︷︷ ︸
=:Z(u|vi)

dx dμ∗
i,t(u)dt

)
.

(3.9)

As vi is a classical solution of (1.1a) and μ∗
1,t, . . . , μ

∗
M,t are probability measures,

we obtain from the entropy conservation of vi that

M∑
i=1

αi

(∫ T

0

∫
L2

∫
D

η(vi)θ
′(t)dx dμ∗

i,t(u)dt+

∫
L2

∫
D

η(v̄i)θ(0)dx dμ̄
∗
i (ū)

)
= 0,

(3.10)

for the same test function θ used in (3.9).

Since μt is a dissipative statistical solution of (1.1a), we have

0 ≤
∫
R+

∫
L2

∫
D

η(u(x))θ′(t)dx dμt dt+

∫
L2

∫
D

η(ū(x))θ(0)dx dμ̄(ū)

=

M∑
i=1

αi

(∫
R+

∫
L2

∫
D

η(u(x))θ′(t)dx dμ∗
i,t dt+

∫
L2

∫
D

η(ū(x))θ(0)dx dμ̄∗
i (ū)

)
.

Subtracting (3.10) and (3.9) from the above inequality we obtain

M∑
i=1

αi

∫ T

0

∫
L2

∫
D

(
η(u)− η(vi)− η′(vi)(u− vi)

)︸ ︷︷ ︸
=:H(u|vi)

θ′(t)dx dμ∗
i,t(u)dt
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+

M∑
i=1

αi

∫
L2

∫
D

(
η(ū)− η(v̄i)− η′(v̄i)(ū − v̄i)

)
θ(0)dx dμ̄∗

i (ū)

+

M∑
i=1

αi

∫ T

0

∫
L2

∫
D

θ(t)Z(u | vi)dx dμ∗
i,t(u)dt ≥ 0.

(3.11)

As η is strictly convex (the lower bound in (3.4)), we have

H(u | vi) ≥ c|u− vi|2.

Similarly, using (3.3) and the fact that ‖vi‖W 1,∞ ≤ R, we obtain that

max
(
Z(u | vi),H(u | vi)

)
≤ C|u− vi|2.

Using the above estimates in (3.11) and choosing the test function θ(s) = χ(0,t](s)

(by approximating with smooth functions) yields

M∑
i=1

αi

∫
L2

∫
D

|u(x)− vi(x, t)|2 dx dμ∗
i,t(u) ≤

M∑
i=1

αi

∫
L2

∫
D

|ū(x)− v̄i(x)|2 dx dμ̄∗
i (ū)

+C

M∑
i=1

αi

∫ t

0

∫
L2

∫
D

|u(x)− vi(x, s)|2 dx dμ∗
i,s(u)ds. (3.12)

Applying the integral form of Grönwall’s inequality to the above estimate results in

M∑
i=1

αi

∫
L2

‖u− vi‖2L2 dx dμ∗
i,t(u) ≤ eCt

M∑
i=1

αi

∫
L2

‖ū− v̄i‖2L2 dx dμ̄∗
i (ū)

= eCtW2(μ̄, ρ̄)
2,

the last step following from (3.6). As (μ∗
1,t, . . . , μ

∗
M,t) ∈ Λ(α, μt), the above inequal-

ity implies (3.5) and concludes the proof.

The estimate (3.5) implies stability of dissipative statistical solutions with

respect to probability measures that are convex combinations of Dirac masses, con-

centrated on classical solutions of (1.1a). We can extend such a stability result to

a more general class of strong solutions.

Definition 3.3. A statistical solution μ is a strong statistical solution of (1.1a) if

there is some R > 0 such that for every n ∈ N, there exists a ρn ∈ PT (L
2(D,U))

of the form ρn,t =
∑Nn

i=1 αiδvi(t) such that each vi is a classical solution of (1.1a)

and vi ∈ BR ⊂W 1,∞(D × (0, T )), for all 1 ≤ i ≤ Nn and such that

W2(μt, ρn,t) ≤
1

n
, ∀ t ∈ [0, T ]. (3.13)

We can now prove our main weak–strong uniqueness result.
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Theorem 3.1. Let μ̄ ∈ P(L2(D;U)). Then under the same assumptions as in

Lemma 3.1, if there exists a strong statistical solution μ of (1.1a), then it is unique

in the class of dissipative statistical solutions.

Proof. For a fixed n ∈ N, Definition 3.3 implies the existence of a statistical

solution ρt =
∑Nn

i=1 αiδvi(t) such that

W2(μt, ρt) ≤
1

n
. (3.14)

Moreover, vi(x, t) ∈ BR is a classical solution of (1.1a) with initial data v̄i for all

i = 1, . . . , Nn.

Let γt be another dissipative statistical solution of (1.1a) with γ0 = μ̄. By

Lemma 3.1 we have

W2(ρt, γt) ≤
eCt

n

for some C = C(R). Using (3.14) and the triangle inequality yields

W2(μt, γt) ≤
eCt + 1

n
.

Letting n→ ∞ concludes the proof of uniqueness of strong solutions.

Remark 3.1. If we assume that the initial data μ̄ is such that supp(μ̄) ⊂ BR0 ,

with BR0 being the ball of radius R0 > 0 in W 1,∞(D;U), then by classical results

on local well posedness for (1.1a) with strictly convex entropies,10 there exist

T (R0), R(R0) > 0, such that for every initial data v̄ ∈ supp(μ̄), there exists a cor-

responding classical solution v ∈ W 1,∞(D× [0, T (R0)]) and ‖v‖W 1,∞(D×[0,T (R0)]) ≤
R(R0). Moreover, the data-to-solution map St : supp μ̄ → L2(D;U) is well defined

for all 0 ≤ t ≤ T (R0), and continuous because

‖St(v̄)− St(v̂)‖2 ≤ eR(R0)t‖v̄ − v̂‖2, ∀ t ∈ [0, T (R0)].

Letting μt = St#μ̄ for all 0 ≤ t ≤ T (R0), one can verify that μt is indeed a dissipa-

tive statistical solution of (1.1a). Moreover, it is strong in the sense of Definition 3.3.

Consequently, we can establish that as long as the underlying initial data is sup-

ported on smooth functions, the resulting statistical solutions are locally well posed.

4. Numerical Approximation of Statistical Solutions

In this section, we will construct statistical solutions for the system of conser-

vation laws (1.1a) by proposing an algorithm to numerically approximate it. We

show, under reasonable hypotheses on the underlying numerical schemes, that the

approximations constructed by this algorithm converge to a (dissipative) statisti-

cal solution of (1.1a). As in Refs. 15, 19 and 17, the algorithm will be based on

a finite volume spatio-temporal discretization and Monte Carlo sampling of the

underlying probability space. The spatial domain D will everywhere be assumed to

be bounded.
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4.1. Multidimensional finite volume framework

In this section, we briefly describe numerically approximating conservation laws

with finite volume and finite difference methods. For a complete review, one can

consult Refs. 26, 28, 29 and 35.

We discretize the computational spatial domain as a collection of cells{
(x1i1− 1

2
, x1i1+ 1

2
)× · · · × (xdid− 1

2
, xdid+ 1

2
)
}
(i1,...,id)

⊂ D,

with corresponding cell midpoints

xi1,...,id :=

(
x1
i1+ 1

2

+ x1
i1− 1

2

2
, . . . ,

xd
id+ 1

2

+ xd
id− 1

2

2

)
.

For simplicity we assume that our mesh is equidistant, that is,

xmim+ 1
2
− xmim− 1

2
≡ Δ, ∀ m = 1, . . . , d

for some Δ > 0. For each cell, marked by i = (i1, . . . , id), we let uΔi (t) (and

equivalently uΔi1,...,id(t)) denote the averaged value in the cell at time t ≥ 0. We

consider the following semi-discrete scheme:

d

dt
uΔi1,...,id(t) +

d∑
m=1

1

Δ

(
Fm,Δ

(
uΔi−(q−1)em

(t), . . . , uΔi+qem
(t)
)

−Fm,Δ
(
uΔi−qem

(t), . . . , uΔi+(q−1)em
(t)
))

= 0,

uΔi1,...,id(0) = ū(xi1,...,id), (4.1)

where e1, . . . , ed are the canonical unit vectors in Rd, and Fm,Δ is a numerical

flux function in direction m = 1, . . . , d. We say that the scheme is a (2q + 1)-point

scheme, when the numerical flux function Fm,Δ can be written as a function of

uΔi+jem
(t) for j = −q+1, . . . , q. We furthermore assume the numerical flux function

is consistent with f and locally Lipschitz continuous, which amounts to requiring

that for every bounded set K ⊂ RN , there exists a constant C > 0 such that for

m = 1, . . . , d,∣∣Fm,Δ
(
uΔi−(q−1)em

(t), . . . , uΔi+qem
(t)
)
− fm(uΔi

)∣∣ ≤ C

q∑
j=−q+1

∣∣uΔi (t)− uΔi+jem
(t)
∣∣,

(4.2)

whenever uΔi−(q−1)em
(t), . . . , uΔi+qem

(t) ∈ K. For the sake of notational simplicity

we will write

Fm
i+ 1

2 em
(u) = Fm,Δ

(
ui−(q−1)em

, . . . , ui+qem

)
for i ∈ Zd, 1 ≤ m ≤ d.

We let SΔ
t : Lp(D) → Lp(D) be the spatially discrete numerical evolution operator

defined by (4.1), mapping ū 
→ uΔ(t). Since SΔ
t is the composition of a projection

from Lp onto piecewise constant functions and a continuous evolution under an

ordinary differential equation, we see that SΔ
t is measurable.
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The current form of (4.1) is continuous in time, and one needs to employ a

time stepping method to discretize the ODE system in time, usually through some

strong stability preserving Runge–Kutta method.27

As the operator SΔ is a measurable map, we can define an approximation of a

statistical solution of (1.1a) with initial data μ̄ by

μΔ
t = SΔ

t #μ̄. (4.3)

Henceforth, μΔ
t is referred to as an approximate statistical solution.

4.2. Convergence of approximate statistical solutions

In this section, we investigate the convergence of the approximate statistical solu-

tions μΔ
t as the mesh is refined, i.e. as Δ → 0.

Theorem 4.1. Consider the system of conservation laws (1.1a) with initial data

μ̄ ∈ P(Lp(D;U)) for some 1 ≤ p < ∞, such that supp(μ̄) ⊂ BR(0) ⊂ Lp(D;U),

with BR(0) being the ball of radius R and center 0, for some R > 0. Assume that

the semi-discrete finite volume scheme (4.1) satisfies the following condition:

(i) Lp bounds:

Δd
∑
i∈Zd

|uΔi (t)|p ≤ CΔd
∑
i∈Zd

|ūi|p, ∀ t ∈ [0, T ), ∀ ū ∈ Lp(D;U). (4.4)

(ii) Weak BV bounds: There exists s ≥ p such that

Δd

∫ T

0

d∑
m=1

∑
i∈Zd

∣∣uΔi+em
(t)− uΔi (t)

∣∣s dt ≤ CΔ, (4.5)

with the constant C = C(‖ū‖p) only depending on the Lp-norm of the initial

data ū.

(iii) Approximate scaling: There exists a constant C > 0, possibly depending on the

initial data μ̄ but independent of the grid size Δ, such that for every � > 1

Sp
�Δ(μ

Δ) ≤ C�
1
sSp

Δ(μ
Δ). (4.6)

Here, Sp
r (μ) is the structure function associated with the time parameterized

probability measure μt ∈ PT (L
p(D;U)) (equivalently, time-dependent correla-

tion measure ν ∈ Lp([0, T ), D;U)), defined as

Sp
r (μ) :=

(∫ T

0

∫
Lp(D)

∫
D

−
∫
Br(x)

|u(x)− u(y)|pdy dx dμt(u)dt

) 1
p

. (4.7)

Then there is a subsequence Δ′ → 0 such that the approximate statistical solutions

μΔ′
converge strongly to some μ ∈ PT (L

p(D,U)), in the sense of Theorem 2.8(v).

Proof. We will show that the approximate statistical solutions μΔ
t , defined in (4.3),

satisfy the conditions of Theorem 2.8 and hence converge (up to a subsequence).
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To this end, we can readily verify from the uniform Lp bounds (4.4) and the fact

that supp μ̄ ⊂ BR(0), that

supp(μΔ
t ) ⊂ BCR(0), ∀ t ∈ [0, T ),

with C being the constant in (4.4).

Let uΔ(t) = SΔ
t ū be the solution generated by the scheme (4.1). Denoting

VΔ(ū) =

∫ T

0

d∑
m=1

∑
i∈Zd

∣∣uΔi+em
(t)− uΔi (t)

∣∣p dt, (4.8)

we obtain from the weak BV estimate (4.5) and Hölder’s inequality that (recall

that D was assumed to be bounded)

VΔ(ū) ≤ C(T, d,R)Δ
p
s−d. (4.9)

The above inequality holds for every ū ∈ BR(0) ⊂ Lp(D;U).

Next, for any r ≤ Δ, a straightforward but tedious calculation yields

(Sp
r (μ

Δ))p =

∫ T

0

∫
Lp

∫
D

−
∫
Br(x)

|u(x)− u(y)|pdy dx dμΔ
t (u)dt

=

∫ T

0

∫
Lp

∫
D

−
∫
Br(x)

∣∣SΔ
t ū(x) − SΔ

t ū(y)
∣∣p dy dx dμ̄(ū)dt (by (4.3))

=

∫
Lp

∫ T

0

∫
D

−
∫
Br(x)

|uΔ(x, t) − uΔ(y, t)|p dy dx dt dμ̄(ū)

≤ CdΔ
d−1r

∫
Lp

VΔ(ū)dμ̄(ū)

≤ C(T, d,R)Cdr
p
s (by (4.9) and r ≤ Δ),

where Cd = 3d−1 results from successive applications of the triangle inequality.

Hence, summarizing the above calculation, we obtain that for any r ≤ Δ,

Sp
r (μ

Δ) ≤ Cr
1
s , (4.10)

for a constant C that depends on the dimension, the support of the initial proba-

bility measure and the final time but is independent of the grid size Δ.

Now, for any � > 1 and r = �Δ, we have

Sp
r (μ

Δ) = Sp
�Δ(μ

Δ) ≤ C�
1
sSp

Δ(μ
Δ) (by scaling (4.6))

≤ C�
1
sΔ

1
s (by (4.10))

= Cr
1
s .

Here, the constant is independent of Δ. By combining the above estimate with

(4.10), we obtain that

Sp
r (μ

Δ) ≤ Cr
1
s (4.11)

for any r > 0.
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Given the independence of the constant in (4.11) with respect to the grid size Δ,

we see from (4.11) that the condition of uniform diagonal continuity (2.24) is

satisfied. Hence, up to a subsequence still indexed by Δ, μΔ converges to some

μ ∈ PT (L
p(D;U)).

Several remarks on the assumptions in the above theorem follow.

Remark 4.1. There are many examples of finite volume/difference schemes of the

form (4.1) which satisfy the uniform Lp bound (4.4) and the weak BV bound (4.5).

Assume that the system of conservation laws (1.1a) possesses an entropy function

η that satisfies

C1(1 + |u|p) ≤ η(u) ≤ C2(1 + |u|p), ∀ u ∈ U (4.12)

for constants C1, C2 > 0 and p ∈ [1,∞). Then the uniform Lp bound (4.4) follows

for any scheme of form (4.1) that satisfies a discrete entropy inequality,

d

dt
η
(
uΔi (t)

)
+

d∑
m=1

1

Δ

(
Qm,Δ

i+ 1
2 em

(t)−Qm,Δ

i− 1
2em

(t)
)
≤ 0, (4.13)

with a numerical entropy flux Qm,Δ that is consistent with the entropy flux qm in

(1.3) for 1 ≤ m ≤ d.

In many cases the weak BV bound (4.5) also follows from the discrete entropy

inequality (4.13). Examples of schemes which satisfy the discrete entropy inequality

(4.13) and the weak BV bound (4.5) are the so-called entropy stable Lax–Wendroff

schemes and the TeCNO schemes of Ref. 18.

Remark 4.2. The approximate scaling assumption (4.6) can be thought of as a

weaker version of the so-called self-similarity at small scales assumption of Kol-

mogorov in his K41 theory for fully developed turbulence in incompressible fluid

flows, see hypothesis H2, Eq. (6.3), p. 75 of Ref. 24. Kolmogorov based his hypoth-

esis on the fact that smooth solutions of the incompressible Navier–Stokes (Euler)

equations scale exactly. Similar considerations also apply to several prototypical

examples of systems of conservation laws (1.1a). In particular, for the compressible

Euler equations (5.1) (in any space dimension), it can be readily checked that if

u(x, t) is a solution, then �θu(�x, �t) is also a solution for any θ, � > 0. Hence, it

is reasonable to hypothesize scaling, analogous to the Kolmogorov hypothesis, for

systems of conservation laws.

It is essential to also point out the differences in our hypothesis (4.6) to the stan-

dard Kolmogorov hypothesis for turbulent incompressible flows. First, our hypoth-

esis pertains only to the numerical solution, generated by the finite volume scheme

(4.1). Moreover, we require mere inequalities in the scaling law (4.6), in contrast to

the standard Kolmogorov hypothesis of equality.

Remark 4.3. Intermittency is widely accepted to be a characteristic of turbulent

flows, see Ref. 24. It is believed that intermittency stems from the fact that turbulent
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solutions do not scale exactly as in the Kolmogorov hypothesis. We automatically

incorporate a form of intermittency by only requiring an upper bound in (4.6),

instead of an equality. Hence, the scaling exponent in (4.6) can depend explicitly on

the underlying length scale, provided that it is bounded below by 1/s. This encodes

a form of intermittency in the approximate solutions.

Remark 4.4. Another approach to incorporating intermittency and relaxing the

scaling condition (4.6) is to consider a decomposition of the approximate statistical

solution μΔ
t into a mean flow and a fluctuation. Defining the mean flow by

ûΔ(x, t) = 〈ν1,Δt,x , ξ〉, (4.14)

we see that the mean flow is well defined for almost every (x, t) ∈ D × (0, T ).

Similarly, we can define fluctuations of μ̃Δ ∈ PT (L
p(D;U)) by its action on all

observables g ∈ Hk,p([0, T ], D;U),〈
μ̃Δ, Lg

〉
=

∫ T

0

∫
Lp(D;U)

∫
Dk

g
(
x, t, u(x)− ûΔ(x, t)

)
dx dμ̃Δ

t (u)dt. (4.15)

We can relax the assumption (4.6) by requiring that only the structure function

associated with the fluctuation scales approximately, i.e.

Sp
�Δ(μ̃

Δ) ≤ C�1/sSp
Δ(μ̃

Δ), ∀ � > 1. (4.16)

If we further assume that the mean flow is BV and L∞, i.e.

max
(∥∥ûΔ∥∥

L∞((0,T )×D)
,
∥∥ûΔ∥∥

L∞((0,T );BV (D))

)
≤ C, (4.17)

for some constant that is independent of the mesh size Δ, then a straightforward

but tedious calculation yields for any r = �Δ

Sp
r (μ

Δ) ≤ C̄
∥∥ûΔ∥∥

L∞((0,T );BV (D))
r

1
p + Sp

�Δ(μ̃
Δ)

≤ C̄r
1
p + C�

1
sSp

Δ(μ̃
Δ) (by (4.16))

≤ C̄r
1
p + C�

1
sΔ

1
s (by (4.10))

= C̄r
1
p + Cr

1
s .

Thus, the condition (2.24) in Theorem 2.8 is satisfied in this case. A similar argu-

ment can be made by imposing some form of (uniform) Hölder continuity on the

mean flow.

4.3. Consistency of the numerical method

We fix an initial measure μ̄ ∈ P(Lp(D,U)). For any u ∈ Lp(D,U) we define the

local average of u as

ui =
1

|Ci|

∫
Ci

u(x) dx for i ∈ Zd,
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where |Ci| denotes the d-dimensional Lebesgue measure of Ci. We now state the

“Lax–Wendroff theorem” for our numerical method, that is, consistency of the

method with the PDE.

Theorem 4.2. (Lax–Wendroff theorem for statistical solutions) Let the initial data

μ̄ have bounded support, supp μ̄ ⊂ BK(0) ⊂ Lp(D,U) for some K > 0. Let μΔ be

given by (4.3) for Δ > 0, and assume that for some sequence Δn → 0, the sequence

{μΔn}n∈N converges strongly to μ in PT (L
p(D,U)), in the sense of Theorem 2.8(v).

Assume moreover that the following weak BV bound is fulfilled:

Δd

∫ T

0

∫
Lp(D)

d∑
m=1

∑
i∈Zd

|ui − ui−em |s dμΔ
t (u)dt ≤ CΔ, (4.18)

for some 0 < s. Then μt is a statistical solution of (1.1).

Given the complicated notation and very technical nature of the proof of the

above theorem, we illustrate the main steps of the proof in a very special case,

namely k = 2 for a one-dimensional scalar conservation law (d = N = 1). The proof

in the general case is postponed to Appendix D.

Proof for the second moment of a scalar conservation law in one spa-

tial dimension. We consider a scalar conservation law (N = 1) in one spatial

dimension (d = 1). By (4.4), there is some KT > 0 such that

suppμΔ
t ⊂ BKT (0), ∀ t ∈ [0, T ]. (4.19)

Let {uΔi }i∈Z be computed by (4.1). Denote FΔ = F 1,Δ and, for u ∈ Lp(D), write

FΔ
i+ 1

2
(u) = FΔ

(
ui−q+1, . . . , ui+q

)
, i ∈ Z.

For all pairs of cells i, j, we have, by the product rule,

d

dt

(
uΔi (t)u

Δ
j (t)

)
= − 1

Δ

(
FΔ
i+ 1

2
(uΔ(t))− FΔ

i− 1
2
(uΔ(t))

)
uΔj

− 1

Δ
uΔi
(
FΔ
j+ 1

2
(uΔ(t)) − FΔ

j− 1
2
(uΔ(t)(t))

)
.

Hence, for arbitrary ϕ ∈ C∞
c (R2 × [0, T )), we get

0 =

∫ T

0

uΔi (t)u
Δ
j (t)∂tϕ(xi, xj , t) dt+ ϕ(xi, xj , 0)u

Δ
j (0)u

Δ
i (0)
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−
∫ T

0

(
1

Δ

(
FΔ
i+ 1

2
(uΔ(t))− FΔ

i− 1
2
(uΔ(t))

)
uΔj

+
1

Δ
uΔi
(
FΔ
j+ 1

2

(
uΔ(t))− FΔ

j− 1
2
(uΔ(t))

))
ϕ(xi, xj , t) dt.

Multiply by Δ2, sum over all i, j ∈ Z and perform a summation-by-parts to obtain

0 = Δ2
∑
i,j∈Z

(∫ T

0

uΔi (t)u
Δ
j (t)∂tϕ(xi, xj , t) dt+ uΔj (0)u

Δ
i (0)ϕ(xi, xj , 0)

)

+Δ2
∑
i,j∈Z

∫ T

0

(
FΔ
i+ 1

2
(uΔ(t))uΔj (t)

ϕ(xi+1, xj , t)− ϕ(xi, xj , t)

Δ

+ uΔi (t)F
Δ
j+ 1

2
(uΔ(t))

ϕ(xi, xj+1, t)− ϕ(xi, xj , t)

Δ

)
dt

= Δ2
∑
i,j∈Z

(∫ T

0

uΔi (t)u
Δ
j (t)∂tϕ(xi, xj , t) dt+ uΔj (0)u

Δ
i (0)ϕ(xi, xj , 0)

)

+Δ2
∑
i,j∈Z

∫ T

0

(
FΔ
i+ 1

2
(uΔ(t))uΔj (t)∂

Δ
1 ϕ(xi, xj , t)

+ uΔi (t)F
Δ
j+ 1

2
(uΔ(t))∂Δ2 ϕ(xi, xj , t)

)
dt,

where we have denoted ∂Δ1 ϕ(x, y, t) = ϕ(x+Δ,y,t)−ϕ(x,y,t)
Δ , and similarly for ∂Δ2 ϕ.

From the special form (4.3) of μΔ
t , we therefore have

0 = Δ2
∑
i,j∈Z

(∫ T

0

∫
Lp

uiuj∂tϕ(xi, xj , t) dμ
Δ
t (u) dt+

∫
Lp

uiujϕ(xi, xj , 0)dμ̄(u)

)

+Δ2
∑
i,j∈Z

∫ T

0

∫
Lp

(
FΔ
i+ 1

2
(u)uj∂

Δ
1 ϕ(xi, xj , t) + uiF

Δ
j+ 1

2
(u)∂Δ2 ϕ(xi, xj , t)

)
× dμΔ

t (u) dt.

We write now

Δ2
∑
i,j∈Z

∫ T

0

∫
Lp

FΔ
i+ 1

2
(u)uj∂

Δ
1 ϕ(xi, xj , t) dμ

Δ
t (u) dt

= Δ2
∑
i,j∈Z

∫ T

0

∫
Lp

f(ui)uj∂
Δ
1 ϕ(xi, xj , t) dμ

Δ
t (u) dt

+Δ2
∑
i,j∈Z

∫ T

0

∫
Lp

(
FΔ
i+ 1

2
(u)− f(ui)

)
uj∂

Δ
1 ϕ(xi, xj , t) dμ

Δ
t (u) dt.
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The last term vanishes as Δ → 0, since∣∣∣∣∣∣Δ2
∑
i,j∈Z

∫ T

0

∫
Lp

(
FΔ
i+ 1

2
(u)− f(ui)

)
uj∂

Δ
1 ϕ(xi, xj , t) dμ

Δ
t (u) dt

∣∣∣∣∣∣
≤
∫ T

0

∫
Lp

Δ2
∑
i,j∈Z

∣∣FΔ
i+ 1

2
(u)− f(ui)

∣∣|uj||∂Δ1 ϕ(xi, xj , t)| dμΔ
t (u) dt

≤
∫ T

0

∫
Lp

(
Δ
∑
i∈Z

∣∣FΔ
i+ 1

2
(u)− f(ui)

∣∣∥∥∂Δ1 ϕ(xi, ·, t)∥∥Lp′(R)

)

×
(
Δ
∑
j∈Z

|uj |p
)1/p

dμΔ
t (u) dt

≤ KT

∫ T

0

∫
Lp

Δ
∑
i∈Z

∣∣FΔ
i+ 1

2
(u)− f(ui)

∣∣∥∥∂Δ1 ϕ(xi, ·, t)∥∥Lp′(R) dμ
Δ
t (u) dt

(by (4.19))

≤ KT

∫ T

0

∫
Lp

Δ
∑
i∈Z

i+q∑
i′=i−q+1

∣∣ui − ui′
∣∣∥∥∂Δ1 ϕ(xi, ·, t)∥∥Lp′(R) dμ

Δ
t (u) dt

(by the Lipschitz continuity (4.2))

≤ CKT

∫ T

0

∫
Lp

Δ
∑
i∈Z

∣∣ui − ui−1

∣∣∥∥∂Δ1 ϕ(xi, ·, t)∥∥Lp′(R) dμ
Δ
t (u) dt

≤ CKT

(∫ T

0

∫
Lp

Δ
∑
i∈Z

∣∣ui − ui−1

∣∣s dμΔ
t (u) dt

)1/s

︸ ︷︷ ︸
→0 as Δ→0, by (4.18)

×
(∫ T

0

Δ
∑
i∈Z

∥∥∂Δ1 ϕ(xi, ·, t)∥∥s′Lp′(R) dt

)1/s′

︸ ︷︷ ︸
bounded as Δ→0

→ 0.

A similar computation holds for the integral involving FΔ
j+ 1

2

(u). Setting Δ = Δn

then gives

0 = lim
n→∞

(
Δ2

n

∑
i,j∈Z

(∫ T

0

∫
Lp

uiuj∂tϕ(xi, xj , t) dμ
Δn
t (u) dt
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+

∫
Lp

uiujϕ(xi, xj , 0) dμ̄(u)

)

+Δ2
n

∑
i,j∈Z

∫ T

0

∫
Lp

(f(ui)uj∂
Δn
1 ϕ(xi, xj , t)

+ uif(uj)∂
Δn
2 ϕ(xi, xj , t)) dμ

Δn
t (u) dt

)

(as u is piecewise constant μΔn
t -almost surely)

= lim
n→∞

(∫ T

0

∫
Lp

∫
R2

u(x)u(y)∂tϕ(x, y, t) dxdy dμ
Δn
t (u) dt

+

∫
Lp

u(x)u(y)ϕ(x, y, 0) dxdy dμΔ
0 (u) +

∫ T

0

∫
Lp

∫
R2

(f(u(x))u(y)∂1ϕ(x, y, t)

+ u(x)f(u(y))∂2ϕ(x, y, t)) dxdy dμ
Δn
t (u) dt

)

=

∫ T

0

∫
Lp

∫
R2

u(x)u(y)∂tϕ(x, y, t) dxdy dμt(u) dt

+

∫
Lp

u(x)u(y)ϕ(x, y, 0) dxdy dμ̄(u) +

∫ T

0

∫
Lp

∫
R2

(f(u(x))u(y)∂1ϕ(x, y, t)

+ u(x)f(u(y))∂2ϕ(x, y, t)) dxdy dμt(u) dt,

which completes the proof.

Remark 4.5. We can readily show that the limit statistical solution μt is a dissipa-

tive statistical solution, assuming that the underlying finite volume method satisfies

the discrete entropy inequality (4.13). To this end, for every choice of coefficients

α1, . . . , αM > 0 with
∑M

i=1 αi = 1 and every (μ̄1, . . . , μ̄M ) ∈ Λ(α, μ̄), we construct

μΔ
i,t = SΔ

t #μ̄i as the approximate statistical solution generated by the scheme

(4.1). By the convergence theorem (Theorem 4.1), we can show that each μΔ
i,t con-

verges (possibly along a further subsequence), in the topology of Theorem 2.8, to

μi,t ∈ PT (L
p(D;U)) as Δ → 0. By Theorem 4.2, each μi is a statistical solution of

(1.1a) with initial data μ̄i, and the condition (3.2) is a straightforward consequence

of the discrete entropy inequality (4.13) and the growth condition (4.12).

4.4. Monte Carlo algorithm

While (4.3) provides an abstract definition of μΔ
t , it is not amenable to practical

computations, since it requires the computation of the trajectory of the numerical

solution operator for almost all possible initial data ū ∈ supp μ̄. We will further
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approximate μΔ
t by sampling it for a large ensemble of initial data, drawn from the

initial probability measure.

The Monte Carlo algorithm has been shown to be robust in tackling high dimen-

sional problems with low regularity Refs. 40–42, 32, and has later been demon-

strated to perform very well for computing measure valued solutions.15

Algorithm 1. (Monte Carlo Algorithm)

Data: Initial μ̄ ∈ P(Lp(D,U)), mesh width Δ > 0, numerical evolution

operator SΔ, number of samples M ∈ N

For some probability space (Ω,Ω,P), let ū1, . . . , ūM : Ω → Lp(D;U) be

independent random variables with distribution μ̄;

for m = 1, . . . ,M do
Evolve the sample in time, uΔm(t) = SΔ

t (ūm)

end

Estimate statistical solution by the empirical measure

μΔ,M
t (ω) :=

1

M

M∑
m=1

δuΔ
m(ω;·,t). (4.20)

In the rest of this paper, we will refer to the above algorithm simply as

“the Monte Carlo Algorithm”. Note that for any admissible observable g ∈
H

k,p
1 ([0, T ], D;U), using (4.3) and (4.20), we obtain that〈
μΔ, Lg

〉
=

∫ T

0

∫
Lp

∫
Dk

g(x, t, u)dx dμΔ
t dt =

∫
Lp

∫ T

0

∫
Dk

g(x, t,SΔ
t ū(x))dx dt dμ̄

≈ 1

M

M∑
m=1

(∫ T

0

∫
Dk

g
(
x, t,SΔ

t ūm(x)
)
dx dt

)
=
〈
μΔ,M , Lg

〉
. (4.21)

Remark 4.6. One should note that the probability measure μΔ,M
T is indeed a

random probability measure depending on some probability space Ω from which

ū1, . . . ūM are being drawn.

Using well-known results for weak convergence of the Monte Carlo algorithm,45

we can prove that the Monte Carlo approximation of the statistical solution con-

verges as the number of samples is increased.

Theorem 4.3. Let μ̄ ∈ P(Lp(D,U)) have bounded support, let SΔ be some

numerical evolution operator, and let μΔ,M
t be defined through the Monte Carlo

Algorithm. Let μΔ
t be defined by (4.3). Then for every admissible observable

g ∈ H
k,p
1 ([0, T ], D;U), we have

E

[〈
μΔ,M
T − μΔ

T , Lg

〉2] ≤ 〈μΔ
T , L

2
g

〉
−
〈
μΔ
T , Lg

〉2
M

, (4.22)

where 〈
μΔ
T , L

2
g

〉
:=

∫
Lp

∫
D2

g(x, u(x))g(y, u(y))dx dy dμΔ
T (u).
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The proof of the above theorem follows by standard arguments for proving

convergence of Monte Carlo approximations. It is analogous to the proof of Monte

Carlo convergence to statistical solutions of scalar conservation laws, see Theorem 2

of Ref. 17. Note that the right-hand side in (4.22) is bounded on account of the

hypothesis (2.16) on admissible observables g ∈ H
k,p
1 ([0, T ], D;U).

5. Numerical Experiments

For all the numerical experiments in this section, we consider the two-dimensional

compressible Euler equations,

∂

∂t

⎛⎜⎜⎜⎜⎝
ρ

ρwx

ρwy

E

⎞⎟⎟⎟⎟⎠+
∂

∂x1

⎛⎜⎜⎜⎜⎝
ρwx

ρ (wx)
2
+ p

ρwxwy

(E + p)wx

⎞⎟⎟⎟⎟⎠+
∂

∂x2

⎛⎜⎜⎜⎜⎝
ρwy

ρwxwy

ρ (wy)
2
+ p

(E + p)wy

⎞⎟⎟⎟⎟⎠ = 0. (5.1)

The system is closed with the equation of state

E =
p

γ − 1
+
ρ((wx)2 + (wy)2)

2
.

We set γ = 1.4 for all experiments.

5.1. Kelvin–Helmholtz problem

We start with this well-known test case for the development of instabilities in fluid

flows, which was also extensively studied in Ref. 15.

The Kelvin–Helmholtz initial data is a shear flow, separating two states of vary-

ing density and pressure,

u0(ω;x1, x2) =

⎧⎨⎩uL, I1(ω;x1) ≤ x2 ≤ I2(ω;x1)

uR, otherwise
for (x1, x2) ∈ D = [0, 1]2.

(5.2)

We assign periodic boundary conditions, and the two states are given as ρL = 2,

ρR = 1, wx
L = −0.5, wx

R = 0.5, wy
L = wy

R = 0 and pL = pR = 2.5. The interfaces

between the two states are given as

Ii(x, ω) =
2(i− 1) + 1

4
+ ε

K∑
j=1

aij(ω) sin(2π(x+ bij(ω))), (5.3)

where K = 10, ε > 0, and aij and bij (for i = 1, 2, j = 1, . . . ,K) are independent

uniformly distributed random variables on the interval [0, 1]. We normalize (aij)
K
j=1

such that
∑

j a
i
j = 1.

The initial measure μ̄ is given by the distribution of the random field u0. Note

that although μ̄ is a probability measure on the infinite-dimensional space Lp(D;U),

it is only concentrated on a 40-dimensional subset of this space.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
20

.3
0:

53
9-

60
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
A

R
N

E
G

IE
 M

E
L

L
O

N
 U

N
IV

E
R

SI
T

Y
 o

n 
07

/0
9/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



March 23, 2020 11:53 WSPC/103-M3AS 2050014

Numerical approximation of statistical solutions 571

(a) 128× 128 (b) 256 × 256

(c) 512× 512 (d) 1024 × 1024

Fig. 1. The approximate density of the Kelvin–Helmholtz instability (5.2) with a fixed ω ∈ Ω
for different mesh resolutions with the same initial data. The scheme used is an HLL3 flux with
a WENO2 reconstruction algorithm. In this experiment, ε = 0.01 and T = 2.

As was already shown in Ref. 15, there is no convergence for single realizations

(samples) of the problem (5.1), (5.2) as the mesh is refined. We observe this behav-

ior from Fig. 1, where we display the approximate density at time T = 2, computed

with a second-order high-resolution finite volume scheme using an HLLC approx-

imate Riemann solver and WENO reconstruction, together with a second-order

SSP Runge–Kutta time integrator, on a sequence of successively refined meshes. As

seen from the figure, structures at finer and finer scales are generated upon mesh

refinement, impeding convergence. This lack of convergence is also verified from

Fig. 2(a), where the so-called Cauchy rates of the density are shown, i.e. quantities

of the form

Cauchyp(Ψ,Δ, T ) := ‖ΨΔ(·, T )−Ψ
Δ
2 (·, T )‖Lp(D), (5.4)

with ΨΔ being any observable of the solution computed on a mesh with mesh size Δ.

On the other hand, the theory developed in Sec. 4.1 suggests that observables

g ∈ H
k,p
1 ([0, T ], D;U) of the ensemble of solutions, for all k, should converge on mesh
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(a) A single sample, ΨΔ = ρΔ (b) Mean, ΨΔ = MΔ

(c) Variance, ΨΔ = V Δ

Fig. 2. Cauchy rates (5.4) for the approximate density in the Kelvin–Helmholtz problem (5.2)
for different mesh resolutions. The scheme used is an HLL3 flux with a WENO2 reconstruction
algorithm. In this experiment, ε = 0.01. Here T = 2.

refinement. We start by considering observables with respect of the first marginal

ν1 of the approximate statistical solution. In particular, we consider the mean and

variance of the density variable ρ, given by

MΔ(x, t) := 〈ν1,Δt,x , ρ〉, V Δ(x, t) := 〈ν1,Δt,x , ρ
2 − (MΔ(x, t))2〉. (5.5)

The above quantities are defined a.e. inD×[0, T ] and ν1,Δ is the first marginal of the

approximate statistical solution μΔ,M
t generated by the Monte Carlo Algorithm. It is

straightforward to check that the mean and the variance are admissible observables,

in the sense of Convergence theorem (Theorem 2.8).

We plot the mean and the variance of the density at time T = 2 in Fig. 3.

As seen from this figure, and in contrast to single samples, the mean and variance

clearly converge upon mesh refinement. Moreover, the variance is also concentrated

along the so-called mixing zone, which spreads out from the initial interface. The

convergence of the mean and the variance is further verified from Figs. 2(b) and

2(c), where the Cauchy rates (5.4) of the mean and varianceMΔ, V Δ are displayed

as a function of mesh resolution.
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(a) Mean at different resolutions

(b) Variance at different resolutions

Fig. 3. The approximate mean (top row) and variance (bottom row) of the density of the Kelvin–

Helmholtz instability (5.2) for mesh resolutions of (from left to right) 1282, 2562, 5122 and 10242

points. The scheme used is an HLL3 flux with a WENO2 reconstruction algorithm. In this exper-
iment, ε = 0.01. The number of samples used, M , was set equal to the resolution N , and the final
time is T = 2.

To quantify the convergence of the distribution of μΔ,M we consider the following

Cauchy rates:

Wk,Δ
p (T ) :=

(∫
Dk

Wp(ν
k,Δ
T,x , ν

k,Δ2
T,x )p dx

) 1
p

, (5.6)

withWp being the Wasserstein metric defined in (3.1) and νk,Δ is the kth correlation

marginal of the (approximate) statistical solution μΔ,M
t generated by the Monte

Carlo Algorithm. One can check that for all k ∈ N

Wk,Δ
p (t) ≤ C(k, p)Wp(μ

Δ
t , μ

Δ
2
t ) for a.e. t ∈ (0, T ) (5.7)

(see Appendix E for a proof). As the Wasserstein metric metrizes the weak topology

on probability measures, we may conclude from Theorems 2.8 and 4.1 that under the

assumptions of some form of time continuity, the right-hand side of (5.7) goes to zero

as Δ → 0. This convergence is verified in Fig. 4(a), where we plot the corresponding

Cauchy rates for the distance (5.6) with respect to the density (see Appendix F for

details about how the Wasserstein distance was computed numerically).

Next, we consider the computation of observables with respect to the second

correlation marginal ν2,Δ,M of the approximate statistical solution μΔ,M . The most

interesting observable in this regard is the approximate structure function Sp
r (μ

Δ,M )

(4.7). This is clearly an admissible observable in the sense of Theorem 2.8. For

computational purposes, it is easier to compute the time-sections of the structure

function, namely

ωp
r

(
ν2,Δ,M
t

)
:=

∫
D

−
∫
Br(x)

〈
ν2,Δ,M
t,x,y , |ξ1 − ξ2|p

〉
dy dx (5.8)
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(a) W1,Δ
1 (T ) as in (5.6) (vertical axis) plotted

against Δ−1 (horizontal axis) with ε = 0.05 and
T = 2.

(b) Cauchy rates (5.4) with ΨΔ(r, T ) =

ω2
r

(
ν2,Δ,M
T

)
with p = 1 and r = 1/32, T = 2

and ε = 0.01.

(c) W2,Δ
1 (T ) (5.6) (vertical axis) versus Δ−1

(horizontal axis) with ε = 0.05 and T = 2.

Fig. 4. Cauchy rates for the Kelvin–Helmholtz problem.

for t ∈ [0, T ]. In Fig. 5, we plot ω2
r(ν

2,Δ,M
T )1/p for a sequence of mesh sizes Δ.

Moreover, we consider three different setups in the figure. In Figs. 5(a) and 5(b),

we set ε = 0.1 in (5.3) and T = 2 and T = 4, respectively, and in Fig. 5(c) we set

ε = 0.01 and T = 2. As seen from the figures, it is clear that the approximate struc-

ture functions converge as the mesh is refined. Moreover, the structure functions

(approximately) behave as

ωp
r (ν

2,Δ,M
T )1/p ∼ C(T )rθp(T ). (5.9)

The computed values of θp(T ) are seen in the legend in Fig. 5.

The numerical convergence of structure functions is further verified in Fig. 4(b),

where we plot the Cauchy rates (5.4) with g(r, T ) = ω2
r(ν

2,Δ,M
T ) with p = 1. In this

figure, T = 2 and ε = 0.01. Clearly, the structure function (as a function of length

scale r) converges as the mesh is refined.

Finally, we compute the Wasserstein Cauchy rates W2,Δ
1 (T ) (5.6) with respect

to the density, over successively refined mesh sizes and display the result in Fig. 4(c).
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(a) p = 2, ε = 0.1, T = 2 (b) p = 2, ε = 0.1, T = 4

(c) p = 2, ε = 0.01, T = 2

Fig. 5. Structure functions (5.9) for the Kelvin–Helmholtz instability (5.2) for different times
T , exponents p and perturbation sizes ε. The scheme used is an HLL3 flux with a WENO2
reconstruction algorithm. At each mesh resolution N , M = N samples were used.

This figure clearly shows that there is convergence (with respect to mesh resolution

and number of Monte Carlo samples) in this metric.

Next, we compute the two-point correlation marginal ν2,Δ,M
t,x,y for point pairs

(x, y) ∈ D. We visualize this Young measure by empirical histograms, plotted in

Fig. 6. In this figure, we show the empirical histogram of the two-point correlation

Young measure of the density, on successively refined grids, for two different point

pairs x = (0.7, 0.7), y = (0.4, 0.2) (left column) and x = (0.7, 0.7), y = (0.7, 0.8)

(right column). The figure indicates that the empirical histograms of the two-point

correlation marginals converge on mesh refinement. Moreover, there is a clear dif-

ference in the correlation structures at different point pairs.
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5.2. Richtmeyer–Meshkov problem

Our second test case is the well-studied Richtmeyer–Meshkov problem (see Ref. 15

and references therein), which involves a very complicated solution of the compress-

ible Euler equations (5.1), modeling the complex interaction of strong shocks with

unstable interfaces. The underlying initial data is given as

p(x) =

{
20 if |x| < 0.1,

1 otherwise.
ρ(x) =

{
2 if |x| < I(x, ω),

1 otherwise
wx = wy = 0.

(5.10)

(a) N = 128

(b) N = 256

Fig. 6. Two-dimensional histograms for the correlation measure at ((0.7, 0.7), (0.4, 0.2)) (left
column) and ((0.7, 0.7), (0.4, 0.2)) (right column) for different resolutions for the density in the
Kelvin–Helmholtz problem (5.2). The scheme used is an HLL3 flux with a WENO2 reconstruction
algorithm. Here, T = 2 and ε = 0.05, and we use M = 1024 samples.
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(c) N = 512

(d) N = 1024

Fig. 6. (Continued )

We assign periodic boundary conditions on D = [0, 1]2. The interface between the

two states is given as

I(x, ω) = 0.25 + ε

K∑
j=1

aj(ω) sin(2π(x+ bj(ω))), (5.11)

where K = 10, ε > 0, and aj and bj (for j = 1, . . . ,K) are uniform random

variables on the interval [0, 1]. We normalize the aj such that
∑

j aj = 1. The initial

probability measure μ̄ is given by the law of the above random field, and lies in

P(Lp(D;U)) for every 1 ≤ p <∞.

As in the case of the Kelvin–Helmholtz problem, there is no convergence

(on mesh refinement) for single samples (realizations). This non-convergence is
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(a) A single sample, ΨΔ = ρΔ in (5.4) (b) W1,Δ
1 (T ), defined in (5.6)

(c) ΨΔ = ω2
r(ν

2,Δ,M
T ) with p = 1 and r =

1/32
(d) W2,Δ

1 (T )

Fig. 7. Cauchy rates (5.4) (vertical axis) versus Δ (horizontal axis) for the Richtmeyer–Meshkov
problem using ε = 0.06 and T = 5.

demonstrated in Fig. 7(a), where the Cauchy rates (5.4) with respect to the density

at time T = 5 are shown. We visualize the density for different mesh resolutions

in Fig. 8 (top row). As seen from this figure, the solution at this time is very com-

plicated on account of the interaction between the incoming strong shock (which

has been reflected, due to periodic boundary conditions) and the unstable interface,

which leads to the generation of turbulent small scale eddies.

On the other hand, and as predicted by the convergence theory developed in

Sec. 4.1, statistical observables such as the mean and the variance (5.5) converge on

mesh refinement, as shown in Fig. 8 (middle and bottom). Furthermore, this figure

shows how the small scale structures are averaged out in the mean, whereas the

small scale information is encoded in the variance, which is concentrated around the

mixing zone. We also verify the convergence of the Wasserstein distance W2,Δ
1 (T )

with respect to the density for successively refined meshes in Fig. 7(b).

Next, we compute the time sections of the structure function ω2
r(ν

2,Δ,M
t ) defined

in (5.8). These are shown in Fig. 9, where we have used T = 5, r = 2−10, . . . , 2−5,

and two different values of the perturbation parameter in (5.10). As seen from

the figure, the structure function clearly converges on mesh refinement. Moreover,
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(a) Single sample at different resolutions

(b) Mean at different resolutions

(c) Variance at different resolutions

Fig. 8. Approximate density for the Richtmeyer–Meshkov problem (5.10) using ε = 0.06 and at
T = 5. All results are based on a scheme with the HLLC flux and MC reconstruction, computed
at resolutions with (from left to right) 1282, 2562, 5122 and 10242 points.

it behaves as in (5.9), with exponents shown in Fig. 9. The convergence of the

structure function is further verified by plotting the Cauchy rates for the structure

function, as a function of the length scale r in Fig. 7(c).

In Fig. 7(d), we plot the Wasserstein distance W2,Δ
1 (T ) for the density and

T = 5, on a sequence of successively refined meshes. As shown in the figure, this

distance converges on mesh refinement.

Finally, in Fig. 10, we plot histograms that represent the two-point correlation

measure for the density at two different point pairs and at time T = 5. These

histograms show that the two-point correlation structure for this initial datum

is very different from the correlation structure for the Kelvin–Helmholtz problem

(Fig. 6).

5.3. Fractional Brownian motion

The initial probability measure μ̄ ∈ P(Lp(D;U)) in the previous two numerical

experiments was realized as a probability measure on high- but finite-dimensional

subsets of Lp. We now consider initial probability measures that are concentrated

on genuinely infinite-dimensional subsets of Lp(D;U).
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(a) p = 2, ε = 0.025 and T = 5 (b) p = 2, ε = 0.06 and T = 5

Fig. 9. Structure functions for the Richtmeyer–Meshkov problem (5.10) for different perturbation
sizes ε. The scheme used is an HLL3 flux with a MC reconstruction algorithm. At each mesh
resolution N , M = N samples were used.

We will assume that the initial probability measure for the two-dimensional

compressible Euler equations (5.1) corresponds to a fractional Brownian motion.

Introduced by Mandelbrot et al.39 fractional Brownian motion can be seen as a gen-

eralization of standard Brownian motion with a scaling exponent different from 1/2.

We consider the following initial data:

wx,H
0 (ω;x) := BH

1 (ω;x), ρ0 = 4

wy,H
0 (ω;x) := BH

2 (ω;x), p0 = 2.5
for ω ∈ Ω, x ∈ [0, 1]2

where BH
1 and BH

2 are two independent two-dimensional fractional Brownian

motions with Hurst index H ∈ (0, 1). Standard Brownian motion corresponds to a

Hurst index of H = 1/2.

To generate fractional Brownian motion, we use the random midpoint dis-

placement method originally introduced by Lévy36 for Brownian motion, and later

adapted for fractional Brownian motion.23,47 Consider the uniform grid 0 = x 1
2
<

· · · < xN+ 1
2
= 1 with xi+ 1

2
= iΔ and Δ = 1

N , where N = 2k + 1 is the number of

cells for some k ∈ N. We first fix the corners

wx,H,Δx
1,N (ω; 0) = wx,H,Δx

1,1 (ω; 0) = wx,H,Δx
N,N (ω; 0) = wx,H,Δx

N,1 (ω; 0) = 0, ω ∈ Ω,

recursively update the values on the edges as

wx,H,Δx
2k−l−1(2j+1),2k−li

(ω; 0) =
1

2

(
wx,H,Δx

2k−l(j+1),2k−li
(ω; 0) + wx,H,Δx

2k−lj,2k−li
(ω; 0)

)
+

√
1− 22H−2

22lH
X2l+j,2k−li(ω)
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and correspondingly for wx,H,Δx
2k−lj,2k−l−1(2i+1)

(ω; 0). For the values in the center of the

cells, we use the following expression:

wx,H,Δx
2k−l−1(2j+1),2k−l−1(2j+1)

(ω; 0)

=
1

4

(
wx,H,Δx

2k−l(j+1),2k−li
(ω; 0) + wx,H,Δx

2k−lj,2k−li
(ω; 0)wx,H,Δx

2k−l(j+1),2k−l(i+1)
(ω; 0)

+wx,H,Δx
2k−l(j+1),2k−l(i+1)

(ω; 0)
)
+

√
1− 22H−2

22lH
X2l+j,2k−li(ω)

(a) N = 128

(b) N = 256

Fig. 10. Two-dimensional histograms for the correlation measure at ((0.7, 0.7), (0.4, 0.2)) (left
column) and ((0.7, 0.7), (0.4, 0.2)) (right column) for different resolutions for the density in the
Richtmeyer–Meshkov problem (5.10). The scheme used is an HLL3 flux with an MC reconstruction
algorithm. Here, T = 5 and ε = 0.06, and we use M = 1024 samples.
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(c) N = 512

(d) N = 1024

Fig. 10. (Continued )

for l = 0, . . . , k and for i, j = 0, . . . , 2l. Here (Xk,n)(k,n)∈N2 is a collection of normally

distributed random variables with mean 0 and variance 1. That is, we bisect every

cell and set the middle value to the average of the neighboring values plus some

Gaussian random variable. The same procedure is repeated for wy,H,Δ. See Fig. 11

for a sample of the initial velocity field with standard Brownian motion, i.e. with

H = 0.5.

The initial probability measure is given by the law of the above random field

and the dimension of its support increases with decreasing mesh size. Hence, in

the limit Δ → 0 we are approximating a probability measure supported on an

infinite-dimensional subspace of L2(D;U)

We compute the statistical solutions with the Monte Carlo Algorithm with the

fractional Brownian motion initial data for two different Hurst indices, H = 0.1
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(a) wx,0.5
0 (b) wy,0.5

0

Fig. 11. Two samples of velocity fields with the Brownian motion initial data.

and H = 0.5. Statistical observables corresponding to the one-point correlation

marginal, such as the mean and variance, converge on mesh refinement, as shown

in Fig. 12. We also plot the mean and variance of the density at the highest mesh

resolution of 10242 grid points and final time T = 0.25, for the two different Hurst

(a) H = 0.1, mean (b) H = 0.1, variance

(c) H = 0.5, mean (d) H = 0.5, variance

Fig. 12. Cauchy rates (5.4) for the mean and the variance of the density ρ for the fractional
Brownian motion initial data at time T = 0.25. The scheme used is an HLL3 flux with a WENO2
reconstruction algorithm.
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(a) H = 0.1, mean (b) H = 0.1, variance

(c) H = 0.5, mean (d) H = 0.5, variance

Fig. 13. The mean and the variance (of the density) at the highest resolution of 10242 mesh points
and 1024 Monte Carlo samples, for fractional Brownian motion initial data with two different Hurst
indices and at time T = 0.25. The scheme used is an HLL3 flux with a WENO2 reconstruction
algorithm.

indices, in Fig. 13. As seen from the figure, there is a clear difference in the spatial

structure of the mean and the variance as the Hurst index is changed. Moreover,

the spatial structure of these statistical quantities is much more complicated than

in the case of the Kelvin–Helmholtz and Richtmeyer–Meshkov initial data, with

no clear large scale structures such as shocks. On the other hand, the statistical

quantities have more small-scale structures. This is more pronounced in theH = 0.1

case than for standard Brownian motion.

For r = 2−10, . . . , 2−5 we plot the (time sections of) the structure function

ω2
r(ν

2,Δ,M
t ) at time T = 0.25 in Fig. 14. The structure functions clearly converge on

mesh refinement. This is also verified for both Hurst indices in Figs. 15(a) and 15(b),

where we plot the Cauchy rates (5.4) for the structure function, with respect to the

length scale r. Moreover, the structure functions scale as in (5.9).

In Figs. 15(c) and 15(d), we plot the Cauchy rates of the Wasserstein dis-

tance W2,Δ
1 (0.25) with respect to grid resolution, for both Hurst indices. We verify

from this figure that these distances also converge on mesh refinement and sample

augmentation.
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(a) H = 0.1 (b) H = 0.5

Fig. 14. Structure function (5.8) for p = 2 for different grid resolutions at time T = 0.25 for two
different Hurst indices, corresponding to the fractional Brownian motion initial data.

(a) H = 0.1, ω2
r (b) H = 0.5, ω2

r

(c) H = 0.1, W2,Δ
1 (d) H = 0.5, W2,Δ

1

Fig. 15. Convergence for different two-point statistical observables for the fractional Brownian
motion initial data at time T = 0.25. Top row: (Time sections of) structure function (5.8) with
p = 2. Bottom row: Wasserstein distance (5.6) with p = 1, k = 2.
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(a) H = 0.1 (b) H = 0.5

(c) H = 0.1 (d) H = 0.5

Fig. 16. Histograms representing the two-point correlation marginal for the density at time T =
0.25 and two different Hurst indices, at two different point pairs. Top row: At points (0.4, 0.2)

and (0.7, 0.8). Bottom row: At points (0.7, 0.7) and (0.7, 0.8). All figures are generated with mesh
resolution of 10242 points and with 1024 samples.

Finally, in Fig. 16, we plot histograms representing the two-point correlation

marginals of the density, computed on the finest grid resolution of 10242 grid

points, for two different point pairs. The figure shows that the two-point correlation

structure is again very different for different Hurst indices, and from the correlation

structures for the previous numerical experiments.

5.4. Stability of the computed statistical solution

A priori, the computed statistical solution depends on the specifics of the underlying

initial probability measure μ̄ as well as on the details of the numerical scheme
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(4.1), used within the Monte Carlo Algorithm. We investigate the stability of the

computed statistical solution with respect to these parameters in the specific case

of the Kelvin–Helmholtz problem (5.2).

In Ref. 15, the authors had already demonstrated the stability of numerically

computed measure-valued solutions with respect to variations of the underlying

numerical method, or to the size and type of perturbations to the Kelvin–Helmholtz

initial data. As the computed measure-valued solution in Ref. 15 is identical to

the first correlation marginal of our computed statistical solution, we can deduce

that the observables with respect to the first correlation marginal are also stable.

Therefore, we investigate the stability of observables with respect to the second

correlation marginal ν2,Δ,M . The results are summarized below.

• Stability with respect to amplitude of perturbations. We vary the size of the per-

turbation parameter ε in (5.3) over two orders of magnitude, from ε = 0.001 to

ε = 0.1. The computed (time section of) structure function (5.8) for p = 2 and

at time T = 2, on the finest resolution of 10242 points and 1024 Monte Carlo

samples, is shown in Fig. 17(a) (left). As seen from the figure, the computed

structure functions are very close to each other and scale as (5.9) with θ ≈ 0.61.

This indicates stability of the computed structure function with respect to the

amplitude of perturbations in the initial data. This stability is further verified in

Fig. 17(a) (right) where we plot the Wasserstein distance
∥∥W1

(
ν2,εT,x, ν

2, ε2
T,x

)∥∥
L1(D2)

with respect to the density, at time T = 2 for different values of the pertur-

bation parameter. The plot shows (linear) convergence with the decay of the

perturbation, indicating stability of the computed statistical solution vis-à-vis

perturbation amplitude.

• Stability with respect to type of perturbations. In all the numerical experiments

for the Kelvin–Helmholtz initial data, we have assumed that the random vari-

ables aj, bj in (5.3) are chosen from a uniform distribution. Here, we choose these

random variables from a standard normal distribution. This amounts to varying

the corresponding initial probability measure for (5.2). The consequent change

in the structure function (5.8) for two different amplitudes of the perturbation

parameter ε in (5.3) are shown in Fig. 17(b) (left). The figure clearly shows that

the computed structure functions are very close to the ones computed with the

uniform distribution. This stability with respect to the type of perturbation is

further verified in Fig. 17(b) (right) where we plot the
∥∥W1

(
ν2,εT,x, ν̂

2,ε
T,x

)∥∥
L1(D2)

at time T = 2. Here, ν, ν̂ refer to the correlation measures, computed with the

uniform and standard normal random variables, respectively. The plot shows con-

vergence with the decay of the perturbation, indicating stability of the computed

statistical solution, vis-á-vis perturbation type.

• Stability with respect to choice of numerical scheme. In order to investigate

the stability of the computed statistical solutions to the choice of the under-

lying numerical scheme in (4.1), we vary the reconstruction procedure, i.e.

we use a high-resolution finite volume scheme based on the HLLC flux, but
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(a) Different amplitudes of perturbation

(b) Different distributions of parameters

(c) Different numerical schemes

Fig. 17. Stability of the statistical solution with respect to variations of different parameters in
the Kelvin–Helmholtz problem (5.2). Left column: The structure function (5.8) for p = 2. Right
column: Different Wasserstein distances. All computations are at time T = 2, computed on a fine
grid of 10242 points and with 1024 Monte Carlo samples.
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with either MC or WENO2 reconstructions (see e.g. Ref. 35). The choice of

the reconstruction leads to change in the subgrid scale numerical viscosity of

the overall approximation. We plot the structure function (5.8) in Fig. 17(c)

(left) and observe a very minor change in the structure function. This issue

is investigated further in Fig. 17(c) (right) where the Wasserstein distances∥∥W1

(
ν2,ΔWENO2,T,x, ν

2,Δ
MC,T,x

)∥∥
L1(D2)

at time T = 2 are plotted. Here ν2,ΔWENO2 is

the second correlation marginal, computed with the WENO2 reconstruction pro-

cedure, and ν2,ΔMC is the second correlation marginal, computed with the MC

reconstruction procedure. We observe convergence of this distance with respect

to resolution. This allows us to conclude that the statistical solutions are stable

with respect to the choice of the underlying numerical method, at least for this

Kelvin–Helmholtz problem.

5.5. Statistical steady state and regularity

In addition to the four numerical experiments reported in the last section, i.e.

Kelvin–Helmholtz, Richtmeyer–Meshkov, and fractional Brownian motion with two

different Hurst indices of H = 0.1 and H = 0.5, we have performed two further

numerical experiments. Both of them consider the two-dimensional compressible

Euler equations with the following initial data:

• Fractional Brownian motion initial data with Hurst index H = 0.75.

• Shock–vortex interaction initial data, see Sec. 6.3.2 of Ref. 18 and references

therein.

The Monte Carlo Algorithm is used to compute the approximate statistical solution

μΔ,M
t for these additional sets of initial data.

We focus on the (time-sections of) the structure function (5.8) and find that in

all six numerical experiments, the structure function behaved as (5.9). The exponent

θp(t) as a function of time for p = 1, 2, 3 and for each numerical experiment is shown

in Fig. 18. We observe the following from this figure.

• First, the exponent θp(t) reaches a steady state rather quickly, when compared

to the dynamic behavior of the solution. In other words, Fig. 18 seems to suggest

that statistical equilibrium is reached significantly faster than the (deterministic)

steady state for individual realizations. Hence, the system evolves dynamically for

each sample, while the whole ensemble has already reached statistical equilibrium.

The time scale at which this statistical equilibrium is reached depends on the

specifics of the initial data.

• For all the experiments except the shock–vortex interaction, there is a very inter-

esting behavior of the structure function (5.8) with respect to time. In particular,

the exponent θp(t) for p = 2, 3 clearly increases with time, indicating that the

nonlinear evolution statistically regularizes the solution in some manner. The
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(a) p = 1 (b) p = 2

(c) p = 3

Fig. 18. The evolution of the approximate scaling exponents of the structure functions as a
function of time.

Fig. 19. BV norm as a function of resolution for different initial data.

exception is for the shock–vortex interaction where this exponent remains con-

stant with time. This can be explained by the fact that the shock–vortex inter-

action results in a solution whose total variation (TV) norm is bounded. Hence,

one can readily verify that θp(t) = 1
p , which is approximately realized in the
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computations. On the other hand, as shown in Fig. 19, the (average) BV-norm

blows up for all the remaining test cases. Hence, in these problems, there is a

complex interaction of structures at different length scales that leads to a subtle

statistical regularity.

• Last, but not least, we observe that in all the numerical experiments we have

considered, the structure functions scale as (5.9). Hence, the approximate scaling

assumption (4.6) in Theorem 4.1 is always observed to be satisfied.

5.6. Reproducing the numerical experiments

All experiments were carried out using the open source Alsvinn simulator.37 Please

consult the two GitHub repositories

https://github.com/kjetil-lye/systemspaper experiments,

https://github.com/kjetil-lye/statistical systems paper experiments

for a full description on how the experiments were carried out, along with the raw

data and post processing scripts.

6. Discussion

We consider hyperbolic systems of conservation laws (1.1). Although both scalar

conservation laws and one-dimensional systems are well posed within the standard

solution framework of entropy solutions, it is now clearly established that entropy

solutions for multi-dimensional systems are not unique, nor are they amenable

to numerical approximation. On the other hand, numerical evidence presented in

Refs. 15, 19 and references therein suggests that a statistical notion of solutions

might be more appropriate for (1.1), even if the initial data and other underlying

parameters are deterministic.

Entropy measure-valued solutions13,15 present one possible solution frame-

work. Although global existence and numerical approximation results for entropy

measure-valued solutions are available, it is well known that measure-valued solu-

tions are non-unique, even for scalar conservation laws. As argued in Sec. 9 of

Ref. 19, this is largely on account of a lack of information about multi-point spatial

correlations.

Inspired by the need to incorporate correlations, the authors of Ref. 16 pro-

posed the framework of statistical solutions for hyperbolic systems of conservation

laws. Statistical solutions are time-parameterized probability measures on the space

of p-integrable functions. They were shown in Ref. 16 to be equivalent to adding

information about all possible multi-point correlations to the measure-valued solu-

tion. The time-evolution of these measures is prescribed by a system of nonlinear

tensorized moment-transport equations (2.30). Under an additional entropy con-

dition, the well posedness of statistical solutions for scalar conservation laws was

shown in Ref. 16 and the numerical approximation of statistical solutions for scalar

conservation laws was considered in Ref. 17.
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Our main aim in this paper was to propose a numerical algorithm to approximate

statistical solutions of multi-dimensional hyperbolic systems of conservation laws.

To this end, we combined a high-resolution finite volume method (4.1) with a Monte

Carlo sampling procedure to obtain our Monte Carlo Algorithm which computes

statistical solutions.

Our second aim was to prove a weak–strong uniqueness result, in the sense of

e.g. Ref. 48. We proposed an entropy condition and a notion of dissipative statistical

solutions (Definition 3.2) and proved a weak–strong uniqueness result for these dis-

sipative statistical solutions. This provides us with a conditional uniqueness result

for statistical solutions, i.e. if they exist, then strong statistical solutions (Defini-

tion 3.3) are unique. In particular, we obtain short time existence and uniqueness

results for dissipative statistical solutions.

The task of proving convergence of the numerical approximations μΔ,M
t , gen-

erated by the Monte Carlo Algorithm, was rather intricate. First, we had to com-

pletely characterize an appropriate topology on the space of time-parameterized

probability measures on p-integrable functions. This topology is based on the topol-

ogy induced by the underlying correlation measures. We showed that this induced

topology is equivalent to the weak topology on the space of probability measures

on Lp, for any fixed time, but it also induces appropriate extensions when time

is varied. The resulting compactness theorem (Theorem 2.8) delineates the class

of admissible observables that converge in this topology. Essentially, this theorem

boils down to the convergence of time averages of (multi-point) statistical quanti-

ties of interest such as the mean, variance, multi-point correlation functions and

structure functions (4.7). We believe that this topology on time-parameterized

probability measures on Lp, and novel sufficient conditions for ensuring conver-

gence in it might have independent applications in probability theory and stochastic

analysis.

Next, we proved in Theorem 4.1 that, under certain assumptions on the under-

lying finite volume schemes, the approximate statistical solutions converge upon

mesh refinement in the aforementioned topology to a time-parameterized probabil-

ity measure on Lp. A Lax–Wendroff theorem was proved, showing that the limit

measure is indeed a statistical solution. Finally, a standard Monte Carlo conver-

gence argument was used to guarantee convergence, under sample augmentation,

of the approximations generated by the Monte Carlo Algorithm.

The assumptions in Theorem 4.1 include Lp stability and the weak BV bound

(4.5), which are satisfied by many existing high-resolution entropy stable finite

volume schemes, such as the TeCNO schemes of Ref. 18. On the other hand, we also

required a subtle (approximate) scaling assumption (4.6) that is an analogue of the

well-known scaling assumptions in Kolmogorov’s theory for homogeneous, isotropic

turbulence Ref. 24. Although this assumption was verified in all the numerical

experiments, we were unable to prove it here. Hence, we have provided a conditional

existence result for statistical solutions of multi-dimensional systems of conservation

laws in this paper.
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We present extensive numerical experiments for the two-dimensional compress-

ible Euler equations to illustrate our Monte Carlo Algorithm. The results validate

the convergence analysis and demonstrate convergence, on mesh refinement and

sample augmentation, for statistical quantities of interest such as the mean, vari-

ance, structure functions, one-point probability density functions and two-point

joint probability density functions. Moreover, we observe convergence in appropriate

Wasserstein distances (5.6) for the multi-point correlation measures. Summarizing

the results of the numerical experiments, we conclude that one observes conver-

gence of all interesting statistical observables in our framework. This should be

contrasted to the state-of-the-art, where deterministic quantities do not converge

on mesh refinement.15 Thus, we provide rigorous justification of the computability

of statistical quantities of interest in the context of multi-dimensional systems of

conservation laws.

Furthermore, we discover from the numerical experiments that:

• The computed statistical solutions are remarkably stable with respect to different

variations. In particular, we varied the amplitude of initial perturbations, the

type of initial perturbations leading to different probability measures on Lp, and

also the underlying numerical method. In all these cases, we observed that the

computed statistical solutions were stable with respect to these perturbations.

This observed stability augurs very well for identifying further constraints or

admissibility criteria in order to obtain uniqueness of statistical solutions.

• The correlation structure of the statistical solutions seems to reach an equilib-

rium at significantly shorter time scales than the actual flow. This behavior is

clearly seen in the variation of structure functions over time (Fig. 18). Thus,

statistical stationarity might be reached much faster than the actual evolution

would suggest.

• There seems to be a subtle gain in regularity, as measured by the decay exponent

of the structure function, for the statistical solutions (Fig. 18). Qualitatively, it

seems that mixing of the underlying structures leads to a gain in regularity. This

observed regularity needs to be studied further.

The results in this paper can be extended in different directions. On the theoretical

side, a key question is whether the scaling assumption (4.6) can be proved for some

numerical approximations or relaxed in an appropriate manner. This would pave

the way for a unconditional global existence result for statistical solutions.

As formulated, (dissipative) statistical solutions are not necessarily unique. If we

start with a deterministic initial data, i.e. setting μ̄ = δū, then we can apply the con-

struction of Refs. 11 and 9 to obtain infinitely many entropy solutions for the same

initial data, by the fact that each deterministic solution defines a statistical solution.

Thus, infinitely many statistical solutions are possible for the same (deterministic)

initial data. On the other hand, numerical experiments strongly suggest that the

computed statistical solutions are stable. Thus, we need to find further admissibility
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criteria to single out a unique statistical solution. Moreover, the observed gain in

regularity might provide additional constraints to obtain uniqueness.

On the computational side, the Monte Carlo Algorithm can be very expensive,

even prohibitively expensive in three space dimensions. Hence, it is imperative to

consider alternatives to accelerate it. Alternatives such as the MLMC method and

quasi-Monte Carlo method are considered in a forthcoming publication. Another

alternative would be to use deep learning, such as in Ref. 38, to accelerate the

Monte Carlo algorithm.

Appendix A. Proof of Theorem 2.2

In order to characterize weak convergence of probability measures on Lp(D;U), we

will use a construction from Sec. 5.1, pp. 106–107 of Ref. 2 which we summarize

here. Assume that X is Polish (i.e. a complete and separable metric space) and let

X0 ⊂ X be a dense, countable subspace. For fixed q1, q2, q3 ∈ Q with q2, q3 ∈ (0, 1)

and every v ∈ X0, define H : X → R by

H(u) := min
(
q1 + q2d(u, v), q3

)
. (A.1)

The collection Λ̂0 of all such “hat functions” H is clearly countable. Let

Λ0 :=
{
qmin(H1, . . . , Hm) : q ∈ Q, H1, . . . , Hm ∈ Λ̂0 for any m ∈ N

}
. (A.2)

Then Λ0 is also countable, and it can be shown that weak convergence of a sequence

(μn)n is equivalent to 〈
μn, F

〉
→
〈
μ, F

〉
, ∀ F ∈ Λ0 (A.3)

(see the aforementioned reference).

We prove first Lemma 2.1.

Proof of Lemma 2.1. If g ∈ Hk,p(D;U) and u ∈ Lp(D;U) then

|Lg(u)| ≤
∫
Dk

|g(x, u(x1), . . . , u(xk))| dx

≤
∑

α∈{0,1}k

∫
Dk

ϕ|α̂|(xα̂)|u(x1)|α1p · · · |u(xk)|αkp dx

=
∑

α∈{0,1}k

‖ϕ|α̂|‖L1(D|α̂|)‖u‖
|α|p
Lp(D)

=

k∑
i=0

(
k

i

)
‖ϕi‖L1(Di)‖u‖p(k−i)

Lp(D) <∞.

If g ∈ H
k,p
1 and u, v ∈ Lp(D;U) then (recall ûj(x) := (u(x1), . . . , u(xj−1),

u(xj+1), . . . , u(xk)))

|Lg(u)− Lg(v)| ≤ C

k∑
i=1

∫
Dk

|u(xi)− v(xi)|max
(
|u(xi)|, |v(xi)|

)p−1
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×
∏
j �=i

h(x̂j , ûj(x)
)
dx

≤ Ck‖u− v‖Lp

∥∥max(|u|, |v|)
∥∥(p−1)/p

Lp

(
‖ϕ1‖L1 + ‖u‖pLp

)k−1
,

whence Lg is continuous (and in fact locally Lipschitz).

Lemma A.1. Let F ∈
(
Cp
)k

for some k ∈ N, i.e. F (u) = (F1(u), . . . , Fk(u))

for F1, . . . , Fk lying either in Cp or in Cp
1 . Let P : Rk → R be a polynomial in k

variables. Then P ◦ F lies in Cp or in Cp
1 , respectively.

Proof. Cp is clearly closed under scalar multiplication, as αLg = Lαg for any

α ∈ R. It is therefore enough to show that Cp (Cp
1 , respectively) is closed under

addition and multiplication. Let gi : D
ki × Uki → R for i = 1, 2 be Carathéodory

functions satisfying (2.3), (2.4). Then

Lg1(u)Lg2(u) =

∫
Dk1

g1(x, u(x1), . . . , u(xk1))dx

∫
Dk2

g2(x, u(x1), . . . , u(xk2))dx

=

∫
Dk

g(x, u(x1), . . . , u(xk))dx = Lg(u),

where k = k1 + k2 and

g(x, ξ) = g1(x1, . . . , xk1 , ξ1, . . . , ξk1)g2(xk1+1, . . . , xk, ξk1+1, . . . , ξk).

The function g is readily seen to satisfy (2.3), and using (2.3) it can be seen that

g also satisfies (2.4) whenever g1, g2 do so. This shows that Cp (Cp
1 , respectively)

is closed under multiplication. To show that Lg1 + Lg2 ∈ Cp (or Cp
1 , respectively),

assume that, say, k1 ≤ k2. If k1 = k2 then clearly Lg1 + Lg2 ∈ Cp (or Cp
1 , respec-

tively), so assume that k1 < k2. Let k0 = k2−k1 and let ϕ ∈ L1(Dk0 ) satisfy ϕ ≥ 0

and
∫
Dk0

ϕ(x)dx = 1. Define g : Dk2 × Uk2 → R by

g(x, ξ) = g1(x1, . . . , xk1 , ξ1, . . . , ξk1)ϕ(xk1+1, . . . , xk2) + g2(x, ξ).

It is now straightforward to verify that Lg1 + Lg2 = Lg and that g satisfies (2.3),

(2.4).

Proof of Theorem 2.2. We may assume that B is closed. By Lemma 2.1, every

Lg ∈ Cp
1 is continuous and bounded on B. For any Lg ∈ Cp

1 there is, by the Tietze

extension theorem Sec. 4.2 of Ref. 22, an F ∈ Cb(L
p(D;U)) satisfying F = Lg on

B, so we see that if μn ⇀ μ then
〈
μn, Lg

〉
=
〈
μn, F

〉
→
〈
μ, F

〉
=
〈
μ, Lg

〉
.

Assume conversely that
〈
μn, F

〉
→
〈
μ, F

〉
for all F ∈ Cp

1 . We claim that the

“hat functions” H : Lp(D;U) → R defined in (A.1) can be approximated uniformly

on B by functions in Cp
1 . Let v ∈ Lp(D;U) and q1, q2, q3 ∈ Q be as in (A.1), and

let R := supu∈B ‖u − v‖pLp < ∞. Let ψ(s) = min
(
q1 + q2|s|1/p, q3

)
, which is a

continuous, bounded function on R. Let ε > 0 and let P : R → R be a polynomial

such that ‖ψ − P‖C([−R,R]) < ε. The function u 
→ ‖u − v‖pLp clearly lies in Cp
1 ,
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so Lemma A.1 implies that also u 
→ P
(
‖u − v‖pLp

)
can be written as a function

Lg ∈ Cp
1 . For any u ∈ B we then have

|H(u)− Lg(u)| =
∣∣ψ(‖u− v‖pLp

)
− P

(
‖u− v‖pLp

)∣∣ < ε.

This proves the claim.

Next, let F ∈ Λ0, where Λ0 is given by (A.2). Let ε > 0, let g1, . . . , gm be such

that ‖Hi − Lgi‖Cb(B) < ε for i = 1, . . . ,m, and let P : Rm → R be a polynomial

such that

sup
r∈[−ε,1+ε]m

∣∣min(r1, . . . , rm)− P (r)
∣∣ < ε.

By Lemma A.1 we can write P ◦
(
Lg1 , . . . , Lgm

)
= Lg for some Lg ∈ Cp

1 . We conclude

that

sup
u∈B

∣∣F (u)− Lg(u)
∣∣ = sup

u∈B

∣∣min(H1(u), . . . , Hm(u))− P (Lg1(u), . . . , Lgm(u))
∣∣

≤ sup
u∈B

∣∣min(H1(u), . . . , Hm(u))−min(Lg1(u), . . . , Lgm(u))
∣∣

+ sup
u∈B

∣∣min(Lg1(u), . . . , Lgm(u))− P (Lg1(u), . . . , Lgm(u))
∣∣

≤ 2ε,

by the 1-Lipschitz continuity of the min-function and the approximation proper-

ties of g1, . . . , gm and P . We can conclude that (A.3) holds, and hence μn ⇀ μ

weakly.

Appendix B. The Compactness Theorem

Throughout this appendix we will use the cutoff functions

θ(s) :=

⎧⎪⎪⎨⎪⎪⎩
1, |s| ≤ 1,

2− |s|, 1 < |s| < 2,

0, |s| ≥ 2,

θR(v) := θ(|v|/R), ζR(v) := vθR(v)

(for some R ≥ 1), defined for s ∈ R and v ∈ U , where U ⊂ RN as before. Note that

ζR(v) = v for |v| < R and ζR(v) = 0 for |v| > 2R, and that ‖ζR‖Lip ≤ 2.

For a function u ∈ Lp(D) we define the modulus of continuity

ωp
r (u) :=

∫
D

−
∫
Br(0)

|u(x+ z)− u(x)|p dzdx.

Lemma B.1. If u ∈ Lq(D,U) for some q ∈ [1,∞) then∥∥ζR ◦ u− u
∥∥
Lq(D)

≤ 3ωq
r(u)

1/q

whenever R ≥ 1
|Br |1/q ‖u‖Lq(D).
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Proof. Denote ur(x) := −
∫
Br(0)

u(x+z)dz. Then |ur(x)| ≤ 1
|Br |1/q ‖u‖Lq(D) for every

x ∈ D, so that if R ≥ 1
|Br|1/q ‖u‖Lq(D) then ur = ζR ◦ ur. It follows that∥∥ζR ◦ u− u
∥∥
Lq(D)

≤
∥∥ζR ◦ u− ζR ◦ ur

∥∥
Lq(D)

+ ‖ur − u‖Lq(D)

≤
(
‖ζR‖Lip + 1

)
‖ur − u‖Lq(D)

≤ 3ωq
r(u)

1/q,

where we have used the fact that ‖ur − u‖Lq ≤ ωq
r(u)

1/q.

Proof of Theorem 2.5. For every k ∈ N, the sequence (νkn)n∈N ⊂ Hk∗
0 (D;U)

is bounded with norm ‖νkn‖Hk∗ ≡ 1 < ∞, and so has a weak*-convergent subse-

quence. Thus, we can extract a diagonal subsequence (nj)j∈N such that νknj

∗
⇀ νk ∈

Hk∗
0 (D;U) for every k ∈ N. For the sake of notational simplicity we denote n = nj

for the remainder of this proof.

We start by showing (iv). Let κ and ϕ be nonnegative functions, as prescribed.

We may assume that lim infn→∞
〈
νkn, g

〉
Hk < ∞, for otherwise there is nothing to

prove. For R > 0, let κR ∈ Cc(U
k) and ϕR ∈ L1(Dk) be the functions κR(ξ) =

κ(ξ)θR(ξ) and ϕR(x) = ϕ(x)θR(x). Then κR → κ and ϕR → ϕ pointwise almost

everywhere as R → ∞. If gR(x, ξ) := ϕR(x)κR(ξ) then clearly gR → g as R → ∞
almost everywhere, and gR ∈ Hk

0(D;U) for every R. We then find that〈
νk, g

〉
Hk = lim

R→∞
〈
νk, gR

〉
Hk (Dominated Convergence Theorem)

= lim
R→∞

lim inf
n→∞

〈
νkn, gR

〉
Hk (since νkn

∗
⇀ νk)

≤ lim
R→∞

lim inf
n→∞

〈
νkn, g

〉
Hk (since gR ≤ g for all R)

= lim inf
n→∞

〈
νkn, g

〉
Hk ,

which is (2.13).

Since νkn;x ≥ 0 for all k, n and a.e. x ∈ Dk, we have νkx ≥ 0 for all k and a.e.

x ∈ Dk. To see that νkx(U
k) = 1 for a.e. x ∈ Dk, let A1, . . . , Ak ⊂ D be bounded

Borel sets of positive Lebesgue measure and define A = A1 × · · · ×Ak. Then since

νkn;x are probability measures and converge weak* as we have just shown,

1 ≥ −
∫
A

〈
νkn;x, θR

〉
dx→ −

∫
A

〈
νkx , θR

〉
dx as n→ ∞.

Conversely,

−
∫
A

1−
〈
νkx , θR

〉
dx = lim

n→∞−
∫
A

1−
〈
νkn;x, θR

〉
dx = lim

n→∞−
∫
A

〈
νkn;x, 1− θR

〉
dx

≤ lim sup
n→∞

1

Rp
−
∫
A

〈
νkn;x, |ξ|p

〉
dx

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
20

.3
0:

53
9-

60
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
A

R
N

E
G

IE
 M

E
L

L
O

N
 U

N
IV

E
R

SI
T

Y
 o

n 
07

/0
9/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



March 23, 2020 11:53 WSPC/103-M3AS 2050014

598 U. S. Fjordholm et al.

≤ lim sup
n→∞

1

Rp

k∑
i=1

−
∫
A

〈
νkn;x, |ξi|p

〉
dx

≤ 1

Rp

k∑
i=1

cp

|Ai|
,

where we have first used Chebyshev’s inequality and then the uniform Lp bound

(2.11). Passing to R → ∞ in the two estimates above shows that

−
∫
A

νkx(U
k)dx = 1. (B.1)

Since A1, . . . , Ak were arbitrary, it follows that νkx(U
k) = 1 for a.e. x ∈ Dk.

The limit ν clearly satisfies the symmetry condition. For consistency, we need

to show that for any f ∈ C0(U
k−1) and ϕ ∈ Cc(D

k), we have∫
Dk

ϕ(x)
〈
νkx , f(ξ1, . . . , ξk−1)

〉
dx =

∫
Dk

ϕ(x)
〈
νk−1
x1,...,xk−1

, f(ξ1, . . . , ξk−1)
〉
dx.

(B.2)

Define f̄R ∈ C0(U
k) by f̄R(ξ1, . . . , ξk) = f(ξ1, . . . , ξk−1)θR(ξk). We estimate the

difference between the left- and right-hand sides of (B.2) by E1 + E2 + E3 + E4,

where

E1 =

∣∣∣∣∫
Dk

ϕ(x)
〈
νkx , f(ξ1, . . . , ξk−1)− f̄R(ξ)

〉
dx

∣∣∣∣
E2 =

∣∣∣∣∫
Dk

ϕ(x)
(〈
νkx , f̄R

〉
−
〈
νkn;x, f̄R

〉)
dx

∣∣∣∣
E3 =

∣∣∣∣∫
Dk

ϕ(x)
(〈
νkn;x, f̄R

〉
−
〈
νk−1
n;x̂k

, f
〉)
dx

∣∣∣∣
E4 =

∣∣∣∣∫
Dk

ϕ(x)
(〈
νk−1
n;x̂k

, f
〉
−
〈
νk−1
x̂k

, f
〉)
dx

∣∣∣∣ ,
where x̂k = (x1, . . . , xk−1). The fact that E1 → 0 as R → ∞ follows from the

Dominated Convergence Theorem. For every R > 0 we have E2, E4 → 0 as n→ ∞
by the weak* convergence of νkn and νk−1

n , respectively. For E3 we can write

E3 =

∣∣∣∣∫
Dk

ϕ(x)
〈
νkn;x, f

(
ξ1, . . . , ξk−1

)(
θR(ξk)− 1

)〉
dx

∣∣∣∣
≤ ‖f‖C0(Uk−1)‖ϕ‖C0(Dk)

∫
supp(ϕ)

〈
ν1n;xk

, 1− θR(ξ)
〉
dx

≤ ‖f‖C0(Uk−1)‖ϕ‖C0(Dk)

C

Rp
→ 0

as R → ∞ (as in the proof of (B.1)). Thus, for a given ε > 0 we can first select R

such that E1, E3 < ε, and then select n such that E2, E4 < ε. This proves (B.2).
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The Lp bound (ii) follows from (2.13) with k = 1, ϕ ≡ 1 and κ(ξ) = |ξ|p,
since

〈
ν1, |ξ|p

〉
H1 ≤ lim infn

〈
ν1n, |ξ|p

〉
H1 ≤ cp, by (2.11). To prove the diagonal

continuity property (iii) of ν we use (2.13) with k = 2, ϕ(x, y) =
1Br(x)(y)

|Br(x)| and

κ(ξ1, ξ2) = |ξ1 − ξ2|p, and note that ωp
r (ν

2) =
〈
ν2, g

〉
H2 . The diagonal continuity of

ν2 then follows from ωp
r (ν

2) ≤ lim infn→∞ ωp
r (ν

2
n) → 0 as r → 0, by (2.12).

We prove (v) for k = 1 and give a sketch of the general case. Let g ∈ H
1,p
1 (D;U),

that is, g is a Carathéodory function such that |g(x, ξ)| ≤ ϕ1(x) + ϕ0|ξ|p for

some ϕ0 > 0 and nonnegative ϕ1 ∈ L1(D), as well as |g(x, ξ) − g(y, ζ)| ≤
Cmax(|ξ|, |ζ|)p−1|ξ − ζ| for some C > 0. Define

un(x) :=
〈
ν1n;x, g(x, ξ)

〉
, uRn (x) :=

〈
ν1n;x, θR(|ξ|p)g(x, ξ)

〉
,

u(x) :=
〈
ν1x, g(x, ξ)

〉
, uR(x) :=

〈
ν1x, θR(|ξ|p)g(x, ξ)

〉
.

The sequence {un}n∈N satisfies∫
D

−
∫
Br(0)

|un(x+ z)− un(x)| dz dx

≤
∫
D

−
∫
Br(0)

∣∣〈ν2n,x,x+z, g(x+ z, ξ2)− g(x, ξ1)
〉∣∣dz dx

≤ C

∫
D

−
∫
Br(0)

〈
ν2n,x,x+z,max(|ξ1|, |ξ2|)p−1|ξ2 − ξ1|

〉
dz dx

≤ C

(∫
D

−
∫
Br(0)

〈
ν2n,x,x+z,max(|ξ1|, |ξ2|)p

〉
dz dx

)(p−1)/p

×
(∫

D

−
∫
Br(0)

〈
ν2n,x,x+z, |ξ2 − ξ1|p

〉
dz dx

)1/p

≤ 2Ccp−1ωp
r

(
ν2n
)1/p

, (B.3)

so together with the compactness of D and the uniform bound ‖un‖L1(D) ≤
‖ϕ1‖L1(D)+ϕ0c

p we can apply Kolmogorov’s Compactness theorem (Theorem A.8

of Ref. 29)44 to conclude that {un}n∈N is precompact in L1(D). Hence, there exists

a subsequence {unl
}l∈N and some ū ∈ L1(D) such that unl

→ ū as l → ∞ in L1(D).

From the weak* convergence of ν1n we know that uRn ⇀ uR as n → ∞ weakly in

L1(D) for every R > 0. Lebesgue’s dominated convergence theorem implies that

uR → u as R → ∞ in L1(D).

We claim that uRn → un as R → ∞ in L1(D), uniformly in n. Indeed, choosing

R > 0 such that R ≥ 1
|Br|1/pM (where M is the constant in (2.14)), we get∫

D

|un(x)− uRn (x)| dx =

∫
D

∣∣〈ν1n;x, (1− θR(|ξ|p))g(x, ξ)
〉∣∣dx

≤
∫
D

〈
ν1n;x, (1− θR(|ξ|p))ϕ1(x)

〉
dx
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+ ϕ0

∫
D

〈
ν1n;x, (1− θR(|ξ|p))|ξ|p

〉
dx

=

∫
Lp

∫
D

(1− θR(|u(x)|p))ϕ1(x)dx dμn(u)︸ ︷︷ ︸
=:F1

+ ϕ0

∫
Lp

∫
D

(1− θR(|u(x)|p))|u(x)|p dx dμn(u)︸ ︷︷ ︸
=:F2

.

The first term can be bounded by

F1 ≤
∫
Lp

∫
{x∈D : |u(x)|p>R}

ϕ1(x)dx dμn(u)

≤
∫
Lp

sup

{∫
D′
ϕ1(x)dx :D

′ ⊂ D, |D′| ≤ ‖u‖pLp/R

}
dμn(u)

≤ sup

{∫
D′
ϕ1(x)dx :D

′ ⊂ D : |D′| ≤ cp/R

}
,

where we in the second inequality used Chebyshev’s inequality and in the third

inequality the uniform Lp bound (2.11). The above converges to 0 as R → ∞,

uniformly in n. For the second term we have

F2 =

∫
Lp

∫
D

∣∣|u(x)|p − ζR(|u(x)|p)
∣∣ dx dμn(u) =

∫
Lp

∥∥|u|p − ζR ◦ |u|p
∥∥
L1(D)

dμn(u)

≤ 3

∫
Lp

ω1
r(|u|p)dμn(u) ≤ 6pcp−1

∫
Lp

ωp
r (u)

1/p dμn(u)

≤ 6pcp−1ωp
r (ν

2
n)

1/p,

where the first inequality follows from Lemma B.1 with q = 1, the second inequality

follows an estimate similar to (B.3), and the third inequality is Hölder’s inequality.

The final term above vanishes as R → ∞ uniformly in n, by the uniform diagonal

continuity assumption (2.12). It follows that for any ψ ∈ L∞(D),∣∣∣∣∫
D

ψ(u − ū)dx

∣∣∣∣ ≤ ‖ψ‖L∞
(
‖u− uR‖L1 + ‖uRnl

− unl
‖L1 + ‖unl

− ū‖L1

)
+

∣∣∣∣∫
D

ψ
(
uR − uRnl

)
dx

∣∣∣∣ ,
all of which vanish as R → ∞ and l → ∞. We conclude that ū = u, whence

unl
→ u as l → ∞. By the uniqueness of the limit u, we get convergence of the

whole sequence: un → u in L1(D) as n→ ∞.
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For general k ∈ N we prove only that un(x) :=
〈
νkn;x, g(x, ξ)

〉
satisfies a bound

of the form (B.3), and leave the rest to the reader. We write first∫
Dk

−
∫
Br(0)k

|un(x+ z)− un(x)| dz dx

≤
∫
Dk

−
∫
Br(0)k

〈
ν2kn;x,x+z,

∣∣g(x+ z, ξk+1, . . . , ξ2k
)
− g
(
x, ξ1, . . . , ξk

)∣∣〉dz dx
≤ C

k∑
l=1

∫
Dk

−
∫
Br(0)k

〈
ν2kn;x,x+z, |ξl+k − ξl|max(|ξl|, |ξl+k|)p−1h(x̂l, ξ̂l)

〉
dz dx

(cf. Definition 2.1 with ξ̂l = (ξ1, . . . , ξl−1, ξl+1, . . . , ξk)). Consider, say, the last sum-

mand above:∫
Dk

−
∫
Br(0)k

〈
ν2kn;x,x+z, |ξ2k − ξk|max(|ξk|, |ξ2k|)p−1h(x̂k, ξ̂k)

〉
dz dx

=

∫
Dk

−
∫
Br(0)

〈
νk+1
n;x,xk+zk , |ξk+1 − ξk|max(|ξk|, |ξk+1|)p−1h(x̂k, ξ̂k)

〉
dzk dx

=

∫
Lp(D)

∫
Dk

−
∫
Br(0)

∣∣u(xk + zk)− u(xk)
∣∣max(|u(xk)|, |u(xk + zk)|)p−1

× h(x1, . . . , xk−1, u(x1), . . . , u(xk−1))dzk dx dμn(u)

=

∫
Lp(D)

(∫
D

−
∫
Br(0)

|u(xk + zk)− u(xk)|max(|u(xk)|,

× |u(xk + zk)|)p−1 dzk dxk

)

×
(∫

Dk−1

h(x1, . . . , xk−1, u(x1), . . . , u(xk−1))dx̂
k

)
dμn(u)

≤ 2

∫
Lp(D)

(∫
D

−
∫
Br(0)

|u(xk + zk)− u(xk)|p dzk dxk

)1/p

×
(∫

D

|u(xk)|p dxk
)(p−1)/p

C
(
1 + ‖u‖p(k−1)

Lp

)
dμn(u)

≤ 2Cωp
r

(
ν2n
)1/p

Mp−1(1 +Mp(k−1)),

where the second-last inequality follows from Hölder’s inequality and the bounded-

ness of Lh (cf. the proof of Lemma 2.1), and the last inequality follows from (2.14).

By the uniform diagonal continuity of νn, the above vanishes uniformly as r → 0.

The rest of the proof follows as in the proof for ν1.
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Appendix C. Time-Dependent Correlation Measures

Proof of Lemma 2.3. By assumption, (t, x) 
→
〈
νkt,x, g

〉
is measurable for all

g ∈ C0(U
k), so by separability of Hk

0 (D;U), the map t 
→
∫
Dk

〈
νkt,x, g(x)

〉
dx is also

measurable for any g ∈ Hk
0(D;U). Let E0 ⊂ Hk

0(D;U) be a countable, dense subset

of the unit sphere in Hk
0(D;U), and let

T :=
⋂

g∈E0

{
Lebesgue points for t 
→

∫
Dk

〈
νkt,x, g(x)

〉
dx

}
,

a set whose complement [0, T )\T has zero Lebesgue measure. The set E :=

spanE0 is dense in Hk
0(D;U), and every t ∈ T is still a Lebesgue point for

t 
→
∫
Dk

〈
νkt,x, g(x)

〉
dx whenever g ∈ E. For every t ∈ T we define the functional

ρ(t):E → R by

ρ(t)(g) :=

∫
Dk

〈
νkt,x, g(x)

〉
dx.

Then ρ(t) is linear: For any g, h ∈ E and α ∈ R we have

ρ(t)(αg + h) = lim
h→0+

−
∫ t+h

t−h

∫
Dk

〈
νks,x, αg(x) + h(x)

〉
dx ds

= lim
h→0+

(
α−
∫ t+h

t−h

∫
Dk

〈
νks,x, g(x)

〉
dx ds+−

∫ t+h

t−h

∫
Dk

〈
νks,x, h(x)

〉
dx ds

)
= αρ(t)(g) + ρ(t)(h).

Moreover, ρ(t) is continuous, as

|ρ(t)(g)| ≤ lim
h→0+

−
∫ t+h

t−h

∫
Dk

|
〈
νkt,x, g(x)

〉
|dx dt ≤ lim

h→0+
−
∫ t+h

t−h

∫
Dk

‖g(x)‖C0 dx dt

= ‖g‖Hk
0(D;U).

It follows that for every t ∈ T the functional ρ(t) can be extended uniquely to a

continuous linear functional on Hk
0 (D;U). The remaining claims in the lemma are

now readily checked.

Appendix D. Proof of Theorem 4.2

We write

ut,Δi = (SΔ
t ū)i,

where SΔ is the numerical evolution operator; see Sec. 4.1.

Proof of Theorem 4.2. Let μΔ
t be the approximate statistical solution, defined

in (4.3). Let k ∈ N, and let ϕ ∈ C∞
c (Dk) be a test function. Fix a multiindex

i = (i1, . . . , ik) ∈ (Zd)k, By changing the order of integration, we have∫
R+

∫
Lp(D,U)

ui1 · · · uik∂tϕ(xi, t)dμ
Δ
t (u)dt
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=

∫
R+

∫
Lp(D,U)

ut,Δi1
· · · ut,Δik

∂tϕ(xi, t)dμ̄(ū)dt

=

∫
Lp(D,U)

∫
R+

ut,Δi1
· · · ut,Δik

∂tϕ(xi, t)dt dμ̄(ū),

where

xi :=
(
xi1 · · · xik

)
.

Since {u·,Δj }j∈Zd solves (4.1) with initial data {ūj}j∈Zd for every ū ∈ Lp(D,U), we

get that∫
Lp(D,U)

∫
R+

ut,Δi1
· · ·ut,Δik

∂tϕ(xi, t)−
1

Δ

k∑
n=1

d∑
m=1

ut,Δi1
· · ·

+

(
Fm
in+

1
2em

(SΔ(t)(ū))− Fm
in− 1

2em
(SΔ(t)(ū))

)
· · ·ut,Δik

ϕ(xi, t)dt

+ϕ(xi, 0)u
0,Δ
i1

· · ·u0,Δik
dμ̄(ū) = 0.

Multiplying by Δkd and summing over (Zd)k, we get∑
i∈(Zd)k

Δkd

∫
Lp(D,U)

(∫
R+

(
ut,Δi1

· · ·ut,Δik
∂tϕ(xi, t)−

1

Δ

k∑
n=1

d∑
m=1

ut,Δi1
· · ·

×
(
Fm
in+ 1

2 em
(SΔ(t)(ū))− Fm

in− 1
2 em

(SΔ(t)(ū))
)
· · ·ut,Δik

ϕ(xi, t)
)
dt

+ϕ(xi, 0)u
0,Δ
i1

· · ·u0,Δik

)
dμ̄(u) = 0.

For 1 ≤ n ≤ k and 1 ≤ m ≤ d, summation by parts gives∑
i∈(Zd)k

Δdk

∫
R+

∫
Lp(D,U)

ui1 · · ·
(
Fm
in+

1
2em

(u)− Fm
in− 1

2em
(u)

)
· · ·

× uikϕ(xi, t)dt dμ
Δ
t (u)

=
∑

i∈(Zd)k

Δdk

∫
R+

∫
Lp(D,U)

ui1 · · ·Fm
in+

1
2em

(u) · · ·uik(ϕ(xi, t)

−ϕ(xi+en,m , t))dt dμ
Δ
t (u).

We furthermore have that∑
i∈(Zd)k

Δdk

∫
R+

∫
Lp(D,U)

ui1 · · ·Fm
in+

1
2em

(u) · · ·uik

×
(
ϕ(xi, t)− ϕ(xi+en,m , t)

Δ

)
dμΔ

t (u)dt
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=
∑

i∈(Zd)k

Δdk

∫
R+

∫
Lp(D,U)

ui1 · · · fm(uin) · · ·uik

×
(
ϕ(xi, t)− ϕ(xi+en,m , t)

Δ

)
dμΔ

t (u)dt

−
∑

i∈(Zd)k

Δdk

∫
R+

∫
Lp(D,U)

ui1 · · ·
(
fm(uin)− Fm

in+ 1
2em

(u)
)
· · ·uik

×
(
ϕ(xi, t)− ϕ(xi+en,m , t)

Δ

)
dμΔ

t (u)dt

and by the Lipschitz continuity (4.2), we have∣∣∣∣∣∣
∑

i∈(Zd)k

Δdk

∫
R+

∫
Lp(D,U)

ui1 · · ·
(
fm(uin)− Fm

in+
1
2 em

(u)

)
· · · uik

×
(
ϕ(xi, t)− ϕ(xi+en,m , t)

Δ

)
dμΔ

t (u)dt

∣∣∣∣∣∣
≤
∑

i∈(Zd)k

Δdk

∫
R+

∫
Lp(D,U)

∣∣∣∣∣ui1 · · ·
(
fm(uin)− Fm

in+
1
2em

(u)

)
· · · uik

×
(
ϕ(xi, t)− ϕ(xi+en,m , t)

Δ

)∣∣∣∣∣ dμΔ
t (u)dt

≤ C
∑

i∈(Zd)k

Δdk

p∑
q=−p+1

∫
R+

∫
Lp(D,U)

|ui1 | · · · |uin+qem − uin | · · · |uik |

×
∣∣∣∣ϕ(xi, t)− ϕ(xi+en,m , t)

Δ

∣∣∣∣ dμΔ
t (u)dt

≤ C
∑

i∈(Zd)k

Δdk

∫
R+

∫
Lp(D,U)

|ui1 | · · · |uin − uin−em | · · · |uik |

×
∣∣∣∣ϕ(xi, t)− ϕ(xi−en,m , t)

Δ

∣∣∣∣ dμΔ
t (u)dt

By Hölder’s inequality we get∑
i∈(Zd)k

Δdk

∫
R+

∫
Lp(D,U)

|ui1 | · · · |uin − uin−em | · · · |uik |

×
∣∣∣∣ϕ(xi, t)− ϕ(xi−en,m , t)

Δ

∣∣∣∣ dμΔ
t (u)dt
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≤ C

(
Δkd

∫
R+

∫
Lp(D,U)

∑
i∈(Zd)k

|uin − uin−em |s dμΔ
t (u)dt

)1/s

·
(
Δkd

∑
i∈(Zd)k

∫
R+

∫
Lp(D,U)

|ui1 |
s

s−1 · · · |uik |
s

s−1

×
∣∣∣∣ϕ(xi, t)− ϕ(xi−en,m , t)

Δ

∣∣∣∣
s

s−1

dμΔ
t (u)dt

) s−1
s

.

By the weak BV assumption (4.18), we get

lim
Δ→0

Δkd

∫
R+

∫
Lp(D,U)

∑
i∈(Zd)k

|uin − uin−em |s dμΔ
t (u)dt

= lim
Δ→0

Δd

∫
R+

∫
Lp(D,U)

∑
i∈Zd

|ui − ui−em |s dμΔ
t (u)dt = 0.

We furthermore note that since ϕ ∈ C∞
c , we have

Δkd
∑

i∈(Zd)k

∫
R+

∫
Lp(D,U)

|ui1 |
s

s−1 · · · |uik |
s

s−1

×
∣∣∣∣ϕ(xi, t)− ϕ(xi−en,m , t)

Δ

∣∣∣∣
s

s−1

dμΔ
t (u)dt ≤ C.

Hence we get

0 = lim
Δ→0

∑
i∈(Zd)k

Δkd

∫
Lp(D,U)

(∫
R+

(
ut,Δi1

· · · ut,Δik
∂tϕ(xi, t)

− 1

Δ

k∑
n=1

d∑
m=1

ut,Δi1
· · ·
(
Fm
in+

1
2 em

(SΔ(t)(ū))− Fm
in− 1

2em
(SΔ(t)(ū))

)
· · ·

× ut,Δik
ϕ(xi, t)

)
dt+ ϕ(xi, 0)u

0,Δ
i1

· · · u0,Δik

)
dμ̄(ū)

=

∫
R+

∫
Lp(D,U)

∫
(Rd)k

(
u(x1) · · · u(xk)∂tϕ(x, t)

+
k∑

n=1

d∑
m=1

u(x1) · · · fm(u(xn)) · · · u(xk)∂nmϕ(x, t)
)
dx dμt(u)dt

+

∫
Lp(D,U)

∫
(Rd)k

ū(x1) · · · ū(xk)ϕ(x, 0)dx dμ̄(ū),

which completes the proof.
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Appendix E. Proof of (5.7)

Proposition E.1. Let D ⊂ Rd be bounded and let μ, μ̃ ∈ P(Lp(D;U)) both have

bounded pth moment. Then(∫
Dk

Wp

(
νkx , ν̃

k
x

)p
dx

)1/p

≤ CWp(μ, μ̃) (E.1)

for some C = C(p, k, |D|), where (νk)k∈N, (ν̃
k)k∈N are the correlation measures

corresponding to μ, μ̃.

Proof. Let π ∈ P(Lp(D;U)2) be an optimal transport plan for Wp(μ, μ̃), and let

(σk)k∈N ∈ Lp(D;U2) be its corresponding correlation measure. We claim that the

marginals of σk
x are νkx and ν̃kx , respectively, for a.e. x ∈ Dk. Indeed, if g ∈ Hk

0 (D;U)

then, denoting ḡ(x, ξ, ζ) := g(x, ξ),〈
σk, ḡ

〉
=
〈
π, Lḡ

〉
=

∫
Lp(D;U)2

Lḡ(u, v)dπ(u, v) =

∫
Lp(D;U)2

Lg(u)dπ(u, v)

=

∫
Lp(D;U)

Lg(u)dμ(u) =
〈
νk, g

〉
.

A similar computation holds for the second marginal. Since g is arbitrary, the claim

follows. We can therefore estimate∫
Dk

Wp

(
νkx , ν̃

k
x

)p
dx ≤

∫
Dk

∫
U2k

|ξ − ζ|p dσk
x(ξ, ζ)dx

=

k∑
l=1

∫
Dk

∫
U2k

|ξl − ζl|p dσk
x(ξ, ζ)dx

= k

∫
Dk

∫
U2

|ξ1 − ζ1|p dσ1
x1
(ξ, ζ)dx

= k|D|k−1

∫
D

∫
U2

|ξ − ζ|p dσ1
x(ξ, ζ)dx

= k|D|k−1

∫
Lp(D;U)2

∫
D

|u(x)− v(x)|p dx dπ(u, v) =Wp(μ, μ̃)
p.

Appendix F. Computing the Wasserstein Distance

for Sums of Diracs

In Sec. 5, we computed the Wasserstein distance between different numerical solu-

tions. The numerical solutions are always sums of Diracs, which simplifies the

computations greatly.

For two kth correlation marginals νk and ν̃k, we are interested in the “LpWp”

distance ∥∥W1

(
νkT,·, ν̃

k
T,·
)∥∥

L1(Dk)
. (F.1)
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F.1. Computing the Wasserstein distance between

the first correlation marginals

To compute the first correlation marginals, we use the function

scipy.stats.wasserstein_distance in the scipy module for Python30 to com-

pute the Wasserstein distance. The function computes the Wasserstein distance by

going through the CDF, consult the scipy documentation for more information.

We approximate the spatial integral as a sum over all the volume averages.

F.2. Computing the Wasserstein distance between the second

correlation marginals

For the second correlation marginals, we use the function ot.emd in the POT mod-

ule for Python.20 This function uses the Hungarian algorithm34 to compute the

Wasserstein distance between sums of Diracs.

The spatial integral in (F.1) is approximated by taking 10 spatial points in

each direction, for a total of 10,000 evaluations of the Wasserstein distance. More

concretely, we use the following approximation:∥∥W1

(
ν2T,·, ν̃

2
T,·
)∥∥

L1(D2)
≈

10∑
i,j,̃i,j̃=1

1

104
W1(ν

2
T,xi,j,̃i,j̃

, ν̃2T,xi,j,̃i,j̃
),

where

xi,j,̃i,j̃ =

(
i

10
,
j

10
,
ĩ

10
,
j̃

10

)
for i, j, ĩ, j̃ = 1, . . . , 10.
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11. C. De Lellis and L. Székelyhidi, Jr. The Euler equations as a differential inclusion,
Ann. of Math. (2) 170 (2009) 1417–1436.

12. S. Demoulini, D. M. A. Stuart and A. E. Tzavaras, Weak–strong uniqueness of dissi-
pative measure-valued solutions for polyconvex elastodynamics, Arch. Ration. Mech.
Anal. 205 (2012) 927–961.

13. R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Ration. Mech.
Anal. 88 (1985) 223–270.

14. U. S. Fjordholm, High-order accurate entropy stable numerical schemes for hyperbolic
conservation laws, Ph.D. thesis, ETH Zürich (2013), Dis. No. 21025.
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