
From graph topology to ODE models for gene regulatory
networks

Xiaohan Kang1*, Bruce Hajek1, and Yoshie Hanzawa2

1 Department of Electrical and Computer Engineering, and Coordinated Science

Laboratory, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States

of America

2 Department of Biology, California State University, Northridge, Northridge,

California, United States of America

* xiaohan.kang1@gmail.com

Abstract

A gene regulatory network can be described at a high level by a directed graph with

signed edges, and at a more detailed level by a system of ordinary differential equations

(ODEs). The former qualitatively models the causal regulatory interactions between

ordered pairs of genes, while the latter quantitatively models the time-varying

concentrations of mRNA and proteins. This paper clarifies the connection between the

two types of models.

We propose a property, called the constant sign property, for a general class of ODE

models. The constant sign property characterizes the set of conditions (system

parameters, external signals, or internal states) under which an ODE model is

consistent with a signed, directed graph. If the constant sign property for an ODE

model holds globally for all conditions, then the ODE model has a single signed,

directed graph. If the constant sign property for an ODE model only holds locally,

which may be more typical, then the ODE model corresponds to different graphs under

different sets of conditions. In addition, two versions of constant sign property are given

and a relationship between them is proved.
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As an example, the ODE models that capture the effect of cis-regulatory elements

involving protein complex binding, based on the model in the GeneNetWeaver source

code, are described in detail and shown to satisfy the global constant sign property with

a unique consistent gene regulatory graph. Even a single gene regulatory graph is shown

to have many ODE models of GeneNetWeaver type consistent with it due to

combinatorial complexity and continuous parameters.

Finally the question of how closely data generated by one ODE model can be fit by

another ODE model is explored. It is observed that the fit is better if the two models

come from the same graph.

Introduction 1

A gene regulatory network is a collection of molecular classes such that each molecular 2

class interacts with a small number of other molecular classes, creating a sparse graph 3

structure [1]. A goal of systems biology is to understand gene regulatory networks and 4

infer them from data [2,3]. A directed graph with vertices representing genes and signed 5

edges representing gene-to-gene interactions, also known as a circuit model [4] or a 6

logical model [5], is a model with a high level of abstraction (see S1 Appendix). The 7

vertices of such graph models often only consist of the genes but not the properties of 8

the derived proteins because the latter information is usually not available. An ordinary 9

differential equation (ODE) model is far more detailed than a graph model: they 10

quantitatively describe the dynamics of the time-varying mRNA and protein 11

concentrations of the genes, and can be used to capture complex effects, including 12

protein–protein interaction, post-translational modification, environmental signals, 13

diffusion of proteins in different parts of the cell, and various time constants. As a 14

result, ascribing a directed graph to a biologically plausible gene regulatory network can 15

miss important biological details and dynamics because of the abstraction. However, it 16

is significantly more challenging to ascribe a particular ODE model to a gene regulatory 17

network than to ascribe a directed graph because an ODE model requires much finer 18

classification with possibly orders of magnitude more amount of data. As one example, 19

the work [6] is notable for successful identification of an ODE model that captures the 20

gene regulatory network underlying the dynamics of the circadian clock. The ODE 21
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model in [6] is based on a number of previous empirical and modeling studies, and it is 22

shown that parameters for the model can be selected to give a good match to the data. 23

In general, however, without such prior knowledge, the relation between the graph 24

models and the ODE models is unclear. The purpose of this paper is to explore the 25

connections between the two types of models. 26

We propose a property of the ODE models, called the constant sign property (CSP), 27

such that an ODE model corresponds to a single graph model under a set of conditions 28

if and only if the ODE model satisfies CSP under that set of conditions. An ODE 29

model is said to satisfy global constant sign property (GCSP) if it satisfies CSP under 30

all conditions, in which case the ODE model corresponds to a single graph model. 31

Typically, an ODE model corresponds to different graph models under different 32

conditions characterizing the context-dependent and time-varying nature of biological 33

systems [7, 8]. An ODE model that does not satisfy GCSP is illustrated in Fig 1. 34

Fig 1. Network reconstruction for an ODE model in the study [9] without
global CSP. The ODE model f governs the dynamics of all parts of the plant, and
expression data collected from different parts of a plant (flower vs. leaf) can correspond
to different graph models.

One particularly rich class of ODE models that satisfy GCSP are based on 35

GeneNetWeaver [10,11], the software used to generate expression data in DREAM 36

challenges 3–5 [11–13] and recently applied to single-cell analysis [14, 15]. In these ODE 37

models a layer of intermediate elements called modules are constructed with 38

transcription factors (TFs) as their input and target genes their output. The activity 39

level of a module depends on its input and its type, and determines the production rate 40

of its output. The modules model the binding of protein complexes to DNA in 41

transcriptional regulation. TFs can regulate the target gene through one or multiple 42

modules. Assuming for each TF and each target gene there is only one module that 43

takes the TF as an input and the target gene as an output, we show that CSP is 44

satisfied, so each GeneNetWeaver ODE model has a well-defined graph model associated 45

with it. The combinatorial nature of the number of possible module configurations (i.e., 46

the number of the modules and their input and output) and the continuous value 47

parameters make the GeneNetWeaver ODE models extremely rich. 48

The organization of this paper is as follows. In the first subsection of the Materials 49
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and Methods section, we describe the ODE models and the graph models, and propose 50

two notions of CSP. In the second subsection of the Materials and Methods section, we 51

describe ODE models based on GeneNetWeaver. The Results section has three 52

subsections. In the first, a relation of the two notions of CSP is provided. In the second, 53

the GeneNetWeaver ODE models are shown to satisfy the constant sign property, and 54

their complexity is investigated. In the third, a case study of a core soybean flowering 55

network based on the literature is presented to demonstrate the use of the 56

GeneNetWeaver ODE models. First it is illustrated that a single signed, directed graph 57

model has a large space of consistent ODE models. Second, to study how different the 58

GeneNetWeaver ODE models are, we explore the problem of numerically fitting 59

parameters of one ODE model to synthetic expression data generated from another. 60

The generalization, implication and limitation of CSP are discussed before the 61

concluding remarks. 62

Materials and methods 63

ODE model and constant sign property 64

In this section we define the constant sign property, a property under which ODE 65

models are consistent with signed directed graphs. Roughly speaking, CSP holds when 66

unilaterally increasing the expression level of one gene causes the expression level of 67

another gene to move in one direction. In other words, the effect of one regulator gene 68

has a constant sign on a target gene. In rare cases, CSP may hold globally, regardless of 69

the expression levels of all the genes and the concentrations of any other molecular 70

classes. More generally, CSP may hold only for a set of expression levels and system 71

parameters, leading to a local definition. We present the precise definition of CSP in 72

this section. 73

Let x1(t), x2(t), . . . , xn(t) be the mRNA abundances for the n genes (the 74

observables) at time t. Let xn+1(t), xn+2(t), . . . , xn+m(t) be the protein concentrations 75

(the unobservables) at time t, which may include derived (protein complexes and 76

modifications like protein phosphorylation) and localized (e.g., cytoplasmic and nuclear) 77

proteins. Let xn+m+1(t), xn+m+2(t), . . . , xn+m+l(t) be the strengths of the chemical 78

June 13, 2020 4/35



and environmental signals (the controllables, e.g., temperature and photoperiod) at time 79

t. Let x(t) = (xi(t) : i ∈ [n+m+ l]) be the system state at time t, where [n] denotes 80

the set of integers {1, 2, . . . , n}. Let λ ∈ Rs be the parameters of the ODE model and 81

let fi : Rn+m+l × Rs → R be the time derivative of xi as a function of the 82

(n+m+ l)-dimensional system state and the parameters for i ∈ [n+m]. Note the 83

domain of fi is assumed to be the entire Euclidean space rather than a subset of it 84

without loss of generality because one can always restrict fi to a subset of states that x 85

takes. Examples of f for the single-input case (n+m+ l = 1) include the 86

Michaelis–Menten kinetics and the more general Hill kinetics. Examples of f for the 87

multi-input case (n+m+ l ≥ 2) include the Shea–Ackers model [16, 17], which is the 88

average production rate based on a Gibbs measure of the control states, and the 89

GeneNetWeaver model to be discussed later in this paper, which models the additive 90

effect of multiple intermediate Shea–Ackers type modules. Both the Shea–Ackers model 91

and the GeneNetWeaver model generalize the Hill kinetics to multi-input scenarios in 92

their own ways and are, among many other sophisticated ODE models, within the 93

framework of ODE models in this paper. 94

Formally, given the numbers of molecular classes (i.e., n classes of mRNAs, m classes 95

of proteins, and l classes of molecular signals), the dynamics of an ODE model are 96

characterized by the collection of time derivatives for the uncontrollable variables 97

f = (fi : i ∈ [n+m]). In the rest of the paper an ODE model refers to the collection of 98

the functions f . The trajectories of the mRNA and protein concentrations evolving with 99

time depend on (x0, x̃, λ), where x0 =
(
x0i : i ∈ [n+m]

)
are the initial conditions of the 100

mRNAs and proteins at time 0, x̃ = (x̃i(t) : n+m+ 1 ≤ i ≤ n+m+ l, t ≥ 0) are the 101

predefined external signal strengths for all time, and λ ∈ Rs are the parameters. The 102

trajectories can then be obtained by solving the following initial value problem. 103

xi(0) = x0i , i ∈ [n+m],

104

xi(t) = x̃i(t), n+m+ 1 ≤ i ≤ n+m+ l, t ≥ 0,

105

dxi(t)

dt
= fi(x(t), λ), i ∈ [n+m].

Note the signals (xi : n+m+ 1 ≤ i ≤ n+m+ l) are exogenously controlled and not 106
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solved via the equations. In this paper we assume existence and uniqueness of the 107

solution on the entire positive time horizon for ease of exposition. The concept of CSP 108

can be easily generalized to ODE models where only local solutions exist. 109

Infinitesimal monotonicity 110

We first define a version of monotonicity called infinitesimal monotonicity such that CSP 111

using this definition of monotonicity can be applied to a broad class of ODE models. 112

Roughly speaking, infinitesimal monotonicity characterizes the monotone influence 113

of one observed variable on another over a sufficiently short period of time. Such 114

monotonicity depends on the current system state. For each regulator–target pair, to 115

avoid external and indirect influence, we clamp the exogenous signals as well as the 116

observed variables other than the target to their initial values, so only the unobserved 117

variables and the target observed variable are allowed to change with time. The 118

clamped value of the regulator can be perturbed. A change in the constant value of the 119

regulator can cause a change in the target observed variable in continuous time, possibly 120

through one or multiple unobserved variables. The system with the input at the 121

regulator observable and output at the target observable is thus treated as a black box 122

in the sense that one does not need to know its internal states (the unobservables) to 123

determine the infinitesimal monotonicity of the system. This assumes that the initial 124

internal states are fixed. 125

Given the ODE model f , and given a state x ∈ Rn+m+l and parameters λ ∈ Rs, let 126

j be the target gene and let the dynamics of the clamped ODE model be driven by 127

f̂
(j)
k =


fk if k ∈ {j} ∪ [n+ 1 : n+m],

0 otherwise,

for any k ∈ [n+m+ l]. Here [a : b] denotes the set of integers {a, a+ 1, . . . , b}. Then 128

f̂ (j) =
(
f̂
(j)
k : k ∈ [n+m+ l]

)
determines the dynamics of a system where the mRNA 129

abundances and exogenous signals remain constant across time except for the mRNA 130

abundance of gene j. Fix a potential regulator gene i 6= j and let 131(
η(j)(t, h, x, λ) ∈ Rn+m+l : t ≥ 0

)
be the solution of the initial value problem with initial 132

condition (xi + h, x−i), dynamics f̂ (j), parameters λ. Note here η(j) also includes the 133
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clamped exogenous signals. Also note that for any t we have 134

η
(j)
k (t, h, x, λ) ≡ xk for k ∈ [n]\{i, j} and k > n+m,

135

η
(j)
i (t, h, x, λ) ≡ xi + h,

and 136

η
(j)
j (0, h, x, λ) = xj .

The following definition gives a precise characterization of the target gene expression to 137

be strictly increasing or decreasing with respect to the regulator gene expression in a 138

small future time period. 139

Definition 1 (Infinitesimal monotonicity). For an ODE model f at state x with

parameters λ and (i, j) ∈ [n]2 with i 6= j, the infinitesimal monotonicity for i on j is

given by

Binf(i, j, x, λ) =



∅ if ∀h and ∀t, η(j)j (t, h, x, λ) = η
(j)
j (t, 0, x, λ),

{1} if ∃ε > 0 such that ∀t ∈ (0, ε) and ∀h ∈ (−ε, 0) ∪ (0, ε),

η
(j)
j (t,h,x,λ)−η(j)j (t,0,x,λ)

h > 0,

{−1} if ∃ε > 0 such that ∀t ∈ (0, ε) and ∀h ∈ (−ε, 0) ∪ (0, ε),

η
(j)
j (t,h,x,λ)−η(j)j (t,0,x,λ)

h < 0,

{1,−1} otherwise.

Equivalently, in less mathematical terms, Binf(i, j, x, λ) = ∅ indicates gene i does not 140

affect gene j at state x and parameters λ. The cases with Binf(i, j, x, λ) = {1} and 141

{−1} indicate gene i activates or represses gene j, respectively, at state x and 142

parameters λ in a small time period with small perturbation. The case with 143

Binf(i, j, x, λ) = {1,−1} indicates gene i does not affect gene j in a monotone way. 144

Remark 1. Note the case Binf(i, j, x, λ) = {1,−1} can happen when the expression level 145

of the target gene j reaches the maximum with respect to xi, so that a change of xi in 146

either direction will cause the solution η(j)j (t, h, x, λ) to decrease for small t, in which 147

case the monotonicity is indeterminate (neither increasing nor decreasing). 148
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In practice the values of x and λ may be unknown, so we are interested in how Binf 149

varies with x and λ. Usually we expect some level of continuity of Binf with respect to 150

x and λ, so the infinitesimal monotonicity of the ODE model may be consistent in a 151

small set of (x, λ) pairs, denoted by S. In the case when S equals the entire 152

state–parameter space, the infinitesimal monotonicity is consistent globally. The 153

following definition generalizes Definition 1 by checking the consistency of infinitesimal 154

monotonicity over a set S, and defines an associated graph. 155

Definition 2 (Infinitesimal gene regulatory graph). The infinitesimal gene regulatory 156

graph of an ODE model f over S ⊆ Rn+m+l × Rs is given by a graph 157

([n], Einf(S), Binf(S)), where the set of edge labels 158

Binf(S) =
(
Binf(i, j, S) : (i, j) ∈ [n]2, i 6= j

)
is defined by 159

Binf(i, j, S) =
⋃

(x,λ)∈S

Binf(i, j, x, λ)

and the set of edges is 160

Einf(S) = {(i, j) : Binf(i, j, S) 6= ∅} .

Equivalently, in less mathematical terms, Binf(i, j, S) = ∅ indicates gene i does not 161

affect gene j when (x, λ) is in S. The case with Binf(i, j, S) = {1} indicates gene i can 162

increase gene j for some (x, λ) in S, but cannot decrease gene j for any (x, λ) in S. The 163

case with Binf(i, j, S) = {−1} indicates gene i can decrease gene j for some (x, λ) in S, 164

but cannot increase gene j for any (x, λ) in S. The case with Binf(i, j, S) = {1,−1} 165

indicates the monotonicity is indeterminate over S. 166

Definition 3 (Infinitesimal constant sign property). An ODE model f satisfies the 167

infinitesimal constant sign property over S ⊆ Rn+m+l × Rs if 168

∀(i, j) ∈ Einf(S), Binf(i, j, S) = {1} or Binf(i, j, S) = {−1}. In other words, the ODE 169

model satisfies infinitesimal constant sign property on S if no pair of (i, j) has 170

indeterminate monotonicity on S. 171

Remark 2. The set S represents the set of states where the infinitesimal CSP holds. If 172

S is the entire state space then we say the infinitesimal CSP holds globally. Complex 173

biological systems usually do not satisfy CSP globally, but may satisfy CSP locally over 174
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the set S where the system states reside. For example, in Fig 1, the gene expressions in 175

the flowers may be contained in set S1 where the infinitesimal CSP is satisfied with a 176

gene regulatory graph G1, while the gene expressions in the leaves may be contained in 177

set S2 that does not intersect with S1, and the infinitesimal CSP is satisfied with a 178

different gene regulatory graph G2. 179

Sum–product monotonicity 180

Infinitesimal monotonicity gives a natural notion of monotonicity, but it is expressed in 181

terms of the solutions of the differential equations, and solving the differential equations 182

can be analytically challenging and numerically unstable. Hence, in this section we 183

focus on ODE models with a smooth f and propose another notion of monotonicity that 184

does not require solving the system of ODEs. 185

Definition 4 (Molecular graph). The molecular graph of an ODE model is a graph

whose vertices are the internal molecular classes (i.e., the observables and the

unobservables) and whose edges indicate non-constant effects among the internal

molecular classes with signs indicating monotonicity of the effects. Formally, given an

ODE model f , the molecular graph at state x ∈ Rn+m+l with parameters λ ∈ Rs is a

directed graph with vertices [n+m] and edges Emol, where

Emol = {(i, j) ∈ [m+ n]2 : there exists x ∈ Rn+m+l, λ ∈ Rs, and x′i ∈ R such that

fj(x, λ) 6= fj((x
′
i, x−i), λ)}.

In other words (i, j) /∈ Emol if fj does not actually depend on xi. See Fig 2(A) for an 186

example of a molecular graph. Note in general we could have edges from unobservables 187

to unobservables (e.g., protein–protein interactions) and from observables to observables 188

(modeling fast translation where mRNA abundances and protein concentrations are 189

considered the same).

Fig 2. A molecular graph and its corresponding gene regulatory graph for
the single-loop network in the study [18]. (A) The molecular graph for the ODE
model of the single-loop network. Blue edges indicate positive first-order partial
derivatives, and red edges indicate negative first-order partial derivatives. (B) The
corresponding global gene regulatory graph for (A) with blue edges indicating activation
and red edges indicating repression (the constant sign property is satisfied globally
under both notions of CSP by Proposition 1).
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The molecular graph represents the interactions among all the molecular classes. 190

However, usually only the mRNA abundances are measured; the proteins and their 191

derived products are not measured, making the molecular graph only partially observed. 192

As a result, one often seeks an induced graph on the mRNA classes, which leads to the 193

following definitions analogous to the clamped systems for infinitesimal monotonicity. 194

Definition 5 (Unobserved path of length q for q ≥ 1). Given a molecular graph, the set

of unobserved paths from one mRNA to another is the set of paths that do not go

though another mRNA. Formally, given n, m, l, and edges Emol ⊆ [n+m]2 and

i, j ∈ [n] with i 6= j, the set of unobserved paths of length q connecting i and j is

Pqij =

{
(r0, r1, . . . , rq) ∈ [n+m]q+1 : rq = i, r0 = j, and ∀k ∈ [1 : q − 1], rk ∈ [n+ 1 : n+m],

and ∀k ∈ [q], (rk, rk−1) ∈ Emol

}
.

Definition 6 (Molecular distance). The molecular distance from i to j is 195

q∗ij =


min{q : Pqij 6= ∅} if Pqij 6= ∅ for some q,

∞ otherwise.

Definition 7 (Sum–product monotonicity). For genes i and j, state x and parameters λ, 196

the sum–product monotonicity is defined by 197

Bsum(i, j, x, λ) =



∅ if q∗ij =∞,

{1} if q∗ij <∞ and ∆(i, j, x, λ) > 0,

{−1} if q∗ij <∞ and ∆(i, j, x, λ) < 0,

{1,−1} if q∗ij <∞ and ∆(i, j, x, λ) = 0,

where ∆(i, j, x, λ) ,
∑
r∈P

q∗
ij

ij

∏q∗ij
l=1 ∂rlfrl−1

(x, λ). 198

Note Bsum is only based on derivatives of f , not solving the ODEs. It plays a similar 199

role as Binf . Thus we can define sum–product gene regulatory graph and sum–product 200

constant sign property in a similar way as Definitions 2 and 3. A relation between the 201
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infinitesimal monotonicity and the sum–product monotonicity is given in 1 in the 202

Results section. 203

GeneNetWeaver ODE model 204

We consider a differential equation model such that transcription factors participate in 205

modules which bind to the promoter regions of a given target gene. This model is based 206

on the GeneNetWeaver software version 3 [10]. Part of the model of the popular 207

simulator is described in the studies [12] and [11], but there is no good reference that 208

precisely describes the model. So in this section we describe the generative model in 209

GeneNetWeaver based on a given directed graph, and show in the next section that the 210

CSP is satisfied. Note GeneNetWeaver models are a special class of ODE models with 211

the molecular graphs being bipartite, resulting in no unobserved paths of length greater 212

than 2, unlike the general case as illustrated in Fig 2. GeneNetWeaver allows fast 213

protein–protein interactions though the f function, but does not characterize slow 214

protein–protein interactions or external signals. 215

The model in GeneNetWeaver is based on standard modeling assumptions (see [19]) 216

including statistical thermodynamics, as described in the study [20]. The activity level 217

of the promoter of a gene is controlled by one or more cis-regulatory modules, which for 218

brevity we refer to as modules. A module can be either an enhancer or a silencer. Each 219

module has one or more transcription factors as activators, and possibly one or more 220

TFs as deactivators. For each target gene, a number of modules are associated with its 221

TFs such that each TF is an input of one of the modules. For simplicity assume that 222

each module regulates only a single target gene. 223

Let ([n], E , b) be a directed signed graph with vertices [n], edge set E , and edge signs 224

b. For target gene j, let Nj , {i ∈ [n] : (i, j) ∈ E} be the set of its TFs and let 225

Sj ⊆ P(Nj) be a partition of Nj according to the input of the modules. Then the 226

modules for target gene j can be indexed by the tuple (K, j) (denoted by K : j in the 227

subscripts), where K ∈ Sj . Note each TF regulates the target gene j only through one 228

module. The random model for assignment of the TFs to modules and of the 229

parameters in GeneNetWeaver is summarized in S2 Appendix. Let the sets of activators 230

and deactivators for module K : j be AK:j and DK:j with AK:j ∪DK:j = Nj and 231
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AK:j ∩DK:j = ∅. For a module K : j, let cK:j be the type (1 for enhancer and −1 for 232

silencer), rK:j the mode (1 for synergistic binding and 0 for independent binding). Note 233

rK:j only matters for multi-input modules (i.e., those with |K| > 1). Let βK:j ≥ 0 be 234

the absolute effect of module K : j on gene j in mRNA production rate. Note that by 235

the construction in S2 Appendix, it is guaranteed that 236

bij = cK:j(1{i∈AK:j} − 1{i∈DK:j}). 237

Let xi(t) and yi(t) be the mRNA and protein concentrations for gene i at time t. We 238

ignore t in the remainder of the paper for simplicity. The dynamics are given by 239

dxi
dt

= fi(y)− δixi

and 240

dyi
dt

= f
(p)
i (xi)− δ(p)i yi,

where fi(y) is the relative activation rate for gene i (i.e. the mRNA production rate for 241

gene i for the normalized variables) discussed in the next two subsections, 242

f
(p)
i (xi) = ρixi is the translation rate of protein i, and δi and δ

(p)
i are the degradation 243

rates of the mRNA and the protein. Because only x is observed in RNA-seq 244

experiments, without loss of generality the unit of the unobserved protein concentrations 245

can be chosen such that ρi = δ
(p)
i for all i (see nondimensionalization in the study [12]). 246

Note the GeneNetWeaver model is a special ODE model with m = n and l = 0. 247

Activity level of a single module 248

For edge (i, j), the normalized expression level of gene i, νij , is defined by 249

νij =

(
yi
kij

)hij

,

where kij is the Michaelis–Menten normalizing constant and hij is a small positive 250

integer, the Hill constant, representing the number of copies of the TF i that need to 251

bind to the promoter region of gene j to activate the gene. (If gene i is not bound to 252

the promoter region of gene j, it is like taking the Hill constant equal to zero and thus 253

normalized expression level equal to one.) The activity level of module K : j denoted by 254

MK:j , which is the probability that module K : j is active, is given in the following 255
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three cases. 256

Type 1 modules: Input TFs bind to module independently 257

In this case, rK:j = 0, and we have 258

MK:j =

 ∏
i∈AK:j

νij
1 + νij

 ∏
i∈DK:j

1

1 + νij

 .

Interpreting each fraction as the probability that an activator is actively bound (or a 259

deactivator is not bound), the activation MK:j is the probability that all the inputs of 260

module K : j are working together to activate the module, i.e., the probability that the 261

module is active. It is assumed that for a module to be active, all the activators must 262

be bound and all the deactivators must be unbound, and all the bindings happen 263

independently. 264

One can think of module K : j as a system with 2|AK:j |+|DK:j | possible states of the 265

inputs. Suppose each input j binds with rate νij and unbinds with rate 1 independently. 266

Then the stationary probability of the state that all the activators are bound and none 267

of the deactivators is bound is MK:j . 268

Alternatively, one can assign additive energy of

Eij = − log νij

= −hij log
yi
kij

to each bound input gene i and energy zero to each unbound gene. Then MK:j is the 269

probability that all activators are bound and none of the deactivators is bound in the 270

Gibbs measure. In other words, the Type 1 modules are Shea–Ackers models with all 271

binding states possible and only the one state with all the activators initiating 272

transcription. 273

Type 2 modules: TFs are all activators and bind to module as a complex 274

In this case, DK:j = ∅, rK:j = 1, and we have 275

MK:j =

∏
i∈AK:j

νij

1 +
∏
i∈AK:j

νij
.

One can think of such a module as a system with only two states: bound by the 276
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activator complex, or unbound. The transition rate from unbound to bound is 277∏
i∈AK:j

νij , and that from bound to unbound is 1. Then the activation of the module is 278

the probability of the bound state in the stationary distribution, given by MK:j . 279

Alternatively, this corresponds to the Shea–Ackers model as in the previous case, 280

except all the states other than fully unbound and fully bound are unstable (i.e. have 281

infinite energy). 282

Type 3 modules: Some TFs are deactivators and bind to module as a 283

complex 284

In this case, DK:j 6= ∅ and rK:j = 1, and we have 285

MK:j =

∏
i∈AK:j

νij

1 +
∏
i∈AK:j

νij +
(∏

i∈AK:j
νij

)(∏
i∈DK:j

νij

) . (1)

In this case the system can be in one of three states: unbound, bound by the activator 286

complex, and bound by the deactivated (activator) complex. The Gibbs measure in the 287

Shea–Ackers model for Type 3 modules with three stable states (i.e. have finite energy) 288

assigns probability MK:j to the activated state. 289

Note if
∏
i∈∅ νij is understood to be 0 then Eq (1) reduces to Type 2 when DK:j = ∅. 290

However historically
∏
i∈DK:j

νij was understood as 1 in an early version of 291

GeneNetWeaver and caused a bug of wrong Type 2 modules. 292

Remark 3. Presumably it is possible for there to be more than three stable states for a 293

module, so additional types of modules could arise, but for simplicity, following 294

GeneNetWeaver, we assume at least one of the three cases above holds. 295

Remark 4. If a module K : j has only one input i (i.e. K = {i}) then the module is 296

type 1 and MK:j =
νij

1+νij
or MK:j = 1

1+νij
. We will see later in the random model of 297

GeneNetWeaver that only the former (single activator) is allowed. 298

GeneNetWeaver software uses the 3 types of modules derived above. In all three 299

cases the activation MK:j is monotonically increasing in yi for activators i ∈ AK:j , and 300

monotonically decreasing in yi for deactivators i ∈ DK:j . 301
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Production rate as a function of multiple module activations 302

The relative activation of gene j as a function of the protein concentrations y is 303

fj(y) =
∑

s∈{0,1}Sj

αj,s

 ∏
K∈Sj : sK=1

MK:j

 ∏
K∈Sj : sK=0

(1−MK:j)

 , (2)

where αj,s is the relative activation of the promoter under the module configuration s. 304

Note that α in Eq (2) gives 2|Sj | degrees of freedom, one for every possible subset of the 305

modules being active. However, following the GeneNetWeaver computer code [10], we 306

assume that the interaction among the modules is linear, meaning that for some choice 307

of αj,basal, (cK:j : K ∈ Sj), and (βK:j : K ∈ Sj), we have for any configuration 308

s ∈ {0, 1}Sj , 309

αj,s = αj,basal +
∑

K∈Sj : sK=1

cK:jβK:j , (3)

This reduces the number of degrees of freedom for α to |Sj |+ 1. Then, combining 310

Eq (2) and Eq (3) yields 311

fj(y) = Eαj,S

= αj,basal +
∑
K∈Sj

cK:jβK:j ESK

= αj,basal +
∑
K∈Sj

cK:jβK:jMK:j , (4)

where S is distributed by the product distribution of the Bernoulli distributions with 312

means (MK:j : K ∈ Sj). So the relative activation, or the mRNA production rate, of a 313

gene is given by the basal activation plus the inner product of the module effects and 314

the module activation. We also note that the effect of the modules is not assumed to be 315

statistically independent: all we need to know to compute the relative activation of a 316

gene are the marginal probability of activation of the single modules. 317

Taking into account the three different types of modules described in the previous 318

section on activity level of a single module, Eq (4) yields the following expression for the 319
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relative activation of gene j: 320

fj(y) = αj,basal +
∑

K : rK:j=0

cK:jβK:j

 ∏
i∈AK:j

νij
1 + νij

 ∏
i∈DK:j

1

1 + νij


+

∑
K : rK:j=1
DK:j=∅

cK:jβK:j

∏
i∈AK:j

νij

1 +
∏
i∈AK:j

νij
(5)

+
∑

K : rK:j=1
DK:j 6=∅

cK:jβK:j

∏
i∈AK:j

νij

1 +
∏
i∈AK:j

νij +
(∏

i∈AK:j
νij

)(∏
i∈DK:j

νij

) .

As we will see in the Results section, f satisfies the CSP. Note that in the actual 321

GeneNetWeaver source code every αj,s is truncated to the interval [0, 1]: 322

αj,s =

αj,basal +
∑

K∈Sj : sK=1

cK:jβK:j

1

0

,

where [x]10 = max{min{x, 1}, 0} is the projection of x to the [0, 1] interval. Then the 323

relative activation in each state may not be linear in the individual module effects. In 324

that case one has to resort to Eq (2) instead of Eq (5) for computing the mRNA 325

production rate. The resulting truncated model does not necessarily satisfy the CSP 326

because fj may not be monotone in MK:j in Eq (2). 327

Results 328

A relation between infinitesimal monotonicity and sum–product 329

monotonicity 330

The following result establishes the equivalence of the two notions of monotonicity for 331

ODE models that satisfy the sum–product CSP. So if the sum–product CSP holds, we 332

do not need to distinguish between the sum–product CSP and the infinitesimal CSP. 333

Consequently, given an ODE model, one can easily find the corresponding graph models 334

for different system parameters, external signals, and internal states by calculating the 335

sum products of the first-order partial derivatives of the input function f . 336
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Proposition 1. If f is smooth and satisfies the sum–product CSP over 337

S ⊆ Rn+m+l × Rs, then it also satisfies the infinitesimal CSP over S, and the 338

sum–product gene regulatory graph and the infinitesimal gene regulatory graph are the 339

same. 340

Proof. It suffices to show Bsum(i, j, x, λ) = Binf(i, j, x, λ) if Bsum(i, j, x, λ) 6= {1,−1} for 341

any (x, λ) ∈ S. For fixed i, j, x, λ, let η(t, h) , η(j)(t, h, x, λ) be the solution of the 342

clamped initial value problem at time t with initial condition η(0, h) = (xi + h, x−i). 343

We are interested in the sign of 344

g(t, h) , ηj(t, h)− ηj(t, 0).

If q∗ij =∞ then we readily have Bsum(i, j, x, λ) = Binf(i, j, x, λ) = ∅. Suppose 345

q∗ij = q <∞. Then by Corollary 4.1 in Section 5 of [21] (page 101), f being smooth 346

implies g is also smooth, and we can show that (see the proof in S3 Appendix) 347

∂tahbg(0, 0) =


∆(i, j, x, λ) if (a, b) = (q, 1),

0 if 0 ≤ a ≤ q − 1 or b = 0.

(6)

Hence by the multivariate Taylor’s theorem (see, e.g., [22])

g(t, h) = g(0, 0) + g′(0, 0)(t, h) +
1

2
g(2)(0, 0)(t, h)2 + . . .

+
1

(q + 1)!
g(q+1)(0, 0)(t, h)q+1 + o(|t|q+1 + |h|q+1)

= 0 + 0 + · · ·+ 0 +
1

(q + 1)!

(
∂q+1g

∂tq+1
(0, 0)tq+1 +

(
q + 1

1

)
∂q+1g

∂tq∂h
(0, 0)tqh

+ · · ·+ ∂q+1g

∂hq+1
(0, 0)hq+1

)
+ o(|t|q+1 + |h|q+1)

=
1

q!
∆(i, j, x, λ)tqh+ o(|t|q+1 + |h|q+1)

as (t, h)→ (0, 0). So g(t, h) has the same sign as ∆(i, j, x, λ)tqh in a sufficiently small 348

neighborhood of (0, 0). Hence Bsum(i, j, x, λ) = Binf(i, j, x, λ). 349

Remark 5. If multiple ODE models satisfy CSP with the same gene regulatory graph, 350

then they can be combined into a single ODE model with different parameterization so 351
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that the combined ODE model still satisfies CSP with the same gene regulatory graph. 352

For example, ODE models for different environmental temperatures can be either 353

considered different models or a single unified model with different temperature 354

parameter. Then the temperature-specific models satisfy CSP with the same gene 355

regulatory graph if and only if the unified model satisfies CSP for all temperatures. 356

Remark 6. The effect of a gene on itself can be either autoregulation or degradation. 357

The two effects can be distinguished with the molecular graph: a self-loop with negative 358

derivative indicates degradation, and a loop of multiple hops indicates autoregulation. 359

The infinitesimal monotonicity does not distinguish the two effects. 360

The following is an example of an ODE model that does not satisfy CSP globally, 361

based on the interactions among FT, TFL1, FD, and LFY genes in the study [9]. 362

Example 1. Consider a four-gene ODE model with the following dynamics for gene 4.

ẋ4 = f4(x1, x2, x3)

,
x1x3

λ1 + x1x3

λ2
λ2 + x2x3

,

where we use x for both the mRNA and protein concentrations. The biological meaning 363

could be genes 1 and 3 form a protein complex that activates gene 4, while genes 2 and 364

3 form a protein complex that represses gene 4. Then it can be checked that the effect 365

of gene 3 on gene 4 does not satisfy the CSP globally. Indeed, one can check that 366

∂3f4 =
x1λ2

(λ1 + x1x3)2(λ2 + x2x3)2
(λ1λ2 − x1x2x23).

So gene 3 activates gene 4 if λ1λ2 > x1x2x
2
3, and represses gene 4 if λ1λ2 < x1x2x

2
3. 367

Here is an example of a molecular graph having a shorter unobserved path 368

dominating a longer unobserved path with the opposite sign, taken from part of the 369

gene regulatory network in the study [23], achieving CSP with the sign of the shorter 370

path (see Fig 3).

Fig 3. Molecular graph and gene regulatory graph of the ELF4–GI regulation in the
study [23]. (A) The molecular graph with blue edges indicating positive partial
derivatives and red edges indicating negative partial derivatives. (B) The gene
regulatory graph.

371
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Example 2. The mRNA ELF4m is transcribed into the protein ELF4 p, which then 372

forms the complex EC c with the protein LUX p. The complex EC c induces the 373

transcription of the mRNA GIm. Then there is a 3-hop path 374

(ELF4m–ELF4 p–EC c–GIm) and a 4-hop path (ELF4m–ELF4 p–LUX p–EC c–GIm) 375

from ELF4m to GIm with opposite signs. The ODE model of the molecular graph 376

satisfies CSP with ELF4 activating GI in the gene regulatory graph. 377

GeneNetWeaver: CSP and complexity 378

In this section GeneNetWeaver models (without the truncation of the α terms in the 379

implementation) are shown to satisfy the CSP globally, regardless of the parameters and 380

the system states, and thus correspond to the signed directed graphs that were used to 381

generate the models. Moreover, when data is generated through multifactorial 382

perturbation for the DREAM challenge (primarily for generation of stationary 383

expression levels, rather than trajectories), each ensemble of networks produced is also 384

associated with the same directed signed graph. This is in contrast to the Shea–Ackers 385

model, which is shown to be able to generate non-monotone behavior [17]. Formally we 386

have the following result. 387

Proposition 2. Given any directed signed graph, the ensemble of the GeneNetWeaver 388

models satisfy CSP over (0,∞)2n and the gene regulatory graphs coincide with the given 389

graph. 390

Proof. Fix any model of the ensemble of GeneNetWeaver models for the given graph. 391

For any target gene j and its regulator i ∈ Nj , there exists a unique module, indexed by 392

K : j, whose input K ∈ Sj includes i. Then for any of the three module types, 393

∂νijMK:j


> 0 if i ∈ AK:j ,

< 0 if i ∈ DK:j .

Then by Eq (4), 394

∂yifj = cK:jβK:j∂νijMK:jhij
y
hij−1
i

k
hij

ij

and 395

∂xi
f
(p)
i = ρi.
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Because only cK:j and ∂νijMK:j can be negative in ∂yifj∂xi
f
(p)
k , the sum–product of 396

the first-order partial derivatives of the path from xi to xj has the same sign as 397

cK:j∂νijMK:j , which is consistent with the sign bij in the given graph by the 398

construction in S2 Appendix. Hence by Proposition 1 the fixed ODE model satisfies 399

CSP over all positive state vectors with gene regulatory graph equal to the given graph. 400

Repeat this for all ODE models in the ensemble and the proposition is proved. 401

We now discuss the complexity of GeneNetWeaver ODE models for a given gene 402

regulatory graph. The complexity comes from both the large number of parameters and 403

the combinatorial nature of the module configurations. The complexity indicates that 404

ODE models are both much more detailed and considerably harder to infer compared to 405

the graphical models. 406

For each gene i there are 5 non-negative real parameters (αi,basal, xi(0), yi(0), δ(m)
i , 407

δ
(p)
i ). For each edge (i, j) there is a non-negative real parameter (kij) and an integer 408

parameter (hij). For each module K : i there is a positive real parameter (βK:i) and 409

two binary parameters (cK:i and rK:i). 410

The module configuration encodes great combinatorial complexity. Given a gene has 411

K ≥ 1 input genes, the number of ways to partition the genes into modules is the Kth 412

Bell number. The first ten Bell numbers are 1, 2, 5, 15, 52, 203, 877, 4140, 21147, and 413

115975. In addition, each input to a given module needs to be classified as an activator 414

or deactivator. 415

Case study: soybean flowering networks 416

In this section the similarities of the ODE models corresponding to three different graph 417

models are studied. First the classes of ODE models are listed for the three graph 418

models. Then, to investigate their similarities, we generate expression data from one 419

ODE model, and fit another model to the data by optimizing the parameters. The level 420

of fitness of one class of ODE model to the data generated from another is used as a 421

metric of similarity. As we will see, ODE models corresponding to the same graph 422

model tend to have a higher similarity, while those from different graph models tend to 423

have a lower similarity, as long as the least-squares problem is sufficiently 424

overdetermined. The result implies that the graph model corresponding to the ODE 425
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model may be recovered with moderate amount of data, while the amount of data 426

required for ODE model recovery may be of a much higher order. The simulation code 427

for the data fitting results is available at [24]. 428

Five-gene graph and ODE models 429

In this section we explicitly write out the classes of GeneNetWeaver ODE models of 430

three graph models. The first two graph models are compiled from the literature, with 431

only the sign of one edge different between them (the difference is discovered in the 432

study [25]). The third graph model is an arbitrary five-gene repressilator for comparison 433

purpose. 434

Flowering network with COL1a activating E1 435

A graph model of a five-gene soybean flowering network is shown in Fig 4. The 436

network is based on the flowering network for Arabidopsis and homologs of Arabidopsis 437

genes found in soybean (see references in Table 1). The corresponding gene IDs are

Fig 4. A graph model of the core flowering network for soybean.

regulatory interaction reference

E1 activates COL1a [26]
E1 activates FT4 [27]

COL1a activates E1 [25]
COL1a represses E1 [26]
COL1a activates FT4 [26], [25]
COL1a represses FT2a [26], [25]
FT4 represses AP1a [27]*
FT2a activates AP1a [28]

Table 1. Core flowering genes.
* For FT4 only, not for the interaction with AP1a.

438

shown in Table 2. 439

index gene ID gene name

1 Glyma.06G207800 E1
2 Glyma.08G255200 COL1a
3 Glyma.08G363100 FT4
4 Glyma.16G150700 FT2a
5 Glyma.16G091300 AP1a

Table 2. Core flowering genes.

The mRNA and proteins concentrations of the soybean genes E1, COL1a, FT4, 440
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FT2a, and AP1a are denoted by (xi)1≤i≤5 and (yi)1≤i≤5. The differential equations 441

based on the GeneNetWeaver model are 442

ẋ1 = α1,basal +
(y2/k21)h21

1 + (y2/k21)h21
β2:1 − δ(m)

1 x1. (7)

443

ẋ2 = α2,basal +
(y1/k12)h12

1 + (y1/k12)h12
β1:2 − δ(m)

2 x2. (8)

444

ẋ3 = α3,basal + (y1/k13)
h13

1+(y1/k13)h13

(y2/k23)
h23

1+(y2/k23)h23
β12:3 − δ(m)

3 x3

(independent binding), or

ẋ3 = α3,basal + (y1/k13)
h13 (y2/k23)

h23

1+(y1/k13)h13 (y2/k23)h23
β12:3 − δ(m)

3 x3

(synergistic binding), or

ẋ3 = α3,basal + (y1/k13)
h13

1+(y1/k13)h13
β1:3 + (y2/k23)

h23

1+(y2/k23)h23
β2:3 − δ(m)

3 x3

(two modules).

(9)

445

ẋ4 =

(
α4,basal −

(y2/k24)h24

1 + (y2/k24)h24
β2:4

)+

− δ(m)
4 x4. (10)

446

ẋ5 = α5,basal + 1
1+(y3/k35)h35

(y4/k45)
h45

1+(y4/k45)h45
β34:5 − δ(m)

5 x5

(independent binding enhancer), or

ẋ5 =
(
α5,basal − (y3/k35)

h35

1+(y3/k35)h35

1
1+(y4/k45)h45

β34:5

)+
− δ(m)

5 x5

(independent binding silencer), or

ẋ5 = α5,basal + (y4/k45)
h45

1+(y4/k45)h45+(y3/k35)h35 (y4/k45)h45
β34:5 − δ(m)

5 x5

(synergistic binding enhancer), or

ẋ5 =
(
α5,basal − (y3/k35)

h35

1+(y3/k35)h35+(y3/k35)h35 (y4/k45)h45
β34:5

)+
− δ(m)

5 x5

(synergistic binding silencer), or

ẋ5 =
(
α5,basal − (y3/k35)

h35

1+(y3/k35)h35
β3:5 + (y4/k45)

h45

1+(y4/k45)h45
β4:5

)+
− δ(m)

5 x5

(two modules).

(11)

447

ẏ1 = ρ1(x1 − y1). (12)
448

ẏ2 = ρ2(x2 − y2). (13)
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449

ẏ3 = ρ3(x3 − y3). (14)
450

ẏ4 = ρ4(x4 − y4). (15)
451

ẏ5 = ρ5(x5 − y5). (16)

Here (x)+ = max{x, 0}. We apply nondimensionalization by setting 452

δi = αi,basal +
∑
j βj:i, so that the steady state expression levels are between 0 and 1. 453

We can see that given the graph, there are 15 configurations of the ODEs (3 for x3 454

times 5 for x5). We use [i, j] with 1 ≤ i ≤ 3 and 1 ≤ j ≤ 5 to denote the configuration 455

using the ith equation for x3 and the jth equation for x5, and use the symbol F[i,j],+ to 456

denote the class of flowering network ODE models with configurations [i, j] (the plus 457

sign signifies the activation regulation of COL1a on E1 ). The initial conditions, namely 458

the 5 mRNA abundances x(0)’s and the 5 protein concentrations y(0)’s, are 459

10-dimensional. In addition, there are 24–26 positive real parameters (depending on the 460

configuration) and 7 discrete parameters (the Hill coefficients) for the dynamics. For 461

example, for configuration [1, 1], the parameters for the dynamics consist of the basal 462

activations α’s (5), the Michaelis–Menten constants k’s (7), the absolute effect of 463

modules β’s (7), the translation rate ρ’s (5), summing up to 24 parameters. 464

Flowering network with COL1a repressing E1 465

A slight variant of the soybean flowering graph model in Fig 4 is shown in Fig 5. 466

Note the only difference is the sign of the edge from COL1a to E1. The symbol F[i,j],− 467

denotes the class of ODE models Eq (7)–Eq (16) with the ith and the jth 468

configurations in Eq (9) and Eq (11), but with Eq (7) replaced by 469

ẋ1 =

(
α1,basal −

(y2/k21)h21

1 + (y2/k21)h21
β2:1

)+

− δ(m)
1 x1. (17)

Here the negative sign in F[i,j],− signifies the repression regulation of COL1a on E1. 470

The number of parameters is the same as the network in Fig 4.

Fig 5. A variant of the graph model of the core flowering network for soybean.

471

Repressilator 472

An arbitrary repressilator network is shown in Fig 6. The symbol R denotes the class 473
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Fig 6. A five-gene repressilator graph model.

of ODE models for the repressilator, given below. 474

ẋ1 =

(
α1,basal −

(y3/k31)h31

1 + (y3/k31)h31
β3:1

)+

− δ(m)
1 x1. (18)

475

ẋ2 =

(
α2,basal −

(y1/k12)h12

1 + (y1/k12)h12
β1:2

)+

− δ(m)
2 x2. (19)

476

ẋ3 =

(
α3,basal −

(y4/k43)h43

1 + (y4/k43)h43
β4:3

)+

− δ(m)
3 x3. (20)

477

ẋ4 =

(
α4,basal −

(y5/k54)h54

1 + (y5/k54)h54
β5:4

)+

− δ(m)
4 x4. (21)

478

ẋ5 =

(
α5,basal −

(y2/k25)h25

1 + (y2/k25)h25
β2:5

)+

− δ(m)
5 x5. (22)

There is only one possible configuration for each target gene. The dynamics involve 20 479

parameters. 480

Data generation 481

The synthetic expression dataset is generated as follows. For the generated data, we use 482

F[1,1],+ (the flowering network with configuration [1, 1] and COL1a activating E1 ) with 483

a fixed set of parameters for the dynamics. For a single set of trajectories (i.e., for a 484

single plant), we use a set of initial values x(0)’s and y(0)’s generated uniformly at 485

random between 0 and 1. The entire dataset may consist of only a single set of 486

trajectories, corresponding to a single plant; or the dataset may consist of multiple sets 487

of trajectories, corresponding to multiple plants. If multiple sets of trajectories are used, 488

the initial conditions for each set of trajectories are generated independently, while the 489

parameters for the dynamics are the same across all sets of trajectories. In other words, 490

we model distinct plants by assuming distinct initial conditions, while using common 491

parameters for the dynamics. To produce the data, the x variables are sampled at time 492

points 0, 1, 2, 3, 4, 5, 6, so that each set of trajectories (i.e., each plant) produces 35 493

data points. Because each set of trajectories is sampled at different times from the 494

system with one initial condition representing different stages of a single plant, the 495

synthetic datasets are of multi-shot sampling, as opposed to one-shot sampling in 496
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practice where each individual is only sampled once [29]. We also generate random 497

expression datasets with reflected Brownian motions with covariance 0.05, and denote 498

such a stochastic model by B. 499

Fitting results 500

The counts for data points and parameters are summarized in Table 3. Note that with a 501

single set of trajectories, the number of parameters is close to the number of data points. 502

As the number of sets of trajectories increases, the number of data points outgrows the 503

number of parameters because each additional set provides 35 new data points while 504

only allowing 10 more parameters from the initial conditions (because the dynamic 505

parameters are shared across all sets of trajectories).

S (number of sets of trajectories) 1 2 5 10
STn (number of data points) 35 70 175 350

F[1,1],+ 34 44 74 124
F[3,5],+ 36 46 76 126
F[1,1],− 34 44 74 124

R 30 40 70 120
Table 3. Number of parameters in different ODE models.

506

A Basin-hopping algorithm in the Python package LMFIT [30] is used to perform the 507

global optimization of the curve fitting (see details in the source code of the 508

simulation [24]). The sample size varies between 35 and 350 depending on the number 509

of sets of trajectories. The fit is evaluated by the fitting loss and the coefficients of 510

determination (R2) shown in Table 4 and Table 5. The fitting loss function for two 511

S × T × n tensors x and x̂ is defined by 512

l(x, x̂) =

 1

STn

S∑
i=1

T∑
j=1

n∑
k=1

(xijk − x̂ijk)2

1/2

,

where S is the number of sets of trajectories in the dataset, T the number of time 513

points, and n the number of genes. Note the time scale of the ODE is assumed to be 514

known, which restricts how fast the expression levels can change. The time scale thus 515

acts as a regularizer to prevent overfitting. 516

We make the following observations from Table 4 and Table 5. 517
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S (number of sets of trajectories) 1 2 5 10

fit F[1,1],+ model to F[1,1],+ data 0.0015 0.0015 0.0010 0.0009
fit F[3,5],+ model to F[1,1],+ data 0.0016 0.0021 0.0019 0.0021
fit F[1,1],− model to F[1,1],+ data 0.0032 0.0036 0.0165 0.0208

fit R model to F[1,1],+ data 0.0030 0.0037 0.0148 0.0204
fit F[1,1],+ model to B data 0.1269 0.1125 0.1307 0.1390

Table 4. Fitting losses using different classes of ODE models on different synthetic
datasets.

S (number of sets of trajectories) 1 2 5 10

fit F[1,1],+ model to F[1,1],+ data 0.99996 0.99995 0.99999 0.99999
fit F[3,5],+ model to F[1,1],+ data 0.99995 0.99991 0.99996 0.99995
fit F[1,1],− model to F[1,1],+ data 0.99980 0.99974 0.99702 0.99517

fit R model to F[1,1],+ data 0.99983 0.99972 0.99760 0.99535
fit F[1,1],+ model to B data 0.88639 0.90175 0.87241 0.87517

Table 5. Coefficients of determination using different classes of ODE models on
different synthetic datasets.

1. The implemented optimization algorithm failed to find the optimal parameters in 518

row 1 (the best fit should be a perfect fit with zero loss), but the relative loss 519

compared to the average nondimensionalized expression level 0.5 is very small 520

(less than 0.5%), and the coefficients of determination are close to 1. Both 521

indicate a near-optimal fit. 522

2. ODE models from all three graph models (rows 1, 2, 3, and 4) fit the synthetic 523

flowering network data well when there are only one or two sets of trajectories 524

(columns 1 and 2). The relative losses are less than 1% and R2 is larger than 525

0.9997. We can see from Table 3 that the number of data points is close to the 526

number of parameters in the S = 1 setting, and only moderately larger in the 527

S = 2 setting. So when S ≤ 2 the three graph models in this case study are nearly 528

indistinguishable. In other words, one may not be able to infer the graph 529

structure with very limited data. 530

3. When fitting the models to 5 or 10 sets of trajectories simultaneously, i.e., when 531

the system is sufficiently overdetermined, only the models from the correct graph 532

(rows 1 and 2) fit well. The models from incorrect graphs (rows 3 and 4) suffer a 533

roughly 4% relative loss after fitting for 10 sets of trajectories and R2 falls below 534

0.998. Note that F[1,1],− differs from the ground truth of the data F[1,1],+ only by 535

the sign of one edge, while the model R shares no edges in common with the 536
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ground truth at all. Yet the fitness of the slight variant of the ground truth graph 537

is as bad as the completely different repressilator graph. 538

4. Both F[1,1],+ and F[3,5],+ fit the F[1,1],+ data very well for all numbers of sets of 539

trajectories (rows 1 and 2). This indicates the classes of ODE models with 540

different configurations of the same graph model are similar in terms of data 541

fitting. Consequently, even with data sufficient to infer the correct graph model, it 542

may be impossible to infer the specific ODE model. 543

5. The models from the flowering network cannot fit the random dataset (reflected 544

Brownian motions with covariance 0.05) well. It turns out that the ODE models 545

with 34 parameters have trouble following the highly variable 35 data points from 546

the reflected Brownian motions. The low fitness level to the random dataset 547

shows great redundancy in the parameters in terms of generating data points. It 548

also indicates the fitting results to the synthetic ODE data are significant 549

compared to fitting a random dataset. 550

Discussion 551

Generalization of CSP to related gene regulatory network 552

models 553

The concept of CSP can be applied to many other models. We first explain this for 554

continuous-state models, and then for discrete-state models. 555

Continuous-state models 556

A network model somewhat similar to ODE models is a fixed-point model. The study 557

by Van den Bulcke et al. [31] uses a fixed-point model for gene regulatory networks. 558

ODE models based on Michaelis–Menten and Hill kinetics and linear degradation terms 559

are used to determine the expression level of a given gene as a function of the expression 560

levels of other genes. Then a fixed point is produced. This can model equilibrium 561

points, also known as resting points, of ODE models. The concept of constant sign 562

property can be applied to fixed-point models as well. Van den Bulcke et al. [31] focuses 563

on models for the network topology, which is not addressed in this paper. 564
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Other continuous-state models have been used for gene regulatory networks. The 565

study by Mendes et al. [32] simulates gene regulatory networks using a biochemical 566

simulator called Gepasi [33], which models complex biochemical pathways using ODEs. 567

For such biochemical systems, constant sign property discussed in this paper can be 568

used to find the causal dependency among observed variables (e.g., mRNA abundances 569

in the special case of gene regulatory networks). In order to avoid the difficult 570

calibration of the parameters in ODEs, Ocone et al. [34] models the promoter by a 571

binary state process and approximates the transcription–translation network with 572

stochastic differential equations. Constant sign property can be easily generalized to 573

such hybrid models by introducing a notion of monotonicity for the stochastic systems. 574

It is worth mentioning that constant sign property is defined with directionality for 575

causal relationship among the genes and not suitable for models based on mere 576

correlation (e.g., graphical Gaussian models [35]). 577

Discrete-state models 578

One common type of discrete models used for gene regulatory networks are Bayesian 579

networks (see, e.g., Friedman et al. [36]). Boolean networks, as a special case of 580

Bayesian networks, are used to capture qualitative gene regulation (see, e.g., Liang et 581

al. [37]), for which constant sign property can be defined based on the monotonicity of 582

the boolean functions. The study by Husmeier [38] evaluates a dynamic Bayesian 583

network inference algorithm using simulated data based on an ODE model whose 584

genetic network model is taken from Zak et al. [39] and whose equations are taken from 585

chemical kinetics (see Chapter 22 of Atkins and de Paula [40]). Similarly, the study by 586

Smith et al. [41] also proposes a dynamic Bayesian network algorithm, and evaluates its 587

performance on sampled and quantized data from a dynamic Bayesian network 588

simulator that models different regions of the brain of songbirds regulated by their 589

behaviors. The simulated data is generated with a small step size before being sampled, 590

and thus resembles an ODE model simulator. For the dynamic Bayesian network gene 591

expressions are quantized to discrete values. The constant sign property can also be 592

applied to dynamic Bayesian network models using a partial order of the conditional 593

distributions (e.g., stochastic dominance) of target genes given the expressions of their 594

regulators. Husmeier [38] gives an example of a graphical model that is more detailed 595
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than the gene regulatory graph in this paper. Although both the GeneNetWeaver model 596

and the ODE models in Husmeier [38] are based on chemical kinetic equations, one 597

difference is that the Michaelis–Menten and the Hill kinetics in GeneNetWeaver arise 598

from considerations of a faster time scale of the binding of TF to the promoter regions 599

(see Alon [19]). Nevertheless, both GeneNetWeaver and the ODE models for realistic 600

simulation in Husmeier [38] fall into the general framework of ODE models in this paper 601

and hence the constant sign property we have proposed applies to both. 602

Implication of GCSP 603

GCSP of an ODE model generalizes the notion of a linear dynamical system by allowing 604

the variation of the state vector (i.e., the concentrations of molecular classes) to be 605

nonlinear in the state vector so long as the overall effect of the most influential 606

pathways in the molecular graph keeps the same sign (i.e., activation stays activation 607

and repression stays repression regardless of the expression of the regulator, the target 608

gene, or any other molecular classes). Biologically, GCSP indicates homogeneity of the 609

gene regulatory network in the sense that the qualitative properties of gene regulation 610

are preserved after cellular differentiation and under different external conditions. Lack 611

of GCSP indicates significant change in regulatory functions after cellular differentiation 612

and under different external conditions. Note that GCSP is more likely to hold for the 613

subnetwork of a small number of genes compared to a larger network. 614

Limitation of infinitesimal CSP 615

The definitions of CSP proposed in this paper focus on short time behavior. Over short 616

time periods, the paths with the smallest number of hops dominate. Often the shortest 617

paths have the strongest influence, as seen in Example 2. But in some cases the shortest 618

paths could be weaker than some slightly longer paths, and if the longer paths have an 619

opposite sign, then the focus on short time and shortest paths can be misleading, 620

because the longer paths will take over quickly after the brief initial dominance by the 621

shortest paths. In the extreme case of a complete molecular graph, where every 622

molecular class has a (possibly tiny) regulatory effect on every other molecular class, 623

the gene regulatory graph defined in this paper would be determined by only the direct 624

June 13, 2020 29/35



edges in the molecular graph and all the actual biological pathways would be entirely 625

ignored. This also shows the importance of network sparsity. 626

Conclusion 627

Gene regulatory networks are modeled at different abstraction levels with tradeoff 628

between accuracy and tractability. Graph models with signed directed edges provide 629

circuit-like characterization of gene regulation, while ODE models quantify detailed 630

dynamics for various molecular classes. The constant sign property proposed in this 631

paper connects the two types of models by identifying a set of conditions under which 632

ODE models correspond to a single graph model, and provides a deeper understanding 633

of the context-dependent and time-varying nature of gene regulatory networks. A class 634

of ODE models for a given graph model based on the source code of a popular software 635

package GeneNetWeaver is described in detail and shown to satisfy the global constant 636

sign property. Exploration of data fitting of one ODE model to the data generated from 637

another shows better fit when two models have the same graph model. 638

Supporting information 639

S1 Appendix. Basic model of gene interaction. A brief review on both graph 640

models and ODE models is given here. 641

S2 Appendix. Random model for production functions used in 642

GeneNetWeaver. Specific module generation and parameter ranges in 643

GeneNetWeaver are described here. 644

S3 Appendix. Proof of Eq (6). A proof of the equation involving the partial 645

derivatives of the solution of dynamical systems. 646
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