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Quantum gas microscopes for ultracold atoms can provide high-resolution real-space snapshots of
complex many-body systems. We implement machine learning to analyze and classify such snapshots
of ultracold atoms. Specifically, we compare the data from an experimental realization of the two-
dimensional Fermi-Hubbard model to two theoretical approaches: a doped quantum spin liquid state
of resonating valence bond type, and the geometric string theory, describing a state with hidden
spin order. This approach considers all available information without a potential bias towards one
particular theory by the choice of an observable and can therefore select the theory which is more
predictive in general. Up to intermediate doping values, our algorithm tends to classify experimental
snapshots as geometric-string-like, as compared to the doped spin liquid. Our results demonstrate
the potential for machine learning in processing the wealth of data obtained through quantum gas
microscopy for new physical insights.

Introduction.– The phase diagram of the Fermi Hub-
bard model and its connection to high-temperature su-
perconductivity have been the subject of a vast amount
of theoretical and experimental studies in the past
decades [1, 2]. While a large number of theories exist,
each with its own merits, a unifying analytic understand-
ing is nonetheless still lacking. In the regime of low tem-
peratures and finite doping even numerical simulations
become increasingly difficult. In recent years, tremen-
dous progress has been made in using ultracold atoms
to study quantum magnetism in the Fermi-Hubbard
model [3–11]. These ultracold atom experiments are
now exploring finite doping regimes of the phase diagram
where no consensus on a theoretical description and the
most appropriate way to experimentally characterize the
system exists.

All information about the quantum state of the system
is contained in the many-body density matrix, where the
number of degrees of freedom scales exponentially with
the system size. A measurement collapses the quantum
state, such that only a projection of it can be accessed.
Repeated projective measurements provide a plethora of
data, which in the past has mostly been analyzed to ob-
tain conventional observables such as one- and two-point
correlation functions, that are also traditionally mea-
sured in solids. However, measurements performed in
quantum gas microscopes contain considerably more in-
formation. Therefore, the need arises for new methods to
analyze the data that take all available information into
consideration and hence use the capabilities of quantum
gas microscopes to their full extent.
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FIG. 1. Classifying quantum gas microscope snapshots of the doped Fermi-Hubbard model with convolutional
neural networks (CNNs). (a) Schematic phase diagram of the 2D Fermi-Hubbard model. We use snapshots of the many-
body quantum state at fixed doping and temperature as input data for the CNN. (b) The main building block of CNNs, which
are conventionally used to analyze visual imagery, is the convolutional layer with a set of learnable filters Mi as parameters [12].
At each possible position of a given filter in the input image, the inner product between the filter and the input data is
computed. This yields a two dimensional activation map of the filter. During training, the network learns to set the entries of
the filters such that the corresponding value in the activation map is high when specific types of patterns are detected. The
convolutional layer is followed by a fully connected layer, which then sorts the data into the different categories.
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In this work, we employ machine learning techniques
to characterize the large amount of data produced by
quantum gas microscopy of the doped Fermi-Hubbard
model. Recently, machine learning has emerged as a new
tool in condensed matter physics. Its main applications
so far include representing the wave functions of corre-
lated many-body states [13–15], the determination and
characterization of a phase transition [16–24] and most
recently the analysis of scanning tunneling microscopy
images [25]. Here, we take a complementary route and
use a CNN to classify experimental data at finite doping
into different theoretical categories in order to determine
which theory describes the system best on the micro-
scopic level, see Fig. 1. This approach provides insights
into the underlying microscopic structures of the state,
which may be inaccessible to conventional observables
but can be essential for gaining a deeper understanding
of the emergent physics.

Physical system.– The experimental data that we
analyze with our machine-learning algorithm has been
measured with a quantum gas microscope for ultracold
Lithium atoms in an optical lattice and is available in
Ref. 11. This system is modeled by the Fermi-Hubbard
Hamiltonian

Ĥ = −t
∑
σ=↑,↓

∑
〈i,j〉

(
ĉ†i,σ ĉj,σ + h.c.

)
+U

∑
j

ĉ†j,↑ĉj,↑ĉ
†
j,↓ĉj,↓,

(1)
where the first term describes tunneling with amplitude
t of spin-1/2 fermions between nearest-neighbor sites of
a two-dimensional square lattice. The second term cor-
responds to on-site interactions of strength U between
fermions with opposite spin; U ≈ 8t in the experi-
ment [11]. The half-filling limit of the two-dimensional
Hubbard model is comparably well understood and can
be approximately described for large interactions by the
Heisenberg Hamiltonian with superexchange coupling
J = 4t2/U [26]. Starting from high temperatures T >
J , upon decreasing the temperature, anti-ferromagnetic
(AFM) correlations with increasing correlation length
emerge. We now investigate the decrease of AFM cor-
relations with doping by comparing the snapshots ob-
tained from the quantum gas microscope to two different
theories, a doped resonating valence bond (RVB) liquid
[27, 28] and the geometric string theory [11, 29, 30] over a
wide range of dopings. Before presenting our results, we
provide a brief account of the two theories from which we
numerically sample snapshots of the many-body density
matrix.

π-flux theory.– In the RVB picture, the ground state
of the doped Hubbard model is described as a super-
position of different spin-singlet coverings of the lattice,
through which deconfined chargons can move freely. Our
simulations for this theory are based on a mean-field par-
ton Hamiltonian ĤMF with free spin-1/2 fermions hopping
on a square lattice with a magnetic flux of π per plaquette
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FIG. 2. Classifying single snapshots of the many-body
density matrix. (a) The convolutional neural network is
trained to identify to which dataset category any given snap-
shot belongs. Here, we consider (i) experimental data, (ii)
geometric strings and (iii) snapshots from π-flux theory, all
at 9% doping. The probabilities in (b) show how a sample
of 400 snapshots which have not been used during training is
classified. While the π-flux theory is recognized comparably
well, a clear separation between experimental data and geo-
metric strings is not possible. We repeat the process ten times
to average out fluctuations in the results, see Supplementary
Material for details [31].

[27, 28, 32]. A Gutzwiller projection of the corresponding

thermal density matrix ρ̂ = e−βĤMF removes double oc-
cupancies in accordance with a large on-site interaction
U � t.
We use Monte Carlo sampling techniques to generate
snapshots in the Fock basis of the projected mean-field
density matrix. To take into account virtual charge fluc-
tuations present in the larger physical Hilbert space,
we introduce doublon-hole pairs into the snapshots on
neighboring sites with probability 4t2/U2 determined by
second order perturbation theory. The overall energy
scale in the mean-field Hamiltonian is fixed such that the
nearest-neighbor spin correlator at half-filling matches
the experimental value. This approach has been shown in
Ref. 11 to lead to good agreement of spin correlations for
all relevant doping values. Our results are robust under
small variations in the overall energy scale.

Geometric string theory.– In the underdoped regime,
this theory describes the fermionic charge carriers as
bound states of two partons [33–35]: a heavy spinon and
a light chargon; see also Refs. [36–38]. Their internal
structure is described by a fluctuating geometric string
of displaced spins connecting the spinon to the chargon
[29, 30]. In order to derive the properties of this string,
the frozen spin approximation is assumed, in which the
spin background does not change with doping but the
anti-ferromagnetic order is hidden by the hole motion.
Each hole displaces the spins along the string by one site,
which leads to an increase in spin interaction energy pro-
portional to the spin correlations in the undoped system
and a decrease of the overall staggered magnetization.
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The distribution of the geometric string length is ob-
tained from a microscopic calculation of the motion of
a single hole at a given temperature and Hubbard pa-
rameter U/t [11].
To generate snapshots for the geometric string theory,
we start from the experimental data at half-filling and
for each doping value place the corresponding number of
holes independently into the snapshots. The holes are
then moved indepenently from one another in random
directions through the anti-ferromagnet for a number of
sites which is sampled from the theoretical string length
distribution.
The experimental images only contain information about
one spin species, while the other spin species as well as
doublons and holes are detected as empty sites. Hence,
before comparing our theoretical images to experimental
results, the second spin species and doubly occupied sites
are converted to empty sites in the theoretical data.

Classifying snapshots.– We now train a convolutional
neural network to distinguish snapshots from the follow-
ing classes: (i) experimental data, (ii) geometric string
theory and (iii) π-flux theory, all at 9% doping. In all
snapshots, the underlying SU(2) symmetry of the Fermi-
Hubbard Hamiltonian leads to fluctuations of the Néel
ordering vector. To simplify the pattern recognition, we
use ∼ 30% of the snapshots with the highest absolute
values of the staggered magnetization. Importantly, this
still corresponds to a large number of snapshots, which
can be considered as a representative sample of the quan-
tum state, see Supplementary Material [31].
The performance of our neural network is visualized in
Fig. 2. In this plot, the x-axis displays the actual class
of a snapshot and the y-axis shows the probability for
the neural network to sort it into the different classes.
The accuracy for the classification of images, which cor-
responds to the weighted average of the diagonal entries,
is 47.1%. The main source of confusion for the CNN
is the similarity between the experimental and the geo-
metric string theory data, while a differentiation of the
π-flux theory snapshots is more successful. Taking the
first two categories together, the accuracy of the classifi-
cation increases to 69.2%. This is a first indication that
the geometric string theory resembles the experimental
data at 9% doping more closely than π-flux theory.

Sorting experimental data into theory categories.–
One of the most powerful features of neural networks is
their ability to generalize to new situations not encoun-
tered during training. We make use of this property by
first training a CNN to distinguish between snapshots
from π-flux and geometric string theory at a fixed dop-
ing value; a task for which the CNN achieves a precision
above 70%. Subsequently we show experimental data to
the CNN to sort it into one of the two theory categories.
The classification of experimental data then reveals how
similar these snapshots are to the theoretically simulated
data.
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FIG. 3. Classifying experimental data. (a) The network
is trained to distinguish snapshots from geometric string the-
ory (blue) and π-flux theory (orange) at each doping value.
After training, experimental images at the same doping are
shown to the network. (b) The average of the resulting classi-
fication of the experimental data at the corresponding doping
value. The inset shows the precision for the trained classes on
a subset of data not used for training. We repeat the process
ten times to average out fluctuations in the results.

As shown in Fig. 3, the neural network classifies a ma-
jority of the experimental snapshots as geometric string
theory over a broad range of doping values up to about
15%, even though conventional spin and charge corre-
lation functions coincide equally well with experimental
results in that regime for both theories [11]. For larger
dopings, the experimental data is more often sorted into
the π-flux theory class, see also Supplementary Mate-
rial [31].
The ability of the neural network to distinguish π-flux
from geometric string theory on the level of individual im-
ages indicates that the physical structure of these states
is different. We can further improve the accuracy of our
classification by taking into account the information that
an entire set of measurements belongs to the same phys-
ical state. When the CNN sorts each snapshot into one
of the two categories with probabilities p and 1 − p, the
entire sample is classified by the category in which the
majority is sorted. Because the number of shots in each
category follows a binomial distribution, the probability
to make a wrong classification of the entire sample decays
exponentially with the number of snapshots. Therefore,
the entire experimental dataset at any doping value be-
low ∼ 15% would be classified as geometric string theory
data with almost 100% probability [31]. When the in-
put to the network consists of four snapshots from the
same category, the precision is above 80% already and
the fraction of experimental images classified as string
theory increases significantly [31].

Moreover, our algorithm also classifies the low-
temperature experimental snapshots to geometric string
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theory rather than experimental high temperature data,
again up to doping values of about 15%; see Supplemen-
tary Material for details.

Summary and Outlook.– We have demonstrated that
convolutional neural networks provide a powerful tool to
analyze the large amount of experimental data obtained
from quantum gas microscopes. Individual snapshots can
be classified to theoretical predictions and we can thereby
determine which theory fits best. We apply this method
to the Fermi-Hubbard model on a square lattice and find
that on a microscopic level the experimental data more
closely resembles the geometric string theory with short-
range hidden order than the π-flux RVB theory in the
regime of low doping. Our analysis suggests a qualita-
tive change of this behavior between 15% to 20% doping,
beyond which the π-flux RVB data resembles the exper-
iment more closely.
Conventional observables, such as the staggered magneti-
zation or two-point spin correlation functions, hardly al-
low for a distinction between the theories under consider-
ation and it depends on the chosen observable which the-
ory will be favored [11]. By contrast, the CNN searches
for patterns in the collection of snapshots in an unbiased
way without specifying certain physical observables and
with that searches for structure in the many-body den-
sity matrix. Turning this argument around, it remains an
interesting open challenge to understand how the CNN
classifies the snapshots, which we plan to address in a
future work.
In this work, we compared two theories out of many po-
tential candidates to the experimental data. In future
work, the investigation of a larger class of theories will
provide us with further information about the structure
of the quantum state of the two-dimensional Fermi Hub-
bard model. Straightforward extensions include the com-
parison of snapshots from the Fermi-Hubbard model to
different resonating valence bond states or predictions
by quantum dimer models [35]. Examining completely
different parameter regimes or even models could reveal
additional insights. Current experiments have been per-
formed at comparably high temperatures, where no d-
wave pairing or charge order is expected. Once colder
temperatures are achievable, it will be interesting to com-
pare geometric string theory to theoretical models with
different types of order parameters built in.
The analysis of snapshots from quantum gas microscopy
with machine learning techniques has the capability to
reveal microscopic mechanisms and hidden order in the
considerable amount of available data. Machine learning
of quantum many-body states, perhaps possible through
experimental snapshots, offers prospects to find the most
predictive theory among a multitude of competing theo-
ries.
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Supplementary Material:
Classifying Snapshots of the Doped

Hubbard Model with Machine Learning

Data

The experimental data is obtained from Refs. 7 and
11. All snapshots used in this work consist of a circular
region of interest (ROI) with 80 sites. In Table S1 we list
the amount of data available at T = 0.6J ± 0.1J at vari-
ous dopings, as well as at half-filling for different temper-
atures. Conventional observables such as the staggered
magnetization and spin correlators are very similar to the
experiment for both the geometric string and the π-flux
theories over a wide range of dopings [11]. A distinction
of the theories by the neural network solely based on
such ’trivial’ quantities can therefore be excluded. Fur-
thermore, for the nearest-neighbor spin correlator, which
could probably be used to differentiate single snapshots,
the experiment seems to be better described by π-flux
theory than by geometric string theory [11]. However,
geometric strings do describe the experimentally mea-
sured staggered magnetization more closely; as such we
separately calculate the staggered magnetizations of the
experimental data classified into geometric-string theory
and into pi-flux theory in Fig. S1. While the part of the
dataset classified as π-flux theory has a slightly lower av-
erage staggered magnetization than the set of snapshots
sorted into the geometric string theory class, see Fig. S1,
the values for both categories are comparably close to
each other. The similarity of staggered magnetization
values for both theories indicates that the CNN is classi-
fying on the basis of more involved patterns.
As discussed in the main text, we post-select the snap-
shots in all cases to a high value of the staggered mag-
netization. For experimental as well as theory data, we

TABLE S1. Number of snapshots from the experiment avail-
able at different doping values at T = 0.6J ± 0.1J (left) and
at different temperature values at half-filling (right).

doping (%) number of snapshots T/J number of snapshots

0 5326
2 480 0.5 65
3 248 0.6 1776

4.5 253 0.7 4657
6 1588 0.8 356
7 687 0.9 346
9 1205 1.0 317
10 483 1.1 313

12.5 185 1.2 475
14 383 1.3 151
17 372 1.4 91
20 335 1.5 62
25 148 1.6 811
32 332 1.8 183
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FIG. S1. Staggered magnetization of the two classes
after sorting. After training the CNN to distinguish geo-
metric string theory and π-flux theory, we show it experimen-
tal data, which is then classified by the network as one of the
two theories. As a result, we obtain a subset of experimen-
tal data sorted into the string theory class and accordingly a
second complementary subset classified as π-flux theory. For
these two new datasets, we now determine the average value
of the staggered magnetization. The similarity of the result-
ing values for the different theories shows that a classification
by the CNN solely based on the staggered magnetization is
not convincingly possible.

calculate the absolute value of the staggered magnetiza-
tion |mz| for every snapshot and use only the ∼30% of
all snapshots with the highest value of |mz|. The post-
selection is necessary to avoid confusion due to images
with Néel ordering vector not aligned with the measure-
ment axis, in which case a single snapshot alone does not
contain any useful information. We performed the anal-
ysis shown in the main text for different percentages of
the total amount of data and found that our results are
independent of the details of the post-selection.

Errors

Before training the neural network, we randomly se-
lect 400 snapshots from the full data for testing. These
snapshots are not used during training, but only to test
the performance of the network and determine the accu-
racy. In order to average out fluctuations in the results,
we repeat the training with a different choice of the test
data set and sorting of experimental data 10 times. The
error bars for the different accuracies as well as the per-
centage of experimental snapshots detect as one of the
two theories shown in the figures represent the standard
deviation over the different runs,

∆x =

√∑N
i=1 (xi − x̄)

2

N − 1
, (S1)
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TABLE S2. Network parameters for Fig. 2, Fig. 3 and S5.

Fig. 2 Fig. 3 Fig. S5

available snapshots 2059 5326 2848
post-selection (%) 30 30 40
batch size 200 250 250
conv. layer 1 20 24 16
conv. layer 2 - - 4
dropout 0.8 0.55 0.7
fully conn. layer 1 40 100 40
fully conn. layer 2 30 - -
dropout 0.7 0.5 0.6
output layer 3 2 2
learning rate 4 ·10−4 1 ·10−3 3 ·10−4

learning rate decay 0.6 0.5 0.5
iterations 1000 1000 1000

where N is the number of runs, xi is the quantity under
consideration in the i-th run and x̄ is the average value
of the said quantity over all N runs.

Network

The convolutional neural network used in this work
was implemented using TensorFlow [39]. We tested the
performance of the network with different architectures
and while there are some quantitative fluctuations, the
qualitative result is robust under changes of the architec-
ture. Since the learning tasks as well as the amount of
training data available are different for Fig. 2, Fig. 3 and
Fig. S5, the optimal performance in terms of overall test
accuracy is achieved for slightly different network archi-
tectures. The concrete parameters used for the different
figures are listed in Table S2.

Distinguishing theories

Geometric string theory based on Heisenberg QMC

In the main text, we train the network to distinguish
between geometric string theory and π-flux theory and
subsequently sort experimental data into one of those
categories. One potential bias of this approach is that
the geometric string theory snapshots are based on ex-
perimental data at half-filling, whereas the π-flux the-
ory data is purely theoretical apart from a fitted overall
energy scale. This bias is to some extent intrinsic, be-
cause the geometric string theory does not make a state-
ment about the state at half-filling itself, but only about
how the introducing holes changes it. However, we can
also generate purely theoretical images for the geomet-
ric string theory category by using Heisenberg Quantum
Monte Carlo (QMC) snapshots as starting point. After
adding the strings by hand as described above we also
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FIG. S2. Distinguishing geometric string theory from
π-flux theory. The network is trained to distinguish snap-
shots from geometric string theory (blue) and π-flux the-
ory (orange) at each doping value. As opposed to Fig. 3
in the main text, the geometric string theory data is based
on Heisenberg quantum Monte Carlo simulations to avoid a
potential bias by using experimental half-filling data. After
training, experimental images at the same doping are shown
to the network. The plot shows the average of the resulting
classification over all available experimental data at the cor-
responding doping value. The inset shows the precision that
is achieved for the trained classes on a subset of data not
used for training. We repeat the process ten times in order
to average out fluctuations in the results.

add doublon hole pairs in the same way as for π-flux the-
ory. We then train the CNN to distinguish the geometric
string theory data based on Heisenberg QMC from π-flux
theory data and subsequently sort the experimental data
into the two categories. As can be seen from Fig. S2,
the qualitative result is very similar to what we obtained
in Fig. 3 in the main text where geometric string theory
data is based on experimental half-filling snapshots.

Distinguishing geometric string theory from random images

The precision achieved by the CNN during training
for the different tasks so far has been around 75%. In
Fig. S3 we show the precision as well as the resulting
classification of experimental data after training the net-
work to distinguish geometric string theory from random
data, where the ratio of occupied to empty sites in every
image is chosen according to the doping value under con-
sideration. For doping below 10%, the precision is close
to 100%, demonstrating that the network is capable of
learning to classify different theories almost perfectly.
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FIG. S3. Distinguishing geometric string theory from
random snapshots. The network is trained to distinguish
snapshots from geometric string theory (blue) and random
images (salmon) at each doping value. After training, experi-
mental images at the same doping are shown to the network.
The plot shows the average of the resulting classification over
all available experimental data at the corresponding doping
value. The inset shows the precision that is achieved for the
trained classes on a subset of data not used for training. We
repeat the process ten times to average out fluctuations in the
results.
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FIG. S4. Distinguishing geometric string theory from
π-flux theory, four snapshots at a time. The network is
trained to distinguish snapshots from geometric string theory
(blue) and π-flux theory (orange) at each doping value. Each
input corresponds to four randomly chosen images from one
theory. After training, experimental images at the same dop-
ing are shown to the network. Again, we show the network
four images at a time and the network has to classify them
into the same category. The plot shows the average of the
resulting classification over all available experimental data at
the corresponding doping value. The inset shows the preci-
sion that is achieved for the trained classes on a subset of
data not used for training. We repeat the process five times
to average out fluctuations in the results.

Classifying sets of snapshots

In Fig. 3, the neural network sorts about 60% of the
experimental snapshots into the geometric string theory
category in the low doping regime. As stated in the main
text, the accuracy of our classification can be increased
further by taking into account the information that an
entire set of measurements belongs to the same physical
state. Here, we take one step in that direction and group
four snapshots of the same category at a time. Addition-
ally, for each of the four snapshots we choose a random
number r = 0, 1, 2, or 3 and rotate the snapshot r · 90
degrees. Using the same network architecture, the preci-
sion increases to about 85% throughout all doping values,
see Fig. S4. After training, we show the network four ex-
perimental snapshots at a time and ask it to assign a
single label to them. Again, we apply a random number
of rotations to each individual snapshot. For dopings be-
low 14%, the fraction of experimental images classified
as string theory is between 65 and 85%.

Comparing finite doping to high temperature

Starting at half-filling and cold temperatures around
0.6J the AFM correlations vanish both with increasing
doping or increasing temperature [11]. We approach the
question of how similar these regimes are on the micro-
scopic level. At each doping value we train the CNN
to distinguish geometric string theory data and exper-
imental data at high temperature and half-filling. We
randomly add holes to the hot data according to the re-
spective doping level to prevent the network from dis-
tinguishing the two theories trivially by the density. In
order to obtain a sufficiently large training set, we use
half-filling data for temperatures between T = 0.9J and
1.8J for the high temperature class.
For doping below ∼ 15%, the network classifies the ex-
perimental data as geometric string theory. However,
the precision decreases with increased doping, see inset
of Fig. S5. This shows that it is difficult for the CNN to
distinguish the theories, indicating that the classification
of experimental pictures around 15% doping is not very
reliable.
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FIG. S5. Distinguishing finite doping from high tem-
peratures. The CNN is trained to distinguish geometric
string theory at a given doping value from experimental im-
ages at half-filling and temperatures T ≥ 0.9J with the cor-
responding number of holes randomly sprinkled into the pic-
tures to prevent a distinction based on the filling. After train-
ing, experimental images at low temperatures, T ≈ 0.6J , and
the corresponding doping value are shown to the network.
The plot shows the average of the resulting classification.
The inset shows the precision that is achieved for the trained
classes on a subset of data not used for training. The pro-
cess is repeated ten times to average out fluctuations in the
results.
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