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Statistical solutions are time-parameterized probability measures on spaces of integrable
functions, which have been proposed recently as a framework for global solutions and
uncertainty quantification for multi-dimensional hyperbolic system of conservation laws.
By combining high-resolution finite volume methods with a Monte Carlo sampling pro-
cedure, we present a numerical algorithm to approximate statistical solutions. Under
verifiable assumptions on the finite volume method, we prove that the approximations,
generated by the proposed algorithm, converge in an appropriate topology to a statis-
tical solution. Numerical experiments illustrating the convergence theory and revealing
interesting properties of statistical solutions are also presented.
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1. Introduction

Systems of conservation laws are a large class of nonlinear partial differential equa-
tions (PDEs) of the generic form

Opu+ Vg - f(u)
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Here, the unknown u = u(x,t) : DxR; — U is the vector of conserved variables and
=Y, Y RY — RN*? s the flur function. Here, we denote R := [0, 00)
and U := R", and we let the physical domain D C R? be some open, connected

set. V. - o denotes the divergence of a vector field o(x) = (¢'(2),...,0%x)), i.e.
Vg 0= Z?:1 Oyiot, where x = (x1,... 2%). The system (1.1a) is hyperbolic if the

flux Jacobian 9, (f - n) has real eigenvalues for all n € R? with |n| = 1.

Many important models in physics and engineering are described by hyperbolic
systems of conservation laws. Examples include the compressible Euler equations
of gas dynamics, the shallow water equations of oceanography, the Magneto hydro-
Dynamics (MHD) equations of plasma physics, and the equations of nonlinear

elastodynamics.'°

1.1. Entropy Solutions

It is well known that even if the initial data @ in (1.1) is smooth, solutions of
(1.1) develop discontinuities, such as shock waves and contact discontinuities, in
finite time. Therefore, solutions to (1.1) are sought in the sense of distributions: A
function v € L=®(R? x Ry, RY) is a weak solution of (1.1) if it satisfies

/ Opp(x, thu(z, t) + Vep(x,t) - fu(x,t))dedt +/ o(x,0)u(z)dx =0
Ry JRY

Rd
(1.2)

for all test functions ¢ € CH(R? x Ry).

As weak solutions are not unique,’® it is necessary to augment them with
additional admissibility criteria or entropy conditions to recover uniqueness. These
entropy conditions are based on the existence of a so-called entropy pair — a pair of
functions n : RY — R, ¢ : RN — R?, with 7 convex and ¢ satisfying the compatibil-
ity condition ¢’ =7’ f' (where f’ and ¢’ are the Jacobian matrices of f and ¢). An
entropy solution of (1.1) is a weak solution that also satisfies the so-called entropy
imequality

/ Fpp(, )n(ulz, 1)) + Vap(z,t) - q(u(z, t))de di +/ (@, 0)n(u(z))dz = 0
R+ R4 Rd
(1.3)

for all nonnegative test functions ¢ € C}(R? x R, ). Depending on the availability
of entropy pairs (7, ¢), the entropy condition leads to various a priori bounds on
w: If, say, n(u) = |ulP (or some perturbation thereof) for some p > 1 then (1.3)
leads to

/Rd lu(z, t)|P dx < /Rd [a(x)|P dz, Vit >0, (1.4)

see e.g. Refs. 10, 26 and 29.
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The global well posedness of entropy solutions of (1.1) has been addressed both
for (multi-dimensional) scalar conservation laws®?® and for systems in one space
dimension (see Refs. 25, 4, 7 and 29 and references therein). However, there are no
global existence results for entropy solutions of multi-dimensional systems of con-
servation laws with generic initial data. On the other hand, it has been established
recently in Refs. 11 and 9 that entropy solutions for some systems of conserva-
tion laws (such as isentropic Euler equations in two space dimensions) may not
be unique. This is a strong indication that the paradigm of entropy solutions is
not the correct framework for the well posedness of multi-dimensional systems of
hyperbolic conservation laws.

1.2. Numerical schemes

A wide variety of numerical methods have been developed to approximate entropy
solutions of (1.1) in a robust and efficient manner. These include finite volume,
(conservative) finite difference, discontinuous Galerkin (DG) finite element and
spectral (viscosity) methods, see Refs. 26 and 28 for further details. Rigorous con-
vergence results of numerical methods to entropy solutions are only available for
scalar conservation laws (see e.g. Ref. 26 for monotone schemes and Ref. 14 for
high-order schemes) and for some specific numerical methods for one-dimensional
systems (Ref. 25 for Glimm’s scheme and Ref. 29 for front tracking).

There are no rigorous convergence results to entropy solutions for any numeri-
cal schemes approximating multi-dimensional systems of conservation laws. To the
contrary, several numerical experiments, such as those presented recently in Refs. 15
and 19, strongly suggest that there is no convergence of approximations generated
by standard numerical schemes for (1.1), as the mesh is refined. This has been
attributed to the emergence of turbulence-like structures at smaller and smaller
scales upon mesh refinement (see Fig. 4 of Ref. 15).

1.3. Measure-valued and Statistical solutions

Given the lack of well posedness of entropy solutions for multi-dimensional sys-
tems of conservation laws and the lack of convergence of numerical approximations
to them, it is natural to seek alternative solution paradigms for (1.1). A possible
solution framework is that of entropy measure-valued solutions, first proposed by
DiPerna in Ref. 13. Measure-valued solutions are Young measures,*® that is, space-
time-parameterized probability measures on the phase space RY of (1.1). Global
existence of entropy measure-valued solutions has been considered in Refs. 13, 8, 15
and 19 where the authors constructed entropy measure-valued solutions by proving
convergence of a Monte Carlo-type ensemble-averaging algorithm, based on under-
lying entropy stable finite difference schemes.

Although entropy measure-valued solutions for multi-dimensional systems of
conservation laws exist globally, it is well known that they are not necessarily
unique; see Refs. 43 and 19 and references therein. In particular, one can even
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construct multiple entropy measure-valued solutions for scalar conservation laws
for the same measure-valued initial data.'® Although generic measure-valued solu-
tions might not be unique, numerical experiments presented in Ref. 15 indicate
that measure-valued solutions of (1.1), computed with the ensemble-averaging algo-
rithm of Ref. 15, are stable with respect to initial perturbations and to the choice
of underlying numerical method. This suggests imposing additional constraints on
entropy measure-valued solutions in order to recover uniqueness.

In Ref. 16, the authors implicated the lack of information about (multi-point)
statistical correlations in Young measures as a possible cause of the non-uniqueness
of entropy measure-valued solutions. Consequently, they introduced a stronger solu-
tion paradigm termed statistical solutions for hyperbolic systems of conservation
laws (1.1). Statistical solutions are time-parameterized probability measures on
some Lebesgue space LP(D; U) satisfying (1.1a) in an averaged sense. The choice of
the exponent p > 1 depends on the available a priori bounds for solution of (1.1),
such as (1.4). It was shown in Ref. 16 that probability measures on L?(D;U) can be
identified with (and indeed are equivalent to) correlation measures — a hierarchy
of Young measures defined on tensorized versions of the domain D and the phase
space U in (1.1). Statistical solutions have also been introduced in the context of the
incompressible Navier—Stokes equations by Foias et al.; see Ref. 21 and references
therein.

In Ref. 16, the authors defined statistical solutions of systems of conservation
laws (1.1a) by requiring that the moments of the time-parameterized probability
measure on LP(D) (or equivalently, of the underlying correlation measure) satisfy
an infinite set of (tensorized) PDEs, consistent with (1.1a).

The first member of the hierarchy of correlation measures for a statistical solu-
tion is a (classical) Young measure and it can be shown to be an entropy measure-
valued solution of (1.1), in the sense of DiPerna.'® The kth member (k > 2) of
the hierarchy represents k-point spatial correlations. Thus, a statistical solution
can be thought of as a measure-valued solution, augmented with information about
all possible (multi-point) spatial correlations.'® Consequently, statistical solutions
contain much more information than measure-valued solutions.

In Ref. 16, the authors constructed a canonical statistical solution for scalar
conservation laws in terms of the data-to-solution semi-group of Kruzkhov??® and
showed that this statistical solution is unique under a suitable entropy condi-
tion. Numerical approximation of statistical solutions of scalar conservation laws
was considered in,'” where the authors proposed Monte Carlo and multi-level
Monte Carlo (MLMC) algorithms to compute statistical solutions and showed their
convergence.

1.4. Aims and scope of this paper

Given this background, our main aim in this paper is to study statistical solutions
for multi-dimensional systems of conservation laws. To this end, we obtain the



Math. Models Methods Appl. Sci. 2020.30:539-609. Downloaded from www.worldscientific.com

by CARNEGIE MELLON UNIVERSITY on 07/09/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

Numerical approximation of statistical solutions 543
following results:

e We propose a Monte Carlo ensemble-averaging-based algorithm for computing
statistical solutions of systems of conservation laws. This algorithm is a variant
of the Monte Carlo algorithms presented in Refs. 15 and 17.

e Under reasonable assumptions on the underlying numerical scheme, we prove
convergence of the ensemble-averaging algorithm to a statistical solution. It is
highly non-trivial to identify an appropriate topology on time parameterized
probability measures on LP(D) in order to prove convergence of the computed
statistical solutions. To this end, we find a suitable topology and prescribe novel
sufficient conditions that ensure convergence in this topology.

e We present several numerical experiments that illustrate the robustness of our
proposed algorithm and also reveal interesting properties of statistical solutions
of (1.1a).

As a consequence of our convergence theorem, we establish a conditional global
existence result for multi-dimensional systems of conservation laws. Moreover, we
also propose an entropy condition under which we prove a weak—strong uniqueness
result for statistical solutions, that is, we prove that if there exists a statistical
solution of sufficient regularity (in a sense made precise in Sec. 3), then all entropy
statistical solutions agree with it.

The rest of the paper is organized as follows: In Sec. 2, we provide the mathemat-
ical framework by describing the concepts of correlation measures and statistical
solutions. We also provide characterizations of the topology on probability mea-
sures on LP(D), in which our subsequent numerical approximations will converge.
The entropy condition and the weak—strong uniqueness of statistical solutions are
presented in Sec. 3 and the Monte Carlo ensemble-averaging algorithm (and its
convergence) is presented in Sec. 4. Numerical experiments are presented in Sec. 5
and the results of the paper are summarized and discussed in Sec. 6.

2. Probability Measures on LP(D;U) and Statistical Solutions

In the usual, deterministic interpretation of (1.1a), one attempts to find a function
u = u(t) : D — U satistying (1.1a) in a weak or strong sense. (Here, as in the
introduction, we let D C R? be an open, connected set and we denote U := RY.) By
contrast, a statistical solution of (1.1a) is a probability measure u = p; distributed
over such functions u and satisfying (1.1a) in an averaged sense. Solutions of (1.1a)
are most naturally found in (a subspace of) LP(D;U), so p: is required to be a
probability measure on LP(D;U) at each time ¢. In order to write down constitutive
equations for p, it is more natural to work with finite-dimensional projections or
marginals of u; these are the so-called correlation measures.'® In this section, we
provide a self-contained description of correlation measures, probability measures
over LP(D;U), and statistical solutions of (1.1a).
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In order to link probability measures on L? to their finite-dimensional marginals,
we prove in Sec. 2.1 that a sequence of such measures converges weakly if and only
if it converges with respect to a certain class C, of finite-dimensional observables. In
Sec. 2.2, we introduce correlation measures and we show that these are in a one-to-
one relationship with probability measures over LP, and that they are linked pre-
cisely through the finite-dimensional observables C,. We also prove a compactness
result for sequences of correlation measures. In Sec. 2.3, we treat time-parametrized
probability and correlation measures, and we prove measurability and compact-
ness results. Finally, in Sec. 2.4, we provide the definition of statistical solutions
of (1.1a).

For the sake of clarity, many of the proofs in this rather technical section have
been moved to Appendices A—C.

Notation 2.1. If X is a topological space, then we let B(X) denote the Borel o-
algebra on X, we let M(X) denote the set of signed Radon measures on (X, B(X)),
and we let P(X) C M(X) denote the set of all probability measures on (X, B(X)),
i.e. all nonnegative p € M(X) with u(X) = 1 (see e.g. Refs. 2, 5 and 31). For
k € N and a multiindex o € {0,1}¥ we write |a| = a; + -+ + ax and & =
1—a=(1-ai,...,1—ax), and we let x, be the vector of length |a| consisting
of the elements z; of x for which «; is non-zero. For a vector x = (x1,...,2k)
we write 2° = (x1,...,%i_1,Ti11,...,Tk). For a vector & = (&1,...,&) we write
[€%] = &1 + -+ |€k|** with the convention &,, = 1 if a; = 0.

2.1. Probability measures on LP(D) and weak convergence

If X is any topological space and we are given a sequence y1, fi2, ... € P(X) and
some 1 € P(X), then we say that { i, }nen converges weakly to p, written p,, — p, if

{pn, Fy = (u, F) asn— oo (2.1)

for every F € Cy(X). (Here and elsewhere, (u, F) = [y F(x)du(z) denotes the
expectation of F' with respect to u.) We will be particularly interested in the case
X = LP(D;U), so to study weak convergence in this space we need to work with
the space Cy(LP(D;U)). In this section, we will see that it is sufficient to prove
(2.1) for a much smaller class of functionals F', namely those which depend only on
finite-dimensional projections of u € L?(D;U).

If F and V are Euclidean spaces then a measurable function g : £ x V — R
is called a Carathéodory function if & — g(z,§) is continuous for a.e. z € E and
x +— g(z,€) is measurable for every £ € V (see, e.g. Sec. 4.10 of Ref. 1). For a
number k£ € N and a Carathéodory function g = g(x,&) : D¥ x U* — R we define
the functional L, : LP(D;U) — R by

Ly(u) = /Dk g(x1,. .2k, u(zr),. .., u(xg))de. (2.2)
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(Here, D* denotes the product space D¥ = D x --- x D, and similarly for U*.) The
above integral is clearly not well defined for every Carathéodory function g, so we
restrict our attention to the following class.

Definition 2.1. For every k € N, we let 3*?(D;U) denote the space of
Carathéodory functions g : D* x U¥ — R satisfying

9z, < > pal(@a)l€*P, YaoeDF, ¢eU” (2.3)
ae{0,1}F
for nonnegative functions ¢; € L'(D?%), i = 0,1,...,k (with the convention that

LY(D°) =~ R; sece also Example 2.1). We let HY?(D;U) ¢ H*?(D;U) denote the
subspace of functions g which are locally Lipschitz continuous, in the sense that
there is some r > 0 and some nonnegative h € 3*~1P(D; U) such that

k
l9(x,¢) —g(y,8)| < Z ¢ — & max(|&], G (@, €0 (2.4)

for every x € D¥, y € B,(x) and &,¢ € U*. Last, we denote

CP(D;U) == {Lg:g € H*?(D;U), k € N},

C(D;U) :={Ly:g € H;P(D;U), k € N},
where L is defined in (2.2).
Example 2.1. For k = 1 the condition (2.3) asserts that

l9(z, &)| < @1(x) + polél?
for 0 < o1 € LY(D) and ¢g € [0,00), and for k = 2 that
l9(21, 22,81, &2)| < pa(@1, 22) + @1(21)[6f” + @1 (22) 61" + pol&1[7|E2

for 0 < ¢o € LY(D?), 0 < @1 € LY(D) and ¢q € [0, 00).

We will simply denote H*P? = 3*P(D;U), etc. when the domain and image
D, U are clear from the context.

Lemma 2.1. Every functional L, € CP is well defined and finite on LP(D;U).
Every functional Ly € CY is continuous and is Lipschitz continuous on bounded
subsets of LP(D;U).

Theorem 2.2. Let p,,pu € P(LP(D;U)) for n € N salisfy supp p,supp p,, C B
for all n € N, for some bounded set B C LP(D;U). Then p, — p if and only if
{pn, Fy = (p, F) for all F € CY(D;U).

The proofs of the above results can be found in Appendix A. The “only if” part
of Theorem 2.2 is trivial, since every F' € C! belongs to Cj, when restricted to a
bounded set; the converse relies on an approximation argument found in Ref. 2.
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2.2. Correlation measures

In short, a correlation measure prescribes the joint distribution of some uncer-
tain quantity u at any finite collection of spatial points z1,...,z;. Below we pro-
vide the rigorous definition of correlation measures and then state the result from
Ref. 16 on the equivalence between correlation measures and probability measures
on LP(D;U).

We denote 3§ (D; U) := L*(D*, Cy(U*)). By identifying the expressions g(z)(€)
and g(z,¢), we can view 3% (D; U) as a subspace of H*P(D;U) for any p > 1 (with
the choice ¢o, ..., k-1 =0 and @r(z) = ||g(x)||c, W) in (2.3)).

Theorem 2.3. The dual of H§(D; U) is the space HE* (D; U) := L3y (D*, M(U¥)),
the space of bounded, weak* measurable maps from D* to M(UF), under the duality
pairing

(e = [ (gl da

(where (vF,g(x)) = [ g(x,&)dVE(€) is the usual duality pairing between Radon
measures M(U*) and continuous functions Cy(U*)).

For more details and references for the above result, see Ref. 3.

Definition 2.2. (Fjordholm, Lanthaler, Mishral®) A correlation measure is a col-
lection v = (v1,1/2,...) of maps v* € H}*(D;U) satisfying for all k = 1,2,...:

(i) v¥ € P(U*) for a.e. € D*, and the map z — (v, f) is measurable for every
f € Cp(U"). (In other words, v/* is a Young measure from D* to U*.)

(ii) Symmetry: if o is a permutation of {1,....k} and f € Co(U*) then
<V§($),f(a(£))> = <V§,f(£)> for a.e. x € DF.

(iii) Consistency: If f € Cy(U¥) is of the form f(&1,...,&) = g(&1y-- -, Ek—1)
for some g € Co(U*'), then (vF . . f)=(vEi"l . . .g9) Lebesgue-a.c.
(z1,...,7%) € DF.

(iv) LP integrability:

/ (v, [€]P) dz < +o0. (2.5)
D
(v) Diagonal continuity: lim,_owP(v?) = 0, where

P(12) = 2 — &P . .
WP () /D ]{3 Rl ) dya (2.6)

Each element v* will be called a correlation marginal. The functional w? is called
the modulus of continuity of v. We let LP(D;U) denote the set of all correlation
measures.
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The next result shows that there is a duality relation between correlation
marginals and the probability measures ;1 € P(LP) discussed in the previous section.

Theorem 2.4. (Fjordholm, Lanthaler, Mishra'®) For every correlation measure
v € LP(D;U) there is a unique probability measure u € P(LP(D;U)) whose pth
moment is finite,

/ lull2, dp(u) < oo (2.7)
Ly

and such that p is dual to v: the identity

/Dk<yk,g(a:>>dar=/m /Dkg(a?,U(a:))da:du(u) 2.8)

holds for every g € HE(D;U) and all k € N. Conversely, for every u € P(LP(D;U))
satisfying (2.7) there is a unique correlation measure v € LP(D;U) that is dual
to p.

Remark 2.1. By using Lebesgue’s dominated convergence theorem, it is not hard
to show that the identity (2.8) can be extended to all g € H*P(D;U), as long as
both integrals are well defined. In particular, this is true if p is supported on a
bounded subset of LP(D;U).

Later on, we will be particularly interested in those p € P(LP) that have bounded
support. The following lemma shows how the property of having bounded support
can be expressed in terms of the corresponding correlation measure.

Lemma 2.2. Let v € LP(D;U) and p € P(LP(D;U)) be dual to one another.
Then

1/kp
esssup uls = tmswp ([ (46l de) (29)
ueLP k— o0 Dk

where the “esssup” is taken with respect to p.

Proof. From the identity | f| poc(x;.) = img—oo [|fllk(x;0), valid for any finite
measure , we get

1/k
P : pk
esssup ||ul|;p .y = lim / wl|S o dp(u
Ly ” ”L (D;U) k%oo( Lo (D) H HL (D;U) ( ))

1/k
i ([ uep - Juo)l? de datw)
k—o0 L?(D;U) J D¥

1/k
lim (/Dk<uf7|§1|p---|§k|p>dx> . 0

k— o0
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Definition 2.3. We let £V(D;U) denote the subset of correlation measures v €
LP(D;U) with bounded support, in the sense that there is an M > 0 such that

1/kp
tim sup ( [ ke |§k|f’>dx) <M (2.10)
k—00 DF
Definition 2.4. If v,,,v € LP(D;U) for n € N then we say that v, converges
weak* to v as n — oo (written v, — v) if v¥ = vF as n — oo, that is, if
<u,’§,g>:}c,c — <yk,g>%k for all g € HE(D;U) and all k € N.

If v,,v € LU (D;U) for n € N then we say that (v, )nen converges weakly to v
as n — oo (written v, — v) if (1}, g), . — (VF, ), for every g € HEP(D; U).

Note that v € L implies that <Vk7g>g{k is well defined and finite for any
g € H*P (cf. Definition 2.1).

We next show a compactness result which can be thought of as Kolmogorov’s
compactness theorem (cf. Theorem A.5 of Ref. 29) for correlation measures.

Theorem 2.5. Let v,, € LP(D;U) for n = 1,2,... be a sequence of correlation
measures such that

SUp( vy, [€[7) 51 < F, (2.11)
neN
lim limsupw? (12) = 0 (2.12)

r=0 nooo

for some ¢ > 0 (where wP is defined in Definition 2.2(v)). Then there exists a
subsequence (n;);2; and some v € LP(D;U) such that:

(i) va, v oas j — oo, that is, <Vﬁj79>%k — <u"“,g>}c,c for every g € HE(D;U)
and every k € N.
(i) (0, €7 00 < <.
(iii) wP(v?) <liminf, oo wP(v2) for every r > 0.
(iv) For k € N, let p € LL _(D*) and k € C(U*) be nonnegative, and let g(x,&) :=
o(x)k(§). Then

<Vk’ g>:}ck < lijrggf<yﬁj,g>j{k. (2.13)

(v) Assume moreover that the domain D C R? is bounded and that v,, have uni-
formly bounded support, in the sense that (2.10) holds for all v,, for a fixed
M > 0, or equivalently,

lulle < M for pp-a.e. w € LP(D;U) for every n € N. (2.14)

Then observables converge strongly:

lim |<Vk (z)) — <V§,g($>>| dx =0 (2.15)

; nj,x7g
j—oo | pk

for every g € f]-f]f’p(D; U). In particular, v,;, — v.
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The proof is given in Appendix B.

Remark 2.2. Equation (2.15) implies in particular that <V§j,g>:}ck = <,un].,Lg>
converges for any g € HY?, where p,, € P(LP) is dual to v, (see Theorem 2.4). By
Theorem 2.2, this is equivalent to saying that p,, converges weakly to p. Since, by
hypothesis, the pth moment of pu,, is uniformly bounded, the sequence p,, converges
to p in the Wasserstein distance; see Definition 3.1 and Chap. 7 of Ref. 46.

Remark 2.3. Theorem 2.5 can most likely be extended to provide a complete
characterization of compact subsets of LP(D;U). Since we only require sufficient
conditions for compactness, we do not pursue this generalization here.

2.3. Time-parameterized probability measures on LP

Let T € (0,00]. To take into account the evolutionary nature of the PDE (1.1a),
we will add time-dependence to the probability measures considered in Sec. 2.1 by
considering maps u : [0,T7) — P(LP(D;U)). Note the distinction between time-
parametrized maps p : [0,T7) — P(LP(D;U)) and probability measures v on, say,
the space L>°([0,T"); LP(D;U)). Every such measure v would correspond to a unique
1, but not vice versa; when “projecting” v onto u, any information about correlation
between function values u(ty), u(te) at different times ¢1, to is lost. Given the
“w,

evolutionary nature of the PDE (1.1a), we have chosen to work with “4” measures
in order to preserve the direction of time in the underlying PDE.

Notation 2.6. We denote the set of Carathéodory functions depending on space
and time by HE([0,7), D;U) := L'([0,T) x D¥;Co(U*)) and its dual space by
HE*((0,T), D;U) := L ([0,T) x D M(U*)).

Analogously to Definition 2.1, we let H*?([0,T), D;U) denote the space of
Carathéodory functions g : [0,7) x D¥ x U* — R satisfying

90,0l < Y patza)lel, Vae D £eUt (2.16)
ae{0,1}*

for nonnegative functions ¢; € L>([0,T); L'(D%)), i = 0,1,...,k. We let fH’f’p
([0,T),D;U) C 3*»([0,T), D;U) denote the subspace of functions g satisfying the
local Lipschitz condition

k
|g(t,a:,€) - g(t7y7€)| < ¢(t) Z |<1 - §1| max(|€i|7 |<i|)p_1h(t7£i7éi) (217)

i=1
for every x € D*  y € B,(z) for some r > 0, for some nonnegative h € H*~1P
([0,7),D;U) and 0 < 4 (t) € L>([0,T)).
The following lemma shows that it is meaningful to “evaluate” an element v* €
3k*([0,7), D;U) at (almost) any time t € [0, 7).

Lemma 2.3. Let v* € 35*([0,T), D;U). Then there exists a map p : [0,T) —
HE*(D;U), uniquely defined for a.e. t € [0,T), such that t <p(t),g>9{k is
0
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measurable for all g € HE(D;U), and

T
(", 9) g0 = /0 (p(t),g(t,))gen dt, ¥ g € HG([0,T), D; V).

The proof of this lemma is given in Appendix C. Henceforth, we will not make
distinctions between these two representations of elements of H%*([0,T'), D; U), and
denote them both by v/*.

Definition 2.5. A time dependent correlation measure is a collection v =
(v, v2,...) of maps v* € 3E*([0,T), D; U) such that:

(i) (th,yt,.. .) € LP(D;U) for a.e. t € [0,T).
(i1) LP integrability:

ess sup/ (U} 4 [E]P) dz < P < 400 (2.18)
tel0,7) J D

(iii) Diagonal continuity (DC):
T/
/ WP(vHdt -0 asr — 0 forall T/ € (0,7), (2.19)
0
where w? was defined in (2.6).

We denote the set of all time-dependent correlation measures by £P([0,T"), D;U).

Remark 2.4. By Lemma 2.3, the objects vf are well defined for a.e. t € [0,T).
Assertion (ii) requires that the LP bound should be uniform in ¢, and assertion
(iii) requires that the modulus of continuity in the diagonal continuity requirement
should be integrable in t.

Next, we prove a time-dependent version of the duality result Theorem 2.4.

Theorem 2.7. For every time-dependent correlation measure v € LP([0,T), D;U)
there is a unique (up to subsets of [0,T) of Lebesque measure 0) map p : [0,T) —
P(LP(D;U)) such that:

(i) The map

t— (pe, L / / (x,u(x))dx dus (u) (2.20)
Ly J Dk

is measurable for all g € J{k(D U).
(ii) w is LP-bounded:

esssup/ lullf » dpe(u) < P < oo (2.21)
te[0,T) JLp

(iil) w is dual to v: the identity

/Dkw’g(x»dx:/m /Dkg(%U(w))dwdut(U) (2.22)

holds for a.e. t € [0,T), every g € HE(D;U) and all k € N.
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Conversely, for every p : [0,T) — P(LP(D;U)) satisfying (i) and (ii), there is a
unique correlation measure v € LP([0,T), D;U) satisfying (iii).

Proof. Let v be given. Then for a.e. t € [0,T) we have vy = (v},v2,...) €
LP(D;U), so by Theorem 2.4 there exists a unique pu; € P(LP(D;U)) that is dual
to vy, in the sense that (iii) holds. From the previous remark we know that ¢ —
(VF,9) 40, is measurable for every g € K (D; U), which (using (iii)) is precisely (i).
Property (ii) follows by approximating £ — |¢|P by functions in Cy(U).

Conversely, given p satisfying (i) and (ii), Theorem 2.4 gives, for a.e. t € [0,T),
the existence and uniqueness of vy € LP(D;U) satisfying (iii) as well as the LP-
bound (2.18). We claim that (v¢)c[o,7) defines a time-dependent correlation mea-
sure v € LP([0,T), D;U). Indeed, define the linear functional v* by

T
(V0@ g),0 = / 0t)(vf,g) s dt, V0 €LYN0,T)), g€ HG(D;U), keN.
0

Then /¥ is well defined on tensor product test functions 0(t)g(x), and
|(V*,0 @ g) | < H0||L1([O,T))H<,UaLQ>HLoo([0}T)) < |10[| 2] Lgllco(rry
= [10llz2lgllscx = 10 ® gll L1 jo.7) x D*sC0 (%)) -

Extending v* by linearity to all of L'([0,T) x D¥; Co(U*)) produces a unique ele-
ment v* € LY([0,T) x D*;Co(U*))* = L2°([0,T) x D¥; M(U*)). Defining the
collection v = (v%,v2,...), it only remains to show that v? satisfies the diagonal

continuity requirement (2.19). Indeed, since
wP(v}) = / wP(uw)dps(u) -0 asr —0
Lr

for a.e. t € [0,T), the requirement (2.19) follows from the dominated convergence
theorem. 0O

We denote the set of all maps p : [0,7) — P(LP(D;U)) that are dual to some
v e LP([0,T),D;U) as Pr(LP(D;U)).

We conclude this section by proving a version of the compactness theorem for
time-dependent correlation measures.

Theorem 2.8. Let v, € LP([0,T),D;U) forn=1,2,... be a sequence of correla-
tion measures such that

sup ess sup/ (Vh g0 |EPY da < P < +o0, (2.23)
neN tefo,T) Jo

T/
lim lim sup/ w? (1/27t)dt =0 (2.24)
0

r—=0 nooo
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for some ¢ > 0 and all T" € [0,T). Then there exists a subsequence (n;)3<; and
some v € LP([0,T),D;U) such that:

(i) va, X voas j — oo, that is, <Vﬁj7g>g{k — <uk,g>}ck for every g €
HE([0,T), D;U) and every k € N.
(i) (v}, [€P) g < P for a.e. t €]0,T).
(iii) fOT w? (V7)) dt < liminf, o0 fOT wP (v ,)dt for every r >0 and T' € [0,T).
(iv) For k € N, let p € LL _([0,T) x D*) and k € C(U*) be nonnegative, and let

loc

9(t,x,8) := o(t, 2)r(§). Then
k s k
<V ’g>:}ck < lbg£f<ynj,g>j{k. (2.25)
(v) Assume moreover that D C R? is bounded, T < oo and that v,, have uniformly
bounded support, in the sense that
lulle < M for ui-a.e. w € LP(D;U) for everyn € N, a.e t € (0,T),
(2.26)

with py € Pr(LP(D;U)) being dual to v, then the following observables con-
verge strongly:

lim
J—0oQ Dk

T
/ <u§j;t’r - uﬁm,g(t7x)> dt|dx =0 (2.27)
0

for every g € HEP([0,T), D; U).
We skip the proof of this theorem as is very similar to that of Theorem 2.5.

Remark 2.5. A closer look at the convergence statement (2.27) reveals that we
can expect pointwise a.e. convergence in space of the ensemble averages of the
observables g € H¥P([0,T), D;U). On the other hand, time averaging in (2.27)
seems essential. In other words, we have convergence of time averages of ensemble
averages of the observables.

2.4. Statistical solutions

Using correlation measures we can now define statistical solutions of (1.1a). We
need the following assumptions on the flux function in (1.1a),

[f(w)] <CA+[uf’), Vuel, (2.28)
[f(uw) = f(v)] < Clu — v[max(|ul, [v)P~", Vu,vel, .

for some constant C' > 0 and 1 < p < oo. The value of p is given by available a
priori bounds for solutions of (1.1a), for instance, from the entropy condition (1.3)

(cf. (1.4)). For example, both the shallow water equations and the isentropic Euler
equations are L2-bounded, at least for solutions away from vacuum.'©
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Statistical solutions are correlation measures (or equivalently, probability mea-
sures over LP) satisfying the differential equation (1.1a) in a certain averaged sense.
The full derivation can be found in Ref. 16, and we only provide the definition here.

Definition 2.6. Let i € P(Lp (D; U)) have bounded support,
lull r(p;uy < M for fi-a.e. w € LP(D; U) (2.29)

for some M > 0. A statistical solution of (1.1a) with initial data i is a time-
dependent map p : [0,T) — P(LP(D;U)) such that each p; has bounded support,
and such that the corresponding correlation measures (vF)ren satisfy

k
(V&1 @ @&)+ D Vo, (M@ @ (&)@ @&) =0 (230)
=1

in the sense of distributions, i.e.

/]R+ /Dk<l/i‘fgm€1®-~-®gk>:at@

k
+ (6@ @ (&)@ @ &) Vo pdudt

=1

+[ has o)l =0
Dk

for every ¢ € C®(D* x Ry, U®*) and for every k € N. (Here, v denotes the
correlation measure associated with the initial probability measure fi.)

Remark 2.6. If the initial data i and a resulting statistical solution p; are both
atomic, i.e. i = 0z and py = §, with @ € LP(D;U) and u € LP((0,T) x D;U),
then it is easy to see that a statistical solution in the above sense reduces to a weak
solution of (1.1a). Thus, weak solutions are statistical solutions.

Remark 2.7. The evolution equation for the first correlation marginal of the sta-
tistical solution, i.e. for kK = 1 in (2.30), is equivalent to the definition of a measure-
valued solution of (1.1a).!31® Thus, a statistical solution can be thought of as a
measure-valued solution augmented with information about all possible multi-point
correlations. Hence, a priori, a statistical solution contains significantly more infor-
mation than a measure-valued solution.

3. Dissipative Statistical Solutions and Weak—Strong Uniqueness

In analogy with weak solutions, it is necessary to impose additional admissibil-
ity criteria for statistical solutions in order to ensure uniqueness and stability. In
Ref. 16, the authors proposed an entropy condition for statistical solutions of scalar
conservation laws. This condition was based on a non-trivial generalization of the
Kruzkhov entropy condition to the framework of time-parameterized probability
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measures on L!(D). It was shown in Ref. 16 that these entropy statistical solutions
were unique and stable in the 1-Wasserstein metric on P(L!(D)), with respect to
perturbations of the initial data.

Although one can extend the entropy condition of Ref. 16 to statistical solutions
for systems of conservation laws (1.1a), it is not possible to obtain uniqueness and
stability of such entropy statistical solutions. Instead, one has to seek alternative
notions of stability for systems of conservation laws.

A possible weaker framework for uniqueness (stability) is that of weak-strong
uniqueness, see Refs. 48 and 10 and references therein. Within this framework, one
imposes certain entropy conditions and proves that the resulting entropy solutions
will coincide with a strong (classical) solution if such a solution exists. Weak-strong
uniqueness for systems of conservation laws with strictly convex entropy functions
is shown in Ref. 10. In fact, one can even prove weak-strong uniqueness results
for the much weaker notion of entropy or dissipative measure-valued solutions of
systems of conservation laws, see Refs. 12, 6 and 15.

Our aim in this section is to propose a suitable notion of dissipative statistical
solutions and prove a weak—strong uniqueness result for such solutions. Stability of
solutions will be measured in the Wasserstein distance, whose definition we recall
first.

Definition 3.1. Let X be a separable Banach space and let i, p € P(X) have finite
pth moments, ie. [y [z[Pdu(xr) < oo and [ |z[Pdp(x) < oo. The p-Wasserstein
distance between p and p is defined as

Wytup) = _int Ajmwwmmwf; (3.1)

m€M(p,p)

where the infimum is taken over the set (i, p) C P(X?) of all transport plans
from p to p, i.e. those m € P(X?) satisfying

ﬂw+awmwmzjiwwmw+/cwww,vace@u>
X2 X X

(see e.g. Ref. 46).

As in Sec. 4 of Ref. 16, our entropy condition for statistical solutions will rely
on a comparison with probability measures that are convex combinations of Dirac
masses, i.e. p € P(L?(D)) such that p = Zﬁl @0y, for coefficients a; > 0, >, a; =
1 and functions wuy,...,up € L*(D). From Lemma 4.2 of Ref. 16, we observe that
whenever p is of this M -atomic form, there is a one-to-one correspondence between
transport plans 7 € II(u, p) and elements of the set

M
Aa, p) == {(m,---,uM):m, <oy pn € P(LA(D;U)) and > aipii = u},
i=1
defined for any a = (aq,...,ay) € RM satisfying o; > 0 and Zﬁl a; = 1. The
set A(«, p) is never empty since (u,...,u) € Ala, u) for any choice of coefficients
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a1, - .., ap. Note that the set A(«, 1) depends on the target measure p only through
the weights aq,...,an.

Using this decomposition of transport plans with respect to M-atomic probabil-
ity measures, we define the notion of dissipative statistical solution as follows.

Definition 3.2. Assume that the system of conservation laws (1.1a) is equipped
with an entropy function 7. A statistical solution p of (1.1a) is a dissipative statis-
tical solution if

(i) for every choice of coefficients aq, ..., an > 0 with Zﬁl a; = 1 and for every
(1, ..., fnm) € Ao, i), there exists a function ¢ — (14, ..., uare) € Aoy, g ),
such that each measure p; € Pr(LP(D;U)) is a statistical solution of (1.1a)
with initial data fi;,

(ii) for all test functions 0 < 6(t) € C°(R,),

/ / / n(u(z))d (t)dw dpe (u)dt
Ry JLP(D,U) J D
+/LP(D,U)/D77(U(33))9(O)CZ$ dpi(w) > 0. (3.2)

We remark that the first condition in the above definition demands that the
decomposition of a statistical solution into the components ; is still consistent with
the underlying conservation law (1.1a). On the other hand, the second condition
(3.2) amounts to requiring that the total entropy of u decreases in time.

First, we investigate the stability of a dissipative statistical solution of (1.1a)
with respect to statistical solutions built from finitely many classical solutions
of (1.1).

Lemma 3.1. Let T > 0, set p = 2, assume that
[ £l oo (mvy < 00 (3.3)

(where we denoted by f” the Hessian of f, i.e. (f"(w))ijk = OuiOur [ (u), i,j, k =
1,...,N), and assume that the conservation law (1.1a) is equipped with an entropy
pair (n,q) for which

c< (' (u)w,v) <C, VuecRY veRN with jv] =1 (3.4)

(where " denotes the Hessian matriz of ) for ¢,C > 0. Let i € Pr(L?(D;U)) be a
dissipative statistical solution of (1.1a), and fort € [0,T) let p, = Zﬁl iy, (1) for
coefficients o > 0, Ef\il a; = 1, and classical solutions vy,...,vy € WH(D x
[0,7);U) of (1.1a). Then

WQ(Mtvpt) < eCtWQ(MO7p0)7 Vie [OvT)v (35)

where C=C(R) > 0 is a constant only depending on R:= max;—1 . m

||UiHW1’°°(D><R+,U)~
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Proof. It is straightforward to verify that p; as defined above is a statistical solu-
tion of (1.1a) with initial data p := Ziwl a0y, where v; := v;(0).

Let p* = (@f,...,4%;) € Ao, i) define a transport plan that minimizes the
transport cost between i := pg and p, that is,

2

M
p) = (Z Qi /L ||u—v¢||%zdu;*(u)> : (3.6)
i=1

(Here and in the remainder of this proof, we denote L? = L?*(D;U).) As u; is a
dissipative statistical solution, there exists a map t — (u’{ﬂﬁ o 7;@“) € Aa, pir)
such that

(/ /L/ 2)0ppi(x,t) + f(u(x)) - Vo (@, t)de dp ,(u)dt

+/L2/Du<pi(a:,0)da:duf(u)> =0 (3.7)

for every ¢1,...,o0m € C°(D x [0,T)). For each 1 <i < M, we have that

T
// /vi(x7t)8tgpi+f(vi(t7x))-V$<pidxdu;t(u)dt
0Jr2JD

n / 2 /D 0i(w)pi (, 0)dax dif (1)

-/ ' [, [ atvie + 92 (oo du i

n /L 2 /D o ()i (, 0)da dji; (1)

. /OT / 2 /D i (000i + V- f(05))dar dpf (w)dt

=0, as v; is a classical solution of (1.1a)

= —/D vi(x,0)pi(z,0)dx +/ v (x)pi(x,0)dr = 0.

D

Multiplying the above with «; and summing over ¢, we obtain

M T
i1 0 L2 JD

+ /L 2 /D vigpi(a:,())dxdﬂ;f(u)) = 0. (3.8)
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Subtracting (3.8) from (3.7) and choosing as a test function the vector-valued func-
tion @; = 1’ (vi(z,t))0(¢) for some scalar test function 0 < 0(t) € C°(R,) (here, 7’
denotes the vector-valued derivative of 1 with respect to u), and using the fact that

Api = 1 (0:)0" (t) + O(t)n" (v)Dyvi = ' (v:)0' (t) — O(t) f'(vs) - Vary' (v5),
djpi = 0(t)05n (vi)

yields

M T

= 2 ; (/0 A2 A(U — Ui) . 8,5(,01' + (f(u) — f(Uz)) -Vapi dr duzt(u)dt

+/Lz/D(U—Ui)'@i(x,())da:duf(u)>

M T

+ [ ] @) @ = wp)de di )

T
+/0 /L2 /D 0(t) (f(”) — fvi) = f'(vi)(u — vi)) V' (v;) dx du;t(u)dt> .
=: Z(u|v;)
(3.9)

As v; is a classical solution of (1.1a) and u7j ..., Wis, are probability measures,

we obtain from the entropy conservation of v; that

Zal</ /L?/ (vi)0' (t)dx dp; 4 (u dt+/L2/ (v;)0 dxduf(u)) =0,

(3.10)

for the same test function 6 used in (3.9).
Since p¢ is a dissipative statistical solution of (1.1a), we have

0</R+/L2/ dxdutdt—i—/ / (0)dx dp(u)
zizji];ai(/ /L2/ da:d,u”dt—l—/ / (0)dx dp; (a ))

Subtracting (3.10) and (3.9) from the above inequality we obtain

Zal / /L 2 / o (02) (u— 2)) O () g, ()t

=: H(ulvi)
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M
- ; o /L /D (n(w) — n(v;) — ' (v;)(a — v;))0(0)dz dji ()

M T
—|—Zo¢i/ / / B(6)Z (| v5)da dyif, (w)dt > 0.
P o Jr2Jp '
(3.11)
As n is strictly convex (the lower bound in (3.4)), we have
H(u|vi) > clu — v
Similarly, using (3.3) and the fact that ||v;||yy1.« < R, we obtain that
max(Z(u|v;), H(u|v;)) < Clu — v

Using the above estimates in (3.11) and choosing the test function 6(s) = x(o,4(s)
(by approximating with smooth functions) yields

iai |/ |u<x>—vi<x,t>|2da:du;it<u>siai [ [ @) = wto araz )

+C§:o¢¢ /0 t /L 2 /D fu(z) — vi(z, )| de dut, (u)ds. (3.12)

Applying the integral form of Gronwall’s inequality to the above estimate results in

M M
S [l ulie dedi ) < e 3an [ fla- wla dodii (@
i=1 L2 =1 L2

= e“"Wa(p, p)?,

the last step following from (3.6). As (u7 4, ..., tar,) € Al pe), the above inequal-
ity implies (3.5) and concludes the proof. O

The estimate (3.5) implies stability of dissipative statistical solutions with
respect to probability measures that are convex combinations of Dirac masses, con-
centrated on classical solutions of (1.1a). We can extend such a stability result to
a more general class of strong solutions.

Definition 3.3. A statistical solution p is a strong statistical solution of (1.1a) if
there is some R > 0 such that for every n € N, there exists a p, € Pr(L*(D,U))
of the form p,; = Zf\;"l a;0y,,(+) such that each v; is a classical solution of (1.1a)
and v; € Bp C Wh(D x (0,T)), for all 1 <i < N,, and such that

1
Walpr, pot) <~ ¥ £ €[0,7]. (3.13)

We can now prove our main weak-strong uniqueness result.
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Theorem 3.1. Let ji € P(L*(D;U)). Then under the same assumptions as in
Lemma 3.1, if there exists a strong statistical solution p of (1.1a), then it is unique
in the class of dissipative statistical solutions.

Proof. For a fixed n € N, Definition 3.3 implies the existence of a statistical
solution p, = YN @;0y,(+) such that

1
Walpe, pe) < . (3.14)

Moreover, v;(x,t) € Bg is a classical solution of (1.1a) with initial data ©; for all
i=1,...,N,.
Let ¢ be another dissipative statistical solution of (1.la) with v = f. By

Lemma 3.1 we have
oCt
Wa(pt, 1) < —
n
for some C'= C(R). Using (3.14) and the triangle inequality yields
et 1

Wa(pe,ve) < .
n

Letting n — oo concludes the proof of uniqueness of strong solutions. O

Remark 3.1. If we assume that the initial data g is such that supp(z) C Bg,,
with Bpr, being the ball of radius Ry > 0 in W1°°(D;U), then by classical results
on local well posedness for (1.1a) with strictly convex entropies,'® there exist
T(Ro), R(Ry) > 0, such that for every initial data v € supp(ji), there exists a cor-
responding classical solution v € W (D x [0, T(Ro)]) and |[v|[w1.(px[0,7(Re)]) <
R(Ry). Moreover, the data-to-solution map S; : supp ji — L?(D;U) is well defined
for all 0 <t < T(Ryp), and continuous because

15:(2) = Se()]|2 < |5 — 6], ¥t € [0,T(Ro)]-

Letting p; = Si#tp for all 0 < ¢ < T(Ryp), one can verify that u; is indeed a dissipa-
tive statistical solution of (1.1a). Moreover, it is strong in the sense of Definition 3.3.
Consequently, we can establish that as long as the underlying initial data is sup-
ported on smooth functions, the resulting statistical solutions are locally well posed.

4. Numerical Approximation of Statistical Solutions

In this section, we will construct statistical solutions for the system of conser-
vation laws (1.1a) by proposing an algorithm to numerically approximate it. We
show, under reasonable hypotheses on the underlying numerical schemes, that the
approximations constructed by this algorithm converge to a (dissipative) statisti-
cal solution of (1.1a). As in Refs. 15, 19 and 17, the algorithm will be based on
a finite volume spatio-temporal discretization and Monte Carlo sampling of the
underlying probability space. The spatial domain D will everywhere be assumed to
be bounded.
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4.1. Multidimensional finite volume framework

In this section, we briefly describe numerically approximating conservation laws
with finite volume and finite difference methods. For a complete review, one can
consult Refs. 26, 28, 29 and 35.

We discretize the computational spatial domain as a collection of cells

d d
{(x}17%7x§1+%) X e X (xi47%7xid+%)}(i1w’id) Cc D,

with corresponding cell midpoints

1 1 d d
xi1+%+xil_% xid+%+xid_%
xilu..,id = .

2 R 2
For simplicity we assume that our mesh is equidistant, that is,

m m — _
'Lm—i—l_l‘i’”—%:A? Vm—l,,d

for some A > 0. For each cell, marked by i = (il,...,i%), we let uf(¢) (and
equivalently u2 ,(t)) denote the averaged value in the cell at time ¢ > 0. We
consider the following semi-discrete scheme:

d m,
Euﬁ ., + Z F A 1—(q ey, (t) s 7uiA+qem (t))

m= 1
— P2 (U e, (B, U (416, (1)) =0,
uit | a(0) = alza ), (4.1)
where e, ...,eq are the canonical unit vectors in R, and F™2 is a numerical

fluz function in direction m = 1,...,d. We say that the scheme is a (2¢ + 1)-point
scheme, when the numerical flux function F"2 can be written as a function of
uﬁ_ jem (t) for j = —qg+1,...,q. We furthermore assume the numerical flux function
is consistent with f and locally Lipschitz continuous, which amounts to requiring
that for every bounded set K C R, there exists a constant C' > 0 such that for

m=1,...,d,

A, A A
|Fm’ (ui*(qfl)em (t)7 e 7ui+qem( | < C Z |u 1+Jem (t) )
J=—q+1
(4.2)
whenever uﬁ(qfl)em t),... mﬁqem (t) € K. For the sake of notational simplicity

we will write

F:ﬁ . ( ) = Fm’A(ui_(q_l)em7 e 7ui+qem) foriez?, 1<m<d.

We let S2 : LP(D) — LP(D) be the spatially discrete numerical evolution operator
defined by (4.1), mapping @ +— u®(t). Since S is the composition of a projection
from LP onto piecewise constant functions and a continuous evolution under an
ordinary differential equation, we see that S2 is measurable.
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The current form of (4.1) is continuous in time, and one needs to employ a
time stepping method to discretize the ODE system in time, usually through some
strong stability preserving Runge-Kutta method.?”

As the operator S is a measurable map, we can define an approximation of a
statistical solution of (1.1a) with initial data i by

e = SP# L. (4.3)

Henceforth, p2 is referred to as an approzimate statistical solution.

4.2. Convergence of approrimate statistical solutions

In this section, we investigate the convergence of the approximate statistical solu-
tions pf as the mesh is refined, i.e. as A — 0.

Theorem 4.1. Consider the system of conservation laws (1.1a) with initial data
g € P(LP(D;U)) for some 1 < p < oo, such that supp(fi) C Br(0) C LP(D;U),
with Br(0) being the ball of radius R and center 0, for some R > 0. Assume that
the semi-discrete finite volume scheme (4.1) satisfies the following condition:

(i) LP bounds:
A PP < CAYY |wlP, Ve 0,T), Vae LP(D;U). (4.4)
iez? iezd
(ii) Weak BV bounds: There exists s > p such that

T d
X / SO b, () — ul0)] dt < A, (4.5)
O m=1ieza
with the constant C' = C(||a||,) only depending on the LP-norm of the initial
data u.
(iii) Approximate scaling: There exists a constant C > 0, possibly depending on the
initial data i but independent of the grid size A, such that for every £ > 1

SEA(H™) < CLZSE (). (4.6)
Here, SP(u) is the structure function associated with the time parameterized

probability measure py € Pr(LP(D;U)) (equivalently, time-dependent correla-
tion measure v € LP([0,T), D;U)), defined as

S?(4) = ( / ' / " /4 ) )y e dut(U)dt> g (4.7)

Then there is a subsequence A" — 0 such that the approximate statistical solutions

pd" converge strongly to some p € Pp(LP(D,U)), in the sense of Theorem 2.8(v).

Proof. We will show that the approximate statistical solutions y£, defined in (4.3),
satisfy the conditions of Theorem 2.8 and hence converge (up to a subsequence).
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To this end, we can readily verify from the uniform LP bounds (4.4) and the fact
that supp i C Bg(0), that

supp(pf) C Beg(0), Vtel0,7),

with C' being the constant in (4.4).
Let u®(t) = SAu be the solution generated by the scheme (4.1). Denoting

T d
V(@) :/0 SO fuide, (1) —u (1) dt, (4.8)

m=1ie7d
we obtain from the weak BV estimate (4.5) and Hoélder’s inequality that (recall
that D was assumed to be bounded)

Va(u) < C(T,d, R)A* . (4.9)

The above inequality holds for every u € Br(0) C LP(D;U).
Next, for any r < A, a straightforward but tedious calculation yields

(SP(u)) = / ' 11 ) )y i )

:/OT/LP/D]{ar@) SR a(x) — SPuy)|” dyde di(u)dt  (by (4.3))

T
= / / / ][ |uA(a:,t) — UA(y,t)|p dy dz dt di(@)
Lr /o JDJBr()

< CdAdflr/ Va(@)dfi(a)

Lp

< C(T,d, R)Cyr

D
B

(by (4.9) and r < A),

where Cy = 397! results from successive applications of the triangle inequality.
Hence, summarizing the above calculation, we obtain that for any r < A,

SP(ut) < Cr, (4.10)
for a constant C' that depends on the dimension, the support of the initial proba-

bility measure and the final time but is independent of the grid size A.
Now, for any £ > 1 and r = /A, we have

SE(p®) = SEA (™) < CLZSR (™) (by scaling (4.6))
< Cl:A: (by (4.10))
=Crs.

Here, the constant is independent of A. By combining the above estimate with
(4.10), we obtain that

1

SP(u) < Crs (4.11)

for any r > 0.
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Given the independence of the constant in (4.11) with respect to the grid size A,
we see from (4.11) that the condition of wniform diagonal continuity (2.24) is
satisfied. Hence, up to a subsequence still indexed by A, p® converges to some
w € Pr(LP(D;U)). |

Several remarks on the assumptions in the above theorem follow.

Remark 4.1. There are many examples of finite volume/difference schemes of the
form (4.1) which satisfy the uniform L? bound (4.4) and the weak BV bound (4.5).
Assume that the system of conservation laws (1.1a) possesses an entropy function
71 that satisfies

Ci(1+ uP) <nu) <Co(1+ |ufP), YVuelU (4.12)

for constants C7,Cy > 0 and p € [1,00). Then the uniform LP bound (4.4) follows
for any scheme of form (4.1) that satisfies a discrete entropy inequality,

d A | m,A m,A

@)+ 3 3 (Qp., —Qrs, ) <o, (4.13)
with a numerical entropy flux Q™ that is consistent with the entropy flux ¢™ in
(L.3) for 1 <m < d.

In many cases the weak BV bound (4.5) also follows from the discrete entropy
inequality (4.13). Examples of schemes which satisfy the discrete entropy inequality
(4.13) and the weak BV bound (4.5) are the so-called entropy stable Lax—Wendroff
schemes and the TeCNO schemes of Ref. 18.

Remark 4.2. The approximate scaling assumption (4.6) can be thought of as a
weaker version of the so-called self-similarity at small scales assumption of Kol-
mogorov in his K41 theory for fully developed turbulence in incompressible fluid
flows, see hypothesis H2, Eq. (6.3), p. 75 of Ref. 24. Kolmogorov based his hypoth-
esis on the fact that smooth solutions of the incompressible Navier-Stokes (Euler)
equations scale exactly. Similar considerations also apply to several prototypical
examples of systems of conservation laws (1.1a). In particular, for the compressible
Euler equations (5.1) (in any space dimension), it can be readily checked that if
u(z,t) is a solution, then ¢?u(fx,t) is also a solution for any 6,¢ > 0. Hence, it
is reasonable to hypothesize scaling, analogous to the Kolmogorov hypothesis, for
systems of conservation laws.

Tt is essential to also point out the differences in our hypothesis (4.6) to the stan-
dard Kolmogorov hypothesis for turbulent incompressible flows. First, our hypoth-
esis pertains only to the numerical solution, generated by the finite volume scheme
(4.1). Moreover, we require mere inequalities in the scaling law (4.6), in contrast to
the standard Kolmogorov hypothesis of equality.

Remark 4.3. Intermittency is widely accepted to be a characteristic of turbulent
flows, see Ref. 24. It is believed that intermittency stems from the fact that turbulent
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solutions do not scale exactly as in the Kolmogorov hypothesis. We automatically
incorporate a form of intermittency by only requiring an upper bound in (4.6),
instead of an equality. Hence, the scaling exponent in (4.6) can depend explicitly on
the underlying length scale, provided that it is bounded below by 1/s. This encodes
a form of intermittency in the approximate solutions.

Remark 4.4. Another approach to incorporating intermittency and relaxing the
scaling condition (4.6) is to consider a decomposition of the approximate statistical
solution p2 into a mean flow and a fluctuation. Defining the mean flow by

(1) = (v, ), (4.14)

we see that the mean flow is well defined for almost every (z,t) € D x (0,7T).
Similarly, we can define fluctuations of i> € Pr(LP(D;U)) by its action on all
observables g € 3*?([0,T], D;U),

T
<ﬂA,Lg>=/O /pr.U) /Dkg(a:,t,u(x)—ﬂA(a:,t))da:dﬂtA(u)dt. (4.15)

We can relax the assumption (4.6) by requiring that only the structure function
associated with the fluctuation scales approximately, i.e.

SP(A®) < COY SR (BD), V> 1. (4.16)
If we further assume that the mean flow is BV and L*°, i.e.

max(||aAHL°°((O,T)><D)’ ||77AHL00((0,T)-,BV(D))> <G, (4.17)

for some constant that is independent of the mesh size A, then a straightforward
but tedious calculation yields for any » = (A

. 1 _
SE(ut) < C H“AHLm((o,T);BV(D)) v+ Spa(A®)

< Crv +CU: SR (™) (by (4.16))

< Crv +Cl: A (by (4.10))

= C’r% + Crs.
Thus, the condition (2.24) in Theorem 2.8 is satisfied in this case. A similar argu-
ment can be made by imposing some form of (uniform) Hélder continuity on the
mean flow.

4.3. Consistency of the numerical method

We fix an initial measure g € P(LP(D,U)). For any u € LP(D,U) we define the
local average of u as

1
U = —/ u(x)dx foric Z9,
ICil Je,
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where |C;| denotes the d-dimensional Lebesgue measure of C;. We now state the
“Lax—Wendroff theorem” for our numerical method, that is, consistency of the
method with the PDE.

Theorem 4.2. (Lax-Wendroff theorem for statistical solutions) Let the initial data
i have bounded support, supp fi C By (0) C LP(D,U) for some K > 0. Let u> be
given by (4.3) for A > 0, and assume that for some sequence A,, — 0, the sequence
{uA}nen converges strongly to p in Pr(LP(D,U)), in the sense of Theorem 2.8(v).
Assume moreover that the following weak BV bound is fulfilled:

T d
Ad/ / DD ui i, |” dpit (w)dt < CA, (4.18)
0 L

P(D) po—1 iczd
for some 0 < s. Then py is a statistical solution of (1.1).

Given the complicated notation and very technical nature of the proof of the
above theorem, we illustrate the main steps of the proof in a very special case,
namely k = 2 for a one-dimensional scalar conservation law (d = N = 1). The proof
in the general case is postponed to Appendix D.

Proof for the second moment of a scalar conservation law in one spa-
tial dimension. We consider a scalar conservation law (N = 1) in one spatial
dimension (d = 1). By (4.4), there is some K7 > 0 such that

supp i C Bg,(0), Yt e0,T). (4.19)
Let {u?};cz be computed by (4.1). Denote F» = F14 and, for u € LP(D), write
Fiﬁ%(u):FA(Ui,q+17...7Ui+q)7 i € 7.

For all pairs of cells i, j, we have, by the product rule,

(F2 (1) = F2, (1)) uf

i o

W (F2 L (A (0) = F2 L (u ()(1)).

Hence, for arbitrary ¢ € C°(R? x [0,7)), we get

T
0= / B (U (O)0hp(ws, 2, 1) di + ol 25, 0)u (0)u(0)
0
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T /1
B / (z@ﬁ;(u%» — 2y )

+ %u? (Fﬁ% (uA(t)) - FjAé(uA(t))))cp(xi?xj,t) dt.

Multiply by A2, sum over all 7, j € Z and perform a summation-by-parts to obtain

T
0=A? Z (/0 u (s ()0 (i, x5, t) dt + UJA(O)U?(O)‘P(%’%AOO

i,j€Z

T 1,25, 1) — ol T,
+A22/0 (Fiﬁ;(UA(t))uA(t)‘p(xz+1, i t) — o( t)

~ I A
,JEZ

A A A (@i, vjp1,t) — (@i, 75,1)
Tub(OFS (A1) . dt

T
= A? Z (/0 u (s (£)0p(wi, 5, t) dt+uf(0)uf(0)gp(a:i,g;j,o)>

i,JEZL
T
#8230 [ (R A 002 (008 p(os.a;.)
ijez’0
Ul (O F 1 (W (0)05 e(wi, @5, 1)) dt,

= “"($+A’y’27ww’y’t)7 and similarly for 95 .

where we have denoted 99 ¢(z,y,t)
From the special form (4.3) of u2, we therefore have

T
0=A? Z (/0 /Lp wiuOpp (i, w4, t) dud (u) dt + /LP uiujtp(ari,a:j,())du(u)>

i,jEL

T
rar 3 [0 ] (F2 0 oten )+ S 00 el
i,jEL r

X dp () dt.

We write now

0 Lp
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The last term vanishes as A — 0, since

T
A2 Z A AP (Fﬁr%(u) - f(ui))ujaf@(xhxj,t) thA(U) dt

i,JEL

T
S/o /Lp AN ES () = fui)|Jug 108 (@i, a5, )] dp (u) dt

i,jEL

T
< /0 /L (AZ P2 () = Fus)|[[0f (s, .J)HLH(RJ

€7

1/p
X (AZ |uj|P> dpi (u) dt

JEZ
T
< KTA /Lp Alezz |Fﬁ_%(u) - f(u1)|||81A(p(1‘1, '7t)||Lp’(R) d:utA(u) dt
(by (4.19))

i+q

T
K A i — Wy
< T/O /Lp > Jui—u

i€Z i'=i—q+1

alASD(xh K dutA(u) dt

|

t)HLP’(R)
(by the Lipschitz continuity (4.2))

T
gCKT/O /LPAZM_ui,1||\a$@(xi7.7t)|pr,(R) dpi (u) dt

€7

T 1/s
SCKT (/ / AZ|ui—ui_1}sdutA(u)dt>
0 Lp

€L

—0 as A—0, by (4.18)

T ) 1/s’
([ Sttt 0l )

1€Z

bounded as A—0

— 0.

A similar computation holds for the integral involving F' ﬁ; (u). Setting A = A,
JT3

then gives

T
0= 1i_{n (Ai Z (/ / wiu;Orp (i, 24, t) dusr (u) dt
n o0 0 p

i,jEL
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—|—/ uujo(zy, xj,0) du(u))
Lp

+ A2 Z/ / (u; u]al o(xi, xj5,t)
Lp

1,JEZL
+ uif (u) 05 (i, w5, 1)) dpp ™ (u) dt)

(as u is piecewise constant p"-almost surely)

= lim (/ / / Y)Oyp(x, y, t) dedy du™ (u) dt
n— oo Ly JR2

—I—/Lp u(@)u(y)p(e, y,0) dedy dug (u / /LP/R2 W)l y.1)

+ w(@) f(u(y)Oap(x,y, t)) dedy dug™ (u) dt)

/ /Lp /R2 y)Orp(z, y,t) dedy dus(u) dt

‘ /Lpu<x>u<y>sa<x7y7o>dxdydu // L @)uma. .

+ u(z) f(u(y))O2p(z, y, t)) dedy dp(u) dt,
which completes the proof. O

Remark 4.5. We can readily show that the limit statistical solution y, is a dissipa-
tive statistical solution, assuming that the underlying finite volume method satisfies
the discrete entropy inequality (4.13). To this end, for every choice of coefficients
i, ..., o > 0 with Zﬁl a; = 1 and every (fi1,...,4nm) € A, i), we construct
,uft = SP40; as the approximate statistical solution generated by the scheme
(4.1). By the convergence theorem (Theorem 4.1), we can show that each th con-
verges (possibly along a further subsequence), in the topology of Theorem 2.8, to
wit € Pr(LP(D;U)) as A — 0. By Theorem 4.2, each p; is a statistical solution of
(1.1a) with initial data fi;, and the condition (3.2) is a straightforward consequence
of the discrete entropy inequality (4.13) and the growth condition (4.12).

4.4. Monte Carlo algorithm

While (4.3) provides an abstract definition of p2, it is not amenable to practical
computations, since it requires the computation of the trajectory of the numerical
solution operator for almost all possible initial data @ € supp i. We will further
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approximate p2 by sampling it for a large ensemble of initial data, drawn from the
initial probability measure.

The Monte Carlo algorithm has been shown to be robust in tackling high dimen-
sional problems with low regularity Refs. 40-42, 32, and has later been demon-

strated to perform very well for computing measure valued solutions.'®

Algorithm 1. (Monte Carlo Algorithm)
Data: Initial @ € P(LP(D,U)), mesh width A > 0, numerical evolution
operator S, number of samples M € N
For some probability space (2, Q,P), let uq,...,upn : Q — LP(D;U) be
independent random variables with distribution j;
form=1,...,M do
| Evolve the sample in time, u% (t) = SP (i)
end
Estimate statistical solution by the empirical measure

1
A, ]W 2 :
/j’t (JJ) = M P 6uﬁ(w;-,t)' (420)

In the rest of this paper, we will refer to the above algorithm simply as
“the Monte Carlo Algorithm”. Note that for any admissible observable g €
HEP([0,T), D;U), using (4.3) and (4.20), we obtain that

/ / / (z,t,u)dx du dt = // / (z,t,SPu(z))dx dt dfi
Lr JDF Lr DF

T
7y (/0 9 @t 520m(2) dwdt) (ML) )

Remark 4.6. One should note that the probability measure M%’M is indeed a
random probability measure depending on some probability space 2 from which

<NA7L9>

Q

U1, ... Uy are being drawn.

Using well-known results for weak convergence of the Monte Carlo algorithm,*®
we can prove that the Monte Carlo approximation of the statistical solution con-
verges as the number of samples is increased.

Theorem 4.3. Let i € P(LP(D,U)) have bounded support, let S® be some
numerical evolution operator, and let ,utA’M be defined through the Monte Carlo
Algorithm. Let p2 be defined by (4.3). Then for every admissible observable
g e f}'le’p([O,T],D; U), we have

A 12 A 2
wp, Loy — (up, L

E{(u?M M%,Lgﬂ < i Ls) M< 7. Lo) : (4.22)
where

(3. 12) = [ [ ot ut)atout)de dy i (0)
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The proof of the above theorem follows by standard arguments for proving
convergence of Monte Carlo approximations. It is analogous to the proof of Monte
Carlo convergence to statistical solutions of scalar conservation laws, see Theorem 2
of Ref. 17. Note that the right-hand side in (4.22) is bounded on account of the
hypothesis (2.16) on admissible observables g € K2 ([0, T], D; U).

5. Numerical Experiments

For all the numerical experiments in this section, we consider the two-dimensional
compressible Euler equations,

p pw® pw?
2
o | pw® 3] w®)” 4 0 pwrwy
9 PR P s 4 B .| =o. (5.1)
ot | pwY 0xq pwwY Oz | p(w¥)* +p
E (E + p)w” (E+ p)w?

The system is closed with the equation of state

P p((w*)? + (wY)?)
B=—to+ 5 .

We set v = 1.4 for all experiments.

5.1. Kelvin—-Helmholtz problem

We start with this well-known test case for the development of instabilities in fluid
flows, which was also extensively studied in Ref. 15.
The Kelvin—Helmholtz initial data is a shear flow, separating two states of vary-
ing density and pressure,
ur, L(w;z) <z < Ih(w;z)

uo(w; o1, 29) = for (x1,22) € D = [0,1]%.
uRr, otherwise

(5.2)

We assign periodic boundary conditions, and the two states are given as p;, = 2,
pr =1, w§ = —0.5, w§ = 0.5, wy = w}, = 0 and p;, = pr = 2.5. The interfaces
between the two states are given as

K
Ii(2,w) = 2(2_1 )+l Z )sin(2m(z + b (@), (5.3)

where K = 10, ¢ > 0, and a; and b;- (for 1 =1,2,7=1,...,K) are independent
uniformly distributed random variables on the interval [0,1]. We normalize (a}),
such that }°, aj = 1.

The 1n1t1a1 measure [ is given by the distribution of the random field ug. Note
that although fi is a probability measure on the infinite-dimensional space LP(D; U),
it is only concentrated on a 40-dimensional subset of this space.



Math. Models Methods Appl. Sci. 2020.30:539-609. Downloaded from www.worldscientific.com

by CARNEGIE MELLON UNIVERSITY on 07/09/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

Numerical approximation of statistical solutions 571

10
2.0
08
18
06
16
£
0.4 14
02 2
1.0
0.0

0.0 0.2 0.4 0.6 0.8 1.0
X

x

(a) 128 x 128 (b) 256 x 256

x x

(c) 512 x 512 (d) 1024 x 1024

Fig. 1. The approximate density of the Kelvin—Helmholtz instability (5.2) with a fixed w € Q
for different mesh resolutions with the same initial data. The scheme used is an HLL3 flux with
a WENO2 reconstruction algorithm. In this experiment, ¢ = 0.01 and 7" = 2.

As was already shown in Ref. 15, there is no convergence for single realizations
(samples) of the problem (5.1), (5.2) as the mesh is refined. We observe this behav-
ior from Fig. 1, where we display the approximate density at time 7' = 2, computed
with a second-order high-resolution finite volume scheme using an HLLC approx-
imate Riemann solver and WENO reconstruction, together with a second-order
SSP Runge-Kutta time integrator, on a sequence of successively refined meshes. As
seen from the figure, structures at finer and finer scales are generated upon mesh
refinement, impeding convergence. This lack of convergence is also verified from
Fig. 2(a), where the so-called Cauchy rates of the density are shown, i.e. quantities
of the form

Cauchy, (¥, A, T) i= [ U4(-, T) = % (-, T)|| o(p), (5.4)

with U2 being any observable of the solution computed on a mesh with mesh size A.
On the other hand, the theory developed in Sec. 4.1 suggests that observables
g€ ﬂ-C’f’p ([0,T], D; U) of the ensemble of solutions, for all k, should converge on mesh
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Fig. 2. Cauchy rates (5.4) for the approximate density in the Kelvin—Helmholtz problem (5.2)
for different mesh resolutions. The scheme used is an HLL3 flux with a WENO2 reconstruction
algorithm. In this experiment, ¢ = 0.01. Here T = 2.

refinement. We start by considering observables with respect of the first marginal
v! of the approximate statistical solution. In particular, we consider the mean and
variance of the density variable p, given by

MA(:,C,t) = <Vt1,7zA7p>v VA(:,C,t) = <Vt1,’mA7p2 - (MA(xvt>>2>' (5'5>

The above quantities are defined a.e. in Dx [0, 7] and v*2 is the first marginal of the
approximate statistical solution ,utA M generated by the Monte Carlo Algorithm. It is
straightforward to check that the mean and the variance are admissible observables,
in the sense of Convergence theorem (Theorem 2.8).

We plot the mean and the variance of the density at time 7" = 2 in Fig. 3.
As seen from this figure, and in contrast to single samples, the mean and variance
clearly converge upon mesh refinement. Moreover, the variance is also concentrated
along the so-called mizing zone, which spreads out from the initial interface. The
convergence of the mean and the variance is further verified from Figs. 2(b) and
2(c), where the Cauchy rates (5.4) of the mean and variance M, V4 are displayed
as a function of mesh resolution.
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Fig. 3. The approximate mean (top row) and variance (bottom row) of the density of the Kelvin—

(b) Variance at different resolutions
Helmholtz instability (5.2) for mesh resolutions of (from left to right) 1282, 2562, 5122 and 10242
points. The scheme used is an HLL3 flux with a WENOZ2 reconstruction algorithm. In this exper-
iment, € = 0.01. The number of samples used, M, was set equal to the resolution N, and the final
time is T' = 2.

To quantify the convergence of the distribution of 1~ we consider the following
Cauchy rates:

)/VkA </ Wy VTI7V§~w)pdx)p7 (5.6)

with W), being the Wasserstein metric defined in (3.1) and v**2 is the kth correlation
marginal of the (approximate) statistical solution utA M generated by the Monte
Carlo Algorithm. One can check that for all £ € N

W[]f’A( ) < Ok, p)Wy(u, 12 ) for a.e. t € (0,7 (5.7)

(see Appendix E for a proof). As the Wasserstein metric metrizes the weak topology
on probability measures, we may conclude from Theorems 2.8 and 4.1 that under the
assumptions of some form of time continuity, the right-hand side of (5.7) goes to zero
as A — 0. This convergence is verified in Fig. 4(a), where we plot the corresponding
Cauchy rates for the distance (5.6) with respect to the density (see Appendix F for
details about how the Wasserstein distance was computed numerically).

Next, we consider the computation of observables with respect to the second

2.8,M of the approximate statistical solution g . The most
(u™™)

correlation marginal v
interesting observable in this regard is the approximate structure function S?
(4.7). This is clearly an admissible observable in the sense of Theorem 2.8. For
computational purposes, it is easier to compute the time-sections of the structure
function, namely

W) ::/ 7[ el - gl dydo (5.8)
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Fig. 4. Cauchy rates for the Kelvin—Helmholtz problem.

for t € [0,7]. In Fig. 5, we plot wf(y%’A’M)l/” for a sequence of mesh sizes A.

Moreover, we consider three different setups in the figure. In Figs. 5(a) and 5(b),
we set € = 0.1 in (5.3) and T'= 2 and T = 4, respectively, and in Fig. 5(c) we set
€ = 0.01 and T" = 2. As seen from the figures, it is clear that the approximate struc-
ture functions converge as the mesh is refined. Moreover, the structure functions
(approximately) behave as

WP (VAP O(T)r (1), (5.9)

The computed values of 6,(T) are seen in the legend in Fig. 5.

The numerical convergence of structure functions is further verified in Fig. 4(b),
where we plot the Cauchy rates (5.4) with g(r, T) = w2(v2>™) with p = 1. In this
figure, T = 2 and € = 0.01. Clearly, the structure function (as a function of length
scale r) converges as the mesh is refined.

Finally, we compute the Wasserstein Cauchy rates W? A(T) (5.6) with respect
to the density, over successively refined mesh sizes and display the result in Fig. 4(c).
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Fig. 5. Structure functions (5.9) for the Kelvin—Helmholtz instability (5.2) for different times
T, exponents p and perturbation sizes e. The scheme used is an HLL3 flux with a WENO2
reconstruction algorithm. At each mesh resolution N, M = N samples were used.

This figure clearly shows that there is convergence (with respect to mesh resolution
and number of Monte Carlo samples) in this metric.

Next, we compute the two-point correlation marginal uf’f’g;M for point pairs
(x,y) € D. We visualize this Young measure by empirical histograms, plotted in
Fig. 6. In this figure, we show the empirical histogram of the two-point correlation
Young measure of the density, on successively refined grids, for two different point
pairs = (0.7,0.7), y = (0.4,0.2) (left column) and z = (0.7,0.7), y = (0.7,0.8)
(right column). The figure indicates that the empirical histograms of the two-point
correlation marginals converge on mesh refinement. Moreover, there is a clear dif-
ference in the correlation structures at different point pairs.
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5.2. Richtmeyer—Meshkov problem

Our second test case is the well-studied Richtmeyer—Meshkov problem (see Ref. 15
and references therein), which involves a very complicated solution of the compress-
ible Euler equations (5.1), modeling the complex interaction of strong shocks with
unstable interfaces. The underlying initial data is given as

20 if |z] < 0.1, 2 if |z] < I(z,w),
plx) = w” =wY = 0.
1  otherwise. 1 otherwise

p(x) =

(a) N =128

14

Val, &

€ 0 010,75 0 = W
0.7, 2

(b) N = 256

Fig. 6. Two-dimensional histograms for the correlation measure at ((0.7,0.7),(0.4,0.2)) (left
column) and ((0.7,0.7), (0.4,0.2)) (right column) for different resolutions for the density in the
Kelvin—Helmholtz problem (5.2). The scheme used is an HLL3 flux with a WENOZ2 reconstruction
algorithm. Here, 7' = 2 and € = 0.05, and we use M = 1024 samples.
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(d) N = 1024

Fig. 6. (Continued)

We assign periodic boundary conditions on D = [0,1]?. The interface between the
two states is given as

K
I(z,w) =025+ 6Zaj(w) sin(27(z + b;(w))), (5.11)
j=1
where K = 10, ¢ > 0, and a; and b; (for j = 1,...,K) are uniform random

variables on the interval [0, 1]. We normalize the a; such that }_, a; = 1. The initial
probability measure p is given by the law of the above random field, and lies in
P(LP(D;U)) for every 1 < p < oo.

As in the case of the Kelvin-Helmholtz problem, there is no convergence
(on mesh refinement) for single samples (realizations). This non-convergence is
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Fig. 7. Cauchy rates (5.4) (vertical axis) versus A (horizontal axis) for the Richtmeyer—Meshkov
problem using € = 0.06 and 7" = 5.

demonstrated in Fig. 7(a), where the Cauchy rates (5.4) with respect to the density
at time T" = 5 are shown. We visualize the density for different mesh resolutions
in Fig. 8 (top row). As seen from this figure, the solution at this time is very com-
plicated on account of the interaction between the incoming strong shock (which
has been reflected, due to periodic boundary conditions) and the unstable interface,
which leads to the generation of turbulent small scale eddies.

On the other hand, and as predicted by the convergence theory developed in
Sec. 4.1, statistical observables such as the mean and the variance (5.5) converge on
mesh refinement, as shown in Fig. 8 (middle and bottom). Furthermore, this figure
shows how the small scale structures are averaged out in the mean, whereas the
small scale information is encoded in the variance, which is concentrated around the
mixing zone. We also verify the convergence of the Wasserstein distance Wf’A(T)
with respect to the density for successively refined meshes in Fig. 7(b).

Next, we compute the time sections of the structure function w2 (v defined
in (5.8). These are shown in Fig. 9, where we have used T =5, r = 2710 275,

and two different values of the perturbation parameter in (5.10). As seen from
the figure, the structure function clearly converges on mesh refinement. Moreover,
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Fig. 8. Approximate density for the Richtmeyer—-Meshkov problem (5.10) using € = 0.06 and at
T = 5. All results are based on a scheme with the HLLC flux and MC reconstruction, computed
at resolutions with (from left to right) 1282, 2562, 5122 and 10242 points.

it behaves as in (5.9), with exponents shown in Fig. 9. The convergence of the
structure function is further verified by plotting the Cauchy rates for the structure
function, as a function of the length scale r in Fig. 7(c).

In Fig. 7(d), we plot the Wasserstein distance W? “2(T) for the density and
T = 5, on a sequence of successively refined meshes. As shown in the figure, this
distance converges on mesh refinement.

Finally, in Fig. 10, we plot histograms that represent the two-point correlation
measure for the density at two different point pairs and at time 7" = 5. These
histograms show that the two-point correlation structure for this initial datum
is very different from the correlation structure for the Kelvin—-Helmholtz problem
(Fig. 6).

5.3. Fractional Brownian motion

The initial probability measure i € P(LP(D;U)) in the previous two numerical
experiments was realized as a probability measure on high- but finite-dimensional
subsets of LP. We now consider initial probability measures that are concentrated
on genuinely infinite-dimensional subsets of LP(D;U).
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Fig. 9. Structure functions for the Richtmeyer—Meshkov problem (5.10) for different perturbation
sizes €. The scheme used is an HLL3 flux with a MC reconstruction algorithm. At each mesh
resolution N, M = N samples were used.

We will assume that the initial probability measure for the two-dimensional
compressible Euler equations (5.1) corresponds to a fractional Brownian motion.
Introduced by Mandelbrot et al.3” fractional Brownian motion can be seen as a gen-
eralization of standard Brownian motion with a scaling exponent different from 1/2.

We consider the following initial data:

wp (wi @) = Bl (wiw), po =4
forwe Q, z €10,1)?
wi (w;z) == B (w; ), po=2.5
where BH and BI' are two independent two-dimensional fractional Brownian
motions with Hurst index H € (0,1). Standard Brownian motion corresponds to a
Hurst index of H = 1/2.

To generate fractional Brownian motion, we use the random midpoint dis-
placement method originally introduced by Lévy3® for Brownian motion, and later
adapted for fractional Brownian motion.*»*” Consider the uniform grid 0 = z; <
o <zypr=1withz; 1 =iAand A = %, where N = 2% 4+ 1 is the number of
cells for some k € N. We first fix the corners

wi’ﬁ’m”(w; 0) = wi’f’mﬁ(w; 0) = wﬁ;ﬁ,’Am(w; 0) = wf\;f’m”(w; 0)=0, weq,

recursively update the values on the edges as

x,H,Ax (LU' O) o 1 ( x,H,Ax z,H,Ax
; =

ok—1-1(2j41),2k—1} 3 w2k—l(j+1)72k—li(w; 0) + ka—lLQk—li(w; O))

1 — 22H-2
+ 227)(214,]"21&-—11‘(60)

w
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z,H,Ax
T 2kl ok o1 (2i41)
cells, we use the following expression:

and correspondingly for w (w;0). For the values in the center of the

z,H,Ax .
w2k—l—1(2j+1)72k—L—1(2j+1) (w7 O)
1 z,H,Ax x,H,Ax z,H,Ax
= Z (wgk—l(j+1)72k—li(w; O) + ka—lek—zl’(w; O)wgk—l(j_‘_l),Qk—l(i_‘_l) (w§ O)

x,H,Ax / 1 —22H-2
+ ka*l(j—O—l),Qk*l(i—'rl) (w, O)) + 227)(214,]"21&-—%((,0)

(a) N =128

(b) N = 256

Fig. 10. Two-dimensional histograms for the correlation measure at ((0.7,0.7), (0.4,0.2)) (left
column) and ((0.7,0.7), (0.4,0.2)) (right column) for different resolutions for the density in the
Richtmeyer—Meshkov problem (5.10). The scheme used is an HLL3 flux with an MC reconstruction
algorithm. Here, T" =5 and € = 0.06, and we use M = 1024 samples.
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(d) N = 1024

Fig. 10. (Continued)

forl=0,...,kandfori,j =0,...,2". Here (Xk,n) (k,n)en? is a collection of normally
distributed random variables with mean 0 and variance 1. That is, we bisect every
cell and set the middle value to the average of the neighboring values plus some
Gaussian random variable. The same procedure is repeated for w2, See Fig. 11
for a sample of the initial velocity field with standard Brownian motion, i.e. with
H =0.5.

The initial probability measure is given by the law of the above random field
and the dimension of its support increases with decreasing mesh size. Hence, in
the limit A — 0 we are approximating a probability measure supported on an
infinite-dimensional subspace of L?(D;U)

We compute the statistical solutions with the Monte Carlo Algorithm with the
fractional Brownian motion initial data for two different Hurst indices, H = 0.1
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(a) wg (b) wl

Fig. 11. Two samples of velocity fields with the Brownian motion initial data.

and H = 0.5. Statistical observables corresponding to the one-point correlation
marginal, such as the mean and variance, converge on mesh refinement, as shown
in Fig. 12. We also plot the mean and variance of the density at the highest mesh
resolution of 10242 grid points and final time T' = 0.25, for the two different Hurst

s
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Fig. 12. Cauchy rates (5.4) for the mean and the variance of the density p for the fractional
Brownian motion initial data at time 7" = 0.25. The scheme used is an HLL3 flux with a WENO2
reconstruction algorithm.
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Fig. 13. The mean and the variance (of the density) at the highest resolution of 10242 mesh points
and 1024 Monte Carlo samples, for fractional Brownian motion initial data with two different Hurst
indices and at time 7' = 0.25. The scheme used is an HLL3 flux with a WENO2 reconstruction
algorithm.

indices, in Fig. 13. As seen from the figure, there is a clear difference in the spatial
structure of the mean and the variance as the Hurst index is changed. Moreover,
the spatial structure of these statistical quantities is much more complicated than
in the case of the Kelvin—Helmholtz and Richtmeyer—Meshkov initial data, with
no clear large scale structures such as shocks. On the other hand, the statistical
quantities have more small-scale structures. This is more pronounced in the H = 0.1
case than for standard Brownian motion.

For r = 2719 ... 27% we plot the (time sections of) the structure function
w? (l/t2 ’A’M) at time 7" = 0.25 in Fig. 14. The structure functions clearly converge on
mesh refinement. This is also verified for both Hurst indices in Figs. 15(a) and 15(b),
where we plot the Cauchy rates (5.4) for the structure function, with respect to the
length scale r. Moreover, the structure functions scale as in (5.9).

In Figs. 15(c) and 15(d), we plot the Cauchy rates of the Wasserstein dis-
tance W? *2(0.25) with respect to grid resolution, for both Hurst indices. We verify
from this figure that these distances also converge on mesh refinement and sample
augmentation.
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Fig. 16. Histograms representing the two-point correlation marginal for the density at time 7" =
0.25 and two different Hurst indices, at two different point pairs. Top row: At points (0.4, 0.2)
and (0.7,0.8). Bottom row: At points (0.7,0.7) and (0.7,0.8). All figures are generated with mesh
resolution of 10242 points and with 1024 samples.

Finally, in Fig. 16, we plot histograms representing the two-point correlation
marginals of the density, computed on the finest grid resolution of 10242 grid
points, for two different point pairs. The figure shows that the two-point correlation
structure is again very different for different Hurst indices, and from the correlation
structures for the previous numerical experiments.

5.4. Stability of the computed statistical solution

A priori, the computed statistical solution depends on the specifics of the underlying
initial probability measure i as well as on the details of the numerical scheme
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(4.1), used within the Monte Carlo Algorithm. We investigate the stability of the
computed statistical solution with respect to these parameters in the specific case
of the Kelvin-Helmholtz problem (5.2).

In Ref. 15, the authors had already demonstrated the stability of numerically
computed measure-valued solutions with respect to variations of the underlying
numerical method, or to the size and type of perturbations to the Kelvin—Helmholtz
initial data. As the computed measure-valued solution in Ref. 15 is identical to
the first correlation marginal of our computed statistical solution, we can deduce
that the observables with respect to the first correlation marginal are also stable.
Therefore, we investigate the stability of observables with respect to the second
correlation marginal v?%M  The results are summarized below.

o Stability with respect to amplitude of perturbations. We vary the size of the per-
turbation parameter € in (5.3) over two orders of magnitude, from ¢ = 0.001 to
e = 0.1. The computed (time section of) structure function (5.8) for p = 2 and
at time T = 2, on the finest resolution of 10242 points and 1024 Monte Carlo
samples, is shown in Fig. 17(a) (left). As seen from the figure, the computed
structure functions are very close to each other and scale as (5.9) with 6 ~ 0.61.
This indicates stability of the computed structure function with respect to the
amplitude of perturbations in the initial data. This stability is further Yeriﬁed in
Fig. 17(a) (right) where we plot the Wasserstein distance ||Wy (v7:5,, l/;z) HLl(D2)
with respect to the density, at time T = 2 for different values of the pertur-
bation parameter. The plot shows (linear) convergence with the decay of the
perturbation, indicating stability of the computed statistical solution wvis-a-vis
perturbation amplitude.

o Stability with respect to type of perturbations. In all the numerical experiments
for the Kelvin—Helmholtz initial data, we have assumed that the random vari-
ables a;, b; in (5.3) are chosen from a uniform distribution. Here, we choose these
random variables from a standard normal distribution. This amounts to varying
the corresponding initial probability measure for (5.2). The consequent change
in the structure function (5.8) for two different amplitudes of the perturbation
parameter € in (5.3) are shown in Fig. 17(b) (left). The figure clearly shows that
the computed structure functions are very close to the ones computed with the
uniform distribution. This stability with respect to the type of perturbation is
further verified in Fig. 17(b) (right) where we plot the HW1 (V%}ﬁ%i)!’Ll(DQ)
at time T" = 2. Here, v, I refer to the correlation measures, computed with the
uniform and standard normal random variables, respectively. The plot shows con-
vergence with the decay of the perturbation, indicating stability of the computed
statistical solution, wvis-d-vis perturbation type.

o Stability with respect to choice of numerical scheme. In order to investigate
the stability of the computed statistical solutions to the choice of the under-
lying numerical scheme in (4.1), we vary the reconstruction procedure, i.e.
we use a high-resolution finite volume scheme based on the HLLC flux, but
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Fig. 17. Stability of the statistical solution with respect to variations of different parameters in
the Kelvin—Helmholtz problem (5.2). Left column: The structure function (5.8) for p = 2. Right
column: Different Wasserstein distances. All computations are at time 7" = 2, computed on a fine
grid of 10242 points and with 1024 Monte Carlo samples.
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with either MC or WENO2 reconstructions (see e.g. Ref. 35). The choice of
the reconstruction leads to change in the subgrid scale numerical viscosity of
the overall approximation. We plot the structure function (5.8) in Fig. 17(c)
(left) and observe a very minor change in the structure function. This issue
is investigated further in Fig. 17(c) (right) where the Wasserstein distances
HW1 (V%{,%NOQ,T,aﬁVf/ié7T7r)HLl(D2) at time T = 2 are plotted. Here u%(,%NOQ is
the second correlation marginal, computed with the WENO2 reconstruction pro-
cedure, and Vl%/ié is the second correlation marginal, computed with the MC
reconstruction procedure. We observe convergence of this distance with respect
to resolution. This allows us to conclude that the statistical solutions are stable
with respect to the choice of the underlying numerical method, at least for this
Kelvin—Helmholtz problem.

5.5. Statistical steady state and regularity

In addition to the four numerical experiments reported in the last section, i.e.
Kelvin—-Helmholtz, Richtmeyer—-Meshkov, and fractional Brownian motion with two
different Hurst indices of H = 0.1 and H = 0.5, we have performed two further
numerical experiments. Both of them consider the two-dimensional compressible
Euler equations with the following initial data:

e Fractional Brownian motion initial data with Hurst index H = 0.75.
e Shock—vortex interaction initial data, see Sec. 6.3.2 of Ref. 18 and references
therein.

The Monte Carlo Algorithm is used to compute the approximate statistical solution
utA M for these additional sets of initial data.

We focus on the (time-sections of) the structure function (5.8) and find that in
all six numerical experiments, the structure function behaved as (5.9). The exponent
0,(t) as a function of time for p = 1, 2, 3 and for each numerical experiment is shown

in Fig. 18. We observe the following from this figure.

e First, the exponent 6,(t) reaches a steady state rather quickly, when compared
to the dynamic behavior of the solution. In other words, Fig. 18 seems to suggest
that statistical equilibrium is reached significantly faster than the (deterministic)
steady state for individual realizations. Hence, the system evolves dynamically for
each sample, while the whole ensemble has already reached statistical equilibrium.
The time scale at which this statistical equilibrium is reached depends on the
specifics of the initial data.

e For all the experiments except the shock—vortex interaction, there is a very inter-
esting behavior of the structure function (5.8) with respect to time. In particular,
the exponent 6,(t) for p = 2,3 clearly increases with time, indicating that the
nonlinear evolution statistically reqularizes the solution in some manner. The
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Fig. 18. The evolution of the approximate scaling exponents of the structure functions as a
function of time.
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exception is for the shock—vortex interaction where this exponent remains con-
stant with time. This can be explained by the fact that the shock—vortex inter-
action results in a solution whose total variation (TV) norm is bounded. Hence,
one can readily verify that 6,(t) = %, which is approximately realized in the
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computations. On the other hand, as shown in Fig. 19, the (average) BV-norm
blows up for all the remaining test cases. Hence, in these problems, there is a
complex interaction of structures at different length scales that leads to a subtle
statistical regularity.

e Last, but not least, we observe that in all the numerical experiments we have
considered, the structure functions scale as (5.9). Hence, the approximate scaling
assumption (4.6) in Theorem 4.1 is always observed to be satisfied.

5.6. Reproducing the numerical experiments

All experiments were carried out using the open source Alsvinn simulator.3” Please
consult the two GitHub repositories

https://github.com/kjetil-lye/systemspaper_experiments,
https://github.com/kjetil-lye/statistical _systems_paper_experiments

for a full description on how the experiments were carried out, along with the raw
data and post processing scripts.

6. Discussion

We consider hyperbolic systems of conservation laws (1.1). Although both scalar
conservation laws and one-dimensional systems are well posed within the standard
solution framework of entropy solutions, it is now clearly established that entropy
solutions for multi-dimensional systems are not unique, nor are they amenable
to numerical approximation. On the other hand, numerical evidence presented in
Refs. 15, 19 and references therein suggests that a statistical notion of solutions
might be more appropriate for (1.1), even if the initial data and other underlying
parameters are deterministic.

Entropy measure-valued solutions
work. Although global existence and numerical approximation results for entropy
measure-valued solutions are available, it is well known that measure-valued solu-

13,15 present one possible solution frame-

tions are non-unique, even for scalar conservation laws. As argued in Sec. 9 of
Ref. 19, this is largely on account of a lack of information about multi-point spatial
correlations.

Inspired by the need to incorporate correlations, the authors of Ref. 16 pro-
posed the framework of statistical solutions for hyperbolic systems of conservation
laws. Statistical solutions are time-parameterized probability measures on the space
of p-integrable functions. They were shown in Ref. 16 to be equivalent to adding
information about all possible multi-point correlations to the measure-valued solu-
tion. The time-evolution of these measures is prescribed by a system of nonlinear
tensorized moment-transport equations (2.30). Under an additional entropy con-
dition, the well posedness of statistical solutions for scalar conservation laws was
shown in Ref. 16 and the numerical approximation of statistical solutions for scalar
conservation laws was considered in Ref. 17.



Math. Models Methods Appl. Sci. 2020.30:539-609. Downloaded from www.worldscientific.com

by CARNEGIE MELLON UNIVERSITY on 07/09/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

592 U. S. Fjordholm et al.

Our main aim in this paper was to propose a numerical algorithm to approximate
statistical solutions of multi-dimensional hyperbolic systems of conservation laws.
To this end, we combined a high-resolution finite volume method (4.1) with a Monte
Carlo sampling procedure to obtain our Monte Carlo Algorithm which computes
statistical solutions.

Our second aim was to prove a weak—strong uniqueness result, in the sense of
e.g. Ref. 48. We proposed an entropy condition and a notion of dissipative statistical
solutions (Definition 3.2) and proved a weak—strong uniqueness result for these dis-
sipative statistical solutions. This provides us with a conditional uniqueness result
for statistical solutions, i.e. if they exist, then strong statistical solutions (Defini-
tion 3.3) are unique. In particular, we obtain short time existence and uniqueness
results for dissipative statistical solutions.

The task of proving convergence of the numerical approximations ,utA ’M, gen-
erated by the Monte Carlo Algorithm, was rather intricate. First, we had to com-
pletely characterize an appropriate topology on the space of time-parameterized
probability measures on p-integrable functions. This topology is based on the topol-
ogy induced by the underlying correlation measures. We showed that this induced
topology is equivalent to the weak topology on the space of probability measures
on LP for any fixed time, but it also induces appropriate extensions when time
is varied. The resulting compactness theorem (Theorem 2.8) delineates the class
of admissible observables that converge in this topology. Essentially, this theorem
boils down to the convergence of time averages of (multi-point) statistical quanti-
ties of interest such as the mean, variance, multi-point correlation functions and
structure functions (4.7). We believe that this topology on time-parameterized
probability measures on LP, and novel sufficient conditions for ensuring conver-
gence in it might have independent applications in probability theory and stochastic
analysis.

Next, we proved in Theorem 4.1 that, under certain assumptions on the under-
lying finite volume schemes, the approximate statistical solutions converge upon
mesh refinement in the aforementioned topology to a time-parameterized probabil-
ity measure on LP. A Lax—Wendroff theorem was proved, showing that the limit
measure is indeed a statistical solution. Finally, a standard Monte Carlo conver-
gence argument was used to guarantee convergence, under sample augmentation,
of the approximations generated by the Monte Carlo Algorithm.

The assumptions in Theorem 4.1 include L? stability and the weak BV bound
(4.5), which are satisfied by many existing high-resolution entropy stable finite
volume schemes, such as the TeCNO schemes of Ref. 18. On the other hand, we also
required a subtle (approximate) scaling assumption (4.6) that is an analogue of the
well-known scaling assumptions in Kolmogorov’s theory for homogeneous, isotropic
turbulence Ref. 24. Although this assumption was verified in all the numerical
experiments, we were unable to prove it here. Hence, we have provided a conditional
existence result for statistical solutions of multi-dimensional systems of conservation
laws in this paper.
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We present extensive numerical experiments for the two-dimensional compress-
ible Euler equations to illustrate our Monte Carlo Algorithm. The results validate
the convergence analysis and demonstrate convergence, on mesh refinement and
sample augmentation, for statistical quantities of interest such as the mean, vari-
ance, structure functions, one-point probability density functions and two-point
joint probability density functions. Moreover, we observe convergence in appropriate
Wasserstein distances (5.6) for the multi-point correlation measures. Summarizing
the results of the numerical experiments, we conclude that one observes conver-
gence of all interesting statistical observables in our framework. This should be
contrasted to the state-of-the-art, where deterministic quantities do not converge
on mesh refinement.'® Thus, we provide rigorous justification of the computability
of statistical quantities of interest in the context of multi-dimensional systems of
conservation laws.

Furthermore, we discover from the numerical experiments that:

e The computed statistical solutions are remarkably stable with respect to different
variations. In particular, we varied the amplitude of initial perturbations, the
type of initial perturbations leading to different probability measures on L?, and
also the underlying numerical method. In all these cases, we observed that the
computed statistical solutions were stable with respect to these perturbations.
This observed stability augurs very well for identifying further constraints or
admissibility criteria in order to obtain uniqueness of statistical solutions.

e The correlation structure of the statistical solutions seems to reach an equilib-
rium at significantly shorter time scales than the actual flow. This behavior is
clearly seen in the variation of structure functions over time (Fig. 18). Thus,
statistical stationarity might be reached much faster than the actual evolution
would suggest.

e There seems to be a subtle gain in regularity, as measured by the decay exponent
of the structure function, for the statistical solutions (Fig. 18). Qualitatively, it
seems that mixing of the underlying structures leads to a gain in regularity. This
observed regularity needs to be studied further.

The results in this paper can be extended in different directions. On the theoretical
side, a key question is whether the scaling assumption (4.6) can be proved for some
numerical approximations or relaxed in an appropriate manner. This would pave
the way for a unconditional global existence result for statistical solutions.

As formulated, (dissipative) statistical solutions are not necessarily unique. If we
start with a deterministic initial data, i.e. setting i = dz, then we can apply the con-
struction of Refs. 11 and 9 to obtain infinitely many entropy solutions for the same
initial data, by the fact that each deterministic solution defines a statistical solution.
Thus, infinitely many statistical solutions are possible for the same (deterministic)
initial data. On the other hand, numerical experiments strongly suggest that the
computed statistical solutions are stable. Thus, we need to find further admissibility
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criteria to single out a unique statistical solution. Moreover, the observed gain in
regularity might provide additional constraints to obtain uniqueness.

On the computational side, the Monte Carlo Algorithm can be very expensive,
even prohibitively expensive in three space dimensions. Hence, it is imperative to
consider alternatives to accelerate it. Alternatives such as the MLMC method and
quasi-Monte Carlo method are considered in a forthcoming publication. Another
alternative would be to use deep learning, such as in Ref. 38, to accelerate the
Monte Carlo algorithm.

Appendix A. Proof of Theorem 2.2

In order to characterize weak convergence of probability measures on LP(D;U), we
will use a construction from Sec. 5.1, pp. 106-107 of Ref. 2 which we summarize
here. Assume that X is Polish (i.e. a complete and separable metric space) and let
Xo C X be a dense, countable subspace. For fixed ¢1, g2, g3 € Q with ¢2,¢3 € (0,1)
and every v € X, define H : X — R by

H(u) := min(q1 + g2d(u, v), gs). (A1)
The collection Ko of all such “hat functions” H is clearly countable. Let
Ag = {qmin(Hl,...,Hm) :q€Q, Hy,...,H, € Ao for any m € N}. (A.2)

Then Ay is also countable, and it can be shown that weak convergence of a sequence
(t4n)n is equivalent to

{pn, Fy = (u, F), Y F € Ao (A.3)

(see the aforementioned reference).
We prove first Lemma 2.1.

Proof of Lemma 2.1. If g € H*?(D;U) and v € LP(D;U) then

L)) < [ latulen).... @)l do

< X[ ew@luel o) do

aG{O 1}F

S llealllooenlulls,
ae{0,1}*

"k
k
=5 (5 heihron Il < o

i=0

If g € HPP and w,v € LP(D;U) then (recall @/(z) := (w(z1),. .., ulzj_1),
w(xjt1), ., u(zr)))

k
p—1
o)~ i) < €3 /D Ju(zi) — o) max(futz)], o))
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< [[ 1@, i (x))do

J#
(p=1)/p k=1
< Ckllu — vl Lo || max(ful, [o))[| S, (lenllor + i)™
whence L, is continuous (and in fact locally Lipschitz). m|

Lemma A.l. Let F' € (C'p)]C for some k € N, i.e. F(u) = (Fi(u),...,Fg(u))
for Fy, ..., Fy lying either in CP or in C}. Let P : R* — R be a polynomial in k
variables. Then P o F lies in CP or in CY, respectively.

Proof. C? is clearly closed under scalar multiplication, as aL, = La, for any
a € R. It is therefore enough to show that C? (CV, respectively) is closed under
addition and multiplication. Let g; : D*¥ x U*¥ — R for i = 1,2 be Carathéodory
functions satisfying (2.3), (2.4). Then

Ly () Lo () = |

D¥1
= / g(x’u(xl),...,u(a?k))dai = Lg(u),
Dk

where k = k1 + ko and

g1 (z,u(zr), ... ,u(a:kl))da:/ g2(z,u(ze), ..., u(zy,))de

Dk2

g(x7§) :gl(xlv"'7xk17§17"'7§k1)g2(xk1+17"'7xk7€k1+17"'7§k)'

The function g is readily seen to satisfy (2.3), and using (2.3) it can be seen that
g also satisfies (2.4) whenever g1, g2 do so. This shows that CP (C7, respectively)
is closed under multiplication. To show that Ly, + Ly, € CP (or C7, respectively),
assume that, say, k1 < ko. If k1 = ko then clearly Ly, + Ly, € CP (or CY, respec-
tively), so assume that k1 < ko. Let ko = ko — ki and let ¢ € L'(D"0) satisfy ¢ >0
and [,, ¢(z)dz = 1. Define g : D*> x U*? — R by

g(x7§) = gl(xl,-~-,1‘k1,§1,-~-,§k1)§0(xk1+1,~-~,1‘k2) +92($,§)

It is now straightforward to verify that L, + Ly, = L, and that g satisfies (2.3),
(2.4). m|

Proof of Theorem 2.2. We may assume that B is closed. By Lemma 2.1, every
L, € CY is continuous and bounded on B. For any L, € C} there is, by the Tietze
extension theorem Sec. 4.2 of Ref. 22, an F' € Cy(LP(D;U)) satisfying F' = L, on
B, so we see that if p,, — p then <ung> = <,un7F> — <M7F> = <M7Lg>.

Assume conversely that (pin, F) — (u, F) for all F € C}. We claim that the
“hat functions” H : LP(D;U) — R defined in (A.1) can be approximated uniformly
on B by functions in C¥. Let v € LP(D;U) and q1,q2,q93 € Q be as in (A.1), and
let R := sup,cp [lu—v||}, < co. Let ¥)(s) = min(q1 + ga|s/*/?, g3), which is a
continuous, bounded function on R. Let € > 0 and let P : R — R be a polynomial
such that [|¢) — P||¢(j—r,r)) < €. The function u — |ju — v||¥, clearly lies in C7,
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so Lemma A.1 implies that also u — P([ju — v||},) can be written as a function
Ly € CY. For any u € B we then have

[H(u) = Lo(u)] = [¢(|lu—vlZ,) = P(llu—vlZ,)| <e.

This proves the claim.
Next, let F' € Ay, where Ag is given by (A.2). Let € > 0, let ¢1,...,gm be such

that ||H; — Lg,|c,sy < € fori=1,...,m, and let P : R™ — R be a polynomial
such that
sup  |min(ry,...,mm) — P(r)| <e.
rel—e,14¢€]™
By Lemma A.1 we can write Po (L, ..., L, ) = L, for some L, € C}. We conclude
that

itelg {F(u) — Lg(u)| = zgg {min(Hl (w),...,Hpn(u)) — P(Lg,(u),..., Ly, (u))|

< Zlelg |min(Hi(u), ..., Hy(u)) — min(Lg, (u), ..., Ly, (u))]

+ 222 |min(Lg, (u), ..., Lg,, (w)) — P(Lg, (u), ..., Lg,, (u))]

< 2e

)

by the 1-Lipschitz continuity of the min-function and the approximation proper-
ties of ¢1,...,gm and P. We can conclude that (A.3) holds, and hence p, — u
weakly. |

Appendix B. The Compactness Theorem

Throughout this appendix we will use the cutoff functions

1, |s] <1,
0(s):==q2—1s], 1<ls|<2, Or(v):=0(Jv[/R), C(r(v):=v0r(v)
07 |S| 2 27

(for some R > 1), defined for s € R and v € U, where U C RY as before. Note that
Cr(v) = v for |v| < R and (r(v) =0 for |v| > 2R, and that ||(r||Lip < 2.
For a function u € LP(D) we define the modulus of continuity

wP(u) := / ][ |u(z + z) — u(x)|P dzdx.
D JB,.(0)
Lemma B.1. Ifu € LYD,U) for some q € [1,00) then
|¢rou— uHLq(D) < 3wl(u)'/

whenever R > WHU”L‘!(D)'
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Proof. Denote u,(z) := fB ©) u(z+2z)dz. Then |u,(z)] <
e D, bOthatlfR>

W”UHM(D) for every

B Wq llull Lo(py then u, = (g o u,. It follows that

r 0wl < l6r 0w~ G ol + e —wllsaco)

< (I¢alluip + 1) llur — ull Lo(p)
< 3wd(u)'/4,

where we have used the fact that ||u, — u||pe < wq(u)/9. 0

Proof of Theorem 2.5. For every k € N, the sequence (v/f),en C HE*(D;U)
is bounded with norm ||/*|[scs- = 1 < 0o, and so has a weak*-convergent subse-
quence. Thus, we can extract a diagonal subsequence (n;);en such that Vﬁj Sk e
HE*(D; U) for every k € N. For the sake of notational simplicity we denote n = n;
for the remainder of this proof.

We start by showing (iv). Let £ and ¢ be nonnegative functions, as prescribed.
We may assume that liminf,, .o (v%, g),. < 00, for otherwise there is nothing to
prove. For R > 0, let kg € C.(U*) and ¢r € L'(DF) be the functions kr(¢) =
k(£)0r(&) and pr(z) = @(x)0g(z). Then kr — Kk and pr — @ pointwise almost
everywhere as R — oo. If gr(x,&) := pr(z)rr(§) then clearly gp — g as R — oo
almost everywhere, and gg € 3% (D;U) for every R. We then find that

(V5 9) g = hm < 9R) s (Dominated Convergence Theorem)

= lim 11m1nf< n,gR> (since vF = 1F)

R—oco m—o0 Fk

R—oco m—o0

< lim 111nmf<yn,g>:}c,c (since gp < g for all R)
T k
= liminf (v, g)5
which is (2. 13)
Since ¥, > 0 for all k,n and a.e. z € D*, we have v¥ > 0 for all k and a.e.
x € DF. To see that l/w(Uk) =1 for a.e. z € D*, let Ay,..., A C D be bounded

Borel sets of positive Lebesgue measure and define A = Ay x --- x Ag. Then since
. are probability measures and converge weak* as we have just shown,

1> ][ <u§;$793>dx — ][ <u§70R>dx as n — 0o.
A A

Conversely,

f 1-— < Op)dr = lim 4 1—( nw@ Ydz = lim <u§;$71 — Or)dx
A

1
S lim sup ﬁ <sz,;z7 |€|p>d$
n— o0 A
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where we have first used Chebyshev’s inequality and then the uniform LP bound
(2.11). Passing to R — oo in the two estimates above shows that

]{‘yg’j(Uk)da: =1. (B.1)

Since Ay, ..., A were arbitrary, it follows that v¥(U*) = 1 for a.e. z € DF.
The limit v clearly satisfies the symmetry condition. For consistency, we need
to show that for any f € Co(U¥~1) and ¢ € C.(D*), we have

/ (,0(33)<l/];,f(§1,...,gk_1)>d$: / (p(x)<V§1_,.1..,rk,17f(§l7~'~7§k—1)>dm'
DF Dk
(B.2)

Define fr € Co(U*) by fr(&1,....&) = f(&1,...,&—1)0r(&L). We estimate the
difference between the left- and right-hand sides of (B.2) by Ey + Es + E3 + Ej,
where

E, = /Dk (p(x)<y§7f(§l7...7§k—l)_fR(£)>dx

Bo= | [ o(w) (ki) = (v F) o
By = | ole) ((vha ) = (Wit 1)

Bi=| [ oo (hatn) - )

where & = (x1,...,25-1). The fact that £y — 0 as R — oo follows from the
Dominated Convergence Theorem. For every R > 0 we have Fy, Ey — 0 asn — oo
by the weak* convergence of v/¥ and v*~!, respectively. For F3 we can write

)

Es =

[ At (6 61) (Or(er) 1)) o

< I\fl\cgwk—l)le\cO(m)/ (Vo 1 = OR(E))d

supp(¢p)

C
< flloowe=nlellcoor) 7y =0

as R — oo (as in the proof of (B.1)). Thus, for a given € > 0 we can first select R
such that Ey, F5 < e, and then select n such that Es, B4 < e. This proves (B.2).
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The LP bound (ii) follows from (2.13) with &k = 1, ¢ = 1 and k(§) = |£?,
since (V1 [¢P),., < liminf, (v}, [€]P), < @, by (2.11). To prove the diagonal
continuity property (iii) of v we use (2.13) with k = 2, p(z,y) = lféif;()‘y) and
k(€1 &) = [& — &P, and note that w?(v?) = (¥, g),.. The diagonal continuity of
v? then follows from w?(v?) < liminf, . w?(¥2) — 0 as r — 0, by (2.12).

We prove (v) for k = 1 and give a sketch of the general case. Let g € H}*(D;U),
that is, ¢ is a Carathéodory function such that |g(z,&)| < ¢1(x) + @olE|P for

some @y > 0 and nonnegative ¢; € LY(D), as well as |g(z,&) — g(y,¢)| <
C max(|¢],]¢|)P1¢ — (| for some C' > 0. Define

un(2) = (Vniar 9(2,€)), - w(@) i= (Vnia, OR(IEP)g (2, ),
u(a:) = <l/i,g(1‘,€)>, U'R(x) = <V;703(|§|p)g(x7€)>

The sequence {u, },ecn satisfies

/ ][ [tn ( + 2) — up(x)| dz dx
D JB,(0)

= /D]Z;T(Q) ’<V72L,m,m+z7g(x + Z,€2) — g(%fl)ﬂdz dx

= C/ ][ (V7 o omax(|&], [E))P 7 — &1])dz da
5B,

(r—1)/p
<C (/ ][ (Vi poyzmax(|&1],[&])P ) dz dx)
D J B,.(0)
1/p
* (/ f <V72L,r,m+zv |£2 - §1|p> dz dx>
D JB,(0)

<2CcP~ 1wp(u ) /p (B.3)

so together with the compactness of D and the uniform bound |lu,|p1p) <
ll1ll L1 (py + @oc? we can apply Kolmogorov’s Compactness theorem (Theorem A.8
of Ref. 29)** to conclude that {u,},en is precompact in L' (D). Hence, there exists
a subsequence {uy, };en and some @ € L'(D) such that u,, — % as | — oo in L'(D).
From the weak* convergence of v} we know that uf — u® as n — oo weakly in
LY(D) for every R > 0. Lebesgue’s dominated convergence theorem implies that
uf* 5 uas R — o in LY(D).

We claim that uZ — un as R — oo in LY(D), uniformly in n. Indeed, choosing
R > 0 such that R > B \1“’ M (where M is the constant in (2.14)), we get

[ (o) = @) de = [ [k (0= 8011 . )] o
D D

< /D (W (1= OR(E17) 01 (2) ) da
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+ o /D (Vhar (L= OR(E")) €)7o

- / / (1 — On(ju(@)?)) 1 (2)dx dpn (1)
Lp JD

=:F

+ %o / p /D (1= p(fu(@)P))u(@) P dr djn (1)

:2F2

The first term can be bounded by

o S/ / w1 (x)dx dp, (u)
Lr J{zeD:|u(xz)|P>R}

< [ sw{ [ ai@e: D < D, 10 < Jult 7 dua )
Lp 4

< sup{/ o1(z)dx: D' C D:|D'| < cp/R},

where we in the second inequality used Chebyshev’s inequality and in the third
inequality the uniform LP bound (2.11). The above converges to 0 as R — oo,
uniformly in n. For the second term we have

Fo= [ [ @l = Celut@))] dodin ) = [ [l = ol 3y dien(a)

<3 / W (u[?)dn (1) < 6pc?=? / WP ()P dpuy ()
Lr Lr
< 6pcP— 1wp( )1/1)

where the first inequality follows from Lemma B.1 with ¢ = 1, the second inequality
follows an estimate similar to (B.3), and the third inequality is Holder’s inequality.
The final term above vanishes as R — oo uniformly in n, by the uniform diagonal
continuity assumption (2.12). It follows that for any ¢ € L>°(D),

’/D W(u — a)dw

<l (e = oy + [lug, = wn e + llun, —allze)

_|_

/ ¢(uR — ufl)dx ,
D

all of which vanish as R — oo and [ — oco. We conclude that & = wu, whence
Up, — w as | — oco. By the uniqueness of the limit u, we get convergence of the
whole sequence: u,, — u in L'(D) as n — oo.
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For general k € N we prove only that u,(z) := (v}, g(z,€)) satisfies a bound
of the form (B.3), and leave the rest to the reader. We write first

/ ][ |tn (2 + 2) — up(x)| dz da
Dk JB,.(0)*

S/ f <V721];€g;7g;+z7!g(x+z7£/€+l7"'7§2k) —g(x,§1,7fk)|>dzdx
DF J B, (0)k

k
SO [ e Gl max(I ol hG ) de
1= JDr B0k

(cf. Definition 2.1 with fl = (&, 8-1,&41, ..., &k)). Consider, say, the last sum-
mand above:

S s e = (e el h(6, €00 o

:/ ][ (UEE o [Erar — &l max(€e, |€ran )P~ R(EF, EF))dzy da
Dk JB,.(0)

= / / ][ |u(xk+zk) —u(xk)|max(|u(xk)|7|u(xk—|—z;€)|)p’1
Lr(D) J D* JB,(0)

X h(z1,. .., ¢k—1,u(x1), ..., u(zr_1))dzg dx dp, ()

-/ B ( [/ o 0 = ) ()|

X |u(xy 4+ 21))P~t dzp dxk>

’ </D hlan, - Ty ul@), ,u<xk-1>>dfk>dun<u>

1/p
< 2/ / f |u(zr + 2x) — w(zg)|P dzy, day,
o0y \Jp B, (0)

(p—1)/p 1
x ( / |u<xk>|pda:k) (1 + a2 dyan ()
D

< 20w (12) P MP1 (1 4 MPED),

where the second-last inequality follows from Holder’s inequality and the bounded-
ness of Ly, (cf. the proof of Lemma 2.1), and the last inequality follows from (2.14).
By the uniform diagonal continuity of v,,, the above vanishes uniformly as r — 0.
The rest of the proof follows as in the proof for v?. O
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Appendix C. Time-Dependent Correlation Measures

Proof of Lemma 2.3. By assumption, (¢,z) — (vf,,g) is measurable for all
g € Co(U*), so by separability of H(D;U), the map ¢ — [, (vf,, g(x)) dx is also
measurable for any g € H5(D;U). Let Eg C HE(D;U) be a countable, dense subset
of the unit sphere in 3§ (D;U), and let

T = ﬂ {Lebesgue points for ¢ — /Dk <Vf’m7g(x)>dx} ,

g€ Ey
a set whose complement [0,7)\7 has zero Lebesgue measure. The set E :=
span Ey is dense in HE(D;U), and every t € T is still a Lebesgue point for
t = [pu(vf,. g(x))dz whenever g € E. For every t € T we define the functional
p(t): E — R by

p0)(0) = [ (vhgla))de.

Then p(t) is linear: For any g,h € E and o € R we have

t+h
p(t)(ag +h) = lim / vk, ag(z) + h(z))dz ds
Dk

h—0t

t+h t+h
= lim ( ][ / Sw,g >da:ds+][ / SI, dxds)
h—0+ t Dk

= ap(t)(g) + p(t)(R).

Moreover, p(t) is continuous, as

t+h t+h
p(®)(g)| < lim / (v g()dz dt < lim][ / lg(2) |, da dt
n JDk h—=0% Ji_p J Dk

h—0t

= ||9HJ{§(D-,U)-
It follows that for every ¢ € T the functional p(t) can be extended uniquely to a
continuous linear functional on 3§(D;U). The remaining claims in the lemma are
now readily checked. O

Appendix D. Proof of Theorem 4.2
We write
= (StAﬂ)h

where S2 is the numerical evolution operator; see Sec. 4.1.

Proof of Theorem 4.2. Let 2 be the approximate statistical solution, defined
n (4.3). Let k 6 N and let p € C°(D¥) be a test function. Fix a multiindex
i=(i1,...,1) € k By changing the order of integration, we have

/ / sy s, Do o, D)l ()t
R, JLP(D, U)
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_ / / A A0y, 1) d() d
R, JL?(D,U)

- / / WDl 2O (x, )t dji(),
Le(D,U) JRy

where
Xj = (;Cil xik) .

Since {qu’A}jeZd solves (4.1) with initial data {;}; ;. for every u € LP(D,U), we
get that

kod
1
tA tA tA
ubB P 0,p(xi, ) — — E E ub®
/LP(D,U) /RJ, ! i ' A !

(F’”+ o (S2(O(@) — F

A N
+ (s, 0)uy - ™ dpa(w) = 0.
Multiplying by AF¢ and summing over (Z4)*,

k d
1
E Akd/ D) <~/]R (U:A .. .u;’cAatSD(Xht) - A E § : US;A o
P s n

ic(zd)k L
< (F" 1, (82 (1)(w) — H e (S () (@) -+ up P p(xi, 1)) dt
+ep(xs, 0)up ™ -+ M)du( ) =0.

For 1 <n <k and 1 <m < d, summation by parts gives

dk m _ mm
2 [ (e )

X Ui, (Xi, dtdﬂt( )

= Adk/ / Ui, -+ F}T—‘rlem (u) e uik ((p(xi’ t)
Ry JL?(D,U) 2

ie(zd)k

G(Zd)k

— P (Xiten n» 1))dt dpi (u).
We furthermore have that

Z Adk / /L Ugy - - Fi":«_‘—%em ('U;) U,

ic(zd)k P(D,U)

y (@(Xi,t) - ixwe"’m’t))duf(u)dt
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= > Ad’f/ / wi, e f™ () g,
Ry JLP(D,U)

ie(zd)k
i7t - it+e 7t
X(@(X )= Pltirsu >> i ()
_ Z Adk/ / us, "'(fm(uin)_FiTJr%em(u))
ic(zd)k Ry JLP(D,U)
i7t - it+e 7t
X(@(X ) = ¢ltirons >> )

and by the Lipschitz continuity (4.2), we have

Z Adk/R /L(DU)uilm. (fnL(Ui")_F}T‘F%em(u))"'uik
) + 7 LP(D,

ie(z4

% (p(Xi,t) - @(Xi_"en,m?t)
A

) dp (w)dt

S Adk/ /
Z) Ry JLP(D,U)

ic(zd)k

y <@<xi,t> - so(xi+en,m,t>> d )

A

p
dk
S C Z A Z / / |ui1| T |uin+qem - uin| T |uik|
R, JLr(D,U)

ie(zd)k g=—p+1

.7t — . 7t
% ‘@(Xl ) (p(xl+en.m )’d,uf(u)dt
A
YD S B B VA A R
ic(zd)k Ry JLP(D,U)
.7t _ s 7t
x‘sﬁ(x‘ )~ #lXize, )‘duf(u)dt

A
By Hoélder’s inequality we get
Soat [ e, = |
ic(zd)k Ry JL?(D,U)

@(Xh t) - Qp(xi*en.m ) t)

8 A

‘ dp (u)dt

U, - (fm(uin) —F’i?_,'_%enl(u))
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1/s
Sdud (u)dt)

<C Akd/ / > Jui, — i, e,
R, JLr(D,U) .

ie(z4)

_(Md / /
ie(za)k /Re /L7 (D)

P t) — p(Xime, i t) |7
A

s—1
s

du (u)dt)

By the weak BV assumption (4.18), we get

lim Akd/ / lug, — i, e, |* dp(u)dt
A—0 P
Ry JL?(D,U) lE(Zd)k
= lim Ad/ / [us — Ui, |* dus (u)dt = 0.
A—0 R, JLP(D,U) 1%1 ' e k

We furthermore note that since ¢ € C2°, we have

/]RJr /LP(D U)

@(Xh t) - (p(xi_en,m7t) ‘
A

ic(zd)k

X

Hence we get

xS (x, )) dt + (i, 0)ug™ - U?,;A>du(u)

- /JR+ AP(D7U) /(]Rd)k <U(x1) ety
ko d

£33 wlan) e f ) ) Do, t>> dx dp! ()t

n=1m=1

Lo /( o ) ), 0 (),

=1m
L?(D,

which completes the proof.

605
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Appendix E. Proof of (5.7)

Proposition E.1. Let D C R? be bounded and let p, ji € P(LP(D;U)) both have
bounded pth moment. Then

([, mttoty dx)l/pscwpm,m (E.1)

for some C = C(p,k,|D|), where (V*)ren, (7% )ken are the correlation measures
corresponding to i, [i.

Proof. Let 7 € P(L?(D;U)?) be an optimal transport plan for W, (u, i), and let
(0*)ken € LP(D;U?) be its corresponding correlation measure. We claim that the
marginals of 0¥ are v* and ¥, respectively, for a.e. z € D*. Indeed, if g € 3% (D; U)
then, denoting g(x,&,¢) = g(z,£),

kg)=(m L;) = glu,v)ar(u,v) = w)am(u, v
(o*,9) = (m L) /m;mfg(’)d(’) [ Liwdruo)

P(DsU)?
— [ Lywdutu) = (o).
Lr(D;U)

A similar computation holds for the second marginal. Since g is arbitrary, the claim
follows. We can therefore estimate

[ owikatyrans [ [ e rackieos

k
— § : _ AP dsk
- P Lk Azk |§l <l| dam(fvc)dx

k[ [ ar il e

_ kD! / / e qJP dod (6, Q)d

=Hppt [ fute) = sl de dn) = WG i
Lp(D;U)2

O

Appendix F. Computing the Wasserstein Distance
for Sums of Diracs

In Sec. 5, we computed the Wasserstein distance between different numerical solu-
tions. The numerical solutions are always sums of Diracs, which simplifies the
computations greatly.

For two kth correlation marginals v* and 7%, we are interested in the “LPW,”
distance

HWl(VT 7VT )||L1(Dk) (Fl)
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F.1. Computing the Wasserstein distance between
the first correlation marginals

To compute the first correlation marginals, we use the function
scipy.stats.wasserstein_distance in the scipy module for Python®’ to com-
pute the Wasserstein distance. The function computes the Wasserstein distance by
going through the CDF, consult the scipy documentation for more information.
We approximate the spatial integral as a sum over all the volume averages.

F.2. Computing the Wasserstein distance between the second
correlation marginals

For the second correlation marginals, we use the function ot.emd in the POT mod-
ule for Python.?® This function uses the Hungarian algorithm3! to compute the
Wasserstein distance between sums of Diracs.

The spatial integral in (F.1) is approximated by taking 10 spatial points in
each direction, for a total of 10,000 evaluations of the Wasserstein distance. More
concretely, we use the following approximation:

10 1
HWl VT 7VT HLI(D?) ~ Z le(y%w i V%I”l,)’
i,4,0,5=1

where
AR
T; 555 = (E,l—o ' 10" —0) for i,7,4,7 = 1,...,10.
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