Computers and Chemical Engineering 140 (2020) 106935

journal homepage: www.elsevier.com/locate/compchemeng

Contents lists available at ScienceDirect

Computers and Chemical Engineering

Computers
& Chemical
Engineering

Accelerating multi-dimensional population balance model simulations g

Check for

via a highly scalable framework using GPUs

Chaitanya Sampat, Yukteshwar Baranwal, Rohit Ramachandran*

Chemical and Biochemical Engineering, Rutgers University, Piscataway, N] 08854, USA

ARTICLE INFO ABSTRACT

Article history:

Received 18 February 2020
Revised 24 April 2020
Accepted 16 May 2020
Available online 30 May 2020

Keywords:
Population balance model

The solution of high-dimensional PBMs using CPUs are often computationally intractable. This study fo-
cuses on the development of a scalable algorithm to parallelize the nested loops inside the PBM via a
GPU framework. The developed PBM is unique since it adapts to the size of the problem and uses the
GPU cores accordingly. This algorithm was parallelized for NVIDIA® GPUs as it was written in CUDA®
and C/C++. The major bottleneck of such algorithms is the communication time between the CPU and the
GPU. In our studies, communication time contributed to less than 1% of the total run time and a max-
imum speedup of about 12 over the serial CPU code was achieved. The GPU PBM achieved a speedup

GPU of about two times compared to the PBM’s multi-core configuration on a desktop computer. The speed

Parallel computing
Granulation

MPI

CUDA

improvements are also reported for various CPU and GPU architectures and configurations.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Various chemical industries such as detergent, food, pharma-
ceutical, fertilizers, catalyst deal with particulate processing on a
daily basis. These processes constitute to about 50% of the world’s
chemical production (Seville et al., 2012). In the pharmaceutical in-
dustry, particulate processes are widely used to increase the size
of the granules, improve flow-ability, increase yield strength etc.
One of major processes is granulation, in which fine pharmaceuti-
cal powder blends are converted to larger granules using a liquid
or a dry binder (Chaturbedi et al., 2017). These larger granules help
in enhanced flowability and strength thus aiding further process-
ing.

Over the past decade, Population balance models (PBMs) have
been used widely to predict dynamics of distributed processes
(Ramkrishna and Singh, 2014). The population balance equation is
essentially a number conservation of particles (entities) which reg-
ulate the behavior of the entire particulate system. PBMs consist
of several external (i.e spatial) and internal coordinates and with
an increase in grids of these coordinates it can lead to a more ac-
curate model. With the increase in the number of grid of these
coordinates, it leads to an increase in calculations for each time
step, leading to higher simulation times. The calculations increase
by a factor of n* with n being the number of entity grids and
4’ being an example of the maximum number of nested integrals

* Corresponding author.
E-mail address: rohit.r@rutgers.edu (R. Ramachandran).

https://doi.org/10.1016/j.compchemeng.2020.106935
0098-1354/© 2020 Elsevier Ltd. All rights reserved.

considered in this study. ThePBMs describe the evolution of en-
tities into different states and into newer entities. Deriving accu-
rate equations to determine these rate of change of internal co-
ordinates requires precise empirical correlations from experimen-
tal data. Another way to increase the accuracy of these models
is to introduce a first-principle based kernel into these models
(Barrasso and Ramachandran, 2015). An accurate model which in-
corporates a higher number of grids as well as the inclusion of
a mechanistic kernel in its calculations is expected to be sluggish
to simulate and could take up to an hour (Barrasso et al., 2015) to
complete. Such models and their solution techniques are not viable
to be used in real time process control. Thus, there is a need to im-
prove the time it takes to simulate a PBM. Thus, a highly parallel
PBM code which can predict more accurately in real time could be
chosen over reduced order models currently used for process con-
trol.

The advancement of computers and their peripherals in recent
years have led to an increase in computational resources leading
to faster simulations. The central processing units (CPUs) now con-
tain multiple cores thus making it possible to run multiple pro-
cesses in parallel. In order to take advantage of a highly parallel
framework, large number of cores are required which may not be
possible in a personal desktop and a supercomputer cluster would
be needed. Another computer component that can to be used to
run a highly parallel code is the computer’s graphic processing
unit (GPU) (Prakash et al., 2013b). These GPUs contain thousands
of compute cores that can be used to run tasks in parallel. Thus,
a GPU-equipped desktop could have compute power on par with

https://doi.org/10.1016/j.compchemeng.2020.106935
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.106935&domain=pdf
mailto:rohit.r@rutgers.edu
https://doi.org/10.1016/j.compchemeng.2020.106935

2 C. Sampat, Y. Baranwal and R. Ramachandran/Computers and Chemical Engineering 140 (2020) 106935

a multi-CPU node supercomputer. With the launch of Compute
Unified Device Architecture (CUDA®), NVIDIA® made it easier to
use GPUs for general parallel programming in an approach usually
termed as general purpose computing on GPUs.

The main objective of this work is to develop a highly scalable
framework to simulate PBMs on GPUs. This framework is indepen-
dent of the type of kernels as well as number of spatial compart-
ments as well as the number of solid bins used. The framework is
universal and is able to run of different NVIDIA GPUs without the
need for any changes. The number of threads that the PBM exe-
cutes depends upon the size of the problem as well as the number
of cores available on the GPU. This code was developed in NVIDIA®
CUDA® C/C++. A similar code was also developed on C++ to be run
on the CPU which has limited scalability due to the number of CPU
cores available on a desktop computer. This work also enables the
use of desktop computers to obtain numerical solutions to com-
putationally intensive tasks rather than relying on supercomputers
for quicker results.

2. Background and previous works
2.1. Population balance modeling and wet granulation

Population balances equations have been successful in predict-
ing physical phenomena occurring in granulation such as aggrega-
tion, breakage and consolidation. These models predict how groups
of distinct entities behave on a bulk scale during granulation. A
general representation of the model is:

ad ad dv ad dx
—F(v, X, t)+—[F(v,Xx, t)— (v, X, t —[F(v,X, t)—(V, X, t
St F VX D+ [PV X 0 o (VX D [F VX, 0 2 (v X, 0]

= N formation (v, x, t)+mdepletion (v, X, t)+Fn (v, X,) —Foue (V, X, 1)

(1)

where v is a vector of internal coordinates. v is commonly used
to describe the solid, liquid, and gas content of each type of parti-
cle. The vector x represents external coordinates, usually spatial.
F represents the number of particles present inside the system,
F, and Fy is the rate of particles coming in and going out the
system respectively. Ngormation aNd Ryepietion are the rate of forma-
tion and depletion due various phenomena. R,mqrion described in
Eq. (5) is the most computationally intensive component of the
PBM. This calculation consists of a double integral for each entity
being tracked. In a system tracking 2 particulates, it would require
4 nested loops to compute these integrals. Fig. 5 also indicates that
this calculation takes 25% of the total run time. Thus, parallelizing
this calculation is crucial to the effectiveness of the parallel algo-
rithm.

Wet granulation is the process of engineering granules from
pharmaceutical powder blends with the addition of liquid or solid
binders. This process is usually carried out to obtain granules
with a certain PSD, bulk densities and other physical properties
(Barrasso and Ramachandran, 2015). There are about three rate
processes that occur due the addition of a liquid binder to the
powder mixture are wetting and nucleation, consolidation and ag-
gregation, and breakage and attrition (Sen et al., 2014). One way
to perform wet granulation of pharmaceutical powders is to use
a high shear granulator. In a high shear granulator, as the lig-
uid binder is distributed within the granulator, liquid bridges are
formed between particles and are subjected to the impeller. The
impeller rotation along with particle-particle and particle-wall in-
teractions results in the aforementioned granulation mechanisms.

2.2. Parallel computing

Due to widely available access to high performance computing
infrastructure, parallel computing has been extensively used by sci-

entists to perform simulations. Parallel computing is the process of
splitting of larger calculations into many smaller ones which can
be executed concurrently (Almasi and Gottlieb, 1989). This type of
execution helps achieve large speed gains over serially running a
simulation serially on a single core in a serial manner. The com-
putational task can be decomposed in two way, either at the task
level or at the data level. Task parallelism requires each process to
behave distinctively from another as they would each be perform-
ing different operations. These operations could be performed on a
single data set or on multiple data sets, known as multiple instruc-
tions single data (MISD) and multiple instructions multiple data
(MIMD) respectively. On the other hand, data parallelism involves
the distribution of data across various processes that usually per-
form same set of operations on the data (Solihin, 2015). This type
of parallelism is known as single instruction multiple data (SIMD).
MIMD and SIMD can also be combined in certain systems, further
reducing the simulation times.

2.3. GPU based parallel computing

Traditionally, large parallel jobs were run on supercomputers
having thousands of cores, but these require special components
making them expensive. Graphic processing units (GPU) were ini-
tially used for vector calculations to support graphics inside a com-
puter system. But, lately GPU manufacturers have started to pro-
mote their use in general computing as well. This form of GPU-
based computing has been gaining popularity among scientists to
accelerate simulations (Kandrot and Sanders, 2011). GPUs comprise
of a massively parallel architecture with hundreds to thousands of
computational cores which can have thousands of active threads
running simultaneously (Keckler et al., 2011). This means that GPUs
have large computing potential which can be exploited using par-
allel programming languages such as OpenCL and CUDA®.

CUDA® is an application programming interface (API) devel-
oped by NVIDIA® (NVIDIA Corporation, 2012) that enables users
to program parallel code for execution on the GPU. Parallel code
for the GPU is written as kernels, which are similar to functions or
methods in traditional programming languages. As several parts of
the code need to be executed only once during a simulation, only
a few sections of the code need to be written in terms of kernel
while the remaining sections have to be serially executed on the
CPU of the system. The nvcc compiler from the CUDA® toolkit
prioritizes the compilation of these kernels before passing the se-
rial section of the code to the native C/C++ compiler inside the
system. There are three main parallel abstractions that exist in CU-
DA® viz. grids, blocks and threads (Santos et al., 2013). Each kernel
executes as a grid which in turn consists of various blocks which
are consistuted by various threads. This thread-block-grid hierarchy
helps obtain fine grained data level and thread level parallelism.
An illustration of this hierarchy is observed in Fig. 1.

Another important aspect related to GPU parallelization is the
data communication between the threads. The GPU consists of var-
ious memory modules with different access limitations as shown
in Fig. 1. The threads inside each block can communicate with each
other using the shared memory. This memory is local to the block
where these threads exist i.e. they are not accessible by threads
from other blocks. In addition to the shared memory each thread
has its own local memory where local/temporary variables for each
kernel can be saved. The threads from different blocks communi-
cate with each other using the global memory which is visible to
all blocks inside the GPU, but at the cost of higher communication
times. Data access speeds for a thread are fastest for data stored
in local memory followed by shared memory inside a block and
slowest for data in the global memory of the GPU.

C. Sampat, Y. Baranwal and R. Ramachandran /Computers and Chemical Engineering 140 (2020) 106935 3

Multiprocessor (Grid)
Block
(0,0)
Block
(1,0)

Block
(0,n)

Block(2,n)

Shared memory

Thread
(p.0)

Global Memory
||

Constant Memory

Texture Memory

Fig. 1. The parallel structure matrix inside the GPU and the various memories associated with each structure.

2.4. Previous parallelized PBM works

PBMs with large number of internal and external coordi-
nates are computationally intensive. Thus, several researchers
have made attempts to increase the speed of these simulations.
Gunawan et al. (2008) developed a parallelization technique using
a high-resolution finite volume solution of the PBM. The studies
carried out by Gunawan et al. (2008) for their parallel PBM algo-
rithm achieved good parallel efficiency upto 100 cores. This study
was limited by the number of grids used for the PBM,which meant
the problem size was not computationally very heavy. This study
also suggested that an algorithm with a shared memory model
could help improve simulation speeds further. A hybrid mem-
ory model which uses both shared and local memory was im-
plemented by Bettencourt et al. (2017) to obtain speed improve-
ments of about 98% from the serial code. This implementation
took into account both Message Passing Interface (MPI) as well
as Open Multi-processing (OMP). A similar PBM parallelization ap-
proach was also undertaken in Sampat et al. (2018) and an approx-
imate speedup of 13 was obtained. The reduction in speed was at-
tributed to the use of dynamic arrays used in their PBM framework
to accommodate the hybrid nature of the model being used.

Algorithms to parallelize the PBM codes on GPU have been
studied briefly by Prakash et al. (2013b) using the inbuilt MATLAB’s
parallel computing toolbox (PCT). They divided the operations of
the nested loops into slices which would only use 240 cores of
GPU.This study was able to achieve good speedup values but could
have been higher if the code had been implemented in native pro-
gramming languages such as C or FORTRAN. Since MATLAB is a
high level language it internally converts the written code to native

programming languages before it is sent to the processor leading
to excess computation which can be avoided (MathWorks Docu-
mentation, 2017). Prakash et al. (2013a) have shown that it is ag-
gregation followed by breakage are responsible for the majority
of the simulation time of the PBM due to the nested integrals in
the formation and depletion terms. The continuous growth terms
are not computationally intensive in comparison. Thus, the PBM
in this work focuses on only discrete growth terms. Other works
that have used GPU acceleration to improve computation times
for their population balance simulations include those from var-
ious other chemical engineering processes such as crystallization
(Szilagyi and Nagy, 2016), combustion (Shi et al., 2012), multiphase
flow (Santos et al., 2013), coagulation dynamics (Xu et al., 2015).
Several of these works fail to address the problem size as a fac-
tor in determining number of GPU cores used for the simulation.
These algorithms are restricted to a maximum number of cores
that are used and with an increase in the problem size, the algo-
rithm would not adapt to an increase in the number of cores used.
This could potentially lead to computation power that may go un-
used in high-end GPUs that have the capacity to perform several
teraflops of double-precision calculations.

3. Method and implementation
3.1. PBM implementation

The overall population balance equation with a lumped liquid
and gas coordinates can be represented as:

d
EF(SI" X, t) = magg(si’ X, t) + Snbreak(siﬁ X, t)

4 C. Sampat, Y. Baranwal and R. Ramachandran/Computers and Chemical Engineering 140 (2020) 106935

+ (51, X,) — B (51, X, 0) 2)

where, F(s;, x) represents the number of solid particles of type i
being studied in each spatial compartment x of the granulator. The
rate of aggregation Hqgg(s;, x) and the rate of breakage Rpeq(s;, x)
determines the rate at which particles density changes within dif-
ferent size classes. The rate of particles entering, F;,(s;, x) and ex-
iting, Fouc(s;, x), the spatial compartment due to particle transfer
also affects their number in each size class. The rate of change of
internal liquid volume in each particle can be calculated as:

d .
aF(Si, X)L(si, X) = Riig.age (Si> X) + Riig preak (Si> X) + Fin (Si, X)lin (51, X)

— Foue (i, %) Loue (51, X) + F (51, X)Iggq (1, %) 3)

where, I(s;, x) is the internal liquid volume in each particle with
s; as the solid volume for solid type i in the spatial compart-
ment X. Riig age(Six X) and Riig preai(Si, X) are the rates at which liquid
is transferred between size classes due to aggregation and break-
age respectively. l;,(s;, x) and lou:(s;, x) are the internal liquid vol-
umes of the particles entering and exiting the spatial compart-
ment. l,qq(s;, x) is the rate of volume of liquid acquired by each
particle in the compartment at every time step due to external lig-
uid addition. Similarly, the rate of change of gas volume is calcu-
lated using the following equation:

d .
EF(SI" X)g(Si, X) = Ngas.age (Si» X) + Rggs preak (Si» X) + Fn (Si, X)Zin (51, X)

— Foue (Si, X)out (Si, X) + F(Si, X)Zeons (Si, X) (4)

where, g(s;, x) is the gas volume of each particle with solid
volumes of s; in the spatial compartment X. MRggsage(S;, X) and
Ngas break(Si» X) are the rates of gas transferred between size classes
due to aggregation and breakage respectively. g;,(s;, x) and Zou(S;,
x) are the gas volume of the particles entering and leaving the spa-
tial compartment respectively. gcons (S;, X) represents rate of the vol-
ume of gas particles formed due to process of consolidation oc-
curring inside the system. The rate of aggregation, ggg(s; x) in
Eq. (2) is calculated as (Chaturbedi et al., 2017):

Si S
magg(si,x)=%/0 /0 B(s.si — s/)F (s{. X)F (s; — 5]. x)dsyds]

5muxi —Si
Fs0 [B siF(hds(5)

where, B(s;, s}, x) is the aggregation kernel and is expressed as a

function of collision frequency (C) and collision efficiency (). Fur-

ther information on the model can be found in Appendix A.1.
Similarly, the breakage rate can be expressed as follows:

Smax;
Rbpreak (Si» X) = /0 Kpreak (S,{7 X)F(S,{a X)dS,{

_Kbreak(sis X)F(Si, X)dS,' (6)

where, Kpoqr(S;, X) is the breakage kernel. The formulation for the
breakage kernel is discussed in more detail in AppendixA.2.

The rate of increase of liquid volume of inside a particle,
laqq (i, X) is expressed as:

Zisi X mspray (7)
Myolig (X)
where, X;s; is the total solid volume of the particle; risprqy is the
rate of external liquid addition and myg,;4 is the total amount of
solid present in the compartment.
Particle transfer rate, Fy, (s;, x) in Eq. (2) is calculated as:

laaa (51, %) =

compartment (x) x dt

dcom partment

. .)
Fout (81, X) = F(si, %)

where, Veompartment(X) and dcompartment are respectively the average
velocity of particles in compartment x and the distance between
the mid-points of two adjacent compartment, which is the dis-
tance particles have to travel to move to the next spatial compart-
ment. dt is the time-step.

A finite difference method was used to solve the developed sys-
tem of ordinary differential equations (ODEs) (Barrasso and Ra-
machandran, 2015). Euler integration was used as the numerical
integration technique for its speed improvements and its min-
imal impact on accuracy (Barrasso et al., 2013). To avoid nu-
merical instability due to the explicit nature of the Euler inte-
gration, Courant-Friedrichs-Lewis (CFL) condition must be satis-
fied (Courant et al., 1967). For our PBM model, time-step was cal-
culated at each iteration such that, the number of particles leaving
a particular bin at any time was less than the number of particles
present at that time (Ramachandran and Barton, 2010).

3.2. MPI implementation

The message passing interface (MPI) parallel implementation
of the PBM was focused towards equal distribution of the task
and memory. The implementation used in this work differs from
the hybrid implementation used by Bettencourt et al. (2017) and
Sampat et al. (2018) as only MPI was used to parallelize the code.
It was pointed by Sampat et al. (2018) that open multi-processing
(OMP) does not provide significant speed improvements due to
limitations with usage of dynamic vectors which are essential for
such a system. Thus, the OMP implementation was avoided which
also meant that lesser number of cores would be required. The fo-
cus of this study to localize the computation power rather than
depend on supercomputers/clusters. A pseudo code has been pre-
sented in Algorithm 1 to illustrate the distribution of tasks. For

Algorithm 1 CPU-based Parallel Population Balance Model
1: procedure PBM(Ncomp. Nyvipr) > Ncomp 1S the number of
compartments

2 Divide NComp in Nyp

3 while t < tfinal do

4 for Vncomp in 1 MPI process do

5: Calculate Mgggregarion for solid bims Sp,5;

6

7

8

9

Calculate Npreqrqge for solid bins 5, S
Calculate MNpgticles using Euler’s method
end for
: Collect Mpgricles from Nyp > Master process collects all
data

10: Calculate timestep using CFL condition

1: thew = t + timestep

12 end while

13: end procedure

each time step, a MPI process is responsible for a certain section
of the problem, usually a spatial chunk inside the geometry (also
referred to as compartment).

Simulations for this study were performed on a computer with
an Intel Core i7-7700K processor clocked at 4.2 GHz and 32 GB of
RAM. For maximum performance while data reading and writing
a SSD was used. GCC version 7.4 with openMPI 2.0 was used to
compile the parallel C++ code.

3.3. GPU implementation

NVIDIA®’s CUDA® toolkit extends the C language such that user
defined functions called kernels can be created to be run on the
GPU. These kernels can be executed several number of times in
parallel using large number of threads. A thread is a sequence of

C. Sampat, Y. Baranwal and R. Ramachandran/Computers and Chemical Engineering 140 (2020) 106935 5

Algorithm 2 GPU-based Parallel Population Balance Model

1: procedure PBM(Ncomp)> Neomp is the number of compartments
2: Copy initial variables from CPU memory to GPU memory
3: GPU initial calculation kernel call from CPU >
Performed on GPU

Divide NComp in NblOCkS

Copy back initial values to the CPU RAM

while ¢ <t do

Copy time-dependent process variables from CPU to

GPU RAM

N @ 9o

8: GPU aggregation rate kernel call from CPU

9: Calculate Mggy for solid bims $1,S; > Performed on
GPU

10: GPU aggregation rate kernel call from CPU

11: Calculate Npregrege TOr solid bins S1,sp > Performed
on GPU

12: Calculate Mpgticles using Euler’s method

13: Copy back process rate data back to the CPU RAM

14: Calculate timestep using CFL condition > Performed
on CPU

15: thew = t + timestep

16: end while
17: Clear GPU memory
18: end procedure

programmed instructions that can be managed by the computer’s
scheduler. A kernel depending upon the dimensions of the data can
execute instructions in 1-D, 2-D or 3-D thread blocks. The kernel
can also launch multiple thread blocks at once, thus increasing the
number of parallel process executions known as grid. Similar to a
thread block, a grid can range from 1-D to 3-D depending upon the
data under study. The code execution was split between the CPU
(also called host) and GPU (also called device). Time sensitive cal-
culations and calculations that require collection of data from the
GPU were handled on the CPU using a single core, while the more
computationally intensive tasks were distributed on to the GPU us-
ing kernels. Similar to the parallelization using MPI in CPUs, the
geometry was split into multiple compartments. These compart-
ments determined the number of blocks inside each GPU kernel.
The number of solids used helped formed the threads in each of
these blocks. The work flow of the execution can be found in Fig. 2.
The arrows in Fig. 2 indicate the interchange of data between the
CPU memory to the GPU memory.

4. Results and discussions
4.1. Performance metrics

Parallel efficiency of an algorithm can be tested either by strong
scaling, where the problem size remains the same and number of
processing elements are increased or by weak scaling, where the
number of processing elements remain the same and the prob-
lem size is increased. In this study, the number of processing units
were limited due to the architecture of the GPU and the CUDA®
C++ code developed did not utilize more than one GPU during exe-
cution. Thus, a weak scaling approach was preferred in such a sce-
nario. The parallel performance of a code is usually measured in
terms of on ratio of time taken to solve the run the simulations on
one core to the time taken to run the simulation on N cores. It is
depicted in Eq. (9), where t; is the time taken to the run the prob-
lem on one core where as ty is the time taken to run the problem
on N cores.

Speedup = % 9)

PR N PR -,

:’ GPU (Device)®
: ;

= Allocate memory | -
! PBM grid
i | d . 8 .
I Sgr"\gtgﬂr:: — T» variables-GPU |
! | . co| .
I

| Kernellaunch

o - . __command Iy] |
1 Initialize grid 1 . Calculate Grid .
" (nSolid1 x nSolid2) 1

matrices . 1
1 N | Copy calculated .
l . values 1 |

Insert initial particles

|

1 .

No , | |
1 .

1 .

Yes 1 |

| Allocate memory = Process |
! |
: andcopy 1 o/ \ariables - GPU .
! | copy. |

| Initialize process

. variables

: v I . i
= Kernellaunch | -

! Calculate I command . Agg. kernel grid

X " »| (nComp.,nSolids1x |— |
| Aggregation rates : | nsolids2)

! v : ! !
| . :
N Kernel launch Breakage kernel grid |

1
: command —»| (nComp.nSolids1x [— *

. nSolids2) |
. l | : '
I . 1 |
. 1 Kernel Iaur:jch . Conso. kernel grid

comman L (nComp.,nSolids1 x +—
nSolids2) |

| o | e |

1 Calculate Breakage
rates

Calculate
1 Consolidation rates 1

Copy process
variables

Assign values to 1
1 process variables

T
' T : .. .
! |

| Calculate variable |
timestep

t=t+timestep

Calculate final d50 I
1 values

A

Fig. 2. Workflow of the GPU code indicating data transfers and execution timeline
of the code.

The problem size was varied by increasing the number of com-
partments inside the PBM. This in turn increased the total number
of calculations performed without increasing the amount of work
that needed to be performed by each processing unit (core). The
number of cores required during the simulation on the GPU was
determined by the product of the number of compartments and
the number of solid bins for each solid type used. Thus, the num-
ber of GPU cores used in this study varied from 256 cores for 1
compartment to 8192 for 32 compartments.

C. Sampat, Y. Baranwal and R. Ramachandran/Computers and Chemical Engineering 140 (2020) 106935

6

rSSE of GPU simulation

8

16

Number of compartments

Fig. 3. Relative sum of square error observed for the GPU simulations compared to the serial simulation.

240 T

220

200

180

Time(s)

160

140

120

100 L I I

16

32

Number of Compartments

Fig. 4. Time taken to complete 90 s of PBM simulation with varying number of compartments on NVIDIA® Quadro P4000 GPU.

Parallelization of code can lead to deviation in calculations from
the serial execution. This discrepancy in calculation can be at-
tributed to the difference in the precision of the cores of the CPU
or GPU being used. This change in precision can lead to a small er-
ror in one timestep, which can percolate and produce results that
can drastically different from the serial code. To check the valid-
ity of the presented algorithm a relative least sum of squares error
was calculated as shown in Eq. (10):

t, 2
TSSE _ EZM (dsosermli - dsoparalleli)
i=0 N

The rSSE was calculated for the algorithm considering the sin-
gle core MPI solution as the base and determining the error val-
ues with respect to this simulation. The error for each of the case
can be found in Fig. 3. The error for the GPU simulations varied
from 0.45% to about 6% which is an acceptable range. Thus, mak-
ing the solutions from the algorithm quicker with a very small loss
in accuracy. There was an increase in the error with the increase

(10)

in number of compartments, which could be due to the increase
in the number of data points compared.

4.2. Algorithm performance on a desktop GPU

The desktop configuration used for these studies comprised of
a Intel i7 — 7700K CPU clocked at 4.5GHz with 32 GB DDR4 RAM
and a NVIDIA® Quadro P4000 GPU. The NVIDIA® Quadro GPU used
had 1792 CUDA® cores with 8 GB of GDDR5 RAM. CUDA® version
9.0 paired with GCC 7.3 was used to the run the desktop GPU sim-
ulations with Ubuntu 18.04 operating system (OS).

The number of solid bins for the 2 different types of solids
used were 16, this meant that there was a maximum of 65,536
calculations that needed to be performed for each time step for
each compartment. While, the number of calculations increased
to over 2 million per time step when the number of compart-
ments was increased to 32. Each GPU consisted of several stream-
ing multi-processors(SM) which help distribute the problem to the
1792 cores inside the GPU. Once the calculations pass from the CPU

C. Sampat, Y. Baranwal and R. Ramachandran /Computers and Chemical Engineering 140 (2020) 106935 7

m Agg. Kernel (~24%)
M Breakage Kernel (~23%)
Cons. Kernel (~3%)
Copying data (~ 0.1%)
m Kernel launch commands (~ 0.1%)
M Initialization calculations (~ 0.01%)

M Other CUDA API calls (~48%)

Fig. 5. Distribution of times taken by different processes inside the GPU-parallelized PBM.

I I I p———
— % —1 MPI core -
103+ — % —2MPI core //*//’ |
4 MPI core _ -
-
/
//7< 77777 e i 4
/1
/1
@ /1
2 /1
e 102F I |
10 /
I
/1
I
I
/]
%
///
A\\/
101 —— : !
1 2 4 8 16

Number of Compartments

Fig. 6. Time taken to complete 90 s of PBM simulation with varying number of compartments on desktop CPU with varying number of MPI cores.

to the GPU, the SMs take over and allocate work to the GPU in
blocks of 32 threads each. SMs divide these calculations in blocks
of 32 threads and send it to the cores for calculations which ac-
counts for some overheard time during the simulation. This over-
head is present for each timestep, which can be compensated by
the number of calculations running in parallel on the GPU.

The PBM simulation was run for 90 s which included 45 s of
mixing and 45 s of liquid addition. The algorithm performance was
tested by weak scaling the problem by changing the number of
compartments from 1 and doubling them in each simulation un-
til the number of compartments reached 32. Fig. 4 shows the time
taken these simulation. It can be observed that the amount of time
taken for the simulation remains almost constant till the number
of compartments reaches 8, followed by an increase in the time
taken as the number of compartment are increased further to 32.
According to parallelization procedure used the cores utilized to
run the code is directly proportional to the number of compart-
ments and the number of solid bins present in the problem. The
constant time is a result of the problem size being smaller than
the Quadro P4000’s 1792 CUDA® cores, i.e. the algorithm was not
able to utilize all the CUDA® cores till the compartment number
was 8. Since the algorithm uses about 256 cores to simulate each
compartment, the cores would not suffice once the compartment
number reaches 16 and the SMs would have to wait to distribute
the calculation to cores once initially allocated calculations are fin-
ished. This wait time leads to the increase in the time of simula-
tions as seen in the case for 16 and 32 compartments.

14 T T
— © —2 MPI cores
— B —4 MPI cores
121 GPU 1
10 1
E\\\
o) - T -
o] e il
n 6r // >
B -
4 r 4 -7 q
s _
/zr /@/
2’9{\8// b
d
= | | |
12 4 8 16 32

Number of Compartments

Fig. 7. Comparing speedup for CPU and GPU simulations to respective serial simu-
lations.

The above argument was supported by the profile of the code
that was obtained using NVIDIA®’s inbuilt code profiler nvprof.
Code profiling is an important step in algorithm development. The
profiler results can be varied based on the options chosen to ob-

500
480 | A

460 y

Time taken(s)
N o
N B
o o
N
N

N
o
o

T
N
L

380 , 1

360,¢

340 L . . .
12 4 8 16 32

Number of Compartments

(a)

C. Sampat, Y. Baranwal and R. Ramachandran/Computers and Chemical Engineering 140 (2020) 106935

6
T |
50 AT
-
~
o
I
L / i
4 |
|
[o%
=] !
Y]
o I
a |
»n
|
|
2r 1
|
|
114 1
/
X
ol , ,
12 4 8 16 32
Number of Compartments
(b)

Fig. 8. (a) Time taken to run 90s PBM simulation on HPC's Kepler K20 GPU (b) Speedup achieved for the GPU simulation over the serial simulation on the HPC device.

tain the parameters being studied. In this case, API calls and GPU
activity were exported to understand the performance bottlenecks
and those sections of the code were rectified to improve the speed
of the algorithm. The profiler was executed for each case and it
was observed that aggregation kernel calculations took the most
time for execution followed by the breakage kernel. Consolidation
kernel and other calculations comprised of less than 1% of execu-
tion time. The other parameter studied was the number of times
each API was called by the code and the time spent. API calls in-
cluded the synchronization of threads working inside the GPU de-
vice, memory allocation for arrays, etc. Each thread inside the GPU
operates independently, thus all threads may not be at the same
section of the code at a given moment of time, thus some threads
may finish calculations before others. The time taken to synchro-
nize these threads required the most amount of time during the
execution of the code. When such an API is called by the code
further execution of the code is paused until all the threads of
the GPU are in the same line of code. This accounted for 99% of
the total other API call time. This indicated that there were not
many places where the code could have been optimized further
since synchronization statements were only added before calcula-
tions where complete array of data was required. If further reduc-
tion in these statements was undertaken, it would lead to data loss
and possibly incorrect final calculated particle size distribution. A
comparison of times taken by each process in the simulations is
shown in Fig. 5. A similar distribution of times was observed for
all simulations on the GPU.

4.3. Performance on GPUs compared to CPUs

The NVIDIA® Quadro P4000 GPU used had its cores at a base
clock speed of 1202 MHz while the CPU cores had a base clock of
4000 MHz. The algorithm used to parallelize on the GPU did not
permit the use of only one core of the GPU for simulation. Thus,
a single MPI core CPU simulation was used as the baseline for all
comparisons. Theoretically, it would take longer on a single core of
the GPU to run a similar simulation than on a single GPU core

The CPU version of the parallel PBM was run on the desktop
with the aforementioned configuration. This meant that the num-
ber of MPI cores available for the simulations was limited to 4.
Weak scaling of the problem by changing the number of compart-
ments was performed for this study. Fig. 6 shows a comparison of
the times taken by the simulation to run on 1, 2 and 4 MPI cores.

The times indicate that with the increase in the number of cores
the model took less time to complete calculations for the same
number of compartments. It can also be seen that for the same
number of MPI cores used in a soft scaling the amount of time in-
creases with increase in the number of cores. This increase can be
attributed to the increase in the number of calculations with addi-
tion of new compartments. There is a plateau in the times when
2 and 4 MPI cores were used for 8 and 16 compartments respec-
tively. When a further analysis of the rates was for each compart-
ment was undertaken it was observed that till the particles did not
each the last few compartments of the granulator no aggregation
or breakage occurred in those spatial sections thus reducing the
compute time and leading to similar simulation times.

Speedup is important to understand the scalability and paral-
lel performance of a code. Speedup for a code is directly propor-
tional to the number of cores used for a simulation. In Fig. 7, the
speedup increases with the increase in the number of MPI cores.
This increase in speedup can be attributed to the increase in the
computation power. One unusual trend observed in the case of 8,
16 and 32 number of compartments for both 2 MPI and 4 MPI
core simulations, the speedup is higher than 2 and 4 respectively.
This phenomena is known as super linear speedup which occurs
when the speedup is greater than the number of cores used. In
rare cases like these speedup increases due to increase in cache
memory and random access memory (RAM) available (Benzi and
Damodaran, 2009). The simulations with the GPU parallel code
showed an overall increase in the speedup as the number of com-
partments as seen in Fig. 7. The speedup was low for compartment
numbers 1 and 2 since the amount of time spent in communica-
tion in between the CPU and the GPU as well as the time taken by
the thread synchronization in the GPU to had a larger contribution
to the simulation time. The increase in number of compartments
diminished this communication time effect as amount of calcula-
tions is significantly higher. The highest speeedup achieved for a
GPU simulation was about 12.3, which means it took 12 times less
time than a serial CPU computation.

4.4. Server level GPU code performance

The high performance computing (HPC) device used to run the
parallel PBM GPU code was present at Rutgers at the School of En-
gineering (SoE). The SoE HPC cluster was equipped with a NVIDIA®
Kepler K20 GPU. This GPU contains 2496 CUDA® cores which are

C. Sampat, Y. Baranwal and R. Ramachandran/Computers and Chemical Engineering 140 (2020) 106935 9

have a base clock of 706 MHz and only 5 GB of GDDR5 of memory.
The Kepler series GPUs were a couple of generations older than the
Pascal generation Quadro P400 used in desktop simulation studies.
The clock speed and memory of the desktop GPU were higher than
the one present on the HPC.

The time taken to complete the 90 second PBM simulation on
the HPC's GPU are shown in Fig. 8(a). The time taken to run the
PBM initially remains constant upto 16 compartments, but a large
increase in the time is observed for the simulation with 32 com-
partments. This increase could be attributed to the saturation of
CUDA® cores of the GPU and that SMs had to wait for the previ-
ous calculations to complete before the threads were assigned the
remnant of calculations. This trend is similar to the trend observed
in Fig. 7 for the desktop GPU. A serial simulation was performed on
the HPC and used as a baseline for speedup calculations. Speedup
from the server GPUs are shown in Fig. 8(b). The increase in the
speed of the simulation for these studies is lower than the desk-
top studies which could be directly connected to clock speeds of
the CUDA® cores. The server GPU cores were clocked at a lower
frequency which meant the rate of calculations would decrease.
One other reason for reduced speedup could be the older architec-
ture of Kepler GPU which are slower in floating point calculations
(NVIDIA Corporation, 2016).

5. Conclusions

In the presented study, a PBM was developed using NVIDIA®’s
CUDA® C/C++ language to run in parallel on a GPU. The time
of the simulations on the GPU were compared to CPUs. In cases
with larger problem size, it was observed that GPU simulations
were faster than CPU simulations and there was minimal loss in
accuracy. It can be observed that GPUs are more efficient when
the complexity of the problem is high in terms of compartments,
which is a commonly observed in general application of PBMs. The
adaptive structure of the algorithm enabled the simulation to use
varying number of GPU cores to parallelize the PBM simulations.
The GPU architecture also plays a major role in the simulation
time. This work also highlighted that a desktop PC could be suf-
ficient for a computationally intensive simulation instead of a uti-
lizing a supercomputer or cluster. A similar parallel strategy could
be developed for growth terms for internal coordinates and other
rate processes inside the PBM using CUDA kernels. This work can
be extended in the future by testing it on newer GPU platforms
from NVIDIA® such as the Volta and Turing platforms, which are
more optimized for float point calculations than the Pascal plat-
form GPU used in this study. This strategy can also be extended to
other manufacturer GPUs using other programming languages such
as OpenCL. The presented algorithm can also be improved further
by eliminating loops inside the kernels using dynamic paralleliza-
tion supported by newer versions of CUDA®.

Software and data

Source code and input scripts for reproduction of the experi-
ments can be found at: https://github.com/csampat/pbmOnGPUs .

Appendix A. PBM model
Al. Aggregation kernel

The aggregation kernel used in this work was formulated as in
Barrasso et al. (2015):

B(si, si,x) = C(s;, 87, X)Y (53, 87, X) (A1)

The collision frequency of the solid particles was evaluated from
the existing DEM data from Sampat et al. (2018). To facilitate this

study, it was assumed that the collision frequency was indepen-
dent of the liquid particles present in the system.

The collision efficiency 1 was estimated based on Stokes, which
states that a collision is successful when the Stokes number St, as-
sociated with the collision is lesser than the critical Stokes number
St for the particles. These number are calculated as follows:

8muU
Sty = =
3nd?u

1 h
Sth = (1 + e)log(ha)

Here, i & d represent the harmonic mean of the masses and di-
ameters of the particles respectively. U is the collision velocity,
W is the viscosity of the system and e is the coefficient of resti-
tution. The thickness of the liquid on the surface of the parti-
cle h and the height of surface asperities h, were obtained from
Barrasso et al. (2015). Ugisicqr 1S defined as the ratio of the critical
Stokes number to the Stokes number associated with the collision.
The collision frequency is defined as:

(A2)

(A3)

Ucritical
W= f p(U)dU
0

where it is assumed that the collision velocities follow a log nor-
mal distribution:

(A4)

pU) = e [— 2)2} (A5)
A2. Breakage kernel

The breakage kernel Kpeq(S;, x) is formulated as:
K5 3) = o [~ p(UIGU (A6)

Similar to the aggregation kernel, Cippa: is defined as rate at
which the particles impact with the geometry in the DEM simu-
lation. Critical velocity for breakage to occur is defined as:

25t 9 (1-€)? 9
def M
U = -
break 0, X 3 X € X 16dpi
where 25t3, is defined as critical Stokes deformation number
(Iveson et al., 2001) and dj, is diameter of the solid particle s;.

(A7)

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.compchemeng.2020.
106935 .

CRediT authorship contribution statement

Chaitanya Sampat: Conceptualization, Methodology, Software,
Writing - original draft. Yukteshwar Baranwal: Software, Valida-
tion. Rohit Ramachandran: Conceptualization, Writing - review &
editing.

References

Almasi, G.S., Gottlieb, A., 1989. Highly Parallel Computing. Benjamin-Cummings
Publishing Co., Inc., Redwood City, CA, USA.

Barrasso, D., Eppinger, T., Pereira, FE., Aglave, R., Debus, K., Bermingham, S.K., Ra-
machandran, R., 2015. A multi-scale, mechanistic model of a wet granulation
process using a novel bi-directional PBM-DEM coupling algorithm. Chem. Eng.
Sci. 123, 500-513.

Barrasso, D., Ramachandran, R., 2015. Multi-scale modeling of granulation pro-
cesses: bi-directional coupling of PBM with DEM via collision frequencies.
Chem. Eng. Res. Des. 93, 304-317.

https://github.com/csampat/pbmOnGPUs
https://doi.org/10.1016/j.compchemeng.2020.106935
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0001
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0001
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0001
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0003
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0003
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0003

10 C. Sampat, Y. Baranwal and R. Ramachandran/Computers and Chemical Engineering 140 (2020) 106935

Barrasso, D., Walia, S., Ramachandran, R., 2013. Multi-component population bal-
ance modeling of continuous granulation processes: a parametric study and
comparison with experimental trends. Powder Technol. 241, 85-97.

Benzi, J., Damodaran, M., 2009. Parallel three dimensional direct simulation Monte
Carlo for simulating micro flows. In: Parallel Computational Fluid Dynamics
2007: Implementations and Experiences on Large Scale and Grid Computing,
67. Springer Science & Business Media, pp. 91-98.

Bettencourt, EE., Chaturbedi, A., Ramachandran, R., 2017. Parallelization methods for
efficient simulation of high dimensional population balance models of granula-
tion. Comput. Chem. Eng. 107 (Suppl C), 158-170.

Chaturbedi, A., Bandi, CK., Reddy, D., Pandey, P, Narang, A., Bindra, D., Tao, L.,
Zhao,]., Li, J., Hussain, M., Ramachandran, R., 2017. Compartment based pop-
ulation balance model development of a high shear wet granulation process via
dry and wet binder addition. Chem. Eng. Res. Des. 123, 187-200.

Courant, R., Friedrichs, K., Lewy, H., 1967. On the partial difference equations of
mathematical physics. IBM J. Res. Dev. 11 (2), 215-234.

Gunawan, R., Fusman, I, Braatz, R.D., 2008. Parallel high-resolution finite volume
simulation of particulate processes. AIChE J. 54 (6), 1449-1458.

Iveson, S.M., Litster, J.D., Hapgood, K., Ennis, BJ., 2001. Nucleation, growth and
breakage phenomena in agitated wet granulation processes: a review. Powder
Technol. 117 (1), 3-39.

Kandrot, E., Sanders,]., 2011. CUDA By Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Professional.

Keckler, S.W., Dally, WJ]., Khailany, B., Garland, M., Glasco, D., 2011. GPUS and the
future of parallel computing. IEEE Micro 31 (5), 7-17.

NVIDIA Corporation, 2012. NVIDIA CUDA C Programming Guide. NVIDIA Corpora-
tion, 2701 San Tomas Expressway, Santa Clara, CA 95050. version 4.2 edition.

NVIDIA Corporation, 2016. NVIDIA Tesla P100: The Most Advanced Datacenter Ac-
celator Ever Built. Technical Report.

Prakash, A.V., Chaudhury, A., Barrasso, D., Ramachandran, R, 2013. Simulation of
population balance model-based particulate processes via parallel and dis-
tributed computing. Chem. Eng. Res. Des. 91 (7), 1259-1271.

Prakash, A.V., Chaudhury, A., Ramachandran, R., 2013. Parallel simulation of popula-
tion balance model-based particulate processes using multicore CPUs and GPUs.
Model. Simul. Eng. 2013, 2.

Ramachandran, R., Barton, PI., 2010. Effective parameter estimation within a mul-
ti-dimensional population balance model framework. Chem. Eng. Sci. 65 (16),
4884-4893.

Ramkrishna, D., Singh, M.R., 2014. Population balance modeling: current status and
future prospects. Annu. Rev. Chem. Biomol. Eng. 5, 123-146.

Sampat, C., Bettencourt, F.,, Baranwal, Y., Paraskevakos, I., Chaturbedi, A., Karkala, S.,
Jha, S., Ramachandran, R., lerapetritou, M., 2018. A parallel unidirectional cou-
pled DEM-PBM model for the efficient simulation of computationally intensive
particulate process systems. Comput. Chem. Eng. 119, 128-142.

Santos, EP, Senocak, I., Favero, J.L., Lage, P.L., 2013. Solution of the population bal-
ance equation using parallel adaptive cubature on GPUs. Comput. Chem. Eng.
55, 61-70.

Sen, M., Barrasso, D., Singh, R., Ramachandran, R., 2014. A multi-scale hybrid
CFD-DEM-PBM description of a fluid-bed granulation process. Processes 2 (1),
89-111.

Seville, J., Tiiziin, U, Clift, R., 2012. Processing of Particulate Solids, 9. Springer Sci-
ence & Business Media.

Shi, Y., Green, W.H., Wong, H.-W., Oluwole, 0.0., 2012. Accelerating multi-dimen-
sional combustion simulations using GPU and hybrid explicit/implicit ode inte-
gration. Combust. Flame 159 (7), 2388-2397.

Solihin, Y., 2015. Fundamentals of Parallel Multicore Architecture. Chapman and
Hall/CRC, New York, USA.

Szilagyi, B., Nagy, Z.K., 2016. Graphical processing unit (GPU) acceleration for nu-
merical solution of population balance models using high resolution finite vol-
ume algorithm. Comput. Chem. Eng. 91, 167-181.

MathWorks™Documentation, 2017. Parallel computing toolbox - MATLAB®. https:
//www.mathworks.com/products/parallel-computing.html.

Xu, Z., Zhao, H., Zheng, C., 2015. Accelerating population balance-monte carlo simu-
lation for coagulation dynamics from the Markov jump model, stochastic algo-
rithm and GPU parallel computing. J. Comput. Phys. 281, 844-863.

http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0004
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0004
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0004
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0004
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0005
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0005
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0005
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0006
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0006
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0006
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0006
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0008
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0008
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0008
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0008
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0009
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0009
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0009
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0009
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0010
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0010
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0010
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0010
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0010
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0011
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0011
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0011
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0012
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0012
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0012
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0012
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0012
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0012
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0013
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0013
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0015
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0015
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0015
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0015
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0016
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0016
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0016
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0017
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0017
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0017
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0020
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0020
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0020
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0020
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0020
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0021
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0021
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0021
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0021
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0022
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0022
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0022
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0022
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0022
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0023
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0023
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0024
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0024
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0024
https://www.mathworks.com/products/parallel-computing.html
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0025
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0025
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0025
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0025

	Accelerating multi-dimensional population balance model simulations via a highly scalable framework using GPUs
	1 Introduction
	2 Background and previous works
	2.1 Population balance modeling and wet granulation
	2.2 Parallel computing
	2.3 GPU based parallel computing
	2.4 Previous parallelized PBM works

	3 Method and implementation
	3.1 PBM implementation
	3.2 MPI implementation
	3.3 GPU implementation

	4 Results and discussions
	4.1 Performance metrics
	4.2 Algorithm performance on a desktop GPU
	4.3 Performance on GPUs compared to CPUs
	4.4 Server level GPU code performance

	5 Conclusions
	Software and data
	Appendix A PBM model
	A1 Aggregation kernel
	A2 Breakage kernel

	Supplementary material
	CRediT authorship contribution statement
	References

