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Quantum entanglement involving coherent superpositions of macroscopically distinct states is
among the most striking features of quantum theory, but its realization is challenging because such
states are extremely fragile. Using a programmable quantum simulator based on neutral atom
arrays with interactions mediated by Rydberg states, we demonstrate the creation of “Schrödinger
cat” states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 20 qubits. Our approach is
based on engineering the energy spectrum and using optimal control of the many-body system. We
further demonstrate entanglement manipulation by using GHZ states to distribute entanglement to
distant sites in the array, establishing important ingredients for quantum information processing
and quantum metrology.

Greenberger-Horne-Zeilinger (GHZ) states constitute
an important class of entangled many-body states [1].
Such states provide an important resource for applica-
tions ranging from quantum metrology [2] to quantum
error correction [3]. However, these are among the most
fragile many-body states because a single error on any
one of the N qubits collapses the superposition, result-
ing in a statistical mixture. Remarkably, despite their
highly entangled nature, GHZ states can be character-
ized by just two diagonal and two off-diagonal terms in
the N -particle density matrix. In contrast to quantifying
the degree of entanglement in general many-body states,
which is extremely challenging [4–6], the GHZ state fi-
delity (F > 0.5) constitutes an accessible witness for N -
partite entanglement [7]. For these reasons, GHZ state
creation can serve as an important benchmark for charac-
terizing the quality of any given quantum hardware. Such
states have been previously generated and characterized
by using systems of nuclear spins [8, 9], individually con-
trolled optical photons [10–12], trapped ions [7, 13–15],
and superconducting quantum circuits [16, 17]. Large-
scale superposition states have also been generated in
systems of microwave photons [18] and atomic ensembles
without individual particle addressing [2].

Here, we demonstrate the preparation of N -particle
GHZ states

|GHZN 〉 =
1√
2

(|0101 · · · 〉+ |1010 · · · 〉) (1)

in a one dimensional array of individually trapped neu-

tral 87Rb atoms, in which the qubits are encoded in an
atomic ground state |0〉 and a Rydberg state |1〉 (phase
convention is provided in [27]). Our entangling operation
relies on the strong van-der-Waals interaction between
atoms in states |1〉 and on engineering the energy spec-
trum of the quantum many-body system to allow for a ro-
bust quantum evolution from an initial product state to a
GHZ state. For both generating and characterizing GHZ
states (Fig. 1), all the atoms were homogeneously cou-
pled to the Rydberg state |1〉 by means of a two-photon
transition with an effective coupling strength Ω(t) and
detuning ∆(t) [19, 20]. In addition, we used addressing
beams to introduce local energy shifts δi on specific sites
i along the array (Fig. 1A). The resulting many-body
Hamiltonian is

H

~
=

Ω(t)

2

N∑
i=1

σ(i)
x −

N∑
i=1

∆i(t)ni +
∑
i<j

V

|i− j|6
ninj (2)

where σ
(i)
x = |0〉〈1|i + |1〉〈0|i is the qubit flip operator,

∆i(t) = ∆(t)+δi is the local effective detuning set by the
Rydberg laser and the local light shift, ni = |1〉〈1|i is the
number of Rydberg excitations on site i, and V is the in-
teraction strength of two Rydberg atoms on neighboring
sites. The separation between adjacent sites was chosen
so that the nearest-neighbor interaction V = 2π ·24 MHz
� Ω results in the Rydberg blockade [21–23], forbidding
the simultaneous excitation of adjacent atoms into the
state |1〉.

To prepare GHZ states, we uesd arrays with an even
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FIG. 1. Experimental scheme and entanglement proce-
dure. A, 87Rb atoms initially in a ground state |0〉 =∣∣5S1/2, F = 2,mF = −2

〉
are coupled to a Rydberg state |1〉 =∣∣70S1/2,mJ = −1/2

〉
by a light field with a coupling strength

Ω/(2π) ≤ 5 MHz and a variable detuning ∆. Local addressing
beams at 840 nm target the edge atoms, reducing the energy
of |0〉 at those sites by a light shift δe. B, Many-body energy
gap spectrum of N = 8 atoms, including energy shifts on the
edge atoms. For positive detuning, the states with one ground
state atom on the edges are favored over states with a Ryd-
berg atom on both edges. An adiabatic pathway connects the
state |GN 〉 = |000 · · · 〉 with the two GHZ components. Gray
lines in the spectrum are energies associated with antisym-
metric states, which are not coupled to the initial state by
Hamiltonian (2). C, Method to control the phase φ of GHZ
states. Every other site of the array is illuminated with a local
addressing beam at 420 nm, which imposes a negative differ-
ential light shift δp on the |0〉-to-|1〉 transition. The offset
in state |0101 · · · 〉 relative to |1010 · · · 〉 leads to an evolving
dynamical phase.

number N of atoms. For large negative detuning ∆ of
the Rydberg laser, the many-body ground state of the
Hamiltonian (2) is |GN 〉 = |0000 · · · 〉. For large uniform
positive detuning ∆i = ∆, the ground-state manifold
consists of N/2 + 1 nearly degenerate classical config-
urations with N/2 Rydberg excitations. These include
in particular the two target antiferromagnetic configura-
tions |AN 〉 = |0101 · · · 01〉 and

∣∣AN〉 = |1010 · · · 10〉 [24],
as well as other states with nearly identical energy (up to
a weak second-nearest neighbor interaction), with both

edges excited, such as |10010 · · · 01〉. To isolate a co-
herent superposition of states |AN 〉 and

∣∣AN〉, we in-
troduced local light shifts δe using off-resonant laser
beams at 840 nm, generated with an acousto-optic de-
flector (AOD), which energetically penalize the excita-
tion of edge atoms (Fig. 1A), and effectively eliminate
the contribution of undesired components. In this case,
the ground state for positive detuning is given by the
GHZ state (1) and there exists in principle an adiabatic
pathway that transforms the state |GN 〉 into |GHZN 〉 by
adiabatically increasing ∆(t) from negative to positive
values (Fig. 1B).

In practice, the time necessary to adiabatically prepare
such a GHZ state grows with system size and becomes
prohibitively long for large N , owing to small energy gaps
in the many-body spectrum. To address this limitation,
we used optimal control methods to find laser pulses that
maximize the GHZ state preparation fidelity while min-
imizing the amount of time necessary. Our specific im-
plementation, the remote dressed chopped-random basis
algorithm (RedCRAB) [25, 26], yields optimal shapes of
the laser intensity and detuning for the given experimen-
tal conditions [27]. For N ≤ 8 atoms, we performed
this optimization using δe/(2π) ≈ −4.5 MHz light shifts
on the edge atoms. For larger systems of N > 8, the
preparation was found to be more robust by increasing
the edge light shifts to δe/(2π) ≈ −6 MHz and adding
δ4,N−3/(2π) ≈ −1.5 MHz light shifts on the third site
from both edges.

Our experiments are based on the optical tweezer
platform and experimental procedure described previ-
ously [20]. After the initialization of a defect-free N -
atom array, the traps were switched off while the atoms
were illuminated with the Rydberg and local light shift
beams. The internal state of the atoms is subsequently
measured by imaging state |0〉 atoms recaptured in the
traps, while Rydberg atoms are repelled by the trapping
light [28]. The results of such experiments for a 20-atom
array are demonstrated in Fig. 2. After applying the op-
timized pulse shown in Fig. 2B, we measured the proba-
bility of observing different patterns pn = 〈n| ρ |n〉 in the
computational basis, where ρ is the density operator of
the prepared state. The measured probability to observe
each one of the 220 possible patterns in a 20-atom array
is shown in Fig. 2A. The states |A20〉 and

∣∣A20

〉
clearly

stand out (Fig. 2A, blue bars) with a combined probabil-
ity of 0.585(14) and almost equal probability of observing
each one.

To characterize the experimentally prepared state ρ,
we evaluated the GHZ state fidelity

F = 〈GHZN | ρ |GHZN 〉 =
1

2

(
pAN

+ pAN
+ cN + c∗N

)
(3)

where pAN
and pAN

are the populations in the target

components and cN =
〈
AN
∣∣ ρ |AN 〉 is the off-diagonal
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FIG. 2. Characterization of a 20-atom GHZ state. A, Probability of observing different patterns, showing a large population
of the two target patterns out of 220 = 1, 048, 576 possible states. Shown here are the raw measured values (blue bars) and
the populations inferred by using maximum likelihood estimation (orange bars) for the two target states. (Insets) fluorescence
images of the two target patterns, where red circles mark empty sites corresponding to atoms in state |1〉. B, Optimal control
pulse used for state preparation. C, Parity oscillations produced by acquiring a relative phase between the GHZ components.
We apply a staggered field with a shift of δp/(2π) = ±3.8 MHz on all sites, followed by an operation Ux so that subsequent
parity measurements are sensitive to φ [27]. From the population measurement and the oscillation amplitude, we infer a lower
bound on the 20-atom GHZ fidelity of F ≥ 0.542(18). Error bars denote 68% confidence intervals.

matrix element, which can be measured by using the
maximal sensitivity of the GHZ state to a staggered mag-
netic field. Specifically, evolving the system with the

Hamiltonian Hp = ~δp/2
∑N
i=1(−1)iσ

(i)
z , the amplitude

cN acquires a phase φ at a rate of φ̇ = Nδp. Measuring
an observable that oscillates at this frequency provides a
lower bound on the coherence |cN | through the oscilla-
tion contrast [27, 29]. In our experiments, the staggered
field was implemented by applying off-resonant focused
beams of equal intensity at 420 nm, generated by another
AOD, to every other site of the array (Fig. 1C), resulting
in a local energy shift δp [27]. Subsequently, we drove
the atoms resonantly, applying a unitary operation Ux
in order to change the measurement basis [27], so that

a measurement of the parity P =
∏
i σ

(i)
z becomes sensi-

tive to the phase of cN . The measured parity is shown in
Fig. 2C as a function of the phase accumulated on each
atom, demonstrating the coherence of the created state.

To extract the entanglement fidelity for large atomic
states, we carefully characterized our detection process
used to identify atoms in |0〉 and |1〉 because it has a small
but finite error. We have independently determined the
probability to misidentify the state of a particle to be
p(1|0) = 0.0063(1), and p(0|1) = 0.0227(42) [27]. Subse-
quently, we use a maximum-likelihood estimation proce-
dure to infer the properties of created states on the basis
of the raw measurement results. Using this procedure, we
infer a probability of preparing states |A20〉 and

∣∣A20

〉
to

be 0.782(32) (Fig. 2A, orange bars) and an amplitude of
oscillation of 0.301(18) (Fig. 2C, orange points). From

these measurements, we extracted a lower bound for the
20-atom GHZ state fidelity of F ≥ 0.542(18).

This protocol was applied for multiple system sizes of
4 ≤ N ≤ 20, using 1.1µs control pulses optimized for
each N individually. Consistent with expected GHZ dy-
namics (Fig. 1C) [13], the frequency of the measured par-
ity oscillations grows linearly with N (Fig. 3A). Extract-
ing the GHZ fidelity from these measurements shows that
we surpass the threshold of F = 0.5 for all system sizes
studied (Fig. 3B and table S1). We further characterized
the lifetime of the created GHZ state by measuring the
parity signal after a variable delay (Fig. 3C). These obser-
vations are most consistent with Gaussian decay, while
characteristic lifetimes are reduced relatively slowly for
increasing system sizes, indicating the presence of a non-
Markovian environment [3, 14].

As an application of our entanglement manipulation
technique, we demonstrate its use for entanglement dis-
tribution between distant atoms. Specifically, we con-
sider the preparation of Bell states between atoms at
the two opposite edges of the array. Our approach was
based on first creating the GHZ state by using the above
procedure, followed by an operation that disentangles all
but two target atoms. The latter is realized by shifting
the transition frequencies of the two target edge atoms
by using two strong, blue-detuned addressing beams at
420 nm. Subsequently, we performed a reverse detun-
ing sweep of the Rydberg laser that effectively disentan-
gles all atoms except those at the edges. The result-
ing state corresponds to a coherent superposition of two
pinned excitations that can be converted into a Bell state
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FIG. 3. Quantifying entanglement for different system sizes. A, Parity oscillations measured on different system sizes. We
apply a staggered field with a shift of δp/(2π) = ±3.8 MHz on all sites and observe a scaling of the phase accumulation rate
proportional to the system size N . B, Inferred GHZ fidelity for different system sizes (orange circles) [27]. Blue diamonds show
the result of simulations that account for dephasing during state preparation, decay from off-resonant photon scattering, and
imperfect detection of coherence through parity oscillations [27]. Pale blue triangles show identical simulations for the initial
guess pulses for the RedCRAB optimization, consisting of a T = 1.1µs linear detuning sweep and Ω(t) = Ωmax[1−cos12(πt/T )].
The gray shaded area marks a region not measurable with our parity observable [27]. C, Lifetime of the GHZ state coherence.
For all system sizes N , we measure the state parity after a variable delay following the GHZ state preparation, which (inset)
decays to zero. We fit the individual parity data to the tail of a Gaussian decay curve because we assume that the dephasing
started during state preparation - before τ = 0. The gray line shows a theoretical prediction with no free parameters, accounting
for known dephasing mechanisms in our system.

|Φ+〉 = (|00〉+|11〉)/
√

2 by applying a resonant π/2 pulse
on the edge atoms (Fig. 4A).

To demonstrate this protocol experimentally, we pre-
pare a GHZ-state of 8 atoms, and turn on the detuned
420 nm addressing beams on the edge atoms, resulting in
a shift of δ1,8/(2π) = 6 MHz. We then used an optimized
Rydberg laser pulse to distribute the entanglement and
observed the patterns |00000000〉 and |10000001〉 with a
total probability of 0.729(9) after accounting for detec-
tion errors (Fig. 4B). We verified the coherence of the re-
mote Bell pair by applying an additional π/2 pulse with a
variable laser phase, and observed parity oscillations with
an amplitude of 0.481(24) (Fig. 4C). Combining these
results, we obtained the edge atom Bell state fidelity of
0.605(13).

Regarding our experimental observations, the optimal
control provides a substantial improvement over näıve
analytic pulses (Fig. 3B), while bringing our protocol
close to the speed set by a more conventional protocol of
building up entanglement through a series of two-qubit
operations [27]. By contrast, a simple linear detuning
sweep only allows for the creation of GHZ states for
N ≤ 16 within a fixed 1.1µs window (Fig. 3B), even un-
der ideal conditions. Our analysis reveals that the reason
for this improvement stems from diabatic excitations and

de-excitations in the many-body spectrum, related to the
recently proposed mechanisms for quantum optimization
speedup [27, 30, 31].

The measured entanglement fidelity is partially lim-
ited by imperfect qubit rotations used for parity mea-
surements. Specifically, the qubit rotation operation Ux
in our experiment is induced by an interacting Hamil-
tonian, which complicates this step [27]. The resulting
evolution can be understood in terms of quantum many-
body scars [20, 32], which gives rise to coherent qubit ro-
tations, even in the presence of strong interactions. The
deviations from an ideal parity measurement arise from
the Rydberg blockade constraint and long-range interac-
tions [27]. These grow with the system size, resulting
in finite fidelities even for a perfect initial GHZ state
(Fig. 3B, gray shaded area). Our quoted fidelity values
do not include the correction for this imperfection and
represent the lower bound on the actual GHZ state fi-
delities.

Entanglement generation, manipulation and lifetime
are further limited by several sources of decoherence. The
finite temperature of the atoms leads to random Doppler
shifts on every site as well as position fluctuations that
influence interaction energies. These thermal dephasing
mechanisms lead to a Gaussian decay of the GHZ state
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FIG. 4. Demonstration of entanglement distribution. A, Ex-
perimental protocol for N = 8. Edge atoms are addressed by
light shift beams, and a reverse sweep of the Rydberg laser
detuning is performed to disentangle the bulk of the array,
leaving a Bell state

∣∣Ψ+
〉
∝ |1 · · · 0〉 + |0 · · · 1〉 on the edge.

A π/2 pulse resonant only with the edge atoms is applied
to convert the state

∣∣Ψ+
〉

to
∣∣Φ+

〉
∝ |0 · · · 0〉 + |1 · · · 1〉. B,

Measured Rydberg populations on each site after entangle-
ment distribution. (Inset) Probabilities for different patterns
on the edge atoms, which are consistent with the Bell state∣∣Φ+

〉
. Blue bars show the raw data, while orange bars are the

statistically inferred probabilities given our detection errors.
C, Measurement of the Bell state coherence. GHZ entangle-
ment is distributed to the edges, and a π/2 pulse is applied
at laser phase φ = 0, followed by a second π/2 pulse at vary-
ing phase φ. The amplitude of the parity oscillation provides
a lower bound on the coherence of the Bell state, yielding a
fidelity of F ≥ 0.605(13).

coherence, whose time scale decreases with the system
size as 1/

√
N , which is in good agreement with our ob-

servations (Fig. 3C). Additionally, off-resonant laser scat-
tering introduces a small rate of decoherence on each
site in the array. We find that numerical simulations
of the state preparation accounting for these imperfec-
tions predict higher GHZ fidelities than those obtained
experimentally (Fig. 3B) [27]. We can attribute this dis-
crepancy to several additional sources of errors. Laser
phase noise likely contributes to the finite fidelity of the
state preparation. Drifts in the beam positions of the
Rydberg lasers can lead to changing light shifts, giving
rise to uncontrolled detunings, and drifts in the address-
ing beam positions can lead to an imbalance in the local
energy shifts and thereby in the populations of the two
GHZ components, limiting the maximum possible coher-
ence. This analysis highlights the utility of GHZ states
for uncovering sources of errors. We emphasize that all
of these known error sources can be mitigated through
technical improvements [27].

Our experiments demonstrate a new promising ap-
proach for the deterministic creation and manipulation
of large-scale entangled states, enabling the realization
of GHZ-type entanglement in system sizes of up to
N = 20 atoms. These results show the utility of this
approach for benchmarking quantum hardware, demon-
strating that Rydberg atom arrays constitute a competi-
tive platform for quantum information science and engi-
neering. Specifically, the entanglement generation and
distribution could potentially be used for applications
that range from quantum metrology and quantum net-
working to quantum error correction and quantum com-
putation. Our method can be extended by mapping the
Rydberg qubit states used here to ground-state hyper-
fine sublevels, so that the entangled atoms can remain
trapped and maintain their quantum coherence over very
long times [22, 23, 27, 33]. This could enable the sophis-
ticated manipulation of entanglement and realization of
deep quantum circuits for applications such as quantum
optimization [30, 31].

During the completion of this work, we became aware
of related results demonstrating large GHZ state prepa-
ration using superconducting quantum circuits [34, 35].

ACKNOWLEDGMENTS

We thank Dries Sels and Christian Reimer for helpful
discussions. The authors acknowledge financial support
from the Center for Ultracold Atoms, the National Sci-
ence Foundation, Vannevar Bush Faculty Fellowship, the
US Department of Energy and the Office of Naval Re-
search. H.L. acknowledges support from the National
Defense Science and Engineering Graduate (NDSEG)
fellowship. G.S. acknowledges support from a fellow-
ship from the Max Planck/Harvard Research Center for
Quantum Optics. J.C., S.M., and T.C. acknowledge
funding from the EC H2020 grants 765267 (QuSCo),
817482 (PASQuANS), and QuantERA QTFLAG; the
DFG SPP 1929 (GiRyd) and TWITTER; the IQST Al-
liance; and the Italian PRIN 2017.

∗ These authors contributed equally to this work
† To whom correspondence should be addressed; E-mail:

lukin@physics.harvard.edu
[1] D. M. Greenberger, M. A. Horne, A. Zeilinger, Bell’s

Theorem, Quantum Theory and Conceptions of the Uni-
verse, M. Kafatos, ed., Fundamental Theories of Physics
(Springer Netherlands, Dordrecht, 1989), pp. 69–72.
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SUPPLEMENTARY MATERIALS

Experimental setup

The Rydberg excitations are enabled by a two-color
laser system at 420 nm and 1013 nm wavelength. The
420 nm light is derived from a frequency-doubled tita-
nium sapphire laser (M Squared SolsTiS 4000 PSX F)
locked to an ultrastable reference cavity (by Stable Laser
Systems). The 1013 nm light is obtained from a high-
power fiber amplifier (ALS-IR-1015-10-A-SP by Azur
Light Systems). The seed light is derived from a Fabry-
Pérot laser diode injection locked to an external cav-
ity diode laser (CEL002 by MOGLabs) stabilized to the
same reference cavity and filtered by the cavity trans-
mission [36]. The detuning of both Rydberg lasers to the
intermediate state

∣∣6P3/2, F = 3,mF = −3
〉

is approxi-
mately 2π × 2 GHz. The individual Rabi frequencies of
the two Rydberg lasers are Ω420/(2π) ≈ 174 MHz and
Ω1013/(2π) ≈ 115 MHz. This gives a two-photon Rabi
frequency of Ω = Ω420Ω1013/(2∆) ≈ 2π × 5 MHz. We
define the local phases of each atom’s states |0〉 and |1〉
in the reference frame associated with the local phases of
Rydberg excitation lasers, such that the two GHZ compo-
nents have a relative phase φ = 0 after state preparation.

To drive the optimal control pulses, we modulate the
420 nm Rydberg laser with an acousto-optic modula-
tor (AOM) driven by an arbitrary waveform generator
(AWG, M4i.6631-x8 by Spectrum). We correct the non-
linear response of the AOM to the drive amplitude by a
feed-forward approach to obtain the target output inten-
sity pattern. Furthermore, the AOM efficiency changes
with changing frequency, which we compensate by feed-
ing forward onto the waveform amplitude to suppress the
intensity variations with frequency. In addition, the light
shift on the Rydberg transition from the 420 nm laser
can be as large as 2π× 4 MHz. While the pulse intensity
changes, this light shift changes, modifying the detuning
profile. We therefore correct the frequency profile as a
function of the pulse intensity to compensate this shift.
These steps ensure that the experimentally applied pulse
is a faithful representation of the desired profile.

The local addressing beam patterns are generated by
two AODs (DTSX400-800 by AA Opto-electronic), each
driven by multiple frequencies obtained from an arbitrary
waveform generator (M4i.6631-x8 by Spectrum).

Optimal control

Optimal control was originally developed as a tool to
harness chemical reactions to obtain the largest amount
of desired products with given resources, and then intro-
duced in quantum information processing as a standard
way of designing quantum protocols and quantum de-
vices [37–40] as well as in manipulating quantum many-

FIG. S1. RedCRAB optimization loop. The remote dCRAB
server generates and transmits a trial set of controls to the
user, who evaluates the corresponding performance in terms
of a FoM and sends the feedback information to the server,
concluding one iteration loop. In the next loop, the server
tends to generate an improved set of controls based on previ-
ous feedback information. The optimization continues until it
converges. The FoM evaluation can be achieved either by nu-
merical calculation (open-loop optimization) or experimental
measurement (closed-loop optimization).

body systems to exploit complex phenomena [26, 41–49].
Quantum optimal control theory identifies the optimal
shape of a time-dependent control pulse to drive a quan-
tum many-body system to accomplish given task, e.g.
state preparation or quantum gate implementation. The
quality of the transformation is certified by a Figure of
Merit (FoM) that can be calculated or measured, e.g. the
fidelity of the final state with respect to the target one,
the final occupation, or the energy.

In this work, the optimization is achieved through
RedCRAB, the remote version of the dressed Chopped
RAndom Basis (dCRAB) optimal control via a cloud
server [26, 41, 48]. Within the optimization, control
fields such as the Rabi coupling Ω(t) are adjusted as
Ω(t) = Ω0(t) + f(t), where Ω0(t) is an initial guess func-
tion obtained from physical intuition or existing sub-
optimal solutions. The correcting function f(t) is ex-
panded by randomized basis functions. In this work,
we chose a truncated Fourier basis. Thus, f(t) =
Γ(t)

∑nc

k=1[Ak sin(ωkt)+Bk cos(ωkt)], where ωk = 2π(k+
rk)/τ are randomized Fourier frequencies with rk ∈
[−0.5, 0.5], τ is the final time, and Γ(t) is a fixed scal-
ing function to keep the values at initial and final times
unchanged, i.e., Γ(0) = Γ(τ) = 0. The optimization task
is then translated into a search for the optimal combina-
tion of {Ak, Bk} with a given rk to maximize the fidelity
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FIG. S2. Optimal control pulse diagrams. Shown are the Rabi frequency (top) and detuning profiles (bottom) for the different
system sizes investigated here.

between the target state and the time evolved state at
τ . It can be solved by iteratively updating {Ak, Bk} us-
ing a standard Nelder-Mead algorithm [50]. In the basic
version of the CRAB algorithm, all rk are fixed and the
local control landscape is explored for all nc frequencies
simultaneously. This leads to a restriction in the number
of frequencies that can be efficiently optimised. Using the
dressed CRAB (dCRAB) algorithm, only one Fourier fre-
quency ωk is optimised at a time. We then move on to
ωk+1 after a certain number of iterations of the CRAB
routine. This enables the method to include an arbitrar-
ily large number of Fourier components and deriving the
solutions without – whenever no other constraints are
present – being trapped by local optima [25].

In the RedCRAB optimization, the server generates
and transmits a trial set of controls to the client user, who
will then evaluate the corresponding FoM and communi-
cates the feedback information to the server finishing one
iteration loop (Fig. S1). The optimization continues it-
eratively and the optimal set of controls, as well as the
corresponding FoM are derived. In the RedCRAB opti-
mization, the user can either evaluate the FoM by numer-
ical calculation, namely open-loop optimization, or by
experimental measurement, which is called closed-loop
optimization. In this work, open-loop optimization was
carried out only. The resulting controls could later serve
as the initial guess for a future closed-loop optimization.
This last step would ensure that the resulting controls are
robust, since all unknown or not modelled experimental
defects and perturbations would automatically be cor-
rected for.

For the open-loop optimization of the pulse, we con-
strained the preparation time to 1.1µs and allowed the
detuning ∆/(2π) to vary between −20 MHz and 20 MHz,
while Ω/(2π) could vary between 0− 5 MHz. The result-
ing pulses are shown in Fig. S2. While shorter pulses
can work sufficiently well for smaller system sizes, we
use an equal pulse duration for all N for better com-
parability. We find that the optimized pulses for larger
systems appear smoother than for smaller system sizes,
where the pulses bear less resemblance to an adiabatic

protocol. However, the adiabaticity does not improve for
larger system sizes, owing to the shrinking energy gaps.

Optimal control dynamics

To gain insight into the timescales required to prepare
a GHZ state in our setup, we can compare our optimal
control protocol with a minimal quantum circuit consist-
ing of a series of two-qubit gates that would achieve the
same task. In this circuit, a Bell pair is created in the
first layer p = 1 in the middle of the array using the Ryd-
berg blockade, which for our maximal coupling strength
of Ω/(2π) = 5 MHz takes 100 ns/

√
2. The entanglement

can be spread to the two atoms adjacent to this Bell pair
by simultaneously applying a pair of local π pulses of
100 ns to those sites, corresponding to controlled rota-
tions. A sequence of such gate layers p = 2, ..., 10, in-
cluding operations on qubit pairs and the free evolution
of other qubits, leads to the same GHZ state we prepare.
This gate sequence requires approximately 1 µs, which is
within 10% of the total evolution time required in our
optimal control sequence, which builds up the entangle-
ment in parallel. Furthermore, the fidelity of each layer
of such a circuit effectively acting on all N = 20 qubits
needs to be higher than 0.94 to achieve the 20-qubit GHZ
fidelity demonstrated in this work.

It is interesting to compare this required evolution
time with a parameter ramp that tries to adiabatically
connect the initial state to the GHZ state. To this
end, we parametrize the detuning and Rabi frequency as
∆(s) = (1− s)∆0 + s∆1 and Ω(s) = Ωmax[1− cos12(πs)]
respectively. A näıve (unoptimized) linear ramp of the
detuning corresponds to choosing s = t/T . Alternatively,
one can adjust the local ramp speed to minimize diabatic
transitions, for example by choosing s(t) minimizing

D =

(
ds

dt

)2∑
n>0

|〈En(s)|∂sH(s)|E0(s)〉|2

(En(s)− E0(s))2

during a ramp of duration T . Here |En(s)〉 are the instan-



9

0.1 10.2 0.5 2
Total time T (¹s)

10-3

10-2

10-1

100

1 
- 
F

Linear
Optimized adiabatic
Optimal control

FIG. S3. Comparison of ramping profile fidelities. Compari-
son of linear ramps (blue) to optimized adiabatic ramps (or-
ange) for N = 12 as a function of the total ramp time T . The
optimal control pulse used in the experiment takes T = 1.1 µs
and achieves a higher fidelity than either the linear ramp or
the optimized adiabatic ramp.

taneous eigenstates of the Hamiltonian H(s) specified by
the parameters Ω(s) and ∆(s), with |E0(s)〉 denoting the
instantaneous ground state. In Fig. S3, we show the re-
sults of numerical simulations using both the linear sweep
and a sweep that minimizes the strength of diabatic pro-
cesses quantified by D. Both sweep profiles require larger
total evolution time T than the optimal control pulse to
reach similar fidelities.

To understand the origin of the speedup through op-
timal control, we numerically simulate the correspond-
ing evolution and analyze the population of the instanta-
neous energy eigenstates (Fig. S4). The optimal control
dynamics can be divided into three different regions: (I)
A fast initial quench, (II) a slow quench, and (III) a fast
final quench. Even though the change in the Hamilto-
nian parameters in region (I) is rather rapid, the system
remains mostly in the instantaneous ground state, with
negligible populations of the exited states, since the en-
ergy gap is large. In contrast, in region (II) the parame-
ters change slows down, reflecting the fact that the energy
gap becomes minimal. Unlike the adiabatic case however,
one can observe nontrivial population dynamics, with a
temporary population of excited states. Importantly, the
optimal control finds a path in the parameter space such
that the population is mostly recaptured in the ground
state at the end of region (II). Finally, in region (III) the
gap is large again and the system parameters are quickly
changed to correct also for higher order contributions.
This suggests that it actively uses diabatic transitions
that go beyond the adiabatic principle. This mechanism
is related to the recently discussed speedup in the con-
text of the quantum approximate optimization algorithm
(QAOA) [30, 31].

QUANTIFYING DETECTION

The many-body dynamics involving coherent excita-
tion to Rydberg states occurs during a few-microsecond
time window in which the optical tweezers are turned
off. After the coherent dynamics, the tweezers are turned
back on, and atoms in the ground state |0〉 are recap-
tured. However, there is a small but finite chance of los-
ing these atoms. To quantify this error, we perform the
GHZ state preparation experiment while disabling the
420 nm Rydberg pulse. This keeps all atoms in state |0〉,
and we measure the loss probability to find a 0.9937(1)
detection fidelity.

Atoms in state |1〉 on the other hand have a small
chance of being misidentified as being in state |0〉, as
these atoms can decay prematurely from the Rydberg
state to the ground state and get recaptured by the tweez-
ers. This error probability can be measured by prepar-
ing atoms at sufficiently large distances as to be non-
interacting and applying a calibrated π pulse to transfer
all atoms to |1〉 and measure the probability of recaptur-
ing them. However, part of this signal is given by the π
pulse infidelity, i.e. a small fraction of atoms which did
not get excited to |1〉 in the first place.

To quantify the π pulse fidelity, we note that a Ryd-
berg atom that decays and is recaptured can decay either
into the F = 2 or F = 1 ground states with branching
ratios α and β, respectively (α + β = 1). Our initial op-
tical pumping of atoms into |0〉 has high fidelity > 0.998,
measured using microwave spectroscopy on different sub-
levels of the F = 2 manifold. Thus, the final population
of F = 1 atoms should be given only by Rydberg atom
decay/recapture events. Following a π pulse to excite all
atoms to the Rydberg state, the final measured popula-
tion in F = 1 is p1 = p×β, where p is the total decay and
recapture probability of a Rydberg atom. Meanwhile, the
final measured population in F = 2 is p2 = p × α + ε,
which includes both decay events from Rydberg atoms
as well as residual population ε left from an imperfect π
pulse. Experimentally, we separately measure the total
recaptured ground state population (p1 + p2), as well as
the F = 1 population p1 only (by a resonant push-out
of F = 2 atoms). We additionally can vary the over-
all recapture probability p by changing the depth of the
tweezers that we recapture atoms in, which changes the
repulsive force exerted by the optical tweezers on Ryd-
berg atoms [28]. We measure p1 and (p1 + p2) at four
different total recapture probabilities to extract the π
pulse infidelity as ε = 0.006(3) (Fig. S5). From these
measurements, we conclude a Rydberg detection fidelity
of 0.9773(42).

Detection errors of |0〉 can be mitigated by implement-
ing ground-state cooling in the tweezers [51, 52], which
reduces the probability of loss after releasing the atoms.
The detection fidelity of |1〉 can be improved by using
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FIG. S4. Dynamics of an optimized 20-atom GHZ state
preparation. A, Optimized control parameters Ω(t) and ∆(t)
for N = 20 atoms. B, Energy eigenvalues of instantaneous
eigenstates of the Hamiltonian relative to the ground state
energy. The population in each energy eigenstate is color
coded on a logarithmic scale. Light gray points correspond to
populations smaller than 0.01. C, Probability in each instan-
taneous eigenstate as the initial state evolves under the time-
dependent Hamiltonian. The probability is dominated by the
ground state and a few excited states. The time evolution
is computed by exact numerical integration of Schrödinger’s
equation, and 100 lowest energy eigenstates are obtained by
using Krylov subspace method algorithms. For computa-
tional efficiency, we only consider the even parity sector of
the Hamiltonian with no more than three nearest neighbor-
ing Rydberg excitations owing to the Rydberg blockade.

Rydberg states with a longer radiative lifetime, actively
ionizing the Rydberg atoms by electric or optical fields,
or by pulling them away from the trapping region with
electric field gradients.

ACCOUNTING FOR DETECTION
IMPERFECTIONS

The small imperfections in state detection of single
qubits leads to a prominent effect on the analysis of large
systems. The probability for a single detection error is
sufficiently low that multiple errors per chain are very
unlikely, and we observe that the reduction in probabil-
ity of observing the correct GHZ pattern is dominated
by these errors, as opposed to excitations of the system
(Fig. S6A). This conclusion is further confirmed by not-
ing that near-ideal correlations extend across the entire
system (Fig. S7).
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FIG. S5. Quantifying detection errors. A, Measurement
of the recaptured Rydberg atoms in the ground state (blue
points) and in the F = 1 ground-state manifold (orange
points) as a function of the tweezer depth upon recapture.
B, Recaptured populations in all ground state levels. The
intersection with the horizontal axis gives an estimate of the
atoms that were not excited to the Rydberg state, bounding
the π pulse fidelity.

To properly infer the obtained fidelities, we account for
these imperfections using the following procedure:

Coherences: The coherences are extracted from the
amplitude of parity oscillations. Each point in the par-
ity oscillation is analyzed from the measured distribution
of the number of excitations in the system. We encode
this measured probability distribution in the vector W,
where Wn is the probability to observe exactly n excita-
tions in the system (0 ≤ n ≤ N). The true probability
distribution of excitation numbers, prior to the effect of
detection errors, is denoted V. Detection errors trans-
form this distribution according to a matrix M , where
Mmn encodes the probability that a state with n excita-
tions will be detected as having m excitations. Each ma-
trix element is calculated using combinatoric arguments
from the measured detection fidelities. We determine the
true distribution V as the one that minimizes the cost
function |MV−W|2. (Fig. S6B). This procedure is sim-
ilar to applying the inverse matrix M−1 to the measured
distribution W, but is more robust in the presence of sta-
tistical noise on the measured distribution. Error bars on
the inferred values are evaluated by random sampling of
detection fidelities, given our measured values and uncer-
tainties.

Populations: We carry out a similar procedure for
the population data; however, we are interested in as-
sessing the probability of two particular target states,
which are defined not only by their number of excita-
tions but also by their staggered magnetizations Mn =∑N
i=1(−1)i〈σ(i)

z 〉. Our procedure therefore operates by
grouping all possible microstates according to their com-
mon staggered magnetization and number of excita-
tions (Fig. S6C). For N particles, there are in general
(N/2 + 1)2 such groups. As before, we denote the raw
measured distribution with respect to these groups as
W. We construct a detection error matrix M that re-
distributes populations between groups according to the
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FIG. S6. Inference of parity and populations. A, Histogram of observed patterns after preparing a 20-atom GHZ state. Open
circles denote atoms in |0〉 and filled circles denote atoms in state |1〉. Blue domains mark regions where a single detection error
has likely occurred, since such patterns are energetically costly at large positive detuning of the Rydberg laser. Red domains
mark true domain walls, where the antiferromagnetic order is broken. Following the correct GHZ patterns, the 14 most observed
patterns are consistent with a single detection error. B, Distribution of number of excitations measured for two different times
of the parity oscillation for a 20-atom array, with the upper (lower) plot at φ = 0 (φ = π/20) of phase accumulation per atom,
showing a net positive (negative) parity. Blue bars show directly measured values, orange bars show the statistically inferred
parent distribution, and red bars denote the parent distribution after adding simulated errors to compare to the raw data. C,
Staggered magnetization Mn extracted from the measurement of GHZ populations for 20 atoms. The vertically split bars with
different shading denote different occurrences of number of excitations.

measured detection error rates. We optimize over all pos-
sible true distributions to find the inferred distribution
V that minimizes the cost function |MV−W|2. Follow-
ing this procedure, we sum the populations in the two
groups that uniquely define the two target GHZ compo-
nents with a staggered magnetization of ±N , and N/2
excitations.

Bounding the GHZ state coherence

We expand an experimental GHZ-like density matrix
in the following form

ρ =α1 |AN 〉〈AN |+ α2

∣∣AN〉〈AN ∣∣
+
(
β |AN 〉

〈
AN
∣∣+ β∗

∣∣AN〉〈AN |)+ ρ′
(1)

where |AN 〉 = |0101 · · · 〉 and
∣∣AN〉 = |1010 · · · 〉 are the

target GHZ components, αi characterizes the diagonal
populations in these states (0 ≤ αi ≤ 1), β charac-
terizes the off-diagonal coherence between these states
(0 ≤ |β| ≤ 1/2), and ρ′ contains all other parts of the
density matrix. The GHZ fidelity of state ρ is given by:

F = 〈GHZN | ρ |GHZN 〉 =
α1 + α2

2
+ Re(β) (2)

To measure the coherence |β|, we implement a stag-
gered magnetic field to which the target GHZ state is
maximally sensitive:

Hst =
~δ
2

N∑
i=1

(−1)iσ(i)
z (3)

Applying Hst to the system for time T results in uni-
tary phase accumulation U(T ) = exp (−iHstT/~). We
then apply a unitary U to the system and measure in the
computational basis. From repeated measurements, we
calculate the expectation value of the global parity oper-

ator P =
∏
i σ

(i)
z as a function of the phase accumulation

time T . Denote the time-dependent expectation value
E(T ), where −1 ≤ E(T ) ≤ 1.

We show that if E(T ) has a frequency component that
oscillates at a frequency of Nδ, then the amplitude of
this frequency component sets a lower bound for |β|. Im-
portantly, this holds for any unitary U used to detect the
phase accumulation.

Proof: The expectation value E(T ) can be written
explicitly as the expectation value of the time-evolved
observable P → U †(T )U†PUU(T ). In particular,

E(T ) = Tr[ρU †(T )U†PUU(T )]

=
∑
n

〈n| ρU†(T )U†PUU(T ) |n〉 (4)

where |n〉 labels all computational basis states. Since the
phase accumulation Hamiltonian Hst is diagonal in the
computational basis, the basis states |n〉 are eigenvectors
of U(T ) with eigenvalues denoting the phase accumula-
tion. Specifically,

Hst |n〉 =
~δ
2
Mn |n〉 ⇒ U(T ) |n〉 = e−iδTMn/2 |n〉 (5)

where Mn is the staggered magnetization of state |n〉 de-
fined earlier. The staggered magnetization of the state
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|AN 〉 is maximal: MAN
= N , and the staggered mag-

netization of
∣∣AN〉 is minimal: MAN

= −N . Note that
all other computational basis states have strictly smaller
staggered magnetizations. Inserting an identity operator
in Eq. (4):

E(T ) =
∑
n,m

〈n| ρ |m〉〈m|U(T )†U†PUU(T ) |n〉

=
∑
n,m

e−iδT (Mn−Mm)/2 〈n| ρ |m〉〈m| U†PU |n〉
(6)

The highest frequency component comes from the
states with maximally separated staggered magnetiza-
tion, |n〉 = |An〉 and |m〉 =

∣∣An〉. Separating out this
frequency component as F (T ), we obtain:

F (T ) =2Re
[
e−iNδT 〈AN | ρ

∣∣AN〉〈AN ∣∣U†PU |AN 〉]
=2Re

[
βe−iNδT

〈
AN
∣∣U†PU |AN 〉] (7)

We note that the parity matrix element is bounded
as 0 ≤

∣∣〈AN |U†PU|AN 〉∣∣ ≤ 1. Furthermore, the ma-
trix element is real-valued and positive for the unitary U
considered in the experiment. Fitting F (T ) to an oscil-
lation with amplitude C ≥ 0 and phase φ according to
F (T ) = C cos(NδT −φ), we produce our lower bound for
the off-diagonal coherence β:

|β| ≥ C/2; arg(β) = φ (8)

Parity detection

The ideal observable to measure GHZ phase is the par-

ity Px =
∏
i σ

(i)
x . However, the presence of Rydberg in-

teractions and the Rydberg blockade prevents us from
rotating all qubits such that we can measure in this ba-
sis. Instead, in this work we generate a unitary Ux =

exp
(
−iΩt/2

∑
i σ

(i)
x − iHintt/~

)
by resonantly driving

all atoms in the presence of these interactions given by
Hint for a fixed, optimized time (Fig. S8), and subse-

quently measure the parity P =
∏
i σ

(i)
z in the computa-

tional basis. The finite duration of the unitary Ux incurs
a small amount of additional infidelity, owing both to de-
phasing and an additional laser scattering. However, we
estimate that this effect should only lead to small losses
in fidelity on the percent level.

While it is not obvious that the parity observable used
here is suitable, we can understand the parity oscillations
in the picture of weakly interacting spin-1 particles de-
fined on dimers of neighboring pairs of sites. For two
adjacent sites, we can define eigenstates of a spin-1 Sz
operator as |◦•〉 = |−〉, |◦◦〉 = |0〉, and |•◦〉 = |+〉. In
this notation, the antiferromagnetic GHZ state we pre-
pare is given by a ferromagnetic GHZ state in the spin-1
basis:

|GHZN 〉 =
1√
2

(|+ + + · · · 〉+ |− − − · · · 〉) (9)
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FIG. S7. Density-density correlations for a 20-atom GHZ
state. A, We evaluate the correlation function g(2)(i, j) =
〈ninj〉− 〈ni〉 〈nj〉 and observe strong correlations of Rydberg
excitations across the entire system. B, The density-density
correlations over distance, given by g(2)(d) ∝

∑
i g

(2)(i, i+ d)
decay only very slowly throughout the array.

We must express all operations on the GHZ state in this
new notation. In particular, the transverse field of the

form ~Ω/2
∑
i σ

(i)
x applied to individual atoms gets trans-

formed to an operation ~Ω/
√

2
∑
j S

(j)
x on all dimers.

Furthermore, the staggered field ~δ/2
∑
i(−1)iσ

(i)
z we ap-

ply to individual atoms to rotate the GHZ phase is equiv-

alent to an operation of the form ~δ
∑
j S

(j)
z acting on

individual dimers.
The parity operator in the single-qubit basis P =∏
i σ

(i)
z can be transformed into the dimer basis as

P =
∏
j

(
− |+〉〈+|j − |−〉〈−|j + |0〉〈0|j

)
(10)

by noting that the three dimer states are eigenstates of
P, i.e. P |±〉 = − |±〉 and P |0〉 = |0〉.

Assuming we begin from a GHZ state, applying a rota-
tion on all dimers for a duration given by Ωt = π/

√
2 sat-

urates the difference in P between GHZ states of opposite
phase. This shows that such a protocol would be optimal
if the dimer approximation were exact. However, interac-
tions between dimers cannot be neglected. In particular,
the Rydberg blockade suppresses configurations of the
form |· · · −+ · · · 〉 owing to the strong nearest-neighbor
interaction V , and neighboring dimers of the same type
such as |· · · ± ± · · · 〉 have a weak interaction given by the
next-to-nearest neighbor interaction strength V2 = V/26.
We can thus express the interactions in the system as

Hint

~
=

N/2−1∑
j=1

V2 |+〉〈+|j |+〉〈+|j+1 + V2 |−〉〈−|j |−〉〈−|j+1

+ V |−〉〈−|j |+〉〈+|j+1

(11)
An exact simulation of the dimer rotation under the in-
teraction Hamiltonian (11) shows that both these interac-
tion effects reduce the parity contrast by a small amount.
In the recently discussed context of quantum many-body
scars [20, 32, 53, 54], these effects of residual interactions
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FIG. S8. Parity signal measured as a function of the time the
operation Ux is applied. The total time includes delays in the
AOM response and the finite laser pulse rise time.

lead of small deviations from a stable periodic trajectory
through phase space.

Staggered field calibration

To apply the staggered field (3), we address each of the
even sites in the array with a focused off-resonant laser
beam at 420 nm. However, the unitary in question re-
quires a staggered field with opposite sign on every site.
We compensate for the missing acquired phase on the
sites in between the addressed ones by shifting the phase
of the Rydberg laser, through a change in phase of the
radio-frequency drive of the AOM. The intensity of each
addressing beam is measured by applying a spin-echo se-
quence with an addressing pulse of variable duration to
determine the light shift on the Rydberg transition. We
correct for inhomogeneous intensities so that all atoms
are subject to the same light shift.

We measure and calibrate the staggered field by mea-
suring the effect of the field on each atom individually.
To do so, we alternately rearrange the atoms to form dif-
ferent subsets of the 20-atom system that are sufficiently
far apart to avoid interactions between them. In this con-
figuration, every atom is then subject to a π/2 rotation
about the x-axis, followed by the staggered field for vari-
able duration, then a π/2 rotation about the y-axis, to
distinguish positive from negative phase evolution. With
an additional π rotation about the y-axis, we perform a
spin echo to mitigate effects of dephasing. The outcome
of this protocol is shown in Fig. S9 and demonstrates
the implementation of the staggered magnetic field. By
switching the local addressing beams to the opposite set
of alternating sites, we switch the sign of the staggered
field, enabling the measurement of both positive and neg-
ative phase accumulation.
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FIG. S9. Phase accumulation measured on an array of 20
sites. The left panel demonstrates application of a negative
staggered field by applying local addressing beams on the odd
sites in the array. The right panel shows a positive staggered
field by instead applying local addressing beams on the even
sites in the array. Phase is accumulated on each site at a rate
of 2π × 3.8 MHz.

Measured GHZ fidelities

For each system size N , we measure the GHZ pop-
ulations and the GHZ coherence by parity oscilla-
tions (Figs. 2, 3 of the main text). From the raw measure-
ments, we infer the true GHZ fidelity using the maximum
likelihood procedure discussed in Section “Accounting for
detection imperfections”. All measured values are shown
in table S1. Error bars on raw populations represent a
68% confidence interval for the measured value. Error
bars on the raw coherences are fit uncertainties from the
parity oscillations. Error bars on the inferred values in-
clude propagation of the uncertainty in the estimation of
the detection fidelities.

Experimental Imperfections

We identify a number of experimental imperfections
that to varying degrees can limit the coherent control of
our atomic system.

1. Atomic temperature: The atom temperature of
∼ 10µK leads to fluctuating Doppler shifts in the
addressing lasers of order ∼ 2π×43 kHz, as well as
fluctuations in atomic position that leads to varia-
tion in Rydberg interactions strengths. These fluc-
tuations are included in the simulations shown in
the main text Fig. 3. These effects can be dramati-
cally reduced by improved atomic cooling, most no-
tably by sideband cooling within the optical tweez-
ers to the motional ground state [51, 52].
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System size N 4 8 12 16 20

Raw populations 0.893(6) 0.797(8) 0.695(9) 0.629(12) 0.585(14)

Inferred 0.946(10) 0.892(17) 0.824(21) 0.791(29) 0.782(32)

Raw coherence 0.710(12) 0.516(11) 0.371(10) 0.282(11) 0.211(11)

Inferred 0.759(11) 0.598(16) 0.462(19) 0.373(19) 0.301(18)

Raw fidelity 0.801(7) 0.657(7) 0.533(7) 0.455(8) 0.398(9)

Inferred 0.852(7) 0.745(12) 0.643(14) 0.582(17) 0.542(18)

TABLE S1. Measured GHZ data for all system sizes. Errors denote 68% confidence intervals.

2. Laser scattering: The two-photon excitation
scheme to our chosen Rydberg state leads to off-
resonant scattering from the intermediate state,
6P3/2. This scattering rate has a timescale of
50 − 100µs for the two laser fields, and can be re-
duced by higher laser powers and further detuning
from the intermediate state.

3. Rydberg state lifetime: The 70S Rydberg state
has an estimated lifetime of 150 µs [55], limited
both by radiative decay and blackbody-stimulated
transitions. This effect could be mitigated by se-
lecting a higher Rydberg state with a longer life-
time or by cryogenic cooling of the blackbody en-
vironment.

Additional error sources that may limit our coherence
properties include laser phase noise, which can be miti-
gated by better laser sources and stabilization schemes,
and fluctuations in local addressing beam intensities and
positions, which can be addressed by active feedback on
the beam positions and improved thermal and mechan-
ical stability of the setup. Simulations predict that we
could go beyond the system sizes studied here. While
GHZ states of N = 24 could be within reach with cur-
rent parameters, generation of even larger GHZ states
should be feasible with the additional technical improve-
ments discussed above.

GROUND-STATE QUBIT ENCODING

The GHZ state parity could be more easily de-
tected and manipulated if the qubits were encoded in
a basis of hyperfine sublevels of the electronic ground
state. In particular, one can consider two alterna-
tive qubit states |0̃〉 =

∣∣5S1/2, F = 1,mF = −1
〉

and

|1̃〉 =
∣∣5S1/2, F = 2,mF = −2

〉
. Rotations between these

states are possible through stimulated Raman transitions
or microwave driving, and the interactions are introduced
by coupling |1̃〉 to a Rydberg level |r〉. This type of hyper-
fine encoding has been employed in multiple experiments
with cold Rydberg atoms [22, 23, 33]. To prepare GHZ
states in this basis, all atoms can be initialized in |1̃〉 and
the system transferred to the state |1̃r1̃r · · · 〉+ |r1̃r1̃ · · · 〉

using the method described in this work. A ground-state
qubit π pulse followed by a π pulse on the Rydberg tran-
sition transforms the state into |0̃1̃0̃1̃ · · · 〉 + |1̃0̃1̃0̃ · · · 〉,
enabling the long-lived storage of entanglement. Addi-
tionally, local qubit rotations can flip the state of every
other site to prepare the canonical form of the GHZ state,
|0̃0̃0̃ · · · 〉 + |1̃1̃1̃ · · · 〉, which can achieve entanglement-
enhanced metrological sensitivity to homogeneous exter-
nal fields [2]. Incorporating this type of hyperfine qubit
encoding with Rydberg qubit control will be important
for realizing quantum gates and deeper quantum circuits
in future experiments.
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