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Abstract

A gene regulatory network can be described at a high level by a directed graph with
signed edges, and at a more detailed level by a system of ordinary differential equations
(ODEs). The former qualitatively models the causal regulatory interactions between
ordered pairs of genes, while the latter quantitatively models the time-varying
concentrations of mRNA and proteins. This paper clarifies the connection between the
two types of models.

We propose a property, called the constant sign property, for a general class of ODE
models. The constant sign property characterizes the set of conditions (system
parameters, external signals, or internal states) under which an ODE model is
consistent with a signed, directed graph. If the constant sign property for an ODE
model holds globally for all conditions, then the ODE model has a single signed,
directed graph. If the constant sign property for an ODE model only holds locally,
which may be more typical, then the ODE model corresponds to different graphs under
different sets of conditions. In addition, two versions of constant sign property are given

and a relationship between them is proved.
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As an example, the ODE models that capture the effect of cis-regulatory elements
involving protein complex binding, based on the model in the GeneNetWeaver source
code, are described in detail and shown to satisfy the global constant sign property with
a unique consistent gene regulatory graph. Even a single gene regulatory graph is shown
to have many ODE models of GeneNetWeaver type consistent with it due to
combinatorial complexity and continuous parameters.

Finally the question of how closely data generated by one ODE model can be fit by
another ODE model is explored. It is observed that the fit is better if the two models

come from the same graph.

Introduction

A gene regulatory network is a collection of molecular classes such that each molecular
class interacts with a small number of other molecular classes, creating a sparse graph
structure [1]. A goal of systems biology is to understand gene regulatory networks and
infer them from data [2,3]. A directed graph with vertices representing genes and signed
edges representing gene-to-gene interactions, also known as a circuit model [4] or a
logical model [5], is a model with a high level of abstraction (see S1 Appendix). The
vertices of such graph models often only consist of the genes but not the properties of
the derived proteins because the latter information is usually not available. An ordinary
differential equation (ODE) model is far more detailed than a graph model: they
quantitatively describe the dynamics of the time-varying mRNA and protein
concentrations of the genes, and can be used to capture complex effects, including
protein—protein interaction, post-translational modification, environmental signals,
diffusion of proteins in different parts of the cell, and various time constants. As a
result, ascribing a directed graph to a biologically plausible gene regulatory network can
miss important biological details and dynamics because of the abstraction. However, it
is significantly more challenging to ascribe a particular ODE model to a gene regulatory
network than to ascribe a directed graph because an ODE model requires much finer
classification with possibly orders of magnitude more amount of data. As one example,
the work [6] is notable for successful identification of an ODE model that captures the

gene regulatory network underlying the dynamics of the circadian clock. The ODE
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model in [6] is based on a number of previous empirical and modeling studies, and it is
shown that parameters for the model can be selected to give a good match to the data.
In general, however, without such prior knowledge, the relation between the graph
models and the ODE models is unclear. The purpose of this paper is to explore the
connections between the two types of models.

We propose a property of the ODE models, called the constant sign property (CSP),
such that an ODE model corresponds to a single graph model under a set of conditions
if and only if the ODE model satisfies CSP under that set of conditions. An ODE
model is said to satisfy global constant sign property (GCSP) if it satisfies CSP under
all conditions, in which case the ODE model corresponds to a single graph model.
Typically, an ODE model corresponds to different graph models under different
conditions characterizing the context-dependent and time-varying nature of biological

systems [7,8]. An ODE model that does not satisfy GCSP is illustrated in Fig 1.

Fig 1. Network reconstruction for an ODE model in the study [9] without
global CSP. The ODE model f governs the dynamics of all parts of the plant, and
expression data collected from different parts of a plant (flower vs. leaf) can correspond
to different graph models.

One particularly rich class of ODE models that satisfy GCSP are based on
GeneNetWeaver [10,11], the software used to generate expression data in DREAM
challenges 3-5 [11-13] and recently applied to single-cell analysis [14,15]. In these ODE
models a layer of intermediate elements called modules are constructed with
transcription factors (TFs) as their input and target genes their output. The activity
level of a module depends on its input and its type, and determines the production rate
of its output. The modules model the binding of protein complexes to DNA in
transcriptional regulation. TFs can regulate the target gene through one or multiple
modules. Assuming for each TF and each target gene there is only one module that
takes the TF as an input and the target gene as an output, we show that CSP is
satisfied, so each GeneNetWeaver ODE model has a well-defined graph model associated
with it. The combinatorial nature of the number of possible module configurations (i.e.,
the number of the modules and their input and output) and the continuous value
parameters make the GeneNetWeaver ODE models extremely rich.

The organization of this paper is as follows. In the first subsection of the Materials
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and Methods section, we describe the ODE models and the graph models, and propose
two notions of CSP. In the second subsection of the Materials and Methods section, we
describe ODE models based on GeneNetWeaver. The Results section has three
subsections. In the first, a relation of the two notions of CSP is provided. In the second,
the GeneNetWeaver ODE models are shown to satisfy the constant sign property, and
their complexity is investigated. In the third, a case study of a core soybean flowering
network based on the literature is presented to demonstrate the use of the
GeneNetWeaver ODE models. First it is illustrated that a single signed, directed graph
model has a large space of consistent ODE models. Second, to study how different the
GeneNetWeaver ODE models are, we explore the problem of numerically fitting
parameters of one ODE model to synthetic expression data generated from another.
The generalization, implication and limitation of CSP are discussed before the

concluding remarks.

Materials and methods

ODE model and constant sign property

In this section we define the constant sign property, a property under which ODE
models are consistent with signed directed graphs. Roughly speaking, CSP holds when
unilaterally increasing the expression level of one gene causes the expression level of
another gene to move in one direction. In other words, the effect of one regulator gene
has a constant sign on a target gene. In rare cases, CSP may hold globally, regardless of
the expression levels of all the genes and the concentrations of any other molecular
classes. More generally, CSP may hold only for a set of expression levels and system
parameters, leading to a local definition. We present the precise definition of CSP in
this section.

Let x1(t), z2(t), ..., zn(t) be the mRNA abundances for the n genes (the
observables) at time t. Let @,41(t), nia(t), - .., Tnim(t) be the protein concentrations
(the unobservables) at time ¢, which may include derived (protein complexes and
modifications like protein phosphorylation) and localized (e.g., cytoplasmic and nuclear)

proteins. Let @y m41(t), Tntmi2(t), -« Tnirm11(t) be the strengths of the chemical
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and environmental signals (the controllables, e.g., temperature and photoperiod) at time
t. Let (t) = (z:(t): ¢ € [n + m +1]) be the system state at time ¢, where [n] denotes
the set of integers {1,2,...,n}. Let A € R® be the parameters of the ODE model and
let f;: R*™+l x R® — R be the time derivative of z; as a function of the

(n + m + l)-dimensional system state and the parameters for i € [n + m]. Note the
domain of f; is assumed to be the entire Euclidean space rather than a subset of it
without loss of generality because one can always restrict f; to a subset of states that x
takes. Examples of f for the single-input case (n +m 4+ = 1) include the
Michaelis—Menten kinetics and the more general Hill kinetics. Examples of f for the
multi-input case (n +m + 1 > 2) include the Shea—Ackers model [16,17], which is the
average production rate based on a Gibbs measure of the control states, and the
GeneNetWeaver model to be discussed later in this paper, which models the additive
effect of multiple intermediate Shea—Ackers type modules. Both the Shea—Ackers model
and the GeneNetWeaver model generalize the Hill kinetics to multi-input scenarios in
their own ways and are, among many other sophisticated ODE models, within the
framework of ODE models in this paper.

Formally, given the numbers of molecular classes (i.e., n classes of mRNAs, m classes
of proteins, and [ classes of molecular signals), the dynamics of an ODE model are
characterized by the collection of time derivatives for the uncontrollable variables
f=(fi: i €[n+m]). In the rest of the paper an ODE model refers to the collection of
the functions f. The trajectories of the mRNA and protein concentrations evolving with
0

time depend on (2%, %, \), where z° = (1:

9:4 € [n+ m]) are the initial conditions of the

mRNAs and proteins at time 0, Z = (Z;(t): n+m+1<i<n+m+1t>0) are the
predefined external signal strengths for all time, and A € R® are the parameters. The

trajectories can then be obtained by solving the following initial value problem.

zi(t) =Z;(t), n+m+1<i<n+m+1lt>0,

= fi(z(t),\), i€ [n+m).

Note the signals (z;: n+m+1 < i <n+m+1) are exogenously controlled and not
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solved via the equations. In this paper we assume existence and uniqueness of the
solution on the entire positive time horizon for ease of exposition. The concept of CSP

can be easily generalized to ODE models where only local solutions exist.

Infinitesimal monotonicity

We first define a version of monotonicity called infinitesimal monotonicity such that CSP
using this definition of monotonicity can be applied to a broad class of ODE models.

Roughly speaking, infinitesimal monotonicity characterizes the monotone influence
of one observed variable on another over a sufficiently short period of time. Such
monotonicity depends on the current system state. For each regulator—target pair, to
avoid external and indirect influence, we clamp the exogenous signals as well as the
observed variables other than the target to their initial values, so only the unobserved
variables and the target observed variable are allowed to change with time. The
clamped value of the regulator can be perturbed. A change in the constant value of the
regulator can cause a change in the target observed variable in continuous time, possibly
through one or multiple unobserved variables. The system with the input at the
regulator observable and output at the target observable is thus treated as a black box
in the sense that one does not need to know its internal states (the unobservables) to
determine the infinitesimal monotonicity of the system. This assumes that the initial
internal states are fixed.

Given the ODE model f, and given a state 2 € R**™*! and parameters A € R*, let
j be the target gene and let the dynamics of the clamped ODE model be driven by
) fr fke{jlun+1:n+m),

) =
0  otherwise,

for any k € [n +m +1]. Here [a : b] denotes the set of integers {a,a + 1,...,b}. Then
f(j) = (féj) cken+m+ l]) determines the dynamics of a system where the mRNA
abundances and exogenous signals remain constant across time except for the mRNA
abundance of gene j. Fix a potential regulator gene i # j and let
(n(j) (t,h,x,A) € R"™*: ¢ > 0) be the solution of the initial value problem with initial

condition (z; + h,z_;), dynamics f (), parameters A. Note here ) also includes the
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clamped exogenous signals. Also note that for any ¢ we have
T]]ij)(t,h,x, A) =y, for k € [n]\{i,7} and k > n +m,

775-]) (tv ha z, A) =x; + h7

and

n;j)(O,h7x7A) =x;.

The following definition gives a precise characterization of the target gene expression to
be strictly increasing or decreasing with respect to the regulator gene expression in a

small future time period.
Definition 1 (Infinitesimal monotonicity). For an ODE model f at state x with
parameters A and (4, j) € [n]? with i # j, the infinitesimal monotonicity for i on j is

given by

0 if Vh and ¥, (t, h,x, A) = 07 (£,0,2, ),
{1} if 3¢ > 0 such that V¢ € (0,¢€) and Yh € (—¢,0) U (0, ¢€),

n{ (t,h,2,0) =) (£,0,2,0)
- > 0,

Binf(ivja x, )‘) =
{-1} if 3e > 0 such that V¢ € (0,¢€) and Vh € (—¢,0) U (0, ¢€),

0 (8,2, ) =" (£,0,2,0)
- <0,

{1,-1} otherwise.

Equivalently, in less mathematical terms, Bin¢(7, j, ¢, A) = () indicates gene i does not
affect gene j at state x and parameters A. The cases with Bin¢(4,7,2,A) = {1} and
{—1} indicate gene 7 activates or represses gene j, respectively, at state z and
parameters A in a small time period with small perturbation. The case with

Biue(i, 7, x, A) = {1,—1} indicates gene ¢ does not affect gene j in a monotone way.

Remark 1. Note the case Bin(4,j, ¢, A) = {1,—1} can happen when the expression level
of the target gene j reaches the maximum with respect to x;, so that a change of z; in
either direction will cause the solution 17](4j )(t, h,x,\) to decrease for small ¢, in which

case the monotonicity is indeterminate (neither increasing nor decreasing).
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In practice the values of  and A may be unknown, so we are interested in how B¢
varies with  and \. Usually we expect some level of continuity of Bj,s with respect to
x and A, so the infinitesimal monotonicity of the ODE model may be consistent in a
small set of (x, \) pairs, denoted by S. In the case when S equals the entire
state—parameter space, the infinitesimal monotonicity is consistent globally. The
following definition generalizes Definition 1 by checking the consistency of infinitesimal

monotonicity over a set S, and defines an associated graph.

Definition 2 (Infinitesimal gene regulatory graph). The infinitesimal gene regulatory
graph of an ODE model f over S C R™"*™*! x R* is given by a graph

([n], Eine(S), Bint(S)), where the set of edge labels

Bine(S) = (Bing(i,4,5): (i,7) € [n]%,i # j) is defined by

Binf(iaj,s) = U Binf(iajvxa)‘)
(z,\)€ES

and the set of edges is
ginf(S) = {(17‘7) Binf(iaja S) 7& ®} .

Equivalently, in less mathematical terms, Bin¢(3, 7,.5) = 0 indicates gene ¢ does not
affect gene j when (z, ) is in S. The case with Bin¢(i, 4, S) = {1} indicates gene i can
increase gene j for some (z, A) in S, but cannot decrease gene j for any (z, A) in S. The
case with Bine (4,7, 5) = {—1} indicates gene i can decrease gene j for some (x,A) in S,
but cannot increase gene j for any (z,\) in S. The case with Bi¢(4,7,5) = {1, -1}

indicates the monotonicity is indeterminate over S.

Definition 3 (Infinitesimal constant sign property). An ODE model f satisfies the
infinitesimal constant sign property over S C R*"+m+l x R® if

V(i,7) € Eine(S), Bine(4,7,5) = {1} or Bint(4,4,5) = {—1}. In other words, the ODE
model satisfies infinitesimal constant sign property on S if no pair of (4, j) has

indeterminate monotonicity on S.

Remark 2. The set S represents the set of states where the infinitesimal CSP holds. If
S is the entire state space then we say the infinitesimal CSP holds globally. Complex

biological systems usually do not satisfy CSP globally, but may satisfy CSP locally over
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the set S where the system states reside. For example, in Fig 1, the gene expressions in
the flowers may be contained in set S; where the infinitesimal CSP is satisfied with a
gene regulatory graph G1, while the gene expressions in the leaves may be contained in
set S, that does not intersect with S7, and the infinitesimal CSP is satisfied with a

different gene regulatory graph Gs.

Sum—product monotonicity

Infinitesimal monotonicity gives a natural notion of monotonicity, but it is expressed in
terms of the solutions of the differential equations, and solving the differential equations
can be analytically challenging and numerically unstable. Hence, in this section we

focus on ODE models with a smooth f and propose another notion of monotonicity that

does not require solving the system of ODEs.

Definition 4 (Molecular graph). The molecular graph of an ODE model is a graph
whose vertices are the internal molecular classes (i.e., the observables and the
unobservables) and whose edges indicate non-constant effects among the internal
molecular classes with signs indicating monotonicity of the effects. Formally, given an
ODE model f, the molecular graph at state 2 € R"*™*! with parameters A € R® is a

directed graph with vertices [n 4+ m] and edges Enel, where

Emol = {(i,7) € [m + n)?: there exists 2 € R™™™ ! X\ € R®, and 2} € R such that

fj(x’ )‘) 7é fj((x;’xfi% )‘)}

In other words (7,5) ¢ Emor if f; does not actually depend on z;. See Fig 2(A) for an
example of a molecular graph. Note in general we could have edges from unobservables
to unobservables (e.g., protein—protein interactions) and from observables to observables
(modeling fast translation where mRNA abundances and protein concentrations are

considered the same).

Fig 2. A molecular graph and its corresponding gene regulatory graph for
the single-loop network in the study [18]. (A) The molecular graph for the ODE
model of the single-loop network. Blue edges indicate positive first-order partial
derivatives, and red edges indicate negative first-order partial derivatives. (B) The
corresponding global gene regulatory graph for (A) with blue edges indicating activation
and red edges indicating repression (the constant sign property is satisfied globally
under both notions of CSP by Proposition 1).
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The molecular graph represents the interactions among all the molecular classes. 100
However, usually only the mRNA abundances are measured; the proteins and their 101
derived products are not measured, making the molecular graph only partially observed. 102
As a result, one often seeks an induced graph on the mRNA classes, which leads to the 13

following definitions analogous to the clamped systems for infinitesimal monotonicity.  1es

Definition 5 (Unobserved path of length ¢ for ¢ > 1). Given a molecular graph, the set
of unobserved paths from one mRNA to another is the set of paths that do not go
though another mRNA. Formally, given n, m, [, and edges Emol € [+ m]? and

i,j € [n] with ¢ # j, the set of unobserved paths of length g connecting ¢ and j is
Pl = {(7"077“1,...,%) Em+mTir, =irg =7, andVk € [1:q— 1,71 € [n+1:n+m),

and Vk € [q], (rg, m6-1) € 5mol}~

Definition 6 (Molecular distance). The molecular distance from ¢ to j is 105

. min{q: P; # 0} if P, # 0 for some g,
4ij =
00 otherwise.

Definition 7 (Sum—product monotonicity). For genes i and j, state  and parameters A, 106

the sum—product monotonicity is defined by 107
0 if g; = oo,
{1} if ¢;; < oo and A(i, j,x, A) > 0,

Bsum(i»jvxa)‘) =
{-1} if ¢j; < oo and A(i, j, 2, A) <0,

{1,-1} if ¢j; < oo and A(i, j, 2, \) =0,

where A(i,j,2,0) £ 5 ot TI O fruy (2. 0). 190
ij

Note Bgum is only based on derivatives of f, not solving the ODEs. It plays a similar 1ee

role as Bjy¢. Thus we can define sum—product gene regulatory graph and sum—product 20

constant sign property in a similar way as Definitions 2 and 3. A relation between the 201
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infinitesimal monotonicity and the sum—product monotonicity is given in 1 in the

Results section.

GeneNetWeaver ODE model

We consider a differential equation model such that transcription factors participate in
modules which bind to the promoter regions of a given target gene. This model is based
on the GeneNetWeaver software version 3 [10]. Part of the model of the popular
simulator is described in the studies [12] and [11], but there is no good reference that
precisely describes the model. So in this section we describe the generative model in
GeneNetWeaver based on a given directed graph, and show in the next section that the
CSP is satisfied. Note GeneNetWeaver models are a special class of ODE models with
the molecular graphs being bipartite, resulting in no unobserved paths of length greater
than 2, unlike the general case as illustrated in Fig 2. GeneNetWeaver allows fast
protein—protein interactions though the f function, but does not characterize slow
protein—protein interactions or external signals.

The model in GeneNetWeaver is based on standard modeling assumptions (see [19])
including statistical thermodynamics, as described in the study [20]. The activity level
of the promoter of a gene is controlled by one or more cis-regulatory modules, which for
brevity we refer to as modules. A module can be either an enhancer or a silencer. Each
module has one or more transcription factors as activators, and possibly one or more
TFs as deactivators. For each target gene, a number of modules are associated with its
TFs such that each TF is an input of one of the modules. For simplicity assume that
each module regulates only a single target gene.

Let ([n],£,b) be a directed signed graph with vertices [n], edge set £, and edge signs
b. For target gene j, let N; = {i € [n]: (i,j) € £} be the set of its TFs and let
S; € P(N;) be a partition of N; according to the input of the modules. Then the
modules for target gene j can be indexed by the tuple (K, j) (denoted by K : j in the
subscripts), where K € S;. Note each TF regulates the target gene j only through one
module. The random model for assignment of the TFs to modules and of the
parameters in GeneNetWeaver is summarized in S2 Appendix. Let the sets of activators

and deactivators for module K : j be Ag.; and Dg.; with Ag.; U Dg.; = N; and
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Ag.; N Dg.j = 0. For a module K : j, let ck.; be the type (1 for enhancer and —1 for
silencer), rk-; the mode (1 for synergistic binding and 0 for independent binding). Note
rk:; only matters for multi-input modules (i.e., those with [K| > 1). Let Sx.; > 0 be
the absolute effect of module K : j on gene j in mRNA production rate. Note that by
the construction in S2 Appendix, it is guaranteed that
bij = crj(Licag,)y — LiieDw,})-

Let z;(t) and y;(¢) be the mRNA and protein concentrations for gene ¢ at time ¢. We

ignore t in the remainder of the paper for simplicity. The dynamics are given by

dx i
dt

= fily) — iz

and

dyi ) (p)
dt _fz (-rz) 61 yla

where f;(y) is the relative activation rate for gene i (i.e. the mRNA production rate for
gene ¢ for the normalized variables) discussed in the next two subsections,

fi(p) (x;) = p;z; is the translation rate of protein 4, and §; and 6§p) are the degradation
rates of the mRNA and the protein. Because only x is observed in RNA-seq

experiments, without loss of generality the unit of the unobserved protein concentrations

can be chosen such that p; = 65") for all 7 (see nondimensionalization in the study [12]).

Note the GeneNet Weaver model is a special ODE model with m =n and [ = 0.

Activity level of a single module

For edge (4, j), the normalized expression level of gene i, v;;, is defined by

hrir'
(v
Vij = kf )
i

where k;; is the Michaelis-Menten normalizing constant and h;; is a small positive
integer, the Hill constant, representing the number of copies of the TF ¢ that need to
bind to the promoter region of gene j to activate the gene. (If gene ¢ is not bound to
the promoter region of gene j, it is like taking the Hill constant equal to zero and thus
normalized expression level equal to one.) The activity level of module K : j denoted by

M .;, which is the probability that module K : j is active, is given in the following
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three cases.
Type 1 modules: Input TFs bind to module independently

In this case, rx.; = 0, and we have

_ Vij 1

Mkg.; = iEAHK;j 1+ ieg(:j 1+ v
Interpreting each fraction as the probability that an activator is actively bound (or a
deactivator is not bound), the activation Mk.; is the probability that all the inputs of
module K : j are working together to activate the module, i.e., the probability that the
module is active. It is assumed that for a module to be active, all the activators must
be bound and all the deactivators must be unbound, and all the bindings happen
independently.

One can think of module K : j as a system with 2/4x:1+Px:51 possible states of the

inputs. Suppose each input j binds with rate v;; and unbinds with rate 1 independently.

Then the stationary probability of the state that all the activators are bound and none
of the deactivators is bound is M:;.

Alternatively, one can assign additive energy of

Eij = — IOg Vij

Yi

= *hij log kj .
2]

to each bound input gene ¢ and energy zero to each unbound gene. Then Mk-.; is the
probability that all activators are bound and none of the deactivators is bound in the
Gibbs measure. In other words, the Type 1 modules are Shea—Ackers models with all
binding states possible and only the one state with all the activators initiating
transcription.

Type 2 modules: TFs are all activators and bind to module as a complex

In this case, Dg.; =0, rk.; = 1, and we have

[licay., vii

My = — s 70
! 1+ HiEAK;j Vij

One can think of such a module as a system with only two states: bound by the
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activator complex, or unbound. The transition rate from unbound to bound is

[Lc Axy Vigs and that from bound to unbound is 1. Then the activation of the module is

the probability of the bound state in the stationary distribution, given by Mf:;.
Alternatively, this corresponds to the Shea—Ackers model as in the previous case,

except all the states other than fully unbound and fully bound are unstable (i.e. have

infinite energy).

Type 3 modules: Some TFs are deactivators and bind to module as a

complex

In this case, Dg.; # 0 and rk:; = 1, and we have

HiEAK:j Vij

U+ Tlicay, vis + (HieAK;j Vij) (HieDK;] Vij)

Mg = (1)
In this case the system can be in one of three states: unbound, bound by the activator
complex, and bound by the deactivated (activator) complex. The Gibbs measure in the
Shea—Ackers model for Type 3 modules with three stable states (i.e. have finite energy)
assigns probability Mg.; to the activated state.

Note if [[;c¢

However historically [] ~v;; was understood as 1 in an early version of

i€DK.;
GeneNetWeaver and caused a bug of wrong Type 2 modules.

Remark 3. Presumably it is possible for there to be more than three stable states for a
module, so additional types of modules could arise, but for simplicity, following
GeneNet Weaver, we assume at least one of the three cases above holds.

Remark 4. If a module K : j has only one input ¢ (i.e. K = {i}) then the module is

type 1 and Mg.; = 721 or Mf.; =

e o - We will see later in the random model of

GeneNetWeaver that only the former (single activator) is allowed.

GeneNetWeaver software uses the 3 types of modules derived above. In all three
cases the activation M.; is monotonically increasing in y; for activators i € Ag.;, and

monotonically decreasing in y; for deactivators ¢ € D:;.
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Production rate as a function of multiple module activations

The relative activation of gene j as a function of the protein concentrations vy is

fily) = Z Qjs H Mk H (1= Mgy) |, (2)
s€{0,1}5) KeS;j: sg=1 KeS;j: sg=0
where «; ¢ is the relative activation of the promoter under the module configuration s.
Note that o in Eq (2) gives 2/5il degrees of freedom, one for every possible subset of the
modules being active. However, following the GeneNetWeaver computer code [10], we
assume that the interaction among the modules is linear, meaning that for some choice
of @ pasal, (ci:j: K € S;), and (Bk.j: K € S;), we have for any configuration

s € {0,1}%,

Qs = O basal + Z cx:jBKjs (3)
KeS;: sg=1
This reduces the number of degrees of freedom for « to |S;| 4+ 1. Then, combining

Eq (2) and Eq (3) yields

fily) =Ea;s

= O/ basal T E ck:jBr E Sk
Kes;

= O basal + Z cx:jBr i M 5, (4)
KeS,
where S is distributed by the product distribution of the Bernoulli distributions with
means (Mkg.;: K € §;). So the relative activation, or the mRNA production rate, of a
gene is given by the basal activation plus the inner product of the module effects and
the module activation. We also note that the effect of the modules is not assumed to be
statistically independent: all we need to know to compute the relative activation of a
gene are the marginal probability of activation of the single modules.
Taking into account the three different types of modules described in the previous

section on activity level of a single module, Eq (4) yields the following expression for the
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relative activation of gene j: 320

Fi) = ajpasa + Y exigbrg | ][] [ 11 1+ v

K: ’I‘K;J'IO iGAK;j

) Ui
HZEAK;: 13
+ E CK:jBK:jWJH
K:rg.j=1 1€EAK:; Vi
Dk .j=0

[iea,, vis

1€AK.; U

+ § CK:jﬂK:j . .
K ricg=1 L+ ITie s, vis + (HieAK;j Vij) (HieDK:j Vij)

Dk.j#0

As we will see in the Results section, f satisfies the CSP. Note that in the actual 321

GeneNetWeaver source code every «; s is truncated to the interval [0, 1]: 322

Qj s = [ basal + § CK:jﬂK:j )
KESj: sxg=1

where [7]§ = max{min{x, 1}, 0} is the projection of = to the [0, 1] interval. Then the 323

relative activation in each state may not be linear in the individual module effects. In 324

that case one has to resort to Eq (2) instead of Eq (5) for computing the mRNA 325
production rate. The resulting truncated model does not necessarily satisfy the CSP 326
because f; may not be monotone in Mk.; in Eq (2). 327
Results 320

A relation between infinitesimal monotonicity and sum—product s

monotonicity 330

The following result establishes the equivalence of the two notions of monotonicity for  ssa
ODE models that satisfy the sum—product CSP. So if the sum—product CSP holds, we 33
do not need to distinguish between the sum—product CSP and the infinitesimal CSP. 333
Consequently, given an ODE model, one can easily find the corresponding graph models 33a
for different system parameters, external signals, and internal states by calculating the sss

sum products of the first-order partial derivatives of the input function f. 336
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Proposition 1. If f is smooth and satisfies the sum—product CSP over
S C R+ R®, then it also satisfies the infinitesimal CSP over S, and the
sum—product gene requlatory graph and the infinitesimal gene regulatory graph are the

same.

Proof. 1t suffices to show Bgum (4, j, 2, A) = Bint(i, 7, ¢, A) if Bsum (4,7, 2, \) # {1, —1} for
any (z,\) € S. For fixed i, j, x, A, let n(t, h) £ nU)(t, h,z, \) be the solution of the
clamped initial value problem at time ¢ with initial condition (0, h) = (z; + h, z_;).

We are interested in the sign of

g(t,h) = T]j(t’h) - nj(t70)'

If ¢j; = oo then we readily have Bgum(i,j,7,A) = Bint(4,J, 7, A) = (). Suppose
q}; = q < oo. Then by Corollary 4.1 in Section 5 of [21] (page 101), f being smooth

implies g is also smooth, and we can show that (see the proof in S3 Appendix)

A, g, x, N if (a,0) = (¢, 1),
Byanpg(0,0) = (6)
0 if0<a<g—lorb=0.

Hence by the multivariate Taylor’s theorem (see, e.g., [22])

g@h%zﬂ&@+g%&®@JU+%¢mmﬂﬂum2+“.

1
+ 7g(‘1+1)(0,0)(t, h)q+1 + 0(|t|q+1 + \h|q+1)

(¢g+ 1)!
1 3q+1g qg+1 3q+lg
_ R B q+1 q
=0+0+ +0+(q+1)!<8t‘1+1(070)t —l—( 1 )8t‘18h(0’0)th
g +1 +1 +1
q q q
+ + athrl(O,O)h + o(|¢] + |h|TT)

1
= 7AG @ tTh o[ + (Rl
as (t,h) — (0,0). So g(t, h) has the same sign as A(i, j, z, \)t?h in a sufficiently small
neighborhood of (0,0). Hence Bsum (4,7, 2, A) = Bint(i, 4, z, A). O

Remark 5. If multiple ODE models satisfy CSP with the same gene regulatory graph,

then they can be combined into a single ODE model with different parameterization so
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that the combined ODE model still satisfies CSP with the same gene regulatory graph.

For example, ODE models for different environmental temperatures can be either
considered different models or a single unified model with different temperature
parameter. Then the temperature-specific models satisfy CSP with the same gene

regulatory graph if and only if the unified model satisfies CSP for all temperatures.

Remark 6. The effect of a gene on itself can be either autoregulation or degradation.
The two effects can be distinguished with the molecular graph: a self-loop with negative
derivative indicates degradation, and a loop of multiple hops indicates autoregulation.

The infinitesimal monotonicity does not distinguish the two effects.

The following is an example of an ODE model that does not satisfy CSP globally,
based on the interactions among FT, TFL1, FD, and LFY genes in the study [9].

Example 1. Consider a four-gene ODE model with the following dynamics for gene 4.

&y = fa(x1, 22, 23)
A T1T3 Ao

- Al + Ir1x3 )\2 + Igllfg’

where we use x for both the mRNA and protein concentrations. The biological meaning
could be genes 1 and 3 form a protein complex that activates gene 4, while genes 2 and
3 form a protein complex that represses gene 4. Then it can be checked that the effect

of gene 3 on gene 4 does not satisfy the CSP globally. Indeed, one can check that

T1A2

a =
31 (A1 + z123)2 (A2 + z223)

B} (/\1/\2 — $1l‘21‘§).

So gene 3 activates gene 4 if Ay Ay > z17273, and represses gene 4 if \j Ay < z17923.

Here is an example of a molecular graph having a shorter unobserved path
dominating a longer unobserved path with the opposite sign, taken from part of the
gene regulatory network in the study [23], achieving CSP with the sign of the shorter
path (see Fig 3).

Fig 3. Molecular graph and gene regulatory graph of the FLF4—GI regulation in the
study [23]. (A) The molecular graph with blue edges indicating positive partial
derivatives and red edges indicating negative partial derivatives. (B) The gene
regulatory graph.
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Example 2. The mRNA ELF/™ is transcribed into the protein ELF/P, which then
forms the complex FC®¢ with the protein LUXP. The complex EC® induces the
transcription of the mRNA GI™. Then there is a 3-hop path
(ELF4™-ELF/P-EC°-GI™) and a 4-hop path (ELF}™-ELF/P-LUXP-EC*-GI™)
from ELF/™ to GI™ with opposite signs. The ODE model of the molecular graph

satisfies CSP with ELFJ activating GI in the gene regulatory graph.

GeneNetWeaver: CSP and complexity

In this section GeneNetWeaver models (without the truncation of the « terms in the
implementation) are shown to satisfy the CSP globally, regardless of the parameters and
the system states, and thus correspond to the signed directed graphs that were used to
generate the models. Moreover, when data is generated through multifactorial
perturbation for the DREAM challenge (primarily for generation of stationary
expression levels, rather than trajectories), each ensemble of networks produced is also
associated with the same directed signed graph. This is in contrast to the Shea—Ackers
model, which is shown to be able to generate non-monotone behavior [17]. Formally we

have the following result.

Proposition 2. Given any directed signed graph, the ensemble of the GeneNet Weaver
models satisfy CSP over (0,00)*" and the gene regulatory graphs coincide with the given

graph.

Proof. Fix any model of the ensemble of GeneNetWeaver models for the given graph.
For any target gene j and its regulator ¢ € N;, there exists a unique module, indexed by

K: j, whose input K € & includes i. Then for any of the three module types,

>0 ifie AK:]‘7
aVijMK!j

<0 ifie DK:j.

Then by Eq (4),
hijfl

Oy, fj = CK:jBK:jauijMK:jhijy;T
ij

and

aﬂci fz(p) = Pi-
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Because only cr.; and 0, M.; can be negative in 9, f;0,, f,gp), the sum-—product of
the first-order partial derivatives of the path from x; to z; has the same sign as

i :jOy,; M., which is consistent with the sign b;; in the given graph by the
construction in S2 Appendix. Hence by Proposition 1 the fixed ODE model satisfies
CSP over all positive state vectors with gene regulatory graph equal to the given graph.

Repeat this for all ODE models in the ensemble and the proposition is proved. O

We now discuss the complexity of GeneNetWeaver ODE models for a given gene
regulatory graph. The complexity comes from both the large number of parameters and
the combinatorial nature of the module configurations. The complexity indicates that
ODE models are both much more detailed and considerably harder to infer compared to
the graphical models.

For each gene ¢ there are 5 non-negative real parameters (a; pasal, :(0), y;(0), 5§m),
5§p )). For each edge (7, 7) there is a non-negative real parameter (k;;) and an integer
parameter (h;;). For each module K : ¢ there is a positive real parameter (8r.;) and
two binary parameters (cx.; and rg.;).

The module configuration encodes great combinatorial complexity. Given a gene has
K > 1 input genes, the number of ways to partition the genes into modules is the Kth
Bell number. The first ten Bell numbers are 1, 2, 5, 15, 52, 203, 877, 4140, 21147, and
115975. In addition, each input to a given module needs to be classified as an activator

or deactivator.

Case study: soybean flowering networks

In this section the similarities of the ODE models corresponding to three different graph
models are studied. First the classes of ODE models are listed for the three graph
models. Then, to investigate their similarities, we generate expression data from one
ODE model, and fit another model to the data by optimizing the parameters. The level
of fitness of one class of ODE model to the data generated from another is used as a
metric of similarity. As we will see, ODE models corresponding to the same graph
model tend to have a higher similarity, while those from different graph models tend to
have a lower similarity, as long as the least-squares problem is sufficiently

overdetermined. The result implies that the graph model corresponding to the ODE
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model may be recovered with moderate amount of data, while the amount of data 426

required for ODE model recovery may be of a much higher order. The simulation code 427

for the data fitting results is available at [24]. a28
Five-gene graph and ODE models 420
In this section we explicitly write out the classes of GeneNetWeaver ODE models of 430

three graph models. The first two graph models are compiled from the literature, with s
only the sign of one edge different between them (the difference is discovered in the 432

study [25]). The third graph model is an arbitrary five-gene repressilator for comparison 433

purpose. 434
Flowering network with COL1a activating FE1 435
A graph model of a five-gene soybean flowering network is shown in Fig 4. The 436

network is based on the flowering network for Arabidopsis and homologs of Arabidopsis a3z

genes found in soybean (see references in Table 1). The corresponding gene IDs are

Fig 4. A graph model of the core flowering network for soybean.

regulatory interaction  reference

E1 activates COL1a [26]

E1 activates FT4 [27]
COL1a activates E1 [25]
COL1a represses F1 [26]

COL1a activates F'T4 [26], [25]
COL1a represses FT2a  [26], [25]
FT/ represses APla [27]*

FT2a activates APla [28]

Table 1. Core flowering genes.
* For F'T/ only, not for the interaction with APIa.

shown in Table 2. 430

index gene ID gene name

1 Glyma.06G207800 E1

2 Glyma.08G255200 COLla
3 Glyma.08G363100 FTY
4 Glyma.l6G150700  FT2a
5  Glyma.16G091300  APIa

Table 2. Core flowering genes.

The mRNA and proteins concentrations of the soybean genes F1, COL1a, FT/, 440
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FT2a, and APla are denoted by (z;)1<i<5 and (y;)1<i<5. The differential equations

based on the GeneNetWeaver model are

T5

T5

Ty

Tx

jj4 = <a4,basal -

= 05 basal + T+(

= (a5,basal

= (@5 basal + T+ (ya /a5
= <a5,basal -

= (a5,basal -

T3 = Q3. basal T

5.53 = ('3 basal +

T3 = Q3 basal

i’l = (/1 ,basal +

.’I'Ig = (Y2 basal +

(y2/ka1)l2t _ o(m)
1+ (y2/ko1)l= Pra =017,
(y1/k12)"2

_\JL/M2) _ s(m)
L+ (y1/k12)> Pra =02

(y1/k13)"3 (y2/ka3)"23 612 5 — (5§m)$3

1+(y1/k13)"13 14+(y2 /ka3)"23

(independent binding), or

(y1/k13)"13 (ya /kas)"23

(m)
1+(y1/k13)"13 (y2 /ko3) P23 Bi2:3 — 63 ‘a3

(synergistic binding), or

(y1/k13)"13 Bi.3 + (y2/kas)"23 5(m)x3

14+(y1/k13)13

T (2 fag) P23 Ba:3 —

(two modules).

(y2/koa)h2s ) i (m)
L T (. -0, '
1+ (y2/kog)l2e Pt 4

(ys/kss)"35

ys/kso)h30 1+(y4/kas)las

lalbas) 0 g e — 5™ s

(independent binding enhancer), or

1+(y3/k3s)"35

+ (m)
1+(y4/k45)h40 534:5) — 55 Ts5

(independent binding silencer), or

(ya/kas)"45

(m)
)45 +(y3 /kas)"35 (ya/kas )45 Paas — 5 5

(synergistic binding enhancer), or

(ys/kss)"35

1+(y3/kas)hss

(y3/kss)"35

(m
+um/kswhssum/k4w"4553*5) — 95 s

(synergistic binding silencer), or

1+(y3/k3s)"35

wa keas )45 + m
Bs:5 + li!!(f;i/254)5)h45 54:5) - 5é Va5
(two modules).

U1 = p1(e1 —y1).

Yo = p2(r2 — Y2).

(10)

(11)

(12)

(13)
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Yz = p3(3 — y3). (14)
Ya = pa(Ta — Ya). (15)
Us = ps(T5 — Ys)- (16)

Here ()" = max{x,0}. We apply nondimensionalization by setting
0i = % basal + Zj Bj:, so that the steady state expression levels are between 0 and 1.
We can see that given the graph, there are 15 configurations of the ODEs (3 for 3
times 5 for x5). We use [i, j] with 1 <7 <3 and 1 < j <5 to denote the configuration
using the ith equation for z3 and the jth equation for x5, and use the symbol F; j 4 to
denote the class of flowering network ODE models with configurations [i, j] (the plus
sign signifies the activation regulation of COLIa on E1). The initial conditions, namely
the 5 mRNA abundances z(0)’s and the 5 protein concentrations y(0)’s, are
10-dimensional. In addition, there are 24-26 positive real parameters (depending on the
configuration) and 7 discrete parameters (the Hill coefficients) for the dynamics. For
example, for configuration [1, 1], the parameters for the dynamics consist of the basal
activations a’s (5), the Michaelis-Menten constants k’s (7), the absolute effect of
modules 8’s (7), the translation rate p’s (5), summing up to 24 parameters.
Flowering network with COL1a repressing E1

A slight variant of the soybean flowering graph model in Fig 4 is shown in Fig 5.
Note the only difference is the sign of the edge from COLIa to E1. The symbol F; ;) _
denotes the class of ODE models Eq (7)-Eq (16) with the ith and the jth

configurations in Eq (9) and Eq (11), but with Eq (7) replaced by

k h2 ! * m
(y2/ka1) 1) .

1+ (yo/kap)har % a7

il = <a1,basal -

Here the negative sign in F| signifies the repression regulation of COLIa on E1.

4], —
The number of parameters is the same as the network in Fig 4.

Fig 5. A variant of the graph model of the core flowering network for soybean.

Repressilator

An arbitrary repressilator network is shown in Fig 6. The symbol R denotes the class
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Fig 6. A five-gene repressilator graph model.

of ODE models for the repressilator, given below.

+
. (y3/kz1)"= ) (m)
Z1 = | 1 basa - . 18

' (“’ T (ke (e

(y1/k12)"2 *

L+ (y1/k12) h” 12

To = <a2,basal

T
8 1+ (ya/kag)hss

+

k h54 m
(y5/ 54 75( ) . (21)

1+ (ys/ksa)ltss T (g Jlgg)os 4

i:4 = <a4,basal

(y2/kas )" *

1+ (y2/kas)h2 (22)

) -
) +
<a3baﬁﬂ (ya/kaz)" 3) . (20)
)
) -

T5 = <O‘5,basal

i P25

There is only one possible configuration for each target gene. The dynamics involve 20

parameters.

Data generation

The synthetic expression dataset is generated as follows. For the generated data, we use
Fi1,1],+ (the flowering network with configuration [1, 1] and COL1a activating E1) with
a fixed set of parameters for the dynamics. For a single set of trajectories (i.e., for a
single plant), we use a set of initial values z(0)’s and y(0)’s generated uniformly at
random between 0 and 1. The entire dataset may consist of only a single set of

trajectories, corresponding to a single plant; or the dataset may consist of multiple sets

of trajectories, corresponding to multiple plants. If multiple sets of trajectories are used,

the initial conditions for each set of trajectories are generated independently, while the

parameters for the dynamics are the same across all sets of trajectories. In other words,

we model distinct plants by assuming distinct initial conditions, while using common
parameters for the dynamics. To produce the data, the x variables are sampled at time
points 0, 1, 2, 3, 4, 5, 6, so that each set of trajectories (i.e., each plant) produces 35
data points. Because each set of trajectories is sampled at different times from the
system with one initial condition representing different stages of a single plant, the

synthetic datasets are of multi-shot sampling, as opposed to one-shot sampling in
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practice where each individual is only sampled once [29]. We also generate random
expression datasets with reflected Brownian motions with covariance 0.05, and denote
such a stochastic model by B.

Fitting results

The counts for data points and parameters are summarized in Table 3. Note that with a

single set of trajectories, the number of parameters is close to the number of data points.

As the number of sets of trajectories increases, the number of data points outgrows the
number of parameters because each additional set provides 35 new data points while
only allowing 10 more parameters from the initial conditions (because the dynamic

parameters are shared across all sets of trajectories).

S (number of sets of trajectories) | 1 2 5 10
STn (number of data points) 35 70 175 350

Fra+ 34 44 74 124
Fis.5.+ 36 46 76 126
Flo,— 34 44 T4 124

R 30 40 70 120

Table 3. Number of parameters in different ODE models.

A Basin-hopping algorithm in the Python package LMFIT [30] is used to perform the
global optimization of the curve fitting (see details in the source code of the
simulation [24]). The sample size varies between 35 and 350 depending on the number
of sets of trajectories. The fit is evaluated by the fitting loss and the coefficients of
determination (R?) shown in Table 4 and Table 5. The fitting loss function for two

S x T x n tensors z and Z is defined by

1/2
1 T n
A\ A2
Uz, 2) = STn 4 ZZ(mijk — Zijk) 5
i=1 j=1 k=1
where S is the number of sets of trajectories in the dataset, T' the number of time
points, and n the number of genes. Note the time scale of the ODE is assumed to be
known, which restricts how fast the expression levels can change. The time scale thus
acts as a regularizer to prevent overfitting.

We make the following observations from Table 4 and Table 5.
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S (number of sets of trajectories) | 1 2 5 10

fit Fy1 1)+ model to Fpy 3j 4 data | 0.0015 0.0015 0.0010 0.0009
fit Fi3 5,4+ model to Fp; 1j,4 data | 0.0016 0.0021 0.0019 0.0021
fit F,1),— model to Fy 1j 4 data | 0.0032 0.0036 0.0165 0.0208
fit R model to Fpy 1) 4 data 0.0030 0.0037 0.0148 0.0204
fit Fi1,1),+ model to B data 0.1269 0.1125 0.1307 0.1390

Table 4. Fitting losses using different classes of ODE models on different synthetic
datasets.

S (number of sets of trajectories) | 1 2 5 10

fit Fiy 151 model to Fpyy 4 data | 0.99996 0.99995 0.99999  0.99999
fit Fig5, 1 model to Fpyy 4 data | 0.99995 0.99991 0.99996 0.99995
fit F{y 1), model to Fpyy 4 data | 0.99980 0.99974 0.99702  0.99517
fit R model to Fpy 1) 4 data 0.99983 0.99972 0.99760 0.99535
fit F3 1)+ model to B data 0.88639 0.90175 0.87241 0.87517

Table 5. Coefficients of determination using different classes of ODE models on
different synthetic datasets.

1. The implemented optimization algorithm failed to find the optimal parameters in
row 1 (the best fit should be a perfect fit with zero loss), but the relative loss
compared to the average nondimensionalized expression level 0.5 is very small
(less than 0.5%), and the coefficients of determination are close to 1. Both

indicate a near-optimal fit.

2. ODE models from all three graph models (rows 1, 2, 3, and 4) fit the synthetic
flowering network data well when there are only one or two sets of trajectories
(columns 1 and 2). The relative losses are less than 1% and R? is larger than
0.9997. We can see from Table 3 that the number of data points is close to the
number of parameters in the S = 1 setting, and only moderately larger in the
S = 2 setting. So when S < 2 the three graph models in this case study are nearly
indistinguishable. In other words, one may not be able to infer the graph

structure with very limited data.

3. When fitting the models to 5 or 10 sets of trajectories simultaneously, i.e., when
the system is sufficiently overdetermined, only the models from the correct graph
(rows 1 and 2) fit well. The models from incorrect graphs (rows 3 and 4) suffer a
roughly 4% relative loss after fitting for 10 sets of trajectories and R? falls below
0.998. Note that Fp; 1j, differs from the ground truth of the data Fj; 1;  only by

the sign of one edge, while the model R shares no edges in common with the
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ground truth at all. Yet the fitness of the slight variant of the ground truth graph

is as bad as the completely different repressilator graph.

4. Both Fp; 1) 4 and F3 5 4 fit the F q) 4 data very well for all numbers of sets of
trajectories (rows 1 and 2). This indicates the classes of ODE models with
different configurations of the same graph model are similar in terms of data
fitting. Consequently, even with data sufficient to infer the correct graph model, it

may be impossible to infer the specific ODE model.

5. The models from the flowering network cannot fit the random dataset (reflected
Brownian motions with covariance 0.05) well. It turns out that the ODE models
with 34 parameters have trouble following the highly variable 35 data points from
the reflected Brownian motions. The low fitness level to the random dataset
shows great redundancy in the parameters in terms of generating data points. It
also indicates the fitting results to the synthetic ODE data are significant

compared to fitting a random dataset.

Discussion

Generalization of CSP to related gene regulatory network

models

The concept of CSP can be applied to many other models. We first explain this for

continuous-state models, and then for discrete-state models.

Continuous-state models

A network model somewhat similar to ODE models is a fixed-point model. The study
by Van den Bulcke et al. [31] uses a fixed-point model for gene regulatory networks.
ODE models based on Michaelis—Menten and Hill kinetics and linear degradation terms
are used to determine the expression level of a given gene as a function of the expression
levels of other genes. Then a fixed point is produced. This can model equilibrium
points, also known as resting points, of ODE models. The concept of constant sign
property can be applied to fixed-point models as well. Van den Bulcke et al. [31] focuses

on models for the network topology, which is not addressed in this paper.
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Other continuous-state models have been used for gene regulatory networks. The

study by Mendes et al. [32] simulates gene regulatory networks using a biochemical

simulator called Gepasi [33], which models complex biochemical pathways using ODEs.

For such biochemical systems, constant sign property discussed in this paper can be
used to find the causal dependency among observed variables (e.g., mRNA abundances
in the special case of gene regulatory networks). In order to avoid the difficult
calibration of the parameters in ODEs, Ocone et al. [34] models the promoter by a
binary state process and approximates the transcription—translation network with

stochastic differential equations. Constant sign property can be easily generalized to

such hybrid models by introducing a notion of monotonicity for the stochastic systems.

It is worth mentioning that constant sign property is defined with directionality for
causal relationship among the genes and not suitable for models based on mere

correlation (e.g., graphical Gaussian models [35]).

Discrete-state models

One common type of discrete models used for gene regulatory networks are Bayesian
networks (see, e.g., Friedman et al. [36]). Boolean networks, as a special case of
Bayesian networks, are used to capture qualitative gene regulation (see, e.g., Liang et
al. [37]), for which constant sign property can be defined based on the monotonicity of
the boolean functions. The study by Husmeier [38] evaluates a dynamic Bayesian
network inference algorithm using simulated data based on an ODE model whose
genetic network model is taken from Zak et al. [39] and whose equations are taken from
chemical kinetics (see Chapter 22 of Atkins and de Paula [40]). Similarly, the study by
Smith et al. [41] also proposes a dynamic Bayesian network algorithm, and evaluates its
performance on sampled and quantized data from a dynamic Bayesian network
simulator that models different regions of the brain of songbirds regulated by their
behaviors. The simulated data is generated with a small step size before being sampled,
and thus resembles an ODE model simulator. For the dynamic Bayesian network gene
expressions are quantized to discrete values. The constant sign property can also be
applied to dynamic Bayesian network models using a partial order of the conditional
distributions (e.g., stochastic dominance) of target genes given the expressions of their

regulators. Husmeier [38] gives an example of a graphical model that is more detailed
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than the gene regulatory graph in this paper. Although both the GeneNetWeaver model
and the ODE models in Husmeier [38] are based on chemical kinetic equations, one
difference is that the Michaelis-Menten and the Hill kinetics in GeneNetWeaver arise
from considerations of a faster time scale of the binding of TF to the promoter regions
(see Alon [19]). Nevertheless, both GeneNetWeaver and the ODE models for realistic
simulation in Husmeier [38] fall into the general framework of ODE models in this paper

and hence the constant sign property we have proposed applies to both.

Implication of GCSP

GCSP of an ODE model generalizes the notion of a linear dynamical system by allowing
the variation of the state vector (i.e., the concentrations of molecular classes) to be
nonlinear in the state vector so long as the overall effect of the most influential
pathways in the molecular graph keeps the same sign (i.e., activation stays activation
and repression stays repression regardless of the expression of the regulator, the target
gene, or any other molecular classes). Biologically, GCSP indicates homogeneity of the
gene regulatory network in the sense that the qualitative properties of gene regulation
are preserved after cellular differentiation and under different external conditions. Lack
of GCSP indicates significant change in regulatory functions after cellular differentiation
and under different external conditions. Note that GCSP is more likely to hold for the

subnetwork of a small number of genes compared to a larger network.

Limitation of infinitesimal CSP

The definitions of CSP proposed in this paper focus on short time behavior. Over short
time periods, the paths with the smallest number of hops dominate. Often the shortest
paths have the strongest influence, as seen in Example 2. But in some cases the shortest
paths could be weaker than some slightly longer paths, and if the longer paths have an
opposite sign, then the focus on short time and shortest paths can be misleading,
because the longer paths will take over quickly after the brief initial dominance by the
shortest paths. In the extreme case of a complete molecular graph, where every
molecular class has a (possibly tiny) regulatory effect on every other molecular class,

the gene regulatory graph defined in this paper would be determined by only the direct
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edges in the molecular graph and all the actual biological pathways would be entirely

ignored. This also shows the importance of network sparsity.

Conclusion

Gene regulatory networks are modeled at different abstraction levels with tradeoff
between accuracy and tractability. Graph models with signed directed edges provide
circuit-like characterization of gene regulation, while ODE models quantify detailed
dynamics for various molecular classes. The constant sign property proposed in this
paper connects the two types of models by identifying a set of conditions under which
ODE models correspond to a single graph model, and provides a deeper understanding
of the context-dependent and time-varying nature of gene regulatory networks. A class
of ODE models for a given graph model based on the source code of a popular software
package GeneNetWeaver is described in detail and shown to satisfy the global constant
sign property. Exploration of data fitting of one ODE model to the data generated from

another shows better fit when two models have the same graph model.

Supporting information

S1 Appendix. Basic model of gene interaction. A brief review on both graph
models and ODE models is given here.

S2 Appendix. Random model for production functions used in
GeneNetWeaver. Specific module generation and parameter ranges in
GeneNetWeaver are described here.

S3 Appendix. Proof of Eq (6). A proof of the equation involving the partial

derivatives of the solution of dynamical systems.
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