
Minimal Warm Inflation

Kim V. Berghaus,1, ∗ Peter W. Graham,2 and David E. Kaplan1

1Department of Physics & Astronomy,

The Johns Hopkins University, Baltimore, MD 21218, USA

2Stanford Institute for Theoretical Physics, Department of Physics,

Stanford University, Stanford, CA 94305-4060, USA

(Dated: March 19, 2020)

Abstract

Slow-roll inflation is a successful paradigm. However we find that even a small coupling of

the inflaton to other light fields can dramatically alter the dynamics and predictions of inflation.

As an example, the inflaton can generically have an axion-like coupling to gauge bosons. Even

relatively small couplings will automatically induce a thermal bath during inflation. The thermal

friction from this bath can easily be stronger than Hubble friction, significantly altering the usual

predictions of any particular inflaton potential. Thermal effects suppress the tensor-to-scalar ratio

r significantly, and predict unique non-gaussianities. This axion-like coupling provides a minimal

model of warm inflation which avoids the usual problem of thermal backreaction on the inflaton

potential. As a specific example, we find that hybrid inflation with this axion-like coupling can

easily fit the current cosmological data.
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I. INTRODUCTION

The idea of an early period of cosmic inflation is a simple way to explain the near homo-

geneity and isotropy of the universe. Many of the simplest single-field models are already

constrained by measurements of the scalar to tensor ratio r [1–3]. Warm inflation offers

an interesting alternative [4–7] (for review, see [8]). It turns out to be possible to have a

concurrent quasi-thermal radiation bath if energy is extracted from the rolling scalar field

via friction. The benefits of warm inflation include automatic reheating at the end of in-

flation when the thermal bath begins to dominate over the vacuum energy and suppressing

contributions to the scalar-tensor ratio r [7, 9]. It further enhances non-gaussianities and

predicts a unique shape for the bispectrum, which is a ‘smoking gun’ for warm inflation,
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making it distinguishable from all other inflationary models [10]. Despite these benefits, in

practice it has been challenging to embed warm inflation consistently within a microphysical

theory due to large thermal backreactions on the inflaton potential [11], although progress

has been made over the last twenty five years [7, 12–14].

In this paper, we show that giving the inflaton an axion-like coupling naturally leads to

warm inflation. This generates a thermal bath self-consistently without significant back-

reaction on the inflaton potential. The coupling can produce a simple theory of warm

inflation consistent with all experimental data. We call this Minimal Warm Inflation.

Non-Abelian axion-like couplings in warm inflation have been considered before [15, 16],

without the explicit temperature dependence of the friction coefficient. Here, we use recent

results of the sphaleron rate in classical lattice gauge theory, which predicts a dependence

Υ ∼ α5 T 3

f2
[17]. The temperature dependence greatly impacts predictions of cosmological

observables [18] such as non-gaussianities, curvature power spectrum and spectral index,

and thus needs to be included.

A different class of dissipative inflationary models with axion-like couplings exist that

exploit rapid gauge field production through tachyonic instabilities [19, 20]. Thermalization

in these models is non-trivial but can happen, leading to an alternative setup of warm

inflation [21, 22]. In these works it has already been pointed out that the shift-symmetry of

the axion can avoid thermal back-reactions.

This paper is laid out as follows: in Section II, we review the general properties of

inflation when it is coupled to a thermal bath and point out that warm inflation is an

attractor solution. In Section III, we describe the specific case of a rolling field with an axion-

like coupling to non-Abelian gauge fields and use the predicted temperature dependence

to compute the power spectrum’s tilt. In Section IV, we present a specific example of a

potential, that of hybrid inflation, which matches cosmological data when the axion-like

coupling is included. We present our conclusions in Section V. We use Appendix A to

describe the part of parameter space where thermal friction is sub-dominant (so-called weak

warm inflation), which could in principle allow other potentials to reproduce the data, but

in a regime where the calculations of the power spectrum from thermal fluctuations have

not been done explicitly.
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II. BACKGROUND ON WARM INFLATION

We now give a terse summary of warm inflation (in the strong regime) including our

definitions of the slow-roll parameters and a derivation of the power spectrum.

A. Framework of Warm Inflation

We will now show that it is possible to have a quasi-steady state cosmological solution

with approximately constant vacuum energy and a non-negligible thermal bath with ap-

proximately constant temperature. We begin by considering the equation of motion of the

inflaton in the presence of a temperature-dependent friction Υ. We define the dimensionless

parameter Q ≡ Υ
3H

, such that:

φ̈+ 3H (1 +Q) φ̇+ V ′(φ) = 0 (1)

which, together with the Friedman equation, governs the inflationary dynamics:

H2 =
1

3M2
Pl

(
V (φ) +

1

2
φ̇2 + ρR

)
(2)

Here dots denote derivatives with respect to time (φ̇ = dφ
dt

) and primes denote derivatives

with respect to φ (V ′(φ) = dV
dφ

). During inflation the potential energy V (φ) dominates over

both the kinetic energy 1
2
φ̇2 and the radiation energy density ρR. We will see that ρR does

not decrease during slow-roll and the end of inflation can occur when V ∼ ρR. A small slow-

roll parameter εH ensures that the evolution of the Hubble parameter is slow with respect

to time:

εH ≡ −
Ḣ

H2
(3)

In order for accelerated expansion to be sustained, we impose another small slow-roll pa-

rameter ηH , which we take to be:

ηH ≡ −
Ḧ

ḢH
+

φ̈

Hφ̇
(4)

Here we have defined ηH such that it is independent of Q̇. In the slow-roll regime where

εH , ηH � 1 we have:

φ̇ ≈ − V ′

3H(1 +Q)
(5)
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H2 ≈ 1

3M2
Pl

V (6)

By differentiating equations (5) and (6) with respect to time we obtain the slow-roll param-

eters in terms of the potential V (φ). To be consistent with the warm-inflation literature, we

define:

εV ≡
M2

Pl

2(1 +Q)

(
V ′

V

)2

' εH � 1 (7)

ηV ≡
M2

Pl

(1 +Q)

V ′′

V
' ηH + εH � 1 (8)

Compared to cold inflation we can see that the conditions for slow-roll are relaxed due to

the additional friction which permits slow-roll on steeper potentials. Thus, an advantage of

warm inflation is that φ does not have to travel as far in field space to get the same number

of e-folds. When Q is small this is only a small suppression; however when Q is large this

allows sub-Planckian field values for φ, while still achieving the minimally required number

of e-folds, NCMB ∼ 60:

NCMB =

∫
Hdt =

∫ φCMB

φend

1

M2
Pl

V

V ′
(1 +Q(φ)) dφ (9)

In equation (9) φCMB denotes the field value of φ at the beginning of the observable e-folds

in the cosmic microwave background (CMB). φend denotes the field value of φ at the end of

inflation when the universe transitions into being radiation dominated. The energy extracted

from the rolling field due to the friction sources the radiation bath [23]:

ρ̇R + 4HρR = Υ(T )φ̇2 (10)

In the slow-roll regime where εV , ηV � 1, we can neglect ρ̇R and we obtain:

4HρR ≈ Υ(T )φ̇2 (11)

for the quasi steady-state system.

B. Predictions of Warm Inflation

Here we focus on predictions in the strong regime (Q � 1) of warm inflation with a

friction Υ ∝ T 3, which is the relevant friciton for our minimal warm inflation model as
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described in more detail in Section III. In this regime the thermal inflaton perturbations

dominate over the usually considered quantum fluctuations, as outlined in detail in, for

example, [24]. The temperature dependence of the friction further couples the evolution of

the inflaton and radiation fluctuations. This effect gives rise to a ‘growing mode’ for the

curvature power spectrum, which is absent for a temperature-independent friction coefficient

or in the weak regime. The curvature power spectrum in presence of the growing mode has

been calculated in [24]1 for Q� 1:

∆2
R ≈

√
3

4π
3
2

H3T

φ̇2

(
Q

Q3

)9

Q
1
2 (12)

Here Q3 ≈ 7.3 and is fixed by matching the boundary conditions for the solution of the

inflaton perturbations in different regimes.2

Assuming temperatures well below the Planck scale the tensor perturbations are not

affected and remain the same as the prediction for cold inflation [26]:

∆2
h =

2

π2

H2

M2
Pl

(13)

The scalar to tensor ratio r based on equation (12) and (13) is then given by:

r ≈ 1√
3π

16εV

Q
3
2

H

T

(
Q3

Q

)9

(14)

Equation (14) shows that r is heavily suppressed as: H
T
< 1, εV � 1, Q � 1 and Q � Q3.

This is in agreement with observational constraints as tensor modes have not been detected,

yet. Contrarily, the detection of sizeable tensor modes in the future would rule out our

model in the strong regime (Q� 1).

Sizeable non-gaussianities are the most distinct prediction of our minimal model of warm

inflation since the total size of fwarm
NL does not depend on slow-roll parameters. The strong

regime of warm inflation Q � 1 has a unique dominant bispectrum shape [10, 27], which

has been classified and constrained as ’WarmS’ by the Planck 2015 results [28]. However,

the Q-dependent result of fwarm
NL [29] used in the Planck 2015 results to derive constraints

1A different calculation from [25] suggests a scaling of Q
16
2 instead of Q

19
2 . We thank Gauraw Gosmani for

pointing this out. We do not take a position on this discrepancy, but note the impact on the results derived

in this paper is negligible.
2Approximation (12) is most accurate when Q � Q3. Reference [24] also provides numerical results which

approximate the spectrum down to Q = 100. Using the more accurate numerical results makes an negligible

impact on the phenomenology discussed in this paper. Thus, for easier readability we use the analytical

approximation in equation (12).
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on Q is only valid in the absence of a temperature-dependent friction coefficient and further

suffers from a sign error as was pointed out by the authors of [29] in subsequent work [27].

Considering the temperature dependence of the friction term of our ’minimal warm inflation

model’ gives a Q-independent prediction [10]:

fwarm
NL ≈ 5 (15)

This fwarm
NL can be decomposed into contributions from different bispectral template shapes

where fwarmS
NL ≈ 3.5, f local

NL ≈ 0.5 and f equi
NL ≈ 1 [10]. Since the shape correlations between

the ’WarmS’ (equilateral) bispectral shape and the local bispectral shape is 0.27 (0.46) [30],

the expected net contribution to the most constrained bispectral shape is f local
NL ≈ 1.5. The

current most up to date constraints from Planck data are f local
NL = 0.8±5 [28], which is insuf-

ficient for making conclusions about the viability of our model. While the not yet published

Planck 2018 analysis may improve these bounds slightly, ideally an improvement of about a

factor of ∼ 10 in precision is needed to first discover sizeable non-gaussianities and second

determine the bispectral shape. CMB Stage-4 [31] in accordance with upcoming optical,

infrared and radio surveys conducted by new experiments such as Euclid [32], SPHEREx

[33], and the SKA telescope [34] respectively report possible improvements over the current

errorbars by up to a factor of 10−20 [35, 36]. Euclid (SPHEREx) is planned to be launched

before 2022 (2023) whereas the construction of the first SKA telescope (SKA1) is antici-

pated to start at the end of 2019. If the obtained experimental data will be able to match

the precision level of the forecasts we will be able to conclusively detect the level of local

non-gaussianity predicted by this model, which in a subsequent analysis could potentially

be distinctively attributed to warm inflation due to its unique bispectral shape [10].

C. Initial Conditions for Warm Inflation

In this subsection we show that we do not have to start with a thermal bath to achieve

warm inflation. In fact, for an inflaton that couples to light degrees of freedom with a wide

range of couplings, a thermal bath will be automatically generated rapidly even starting

from standard Hubble fluctuations.

If the universe starts with a low temperature it will start to heat up from the thermal

friction which removes kinetic energy from the inflaton and dumps it into the thermal bath.
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It will tend towards the equilibrium temperature that comes from solving eqn. (11), but we

want to make sure this rate is fast enough that the equilibrium temperature is reached in

a short time. To determine the time, we define constants A and B so that the radiation

density ρR = AT 4 and the friction rate is Υ(T ) = BT p where we will assume the power

p < 4 (which is the case for axion thermal friction as we will see below). We can see from

eqn. (10) that if we start with a very low temperature then the Hubble term can be neglected

and the evolution of the temperature is given by

ρ̇R ≈ Υ(T )φ̇2 (16)

Then eqn. (16) gives

T 3−p dT

dt
=
Bφ̇2

4A
(17)

we want to know that the equilibrium temperature can be reached quickly. For this it

will be enough to find an upper bound on the time required teq to reach equilibrium. The

temperature grows faster the larger φ̇2. And note that initially at low temperatures the

friction Υ(T ) is lower than in equilibrium so the kinetic energy φ̇2 will be larger (we assume

here that the field φ has had time to come near its terminal velocity, but this takes at most

a few e-folds). So to find an upper bound on teq it is conservative to assume φ̇2 is fixed at

its equilibrium value φ̇2
eq. Then we can solve eqn. (17) to find

T 4−n
eq − T 4−n

i > (4− n)
Bφ̇2

eq

4A
teq (18)

where Ti is the initial temperature. Note that the time it takes to heat up to the equilibrium

temperature is essentially independent of the initial temperature (so long as it is relatively

small). This surprising fact means we can start with any initial temperature (even quantum

fluctuations of the fields would do it) and it will reach the equilibrium temperature in this

same time.

In equilibrium we can solve eqn. (11) to find

HT 4−n
eq =

Bφ̇2
eq

4A
(19)

Putting this into eqn. (18) we find that the time required to reach equilibrium is at most

teq <
1

4− n
1

H
(20)
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So it takes less than one Hubble time to reach the equilibrium temperature for warm inflation,

no matter how low the initial temperature was (even including zero initial temperature since

there are always quantum mechanical fluctuations).

Note that if we start with an initial temperature in the universe which is significantly

above the equilibrium temperature Teq then the temperature will drop through the normal

redshifting (the Hubble term in equation (10)). This is not as fast as the rate we just found

for the temperature approaching equilibrium from below which had the interesting behavior

that it was independent of the initial temperature. In the case of the temperature dropping

towards equilibrium, it does take more than one Hubble time, but since the reshifting is

exponential it only takes ∼ ln
(
Ti
Teq

)
e-folds of inflation before the temperature has dropped

to equilibrium.

We have seen that our warm inflation is an attractor solution. Given a potential for

an inflaton, and some terms that allow the inflaton to interact with other light degrees

of freedom, a thermal bath will be generated very rapidly at the start of inflation. So it is

generic to be in warm inflation instead of cold inflation, as long as the light degrees of freedom

are lighter than the equilibrium temperature. Of course if the equilibrium temperature is

low enough that Teq < H then having this thermal bath is meaningless and we are actually

in cold inflation.

D. The Problems of Warm Inflation

It is challenging to build a microphysical model that supports warm inflaton because

the friction Υ is usually accompanied by a large thermal back-reaction onto the inflaton

potential, that spoils the flatness of the potential and does not support enough e-folds.

When the friction arises from perturbative interactions directly between the scalar field and

light fields, the mass of the scalar fields obtains a finite temperature contributions which

scales with the temperature:

δm2
φ ∝ T 2 (21)

This correction is dominant to the friction which scales with temperature fluctuations Υ ∝

δT . It is possible to protect the mass of the inflaton from thermal contributions by imposing

symmetries; however this generically also turns off the friction. Thus, it appears challenging

to produce a large friction without unwanted mass corrections or fine-tuned cancellations.
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III. WARM INFLATION WITH AN AXION

We find a minimal warm inflation model in which the inflaton φ is an axion coupling to

a pure Yang-Mills gauge group:

Lint =
α

16π

φ

f
G̃µν
a G

a
µν (22)

Here Ga
µν (G̃a

µν = εµναβGa
αβ) is the field strength of an arbitrary Yang-Mills group and α ≡

g2YM

4π
, and gYM is the gauge coupling. There is no perturbative back-reaction that scales with

the temperature because the axion is protected by its shift symmetry3. The back-reaction

due to non-perturbative effects is just the usual axion mass, which at zero temperature

scales as ∝ T 4
c

f2
and at high temperatures (T � Tc) this small quantity becomes even further

surpessed as instanton methods [37] estimate a power-law decrease with m2
a ∝ T−X , with

X ∼ 7 for pure Yang-Mills SU(3) [38], which is in agreement with lattice calculations. This

is why the back-reaction in our model is negligible.

However, at high temperatures classical transitions between vacua with different topo-

logical charge are no longer suppressed, which give rise to topological charge fluctuations.

Thus, the fluctuations responsible for the friction experienced by φ are not inherently ther-

mal; they are topological. However, the topological fluctuations still increase with temper-

ature as higher temperatures enhance the transition rate, also known as the sphaleron rate

Γsphal = lim
V,t→∞

〈Q2〉
V t

[39]. The friction arising from the interaction in (22) can be determined

by the sphaleron rate Γsphal in the limit of the inflaton mass being smaller than ∼ α2T [40]:

Υ(T ) =
Γsphal(T )

2f 2T
(23)

The sphaleron rate has been measured within classical lattice gauge theory for pure SU(2)

and SU(3) theories and indicates a scaling of Γsphal ∼ α5T 4 [17, 40]. The friction coefficient

Υ then scales roughly as T 3 [17]:

Υ(T ) = κ(α,Nc, Nf )α
5T

3

f 2
(24)

where T is the temperature of the thermal bath of the Yang-Mills group and this formula

only applies when that group is in thermal equilibrium4. κ is an O(100) number which has a

3We softly break this symmetry by giving the inflaton a UV-potential. We have checked that the back-reaction

from this breaking term is negligible.
4We are ignoring the weak T -dependence in the running of α as T remains nearly constant during the period

of inflation, and thus α can be treated as a fixed parameter of the model.
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weak logarithmic dependence on α and whose exact value depends on the number of colors

Nc and flavors Nf of the group [17]. The estimate of the friction coefficient in terms of the

sphaleron rate breaks down in the weak regime of warm inflation (Q . 1) due to the limit

mφ � α2T becoming oversaturated. While the mechanism itself should also work for the

weak regime, we focus on the strong regime in this paper since we know the exact friction in

this regime. Thermalization of the inflaton occurs in this regime if the gauge boson-inflaton

scattering rate, Γgφ ≈ α3 T 3

32πf2
[41, 42], is much larger than the Hubble rate. This gives the

condition 3Q
32πκα2 � 1, which is always satisfied in the strong regime of our model, where we

consider Q > 100 and α < 0.1.

We give the inflaton a UV-potential V (φ) (in addition to the IR potential it would get

from the confining group). We cannot use the IR potential because, in order to have a

thermal bath of gauge bosons, we must have the temperature above the confinement scale.

At such temperatures the IR potential is rapidly suppressed and we have checked that it is

not possible to use that potential for inflation. So inflation occurs as the inflaton rolls down

its UV potential V and its equation of motion is given by:

φ̈+ (3H + Υ) φ̇+ V ′(φ) = 0 (25)

Based on the curvature power spectrum in equation (12) we derive the spectral index:

ns − 1 =
d ln ∆2

R
dN

(26)

d ln ∆2
R

dN
=

(
5

2
− 9

)
d lnH

dN
− 2

d ln φ̇

dN
+

(
1

2
+ 9

)
d ln Υ

dN
+
d lnT

dN
(27)

Using Hdt = dN we rewrite the derivatives in equation (27) in terms of the slow-roll pa-

rameters [43]:
d lnH

dN
= −εV (28)

dln φ̇

dN
= εV − ηV −

Q

1 +Q

dlnQ

dN
(29)

dlnQ

dN
= εV + 3

dlnT

dN
(30)

We use equation (11) to express the temperature as a function of time resulting in:

lim
Q�1

dlnT

dN
=

1

7
(εV − 2ηV ) (31)
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dln Υ

dN
= 3

dlnT

dN
(32)

Plugging in (28), (29), (31) and (32) into (27) we find the spectral index in leading order in

εV and ηV in the strong regime of warm inflation:

ns − 1 =
3

7
(27εV − 19ηV ) (33)

Compared to the spectral tilt obtained from the standard cold inflation power spectrum

the sign of εV and ηV is inverted for the strong regime of warm inflation. This conveys

interesting constraints on possible potential shapes for warm inflation that are in agreement

with the observed red tilt (ns − 1 < 0), as ηV has to be larger than εV .

IV. AN EXAMPLE: HYBRID WARM INFLATION

A. Inflation

In the strong regime of warm inflation the expression for the spectral tilt in (33) only

reproduces the experimentally observed red tilt when εV < ηV . For a single scalar field

model this requires a fine-tuned level of convexity of the potential V ∝ φn with n & 4.

Similarly, the lowest order cosine-like potential that is able to reproduce the observables

requires V ∝ (1 + cos φ
fφ

)n with n ≥ 3. In particular, a single cosine does not fit the

observations. As an example, Figure 1 shows how V ∝ φ5 can reproduce the observed

spectral index in single field inflation. However, we do not think that these potentials are

compelling candidates, as they do not easily emerge from a UV-completion without extreme

fine-tuning.

In contrast, the simplest setup for hybrid inflation [44] with a slow-roll potential V ∼

V0 + 1
2
m2φ2, usually ruled out due to predicting a blue tilted spectrum, works well with

warm inflation in the strong regime. As an example, we explore the inflationary dynamics

for warm inflation in a hybrid setup in this section, where the inflaton field φ couples to a

pure SU(3) gauge group, as described in Section III.

The effective potential in hybrid inflation has two fields, one that acts as the inflaton φ

and another the waterfall field σ that stays constant during the inflationary period:

V (φ, σ) =
1

4λ

(
M2 − λσ2

)2
+

1

2
m2φ2 +

1

2
g2φ2σ2 (34)
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The squared mass of the waterfall field σ is equal to −M2 + g2φ2. While φ > M
g

, σ only

has one minimum at σ = 0. Inflation ends when φ reaches this threshold, which induces a

first order phase-transition causing σ to roll down to its minimum at σ(φ) = Mσ(φ)√
λ

, with

Mσ(0) = M . After the phase transition, φ rolls to the minimum of its effective potential

much faster than a Hubble time as long as:

M3 �
√
λgmM2

Pl

Q
(35)

The waterfall field σ rapidly starts oscillating after the phase transition as long as Mσ(φ)�

H. Under those conditions, inflation ends almost instantaneously.

We can then describe the effective potential for the inflaton field φ during the time of

inflation as:

Veff(φ) =
M4

λ
+

1

2
m2φ2 (36)

In the allowed parameter space outlined below, σ’s mass is larger than the temperature

during inflation. Thus, σ does not thermalize and corrections to the thermal mass of φ

turn out to be negligible. The observable amounts of e-folds occur as φ is approaching its

critical value φc ≡ M
g

, which induces the phase transition. During this stage the constant

term M4

λ
� 1

2
m2φ2

c drives the expansion, effectively suppressing εV . While φ is approaching

its critical value it is sourcing a thermal bath via friction Υ. The spectral index (33) then

simplifies to:

ns − 1 ≈ −57

7
ηV (37)

with:

ηV =
4λm2M2

Pl

QM4
(38)

The spectral tilt fixes the following linear combination of parameters:

4λm2M2
Pl

QM4
≈ − 7

57
(ns − 1) (39)

Assuming inequality Eqn. (35) is satisfied we can approximate φc ≈ φend. Rewriting equation

(9) in the strong regime with Q� 1, and φCMB = (1 + ∆)φc, with ∆ < 1, we find:

NCMB =

∫ M
g

(1+∆)

M
g

1

M2
Pl

V

V ′
Q(φ)dφ (40)
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Using equation (5), (6), and (11) we express T and Q in terms of φ during slow-roll, where

ρR = π2

30
g∗T

4 ≡ g̃∗T
4, with g∗ denoting the relativistic degrees of freedom:

T (φ) ≈

(
f 2

κα5

√
3MPlV

′(φ)2

2g̃∗
√
V (φ)

) 1
7

(41)

Q(φ) ≈

((
κα5

f 2

)4
M10

Pl V (φ)′6

576g̃∗V (φ)5

) 1
7

(42)

Using equations (36) and (42) in equation (40) and assuming M
g
�MPl, we obtain:

NCMB ≈
∆

ηV
(43)

The number of observable e-folds, NCMB ≈ 60, then only impacts the transversed field range

∆:

∆ ≈ − 7

57
(ns − 1)NCMB (44)

Equation (44) determines ∆ in terms of measured observables. Equation (39) determines

another linear combination of λ, g,M,m, f,∆ in terms of observables. The measured am-

plitude of the curvature power spectrum fixes one additional linear combination:

∆2
R(k) = As(k∗)

(
k

k∗

)ns(k∗)

(45)

with As(φCMB) ≈ 2 × 10−9 as measured by Planck at the pivot scale k∗ = 0.05Mpc−1 [45].

Rewriting equation (12) we find:

As (φCMB) ≈ 8× 10−41

(
κα5

f 2

)18
(√
|ns − 1|81

m21φ51
CMB√

g̃∗
55

) 1
2

(46)

where φCMB = M
g

(1 + ∆) ≈ M
g

.

We have used the spectral index ns, amount of observable e-foldsNCMB, and the amplitude

of the power spectrum As, to constrain three of the parameters of the underlying model.

The friction ratio Q depends on the ratio of the coupling f to the field value of the inflaton

∼ M
g

during inflation as:

Q ≈ 150

(
∆2
R

2× 10−9

) 2
21
(
|ns − 1|
0.035

) 4
7 ( g∗

17

)− 4
21

(
κα5

10−3

) 2
7

(
gf
M

10−8

)− 4
7

(47)
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Where we use a pure SU(3) with g∗ = 17 (two polarizations per eight gauge bosons plus one

for the axion) and gauge coupling α = 0.1 as our default values. The only tunable parameter

beyond these is gf
M

which has to be . 10−8 to place us in the strong regime (Q � 1), thus

setting the upper bound f � 10−8(M/g) for these gauge group parameters. The typical

Hubble scales and mass parameters in our model are thus:

H ≈ 10−17

(
∆2
R

2× 10−9

) 1
21
(
|ns − 1|
0.035

)− 19
7 ( g∗

17

) 59
42

(
κα5

10−3

)− 13
7

(
gf
M

10−8

) 19
7
M

g
(48)

m ≈ 10−16

(
∆2
R

2× 10−9

) 2
21
(
|ns − 1|
0.035

)− 12
7 ( g∗

17

) 55
42

(
κα5

10−3

)− 12
7

(
gf
M

10−8

) 24
7
M

g
(49)

Note that m can be larger than H, without violating slow-roll due to the dominant friction

coming from Υ� H. Typical temperatures during expansion are given by:

T ≈ 5× 10−10

(
∆2
R

2× 10−9

) 1
21
(
|ns − 1|
0.035

)− 12
7 ( g∗

17

) 17
42

(
κα5

10−3

)− 6
7

(
gf
M

10−8

) 12
7
M

g
(50)

Demanding that condition (35) is satisfied such that inflaton quickly rolls to its minimum

after the phase transition imposes an upper limit on M
g

:

M

g
� 3× 10−3

(
∆2
R

2× 10−9

)− 1
21
(
|ns − 1|
0.035

) 3
14 ( g∗

17

) 2
21

(
κα5

10−3

)− 1
7

(
gf
M

10−8

) 2
7

MPl (51)

The above condition demands that the maximum allowed value for M
g

is roughly 1014 GeV.

This value sets an upper limit for the possible temperatures of T < 5×104 GeV and Hubble

scales of H < 10−3 GeV. The discussed observables degenerately depend on combinations

of M , λ and g. Requiring the quantum corrections to our masses be naturally small also

imposes constraints that break the degeneracy:

λ2Λ2

16π2
< M2 (52)

g2Λ2

16π2
< m2 (53)

where Λ is the cutoff of the theory. The couplings g and λ need to satisfy conditions (52)

and (53). Additionally, the condition that the φ potential is negligible compared to the

vacuum energy during inflation requires:

λm2

g2
�M2 (54)
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FIG. 1. Comparison of the predicted spectral index ns in the strong regime of minimal warm

inflation, given different potentials. Hybrid warm inflation overlaps with the allowed region. Due

to remaining free parameters in hybrid inflation it is able to reproduce various red-tilted values of

ns. In single field inflation V ∝ φ5 lies in the allowed region in the r-ns plane (although such a

potential in general is not compelling as it requires extreme fine-tuning). All predictions for the

tensor-to scalar ratio in the strong regime are r ≈ 0 due to the heavy surpression of r for Q� 1.

The shown allowed contour regions are the most stringent to date using Planck 2018 data as well as

lensing, polarizations data from BICEP2/Keck Array BK15 and baryon acoustic oscillation (BAO).

Assuming a minimum value of the cutoff Λ = 4πM , saturating equation (53) and M
g

=

1014 GeV, and satisfying (54) by two orders of magnitude, we get the following sample values

for the couplings and mass parameters: g = 10−8, λ = 10−2, M = 106 GeV, m = 10−2 GeV.
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B. Reheating

At reheating, we assume that we have an abundance of σ particles at some early time

before big bang nucleosynthesis, which make up a dominant part of the energy density in

the early universe. There are many possible ways in which σ can couple to the standard

model and produce an early quark gluon plasma. Here we outline a simple example where

we couple to standard model hypercharge:

Lreheat =
g′2

64π2

σ

fB
B̃µνBµν (55)

where g′ denotes the standard model hypercharge gauge coupling. Typical values of the

coupling between the waterfall and inflaton fields in our model (g) are quite small, which is

why σ decays dominantly via operator (55), even for large values of fB. We can estimate

the decay rate into standard model particles by:

Γσ→SMSM =
g′4M3

16384π5f 2
B

(56)

This rate needs to be large enough such that an abundance of σ particles has decayed into a

quark gluon plasma before the universe cools down to big bang nucleosynthesis temperatures,

where the earliest cosmological precision constraints exist. We estimate the Hubble rate as

HBBN ≈
√
g∗π2
30

T 2
BBN√

3MPl
and demanding that Γσ→SMSM > HBBN we find that fB can go all the

way up to the GUT scale:

fB < 1016 GeV

(
M

106 GeV

) 3
2
(

TBBN

10 MeV

)−1

(57)

At the end of section IV A we briefly discuss the upper limits of masses, temperatures and

Hubble scales. Here we discuss the lower limits of our parameters. Since the waterfall field

σ couples directly to the standard model there exist cooling bounds from supernovae as

well as detection constraints from high-energy colliders. Avoiding these, we conservatively

set fB > 1 TeV and M > 10 GeV as the lower limits of our parameter space which fixes

m > 10−7 GeV, H > 10−8 GeV and T > 0.5 GeV, where T is the temperature during slow-

roll maintained by the pure Yang-Mills radiation. These parameters easily still satisfy the

cosmological constraints that reheating happens efficiently before BBN. Summarizing our
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available parameter space we find these:

10−8 GeV < H < 10−3 GeV (58)

10−7 GeV < m < 10−2 GeV (59)

10 GeV < M < 106 GeV (60)

0.5 GeV < T < 5× 104 GeV (61)

0.5 GeV < f < 5× 106 GeV (62)

are the maximally allowed ranges for each parameter, though of course there are restrictions

on the combination of the five parameters (e.g. the requirement of decay before BBN and the

validity of the effective field theory). The question remains whether the inflaton coupling

to a standard model gauge group itself (e.g. QCD) can give rise to a thermal bath sourcing

friction during inflation. In that scenario, a quark gluon plasma is already present during

the expansion of the universe and reheating becomes trivial. However, currently detailed

calculations of the friction coefficient exist only for pure Yang-Mills theory. The presence of

light fermions may non-trivially alter the parametric dependence5, in which case a separate

analysis is necessary to determine whether this compelling simplification is viable. We leave

that analysis and the calculation of the friction in the presence of light fermions to future

work.

V. CONCLUSIONS

If the inflaton has any non-gravitational coupling to other fields it will generically produce

a background thermal bath during inflation. A natural choice is an axion-like (CP-odd)

coupling which can generate significant thermal friction from non-perturbative effects for

the inflaton without a corresponding backreaction on the inflaton potential, thus avoiding

the problems with other warm inflation models. Once the inflaton has any such strong

enough coupling, a thermal bath will necessarily be produced during inflation independent

of initial conditions.

We have presented a complete model of warm inflation which correctly reproduces cosmo-

logical data on initial density perturbations and predicts a negligible tensor-to-scalar ratio r

5This concern was pointed out to us by members of the theory group at the University of Maryland. We

thank them and Guy Moore for extensive discussions on this topic.
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and potentially measureable non-gaussianities. The model only requires the inflaton to have

an axion-like coupling to a non-Abelian group, and we use known results for couplings to

pure Yang-Mills. An even simpler model may be possible where the inflaton couples directly

to the standard model (such as to QCD), but a full thermal field theory calculation of the

friction in this case (specifically with light quarks) has not yet been done. We show, as an

example, that the temperature dependence of the friction due to our coupling allows hybrid

inflation to have a red-tilted spectrum (rather than blue-tilted as in cold inflation), and thus

can easily fit the current data.
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Appendix A: The Weak Regime

Due to the calculations of the friction coefficient breaking down in the weak regime we

have focused on exploring the strong regime (Q� 1) in detail in this paper. In this appendix

we summarize the relevant dynamics in the weak regime. It turns out that the only viable

models of warm inflation we could find in the weak regime require parameters which move

the thermal friction beyond the regime of validity of the thermal field theory calculations

which have been done. Thus in this section we will simply assume that the friction coefficient

still scales as Υ ∼ κα5 T 3

f2
, and discuss warm inflation in this case. But we will find that in

fact we are ultimately pushed to a regime of parameters where this formula is not known to

be valid. So it is in fact possible that a weak warm inflation model would work – even for

a simple inflaton potential m2φ2 – but we cannot know that from the thermal field theory
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calculations that have been done to date.

In the weak regime of warm inflation (Q � 1) the dominant friction in the inflaton’s

equation of motion is still due to the Hubble expansion rather than particle production

friction. However, the presence of a thermal bath can still change the power spectrum and

effectively surpress the scalar-to-tensor ratio. Unlike in the strong regime the temperature

dependent friction coefficient does not give rise to a growing mode as the coupling between

the radiation and the inflaton can be neglected. The curvature power spectrum and the

scalar to tensor ratio in this regime can then be described by [5, 46, 47], where all quantities

are evaluated at horizon crossing:

∆2
R =

1

4π2

H4

φ̇2

(
1 + 2n+ 2πQ

T

H

)
(A1)

r =
16εV(

1 + 2n+ 2πQ T
H

) (A2)

Here n denotes the distribution of inflaton particles. If interactions between the infla-

ton particles and the thermal bath are sufficiently fast for them to be thermalized then

they approach a Bose-Einstein distribution, which at horizon crossing is given by nBE =(
e
H
T − 1

)−1

. Whether thermalization is fast enough is model dependent. The interaction

rate for the axion-inflaton with the gauge boson radiation, Γφg, can be roughly approximated

as Γφg ≈ α3 T 3

32πf2
= Υ

32πκα2 . The inflaton is thermalized (Γφg > H), when 3Q
32πκα2 > 1, which

is satisfied for α . 10−2
√
Q. Thus, whether thermalization occurs depends on the gauge

coupling of the YM-group itself. For a temperature dependence of the friction Υ ∝ T 3, we

can derive the spectral index in the weak regime using equations (28), (29), (32), (27) and:

lim
Q�1

dlnT

dN
= (3εV − 2ηV ) (A3)

finding:

ns − 1 =
1

1 + 2n+ 2πQT
H

(2ηV − 6εV ) +
2πQT
H

1 + 2n+ 2πQT
H

(8εV − 6ηV ) +
2n

1 + 2n+ 2πQT
H

(−2εV )

(A4)

If the inflaton is not thermalized and 2πQT
H
� 1 we recover the regular cold inflation result.

The size of this parameter determines whether we are in a regime in which thermal fluctu-

ations dominate over quantum effects. When quantum effects dominate the spectral index

obtains a higher order correction, which is negligible. However, when thermal fluctuations

dominate we again obtain a spectral index that can only be red-tilted for potentials where
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ηV dominate, again demanding a fine-tuning of single field potentials, similarly to the strong

case. If the inflaton is fully thermalized the third term in equation (A4) dominates as n ∼ T
H

and Q � 1. However, for single field potentials the predicted spectral index ns for about

50 to 60 e-folds lies outside of the two sigma region. There does exist a transition region

where the inflaton is not fully thermalized for n ∼ 2πQT
H

< 1, where the observed spectral tilt

can be reproduced in the weak regime. However, in this transition region non-gaussianity

constraints become important [10]. For detailed non-gaussianity predictions in the weak

regime in the presence of a friction that scales as Υ ∝ T 3, see [10].

The weak warm inflation formulas above have only been calculated in the regime where

Q � 1 (for a temperature-dependent friction coefficient). Additionally, being conservative

we are only certain we can trust the thermal field theory calculations when α2T > H and

α2T > m (where m is the mass of the inflaton). Taking the combination of all these

constraints on the validity of the calculations that have been done, we find no region of

parameter space that can fit the observations (the values of ns, r, number of e-folds and

the size of the perturbations). So we are unable to make an observationally viable weak

warm inflation model. However it is possible that if the calculations for warm inflation were

extended to include a region of Q ∼ 1 (for our temperature-dependent friction) one could

find a viable inflation model. Or similarly it is possible that if the thermal field theory

calculations were valid beyond α2T > H and α2T > m then one could find a viable weak

warm inflation model. We leave this for future work.
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