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ABSTRACT: We report the first example of enantioselective, intermolecular diarylcarbene insertion into Si–H bonds for synthesis 
of silicon-stereogenic silanes. Dirhodium(II) carboxylates catalyze an Si–H insertion using carbenes derived from diazo compounds 
where selective formation of an enantioenriched silicon center is achieved using prochiral silanes. Fourteen prochiral silanes were 
evaluated with symmetrical and prochiral diazo reactants to produce a total of 25 novel silanes. Adding an ortho substituent on one 
phenyl ring of a prochiral diazo enhances enantioselectivity up to 95:5 er with yields up to 98 %.  Using in situ IR spectroscopy, the 
impact of the off-cycle azine formation is supported based on the structural dependence for relative rates of diazo decomposition. A 
catalytic cycle is proposed with Si–H insertion as the rate-determining step, supported by kinetic isotope experiments.  Transfor-
mations of an enantioenriched silane derived from this method, including selective synthesis of a novel sila-indane, are demonstrated.   

     The potential utility of chiral-at-silicon compounds incorpo-
rated into more complex structures has not been fully under-
stood due to a shortage of synthetic methods. Silicon-stereo-
genic molecules are rare in number and diversity of structures 
as compared to carbon. Selected examples to generate silicon-
stereogenic silanes include dehydrocouplings,1–3 arylation,4,5 
hydrosilylation,6–9  Si–C activation,10,11 and reactions controlled 
by chiral auxillaries.12–14 Brief explorations of the effect of sili-
con chirality on reaction outcome to produce more complex 
molecules have occurred,15–17 yet remain limited. 
     The catalytic insertion of carbenes into Si–H bonds to gen-
erate organosilicon compounds has been intermittently ex-
plored since Doyle’s original work in 1988.18,19 Methods to date 
have focused on generation of stereogenic carbon centers using 
donor/acceptor carbenes (Figure 1A).20–23 Si–H insertion to 
generate stereogenic silicon centers has been demonstrated by 
Katsuki24 and Iwasa25 using donor/acceptor carbenes (Figure 
1A). Diarylcarbenes are commonly referred to as donor/donor 
carbenes because they are typically less reactive, with few re-
ports of intermolecular Si–H insertion, and one report of an en-
antioselective variant using functionalized alkynes as precur-
sors (Figure 1B). 26–29  
     Donor/donor carbenes have recently emerged as useful sub-
strates for highly selective C–H insertion reactions.30–34 Rho-
dium carbene complexes demonstrate sufficient reactivity at the 
insertion carbon despite the presence of two aryl rings for po-
tential stabilization.35,36 The Franz group has a long-standing in-
terest in organosilicon chemistry and expertise synthesizing 
prochiral dihydridosilanes with variation of steric and elec-
tronic factors.37–39 We envisioned that the additional aryl ring 
could accomplish an enantioselective intermolecular Si-H in-
sertion process with prochiral silanes (Figure 1C). Herein, we 
communicate the first enantioselective diarylcarbene Si–H in-
sertion to produce silicon-stereogenic organosilanes. 

   

Figure 1. Insertion of carbenes into Si–H bonds. 

     We began our studies screening metal catalysts [Ru(II), Ir(I), 
Fe(II), Rh(II) and Cu(II)] with diphenyldiazomethane (2a) and 
prochiral methylphenylsilane (1a). Inverse addition of 2a using  
a syringe pump (over 1 hour) increased yield of 4a by prevent-
ing azine formation, as seen in previous studies with Si–H in-
sertion methodologies.21,40,41  Insertion product 4a was only ob-
served using dirhodium tetraacetate (Table 1, entry 1).42 Based 
on this lead result, we proceeded to screen chiral dirhodium(II)-
based catalysts to identify an enantioselective variant.  
     A screen of well-studied chiral dirhodium compounds high-
lighted the reactivity of dirhodium tetracarboxylates (Table 1). 
Carboxylate ligands afforded higher yields compared to amido-
containing ligands due to the increased electrophilicity of the 
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metal center and resulting carbene (entry 2 vs. entries 4-9).43 Of 
the catalysts studied, Rh2(S-TCPTTL)4 provided the highest 
levels of enantioselectivity when compared to others (entries 5-
8 vs 9), which improved further using toluene (entry 10). When 
an insertion was tested using prochiral diazo carbene 3a, the en-
antioselectivity of silane product 5a increased from 82:18 to 
93:7 er, with a notable increase in yield (76% to 91% yield, 
entry 10 vs. 14). 
Table 1. Optimization of donor/donor Si–H insertion  

 

entry R Rh2L4 % yielda drb erc 
1 H Rh2(OAc)4 34 - 50:50 
2 H Rh2(5R-MEPY)4 <5 - ND 
3 H Rh2(S-BTPCP)4 <5 - ND 
4 H Rh2(S-DOSP)4 65 - 55:45 
5 H Rh2(R-PTAD) 67 - 61:39 
6 H Rh2(S-PTTL)4 62 - 64:36 
7 H Rh2(S-BPTTL)4 62 - 64:36 
8 H Rh2(S-PTV)4 67 - 59:41 
9 H Rh2(S-TCPTTL)4 76 - 76:24 
10 H Rh2(S-TCPTTL)4d 78 - 82:18 
11 CH3 Rh2(OAc)4 45 55:45 50:50 
12 CH3 Rh2(R-PTAD)4 72 60:40 ND 
13 CH3 Rh2(S-DOSP)4 75 61:39 ND 
14 CH3 Rh2(S-TCPTTL)4d 91 93:7 93:7 
15e CH3 Rh2(S-TCPTTL)4d 81 93:7 93:7 
a NMR yield using Ph-TMS as an internal standard. b Determined 
using 1H NMR Spectroscopy. c Determined using CSP-HPLC anal-
ysis of silanol obtained from Pd/C hydrolysis; major diastereomer 
if relevant. d Toluene used as a solvent. e Diazo added via syringe 
over five minutes (without syringe pump). 

Under optimized conditions, slow addition of 3a over 5 minutes 
without a syringe pump forms 5a in comparable yield and se-
lectivity (entry 14 vs. 15). Reducing the reaction temperature 

below 23 ˚C did not increase selectivity and no insertion was 
observed below –30 ˚C. With optimized conditions in hand, we 
investigated the effect of substituents with both symmetrical 
and prochiral diazo compounds.  
     A series of sterically and electronically varied silanes and 
symmetrical diazo compounds were evaluated to study the ef-
fects on enantioselectivity (Scheme 1, 4a-o). Electron-rich di-
azo 2b was less reactive than 2a and provides lower yield for 
4b (45%, 81:19 er). Yield improved using diazo 2c (91%) and 
lower enantioselectivity was observed for silane 4c (76:24 er). 
Electron-withdrawing groups do not strongly affect selectivity 
(4d, 80:20 er) while electron-donating groups on the silane 
proved deleterious to enantioselectivity (4e and 4f, 50:50 er and 
74:26 er respectively). Additional steric bulk on the aryl ring of 
the silane generally eroded enantioselectivity (4g-j) but main-
tained fair to good yields (55-69%).  Selectivity similar to 4a 
(82:18) was also observed using 2-naphthyl silane 1g, with the 
yield also higher compared to 4h (69 vs 60%). A slight recovery 
of enantioselectivity was also observed with 4k (52%, 82:18 er) 
compared to 4h (79:21 er), and comparable to 4a. Studies with 
varied alkyl substitution on the silicon center were conducted 
with diazo 2a.  
Scheme 1. Scope of enantioselective Si–H insertion with sym-
metrical diazo compoundsa 

  
a isolated yields; er determined using CSP-HPLC analysis of silanol 
obtained from Pd/C hydrolysis. b Reaction performed using 1 mmol 
of 2a. 

Isobutyl-containing 4l provided the highest enantioselectivity 
observed using 2a (86:14 er). However, neopentyl substitution 
led to loss of enantioselectivity (4m, 50:50 er), and cyclohexyl 
substitution reduced enantioselectivity as well (4n, 70:30 er).  
Lastly, switching to a siloxane also deleteriously affected enan-
tioselectivity while maintaining fair yield (4o, 60%, 61:39 er).  
We next turned our focus to insertion of prochiral diazo reac-
tants.      
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     The ability of the ortho substituent on one phenyl ring of the 
diazo compounds to control enantioselectivity was explored 
(Scheme 2). Electron-donating substituents lower diastereose-
lectivity (5b, 90:10 dr vs 93:7 dr), but slightly improve enanti-
oselectivity (95:5 vs 93:7 er). With an electron-withdrawing 
group (5c), excellent yield and enantioselectivity is observed 
(93%, 93:7 er) and diastereoselectivity increased (98:2 vs 93:7 
dr). Recent work has noted potential synergistic effects of elec-
tronics and ortho substitution on the selectivity of donor/donor 
Scheme 2. Scope of enantioselective Si–H insertion with 
prochiral diazo reagentsa 

   
a Isolated yields; dr determined using 1H NMR spectroscopy; er 
Determined using CSP-HPLC analysis of silanol obtained from 
Pd/C hydrolysis. b Reaction performed using 1.00 g of 3a and 0.05 
mol % catalyst, at 0.1 M in toluene. c dr was determined using 19F 
NMR spectroscopy. d Relative configuration assigned by X-ray 
analysis.  

carbene chemistry.44 Substitution on both phenyl rings was able 
to achieve excellent yield and good selectivity in 5d (98% yield, 
90:10 dr . 89:11 er), although slightly lower compared to other 
substitution patterns. The combined steric and push-pull elec-
tronic effects improve enantioselectivity compared to symmet-
rical diazo compounds. These substrates demonstrate that the 
presence of ortho-substitution iso-steric to a methyl may induce 
enantioselectivity. Replacing phenyl with a 1-naphthyl group 
led to decreased diastereoselectivity (5e, 85:15 dr) and low en-
antioselectivity (61:39 er), suggesting other competitive steric 

effects are present. We sought to explore varied substitution of 
silanes with prochiral diazo 3a, given the increase in yield and 
enantioselectivity compared to using 2a. Prochiral silanes were 
tested with diazo 3a and all demonstrated above 90:10 er for 
the major diastereomer (Scheme 2, 5f-5j). Additionally, the re-
action performed with 1 gram of 3a using <1 mol% catalyst af-
fords excellent yield, diastereoselectivity and enantioselectivity 
(Scheme 2, 5a). Overall, the data shows that diastereoselectivity 
is substrate controlled, while enantioselectivity is controlled by 
the rhodium catalyst.. Notably, using a diastereoselective reac-
tion with silane 1c promotes enantioselectivity with 5f (94:6 er) 
compared to 4e (50:50 er). This result highlights the benefit of 
using prochiral 3a to improve enantioselectivity. 
     A catalytic cycle for the enantioselective Si–H insertion of 
diarylcarbenes is proposed (Figure 2A).36 The Rh(II) carbox-
ylate catalyst (I) reacts with the diazo compound (2a or 3a) to 
form complex II, which is approached by prochiral silane 1a to 
produce the silicon-stereogenic silane and regenerate catalyst. 
Kinetic isotope experiments support the rate-determining inser-
tion step (kH/kD = 1.6), fitting closely with previous experiments  
      

   

Figure 2. A. Proposed catalytic cycle with kinetic isotope effect; B. 
Diagram of proposed selectivity rationale of donor/donor inser-
tions.  

of Si–H insertion with donor-acceptor20,41,45 and donor/donor 
carbenes.29 Off-cycle formation of azine (6 or 7) can occur 
when metal carbene II reacts with another diazo reactant. Using 
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in situ IR spectroscopy, we determined that the ortho-substi-
tuted prochiral diazo 3a has a significantly reduced rate of azine 
formation (vs 2a), which accounts for higher yields of the Si–H 
insertion products. Relative rates of azine formation (krel  > 120) 
was observed for decomposition of diazo 2a vs 3a with Rh2(S-
TCPTTL)4 (in toluene) in the absence of silane (Figure 2A).46 
Increased yields of Si–H insertion products with ortho-substitu-
tion (5a-i) are attributed to steric interactions blocking the ap-
proach of diazo 3a to II, which reduces off-cycle azine for-
mation. The addition of 4Å mol sieves reduces off-cycle pro-
cesses leading to formation of siloxane 8.42 The increase in en-
antioselectivity observed with prochiral donor/donor diazo 3 is 
attributed to a twisting of the ortho-substituted aryl ring, which 
blocks one face of the carbene in II to promote selective ap-
proach of the silane (Figure 2B).44,47,48 Davies recently reported 
that the twisting effect has electronic contributions similar to 
that of a donor/acceptor carbene;44 however, our data supports 
that the steric effect of an out-of-plane phenyl twist is signifi-
cant.  
 To demonstrate the utility of enantioenriched silanes, 
silane 5a was transformed to silanol, dehydrocoupling, and in-
tramolecular C–H silylation products. Silanes are useful inter-
mediates in stereoselective synthesis, and have versatile reac-
tivity with the remaining Si–H bond.49 It is well know that tran-
sition metals are capable of oxidative insertion into Si–H bonds 
with retention of configuration. 50,51 Pd/C-catalyzed silane hy-
drolysis affords silanol 9 in 90% yield with 90:10 dr and 93:7 
er.38,51,52 Under attempted hydrosilylation conditions, an unex-
pected dehydrocoupling product 10 was isolated in good yield 
(62%) and 93:7 dr.53–55 Exploiting the presence of the ortho-me-
thyl group, diasteroenriched sila-indane 11 was accessed in 
90% yield with 90:10 dr using Ir-catalyzed C–H silylation 
methodology developed by the Hartwig group.56,57    
 

  

a Isolated yields; dr determined using 1H NMR spectroscopy; er 
determined using CSP-HPLC. b Isolated as a 85:15 (major) mixture 
with the hydrosilylation product. See SI for more information. c dr 
determined using 19F NMR spectroscopy. 

 In conclusion, the first example of enantioselective diaryl-
carbene insertion into Si–H bonds has been accomplished with 

Rh2(S-TCPTTL)4, yielding silicon-stereogenic benzhydryl 
silanes. While symmetrical diazo compounds demonstrated in-
itial enantioselectivity, using a prochiral diazo reactant dramat-
ically improved the reaction, providing yields up to 98% with 
98:2 dr and 95:5 er. A catalytic cycle is proposed and the impact 
of the off-cycle azine formation is supported based on the struc-
tural dependence for relative rates of diazo decomposition. 
Transformation of the enantioenriched silane affords access to 
silicon-stereogenic silanol, dehydrocoupling and intramolecu-
lar C–H silylation products.  
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