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Abstract— We study the problem of observation selection in

a resource-constrained networked sensing system, where the

objective is to select a small subset of observations from a large

network to perform a state estimation task. When the measure-

ments are gathered using nonlinear systems, majority of prior

work resort to approximation techniques such as linearization

of the measurement model to utilize the methods developed for

linear models, e.g., (weak) submodular objectives and greedy

selection schemes. In contrast, when the measurement model is

quadratic, e.g., the range measurements in a radar system, by

exploiting a connection to the classical Van Trees’ inequality, we

derive new optimality criteria without distorting the relational

structure of the measurement model. We further show that

under certain conditions these optimality criteria are monotone

and (weak) submodular set functions. These results enable us

to develop an efficient greedy observation selection algorithm

uniquely tailored for constrained networked sensing systems

following quadratic models and provide theoretical bounds on

its achievable utility. Extensive numerical experiments demon-

strate efficacy of the proposed framework.

I. INTRODUCTION

The problem of state estimation in a network of sensing
units that are capable of exchanging information arises in a
variety of settings. An example is the task of multi-target
tracking via a swarm of unmanned aerial vehicles (UAVs)
where the UAVs sense a collection of objects with unknown
locations through a nonlinear measurement model [1].

In addition to the challenge of nonlinearity, often due
to constraints on computation, power and communication
resources, instead of estimating the unknown states using
information collected by the entire network, the fusion center
(e.g., the control unit in the UAV example) typically queries
a relatively small subset of the available observations.

For a variety of performance criteria and measurement
models, finding an optimal subset of observations requires
solving a computationally challenging combinatorial opti-
mization problem, possibly using branch-and-bound search
[2]. By reducing it to the set cover problem, the task of
observation selection was in fact shown to be NP-hard [3].
Due to this hardness result, heuristic schemes that find a
sub-optimal subset of observations are sought after. It has
been shown that when the measurement model is linear,
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many of the performance criteria which are scalarizations
of the error covariance matrix (e.g., log det of its inverse or
its trace), possess a diminishing return property known as
submodularity or weak (a.k.a. approximate) submodularity.
For such objectives, a simple greedy approximation scheme
achieves near-optimal observation selection with provable
performance guarantee [4], [5]. Examples of such greedy ob-
servation selection schemes which are developed in various
problems in control systems, signal processing, and machine
learning include sensor selection for Kalman filtering [6],
[7], batch state estimation and stochastic process estimation
[8], [9], minimal actuator placement [10], subset selection
in machine learning [11], and sensor scheduling in wireless
sensor networks [6], [12]. None of these schemes however
consider the case of nonlinear measurement models as in
these scenarios the error covariance matrix is in general
unknown. Some important instances of nonlinearity are
quadratic measurement models and inverse problems that oc-
cur in many natural phenomena and real-world applications.
For instance, in object tracking and localization applications
in robotics and autonomous systems, the range measurements
gathered by the radar systems follow a quadratic relation
[13], [14].

To arrive at a (weak) submodular objective in settings
where the model is nonlinear, existing schemes resort to
approximation techniques, e.g., linearizing the model (the so-
called local optimality approach) prior to the actual observa-
tion selection step [15]–[22]. However, theoretical guarantees
for the performance of greedy algorithms hold only for the
linearized model, i.e., for the linear approximation of the
actual nonlinear model, and hence the selected subset of ob-
servations is not necessarily the most informative collection
of measurements.

To address these challenges, motivated by the multi-target
tracking problem via a network of sensing units equipped
with radar systems, we consider observation selection under
models where the relation between unknown states and mea-
surements (partially) follows a quadratic equation. By draw-
ing a connection between the classical Van Trees’ inequality
[23] and alphabetical optimality criteria [15], we devise new
objective functions that exploit the quadratic relation of the
observation model. We further prove that these functions
possess two appealing properties, namely, monotonicity and
(weak) submodularity under mild conditions on the statistics
of the problem and parameters of the model. These results
allow us to develop a simple greedy scheme for observation
selection with theoretical bounds on its achievable perfor-
mance without requiring any a priori approximation step. To
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demonstrate efficacy of the proposed framework, we consider
the task of multi-object tracking via swarm of UAVs and
empirically verify that the subsets selected by the proposed
greedy algorithm outperform approaches based on greedy
selection of observations that rely on a linearized model.
Notation. We briefly summarize the notation used in the
paper. Bold capital letters denote matrices while bold low-
ercase letters represent vectors. Sets are represented with
calligraphic letters. Hk(i, j) is the (i, j) entry of the time-
varying matrix Hk at time k, hk,j is the j

th row of Hk,
Hk,S is a submatrix of Hk that consists of the rows of Hk

indexed by the set S , and �max(Hk) and �min(Hk) are the
maximum and minimum eigenvalues of Hk, respectively. I
is the identity matrix and its dimension is determined from
the context. Moreover, let [n] := {1, 2, . . . , n}. Finally, 1d

and 0d denote all-one and all-zero vectors of dimension d.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a networked sensing system where there are
m sensing units in the network, sensing n objects with
unknown locations. Sensing units are equipped with GPS
and radar systems and can communicate with each other
over locally established communication channels. Because
of various practical restrictions such as power and commu-
nication constraints, only a subset of sensing units, known as
leaders, can communicate to a control unit that surveys the
environment via commanding the networked system. Each
sensing unit acquires range and angular measurements of
all the objects that are within the maximum radar detection
range and transmits those measurements to its nearest leader.

Let ui
k and s

j
k denote the location of ith unit and j

th object
at time k, respectively. Also, let sk = [s1k

>
, . . . , s

n
k
>]> 2

R3n denote the collection of unknown states evolving ac-
cording to the nonlinear state equation sk = g(sk�1) +wk,
where wk is the zero-mean white Gaussian process noise at
time k with covariance Qk.

If j
th object is within the range of i

th unit, the range and
angular measurements of the radar system at time k have the
following forms:

rij =
1

2
kui

k � s
j
kk

2
2 + ⌫ij , (1)

�ij = arcsin
u
i
k(3)� s

j
k(3)

kui
k � s

j
kk2

+ ⇣ij , (2)

↵ij = arctan
u
i
k(1)� s

j
k(1)

u
i
k(2)� s

j
k(2)

+ ⌘ij , (3)

where ⌫ij , ⇣ij and ⌘ij are zero-mean white Gaussian observa-
tion noises.1 We denote by Xr, X�, and X↵ the corresponding
subsets of all gathered range and angular measurements and
further we define X := Xr [ X� [ X↵. Note that depending
on the location of objects and units, 3n  |X |  3nm.

Due to limitations on the rate of communication between
the leaders and the control unit that mainly stems from
power limitation, and to reduce delays in tracking from

1We occasionally omit the time index for simplicity of the notation.

high computation, only a subset Sk ⇢ X of the gathered
measurements is communicated to the control unit such that
|Sk|  K. In order to track the locations of the objects, the
control unit employs extended Kalman filtering (EKF) using
the received measurements. Hence, the selected subset by
the unit leaders should be the one with lowest mean-square
error of the EKF estimates of the objects’ locations while
satisfying the communication constraint.

To identify the most informative subset satisfying the
communication constraint, existing locally optimal schemes
(e.g., [17], [19]) linearize the measurement model in (1) –
(3) around ŝk�1, the estimate of objects’ locations at time
k � 1, to obtain an approximate linearized measurement
model yk = Hksk+vk, where vk is the corresponding zero-
mean white Gaussian observation noise with the diagonal
covariance Rk = diag(�2

1 , . . . �
2
|X |). Then, if for any subset

of observations S ✓ X , we consider the filtered error
covariance of EKF,

Pk|k(S) =
⇣
P

�1
k|k�1 +H

>
k,SR

�1
k,SHk,S

⌘�1
, (4)

where Pk|k�1 is the predicted error covariance of EKF, ob-
servation selection is performed at each time k by optimizing
trace or log det of inverse of Pk|k. That is,

Sk = argmax
|S|K

Tr
�
Pk|k�1

�
� Tr

�
Pk|k(S)

�
(5)

or

Sk = argmax
|S|K

log det
⇣
P

�1
k|k(S)

⌘
� log det

⇣
P

�1
k|k�1

⌘
.

(6)
Both of the above optimization problems are NP-hard.

Hence, existing schemes rely on greedy heuristics or convex
relaxations to find a suboptimal subset Sg .

The major drawback of locally optimal approaches that
are based on the linearized model is that the lineariza-
tion step might distort the relational structure of the true
nonlinear model severely. Hence, the selected subset of
observations might not be the most informative collection of
measurements. Although, a remedy for general and complex
nonlinearities (such as angular measurements in (2) and
(3)) seems rather infeasible to find, in the next section we
develop a novel framework for quadratic models (such as
range measurement in (1)). Our proposed framework builds
upon the idea of optimizing alphabetical scalarizations of
the Van Trees’ bound [23] on the moment of a weakly
biased estimator. The Van Trees’ inequality is outlined in
the following theorem.

Theorem 1. Let ✓ be a collection of random unknown

parameters, and let yS = {yi}i2S denote the collection of

measurements indexed by the subset S . For any estimator

✓̂S that satisfies

Z +1

�1
r⇥

⇣
p✓(⇥)Ey;✓[✓̂S �⇥]

⌘
d⇥ = 0, (7)

it holds that

MS ⌫ EyS ,✓

⇥
(r⇥ log q✓(⇥))(r⇥ log q✓(⇥))>

⇤�1
, (8)
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where MS = E[(✓̂S�✓)(✓̂S�✓)>] is the so-called moment

matrix associated with ✓̂S , and q✓(⇥) = p✓;yS (⇥;y) is the

posterior distribution of ✓ given yS .

The condition stated in Theorem 1 essentially quantifies to
what extent the estimator is biased. Indeed, for an unbiased
estimator satisfying Ey;✓[✓̂S ] = ✓, this condition is met.

The lower bound in the Van Trees’ inequality which is
essentially a lower bound on the achievable mean square
error (MSE) cannot be computed in a closed-form for general
nonlinear models. Nonetheless, as we show in the next
section, the Van Trees’ bound has a closed-form expression
for the range measurements.

III. QUADRATIC OBSERVATION SELECTION

In this section, we devise a novel framework to select the
most informative range measurements in a multi-object track-
ing sensing network. Throughout this section, we assume
E[sjk] = ŝ

j
k�1 for all j 2 [n]. Admittedly, in the beginning

of tracking, this assumption might not necessarily hold. Yet,
as time passes the system generally improves the estimates
of targets locations.

By defining s̃
j
k := s

j
k � ŝ

j
k�1, aij := ŝ

j
k�1 � u

i
k, and

r̃ij := rij � 1
2kaijk

2
2, (1) can equivalently be written as

r̃ij =
1

2
ks̃jkk

2
2 + aij

>
s̃
j
k + ⌫ij . (9)

The term aij can be thought of as the features or the
design parameters. Let s̃k = [s̃1

>

k , . . . , s̃
n>

k ]> 2 R3n,
define zij := [0>

3(j�1),aij
>
,0

>
3(n�j)]

> and Xij :=

diag(0>
3(j�1),1

>
3 ,0

>
3(n�j)). Then, (9) can be written in terms

of the concatenated vector of all centralized unknowns s̃k

according to

r̃ij =
1

2
s̃
>
k Xij s̃k + zij

>
s̃k + ⌫ij . (10)

Our first theoretical result, stated in the following theorem,
demonstrates that for the quadratic model in (10) the Van
Trees’ bound has a closed-form expression.

Theorem 2. Let BS denote the lower bound in the Van Trees

inequality for the quadratic model (10). Then, for any subset

S ✓ Xr it holds that

BS =

0

@
X

ij2S

1

�
2
ij

�
XijPk|k�1X

>
ij + zijz

>
ij

�
+P

�1
k|k�1

1

A
�1

.

(11)

Proof. Let r denote the vector of all range measurements of
the form (10), and qs̃k(S̃) = prS ,s̃k(r; S̃) denote the posterior
distribution of s̃k given rS , and define

µS = vec({1
2
s̃
>
k Xij s̃k + z

>
ij s̃k}ij2S).

Then the Van Trees’ bound is found as

B
�1
S = ErS ,s̃k [(rS̃ log qs̃k(S̃))(rS̃ log qs̃k(S̃))

>]

= ErS ,s̃k [(rS̃ log prS ;s̃k(r; S̃)ps̃k(S̃))

(rS̃ log prS ;s̃k(r; S̃)ps̃k(S̃))
>]

= ErS ,s̃k [(rS̃ log prS ;s̃k(r; S̃))

(rS̃ log prS ;s̃k(r; S̃))
>] + Jx,

(12)

where

Jx = ErS ,s̃k

h
(rS̃ log ps̃k(S̃))(rS̃ log ps̃k(S̃))

>
i

is the prior Fisher information on s̃k. Since in EKF settings
ps̃k(S̃) = N (0,Pk|k�1), then Jx = P

�1
k|k�1. Note that the

conditional distribution prS ;s̃k(r; S̃) is the normal distribu-
tion N (µs̃k ,Rk,S). Therefore,

rS̃ log prS ;s̃k(r; S̃) = �(rS̃µS)R
�1
k,S(rS � µS), (13)

where [rS̃µS ]ij = Xij s̃k + zij . Using this result and
applying the law of total expectation we obtain

B
�1
S =

X

ij2S

1

�
2
ij

�
XijPk|k�1X

>
ij + zijz

>
ij

�
+P

�1
k|k�1. (14)

Inverting the last line that consists of an invertible positive
definite matrix establishes the stated result and completes the
proof. ⌅

Relying on the result of Theorem 2, we propose to use
the trace and log det of inverse of BS as the objective
functions in the observation selection task (effectively re-
placing Pk|k(S) with BS in (5) and (6)). That is, instead
of linearizing the range measurements we propose to select
the most informative range measurements according to one
of the following optimization problems:

Sk = argmax
|S|K

Tr
�
Pk|k�1

�
� Tr (BS) , (15)

Sk = argmax
|S|K

log det
�
B

�1
S

�
� log det

⇣
P

�1
k|k�1

⌘
, (16)

which are computationally challenging and NP-hard [3].
Theorem 2 opens a new avenue in the task of observation
selection for quadratic models which, as we see in our
simulation results, enables selection of observations leading
to lower estimation error (i.e., higher information) as com-
pared to the locally optimal approximation methods based on
linearization [17], [19]. We note that the Van Trees’ lower
bound is asymptotically tight, i.e., it is tight in the high
signal-to-noise ratio settings or in the case of sufficiently
large number of observations. Hence, we expect to select a
near-optimal subset by using the proposed selection criteria
in such settings. In the next section, we further demon-
strate monotonicity and weak submodularity of the proposed
optimality criteria which in turn enables us to devise a
novel greedy observation selection scheme with theoretical
performance guarantee.
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IV. A NEAR-OPTIMAL GREEDY APPROACH

In this section, we show that the proposed objective func-
tions are monotone and (weak) submodular, two important
concepts that we will later exploit to develop a novel greedy
observation selection scheme. These concepts along with
their properties are overviewed next.

A. Combinatorial optimization background

Definition 1. Set function f : 2X ! R is monotone non-

decreasing if f(S)  f(T ) for all S ✓ T ✓ X .

Definition 2. Set function f : 2X ! R is submodular if

f(S [ {j})� f(S) � f(T [ {j})� f(T ) (17)

for all subsets S ✓ T ⇢ X and j 2 X\T . The term fj(S) =
f(S [ {j})� f(S) is the marginal value of adding element

j to set S .

Definition 3. The multiplicative curvature of a monotone

non-decreasing function f is defined as

cf = max
(S,T ,i)2X̃

fi(T )/fi(S), (18)

where X̃ = {(S, T , i)|S ✓ T ⇢ X , i 2 X\T }.

The multiplicative curvature [24], [25] is a closely related
concept to submodularity and essentially quantifies how
close the set function is to being submodular. A set function
with bounded curvature is called weak submodular. It is
worth noting that a set function f(S) is submodular if and
only if its multiplicative curvature satisfies cf  1 [26]–[28].

A similar notion of weak submodularity is the additive
curvature defined below [24].

Definition 4. The additive curvature of a monotone non-

decreasing function f is defined as

✏f = max
(S,T ,i)2X̃

fi(T )� fi(S), (19)

where X̃ = {(S, T , i)|S ✓ T ⇢ X , i 2 X\T }.

Note that when f(S) is submodular, its additive curvature
satisfies ✏f  0. Multiplicative and additive curvatures are
closely related to submodularity ratio [26].

For the above additive and multiplicative curvatures, we
have the following proposition [4], [7], [24], [29], [30].

Proposition 1. Let cf and ✏f be the multiplicative and

additive curvatures of f(S), a monotone non-decreasing

function with f(;) = 0. Let S and T be any subsets such

that S ⇢ T ✓ X with |T \S| = r. Then, it holds that

f(T )� f(S)  1

r
(1 + (r � 1)cf )

X

j2T \S

fj(S), (20)

and

f(T )� f(S)  (r � 1)✏f +
X

j2T \S

fj(S). (21)

Algorithm 1 Greedy Observation Selection

1: Input: Utility function f(S), set of all observations X ,
number of selected observations K.

2: Output: Subset Sg ✓ X with |Sg| = K.
3: Initialize Sg = ;
4: for i = 0, . . . ,K � 1 do

5: js = argmaxj2X\Sgfj(Sg)
6: Sg  Sg [ {js}
7: end for

8: return Sg .

Given a monotone non-decreasing set function f : 2X !
R with f(;) = 0, we are interested in solving the combina-
torial problem

max
S✓X ,|S|K

f(S). (22)

It has been shown that finding an optimal solution to (22)
is generally NP-hard [3]. To this end, efficient heuristic
approaches that rely on a simple greedy search (see Algo-
rithm 1) are developed. If the set function f(S) is monotone,
Algorithm 1 has a guaranteed lower bound on its achievable
performance as stated in Proposition 2 [4], [7], [24], [29],
[30].

Proposition 2. Let cf and ✏f be the multiplicative and

additive curvatures of f(S), a monotone non-decreasing

function with f(;) = 0. Let Sg ✓ X with |Sg|  K

be the subset selected when maximizing f(S) subject to a

cardinality constraint via the greedy observation selection

scheme, and let S?
denote the optimal subset. Then

f(Sg) �
⇣
1� e

� 1
c

⌘
f(S?), (23)

where c = max{cf , 1} and

f(Sg) �
✓
1� 1

e

◆
(f(S?)� (k � 1)✏f ). (24)

The results of Propositions 1 and 2 imply that if the
objective function (22) is monotone and (weak) submodular,
the greedy selection scheme that in each iteration selects
an observation with the highest marginal value satisfies the
approximation bounds given in Proposition 2.

B. Greedy selection of range observations

In the following theorems, we consider trace and log det
scalarizations of the Van Trees’ bound BS defined in Theo-
rem 2 and show that they are monotonically non-decreasing
as well as either submodular, or weak submodular. These
results illustrate not only that the proposed objective func-
tions deal with the quadratic model of range measurements
without resorting to any approximations, but also that one can
use the greedy observation selection method of Algorithm 1
to find a near-optimal subset of observations with perfor-
mance guarantees established in Proposition 2. Proofs of the
subsequent results are established by employing tools from
linear algebra and matrix analysis such as Weyl’s inequality,
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Sylvester’s determinant identity, matrix inversion lemma, and
Courant–Fischer min-max theorem [31].

Theorem 3. Instate the notation and hypothesis of Theo-

rem 2. The D-optimality of the Van Trees’ bound, i.e.,

f
D(S) = log det

�
B

�1
S

�
� log det

⇣
P

�1
k|k�1

⌘
, (25)

is monotone and submodular.

Theorem 4. Instate the notation and hypothesis of Theo-

rem 2. The A-optimality of the Van Trees’ bound, i.e.,

f
A(S) = Tr

�
Pk|k�1

�
� Tr (BS) , (26)

is monotone and weak submodular and its additive and

multiplicative curvatures satisfy

cfA  max
ij2Xr

�max(B
�1
Xr

+B
�1
Xr

JijB
�1
Xr

)

�min(P
�1
k|k�1 +P

�1
k|k�1JijP

�1
k|k�1)

, (27)

✏fA  max
ij2Xr

�max(B
�1
Xr

+B
�1
Xr

JijB
�1
Xr

)

� �min(P
�1
k|k�1 +P

�1
k|k�1JijP

�1
k|k�1),

(28)
where Jij =

1
�2
ij

�
XijPk|k�1X

>
ij + zijz

>
ij

�
, for all ij 2 Xr.

The term Jij is reflective of the amount of information

captured by the ij
th observation. In this regard, Theorem 4

states that if the difference between the minimum and
maximum information of individual observations is small,
the objective in (15) is nearly submodular. Hence, the greedy
observation selection scheme is expected to find a good
(informative) subset.

Theorems 3 and 4 establish monotonicity and (weak) sub-
modularity of the proposed objective functions in (15) and
(16). Hence, a suboptimal subset of range observations found
by the greedy observation selection scheme (Algorithm 1)
satisfies the performance bounds given in Proposition 2.

V. SIMULATION RESULTS

In this section, we test the efficacy of the proposed
quadratic observation selection objectives in a multi-object
tracking application via UAV swarm using radar measure-
ments (Fig. 1(a)) and compare their performance with those
of random and locally optimal (linearization-based) schemes.

We consider a Monte Carlo simulation with 50 inde-
pendent instances where 10 moving objects are initially
uniformly distributed in a 5 ⇥ 10 area. At each time in-
stance, the objects move in a random direction with a
constant velocity set to 0.2. The swarm consists of 10 UAVs,
equidistantly spread over the area, that move according to a
periodic parallel-path search pattern [1]. The initial phases
of the UAVs’ motions are uniformly distributed to provide a
better coverage of the area. The UAVs can acquire range
and angular measurements of the objects that are within
the maximum radar detection range. The maximum radar
detection range is set such that at each time step the UAVs
together collect approximately 130-170 range and angular
measurements. The communication bandwidth constraints

limit the number of measurements transmitted to the con-
trol unit to 10% of the gathered measurements. For the
proposed scheme, we select the range measurements using
the proposed quadratic observation selection scheme while
for angular measurements, we follow the locally optimal
approach of [17], [19], i.e., linearization around the prior
estimates. Performance of different schemes is assessed using
the MSE of the EKF estimates of objects’ locations. We
consider two noise models: in the first scenario, the noise
terms are i.i.d. Gaussian with �ij = 0.01 while in the second
scenario, we logarithmically space the interval (0.001, 0.01)
to generate 10 points and select �i for each measurement
uniformly at random from one of these 10 numbers.

The results for the first noise model are illustrated in
Fig. 1(b). There, at the beginning of tracking all schemes
have relatively high error. However, since the observations
selected by the proposed schemes are chosen according to the
exact range model, as time passes the MSE of the proposed
schemes becomes significantly lower than those of locally
optimal and random selection methods (especially under the
A-optimality criterion). Fig. 1(b) also depicts that the MSE of
estimates formed from observations selected by the proposed
quadratic observation selection scheme using A-optimality is
lower than the MSE achieved by selecting the observations
via D-optimality. The explanation of this phenomenon is that
if the estimator (here the EKF) is a minimum variance unbi-
ased estimator attaining (8) with equality, the A-optimality
scalarization of the Van Trees’ bound becomes equivalent
to the MSE, the performance measure shown in Fig. 1(b).
Therefore, intuitively, one expects to achieve lower MSE
using the A-optimality scalarization of the Van Trees’ bound,
which is the case in this simulation.

The results for the second noise model are illustrated in
Fig. 1(c) where we again observe superiority of the proposed
quadratic framework to select a subset of observations with
the lowest estimation error. Compared to Fig. 1(b), since the
noise terms here are random, the MSE curves in Fig. 1(c)
are not as smooth as those in Fig. 1(b).

VI. CONCLUSION

In this paper, we considered the problem of state es-
timation in time-varying networked sensing systems with
resource constraints, following a (partially) quadratic mea-
surement models. For this setting, we derived new optimality
criteria by relying on the Van Trees’ inequality and proved
that they are monotone and (weak) submodular set functions.
In particular, we showed that the log det of the inverse of
the Van Trees’ bound is submodular while its trace is weak
submodular under certain conditions on the unknown states,
noise statistics, and the parameters of the model. Following
these results, we developed an efficient greedy observation
selection algorithm for networked sensing systems with
theoretical bounds on its achievable utility that efficiently
exploits the quadratic structure of the measurement model in
its selection criteria. Our experimental studies demonstrated
efficacy of the proposed optimality criteria in estimating the
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(a) tracking via a swarm of UAVs
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(c) tracking under random noise powers

Fig. 1: Comparison of MSEs for random, linearized, and quadratic observation selection schemes in the multi-target tracking application.

location of unknown targets with minimal mean square error
in a multi-object tracking application with UAV swarms.
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