
Computers and Chemical Engineering 140 (2020) 106935

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

Accelerating multi-dimensional population balance model simulations

via a highly scalable framework using GPUs

Chaitanya Sampat, Yukteshwar Baranwal, Rohit Ramachandran
∗

Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA

a r t i c l e i n f o

Article history:

Received 18 February 2020

Revised 24 April 2020

Accepted 16 May 2020

Available online 30 May 2020

Keywords:

Population balance model

GPU

Parallel computing

Granulation

MPI

CUDA

a b s t r a c t

The solution of high-dimensional PBMs using CPUs are often computationally intractable. This study fo-

cuses on the development of a scalable algorithm to parallelize the nested loops inside the PBM via a

GPU framework. The developed PBM is unique since it adapts to the size of the problem and uses the

GPU cores accordingly. This algorithm was parallelized for NVIDIA® GPUs as it was written in CUDA®

and C/C++. The major bottleneck of such algorithms is the communication time between the CPU and the

GPU. In our studies, communication time contributed to less than 1% of the total run time and a max-

imum speedup of about 12 over the serial CPU code was achieved. The GPU PBM achieved a speedup

of about two times compared to the PBM’s multi-core configuration on a desktop computer. The speed

improvements are also reported for various CPU and GPU architectures and configurations.

© 2020 Elsevier Ltd. All rights reserved.

1

c

d

c

d

o

O

c

o

i

i

b

(

e

u

o

a

c

c

s

b

’

c

t

r

o

t

i

(

c

a

t

c

t

p

P

c

t

y

t

t

c

f

p

b

r

h

0

. Introduction

Various chemical industries such as detergent, food, pharma-

eutical, fertilizers, catalyst deal with particulate processing on a

aily basis. These processes constitute to about 50% of the world’s

hemical production (Seville et al., 2012). In the pharmaceutical in-

ustry, particulate processes are widely used to increase the size

f the granules, improve flow-ability, increase yield strength etc.

ne of major processes is granulation, in which fine pharmaceuti-

al powder blends are converted to larger granules using a liquid

r a dry binder (Chaturbedi et al., 2017). These larger granules help

n enhanced flowability and strength thus aiding further process-

ng.

Over the past decade, Population balance models (PBMs) have

een used widely to predict dynamics of distributed processes

 Ramkrishna and Singh, 2014). The population balance equation is

ssentially a number conservation of particles (entities) which reg-

late the behavior of the entire particulate system. PBMs consist

f several external (i.e spatial) and internal coordinates and with

n increase in grids of these coordinates it can lead to a more ac-

urate model. With the increase in the number of grid of these

oordinates, it leads to an increase in calculations for each time

tep, leading to higher simulation times. The calculations increase

y a factor of n 4 with n being the number of entity grids and

4’ being an example of the maximum number of nested integrals
∗ Corresponding author.

E-mail address: rohit.r@rutgers.edu (R. Ramachandran).

u

o

a

ttps://doi.org/10.1016/j.compchemeng.2020.106935

098-1354/© 2020 Elsevier Ltd. All rights reserved.
onsidered in this study. ThePBMs describe the evolution of en-

ities into different states and into newer entities. Deriving accu-

ate equations to determine these rate of change of internal co-

rdinates requires precise empirical correlations from experimen-

al data. Another way to increase the accuracy of these models

s to introduce a first-principle based kernel into these models

 Barrasso and Ramachandran, 2015). An accurate model which in-

orporates a higher number of grids as well as the inclusion of

 mechanistic kernel in its calculations is expected to be sluggish

o simulate and could take up to an hour (Barrasso et al., 2015) to

omplete. Such models and their solution techniques are not viable

o be used in real time process control. Thus, there is a need to im-

rove the time it takes to simulate a PBM. Thus, a highly parallel

BM code which can predict more accurately in real time could be

hosen over reduced order models currently used for process con-

rol.

The advancement of computers and their peripherals in recent

ears have led to an increase in computational resources leading

o faster simulations. The central processing units (CPUs) now con-

ain multiple cores thus making it possible to run multiple pro-

esses in parallel. In order to take advantage of a highly parallel

ramework, large number of cores are required which may not be

ossible in a personal desktop and a supercomputer cluster would

e needed. Another computer component that can to be used to

un a highly parallel code is the computer’s graphic processing

nit (GPU) (Prakash et al., 2013b). These GPUs contain thousands

f compute cores that can be used to run tasks in parallel. Thus,

 GPU-equipped desktop could have compute power on par with

https://doi.org/10.1016/j.compchemeng.2020.106935
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.106935&domain=pdf
mailto:rohit.r@rutgers.edu
https://doi.org/10.1016/j.compchemeng.2020.106935

2 C. Sampat, Y. Baranwal and R. Ramachandran / Computers and Chemical Engineering 140 (2020) 106935

e

s

b

e

s

p

l

b

i

s

t

(

t

f

o

M

r

2

h

m

t

p

m

b

a

o

c

r

h

a

o

t

f

m

t

a

w

C

p

r

s

D

e

a

h

A

d

i

i

o

w

f

h

k

c

a

t

i

s

a multi-CPU node supercomputer. With the launch of Compute

Unified Device Architecture (CUDA®), NVIDIA® made it easier to

use GPUs for general parallel programming in an approach usually

termed as general purpose computing on GPUs.

The main objective of this work is to develop a highly scalable

framework to simulate PBMs on GPUs. This framework is indepen-

dent of the type of kernels as well as number of spatial compart-

ments as well as the number of solid bins used. The framework is

universal and is able to run of different NVIDIA GPUs without the

need for any changes. The number of threads that the PBM exe-

cutes depends upon the size of the problem as well as the number

of cores available on the GPU. This code was developed in NVIDIA®

CUDA® C/C++. A similar code was also developed on C++ to be run

on the CPU which has limited scalability due to the number of CPU

cores available on a desktop computer. This work also enables the

use of desktop computers to obtain numerical solutions to com-

putationally intensive tasks rather than relying on supercomputers

for quicker results.

2. Background and previous works

2.1. Population balance modeling and wet granulation

Population balances equations have been successful in predict-

ing physical phenomena occurring in granulation such as aggrega-

tion, breakage and consolidation. These models predict how groups

of distinct entities behave on a bulk scale during granulation. A

general representation of the model is:

∂

∂t
F (v , x , t) +

∂

∂ v
[F (v , x , t)

d v

dt
(v , x , t)] +

∂

∂ x
[F (v , x , t)

d x

dt
(v , x , t)]

= � f ormation (v , x , t) + � depletion (v , x , t) + ̇
 F in (v , x , t) − ˙ F out (v , x , t)

(1)

where v is a vector of internal coordinates. v is commonly used

to describe the solid, liquid, and gas content of each type of parti-

cle. The vector x represents external coordinates, usually spatial.

F represents the number of particles present inside the system,
˙ F in and ˙ F out is the rate of particles coming in and going out the

system respectively. � formation and � depletion are the rate of forma-

tion and depletion due various phenomena. � formation described in

Eq. (5) is the most computationally intensive component of the

PBM. This calculation consists of a double integral for each entity

being tracked. In a system tracking 2 particulates, it would require

4 nested loops to compute these integrals. Fig. 5 also indicates that

this calculation takes 25% of the total run time. Thus, parallelizing

this calculation is crucial to the effectiveness of the parallel algo-

rithm.

Wet granulation is the process of engineering granules from

pharmaceutical powder blends with the addition of liquid or solid

binders. This process is usually carried out to obtain granules

with a certain PSD, bulk densities and other physical properties

(Barrasso and Ramachandran, 2015). There are about three rate

processes that occur due the addition of a liquid binder to the

powder mixture are wetting and nucleation, consolidation and ag-

gregation, and breakage and attrition (Sen et al., 2014). One way

to perform wet granulation of pharmaceutical powders is to use

a high shear granulator. In a high shear granulator, as the liq-

uid binder is distributed within the granulator, liquid bridges are

formed between particles and are subjected to the impeller. The

impeller rotation along with particle–particle and particle–wall in-

teractions results in the aforementioned granulation mechanisms.

2.2. Parallel computing

Due to widely available access to high performance computing

infrastructure, parallel computing has been extensively used by sci-
ntists to perform simulations. Parallel computing is the process of

plitting of larger calculations into many smaller ones which can

e executed concurrently (Almasi and Gottlieb, 1989). This type of

xecution helps achieve large speed gains over serially running a

imulation serially on a single core in a serial manner. The com-

utational task can be decomposed in two way, either at the task

evel or at the data level. Task parallelism requires each process to

ehave distinctively from another as they would each be perform-

ng different operations. These operations could be performed on a

ingle data set or on multiple data sets, known as multiple instruc-

ions single data (MISD) and multiple instructions multiple data

MIMD) respectively. On the other hand, data parallelism involves

he distribution of data across various processes that usually per-

orm same set of operations on the data (Solihin, 2015). This type

f parallelism is known as single instruction multiple data (SIMD).

IMD and SIMD can also be combined in certain systems, further

educing the simulation times.

.3. GPU based parallel computing

Traditionally, large parallel jobs were run on supercomputers

aving thousands of cores, but these require special components

aking them expensive. Graphic processing units (GPU) were ini-

ially used for vector calculations to support graphics inside a com-

uter system. But, lately GPU manufacturers have started to pro-

ote their use in general computing as well. This form of GPU-

ased computing has been gaining popularity among scientists to

ccelerate simulations (Kandrot and Sanders, 2011). GPUs comprise

f a massively parallel architecture with hundreds to thousands of

omputational cores which can have thousands of active threads

unning simultaneously (Keckler et al., 2011). This means that GPUs

ave large computing potential which can be exploited using par-

llel programming languages such as OpenCL and CUDA®.

CUDA® is an application programming interface (API) devel-

ped by NVIDIA® (NVIDIA Corporation, 2012) that enables users

o program parallel code for execution on the GPU. Parallel code

or the GPU is written as kernels, which are similar to functions or

ethods in traditional programming languages. As several parts of

he code need to be executed only once during a simulation, only

 few sections of the code need to be written in terms of kernel

hile the remaining sections have to be serially executed on the

PU of the system. The nvcc compiler from the CUDA® toolkit

rioritizes the compilation of these kernels before passing the se-

ial section of the code to the native C/C++ compiler inside the

ystem. There are three main parallel abstractions that exist in CU-

A® viz. grids, blocks and threads (Santos et al., 2013). Each kernel

xecutes as a grid which in turn consists of various blocks which

re consistuted by various threads. This thread-block-grid hierarchy

elps obtain fine grained data level and thread level parallelism.

n illustration of this hierarchy is observed in Fig. 1 .

Another important aspect related to GPU parallelization is the

ata communication between the threads. The GPU consists of var-

ous memory modules with different access limitations as shown

n Fig. 1 . The threads inside each block can communicate with each

ther using the shared memory. This memory is local to the block

here these threads exist i.e. they are not accessible by threads

rom other blocks. In addition to the shared memory each thread

as its own local memory where local/temporary variables for each

ernel can be saved. The threads from different blocks communi-

ate with each other using the global memory which is visible to

ll blocks inside the GPU, but at the cost of higher communication

imes. Data access speeds for a thread are fastest for data stored

n local memory followed by shared memory inside a block and

lowest for data in the global memory of the GPU.

C. Sampat, Y. Baranwal and R. Ramachandran / Computers and Chemical Engineering 140 (2020) 106935 3

Fig. 1. The parallel structure matrix inside the GPU and the various memories associated with each structure.

2

n

h

G

a

c

r

w

t

a

c

o

p

m

t

a

p

i

t

t

s

p

t

G

h

g

h

p

t

m

g

o

t

a

i

t

f

i

(

fl

S

t

T

t

r

T

u

t

3

3

a

.4. Previous parallelized PBM works

PBMs with large number of internal and external coordi-

ates are computationally intensive. Thus, several researchers

ave made attempts to increase the speed of these simulations.

unawan et al. (2008) developed a parallelization technique using

 high-resolution finite volume solution of the PBM. The studies

arried out by Gunawan et al. (2008) for their parallel PBM algo-

ithm achieved good parallel efficiency upto 100 cores. This study

as limited by the number of grids used for the PBM,which meant

he problem size was not computationally very heavy. This study

lso suggested that an algorithm with a shared memory model

ould help improve simulation speeds further. A hybrid mem-

ry model which uses both shared and local memory was im-

lemented by Bettencourt et al. (2017) to obtain speed improve-

ents of about 98% from the serial code. This implementation

ook into account both Message Passing Interface (MPI) as well

s Open Multi-processing (OMP). A similar PBM parallelization ap-

roach was also undertaken in Sampat et al. (2018) and an approx-

mate speedup of 13 was obtained. The reduction in speed was at-

ributed to the use of dynamic arrays used in their PBM framework

o accommodate the hybrid nature of the model being used.

Algorithms to parallelize the PBM codes on GPU have been

tudied briefly by Prakash et al. (2013b) using the inbuilt MATLAB’s

arallel computing toolbox (PCT). They divided the operations of

he nested loops into slices which would only use 240 cores of

PU.This study was able to achieve good speedup values but could

ave been higher if the code had been implemented in native pro-

ramming languages such as C or FORTRAN. Since MATLAB is a

igh level language it internally converts the written code to native
rogramming languages before it is sent to the processor leading

o excess computation which can be avoided (MathWorks Docu-

entation, 2017). Prakash et al. (2013a) have shown that it is ag-

regation followed by breakage are responsible for the majority

f the simulation time of the PBM due to the nested integrals in

he formation and depletion terms. The continuous growth terms

re not computationally intensive in comparison. Thus, the PBM

n this work focuses on only discrete growth terms. Other works

hat have used GPU acceleration to improve computation times

or their population balance simulations include those from var-

ous other chemical engineering processes such as crystallization

 Szilágyi and Nagy, 2016), combustion (Shi et al., 2012), multiphase

ow (Santos et al., 2013), coagulation dynamics (Xu et al., 2015).

everal of these works fail to address the problem size as a fac-

or in determining number of GPU cores used for the simulation.

hese algorithms are restricted to a maximum number of cores

hat are used and with an increase in the problem size, the algo-

ithm would not adapt to an increase in the number of cores used.

his could potentially lead to computation power that may go un-

sed in high-end GPUs that have the capacity to perform several

eraflops of double-precision calculations.

. Method and implementation

.1. PBM implementation

The overall population balance equation with a lumped liquid

nd gas coordinates can be represented as:

d
F (s i , x, t) = � agg (s i , x, t) + � break (s i , x, t)
dt

4 C. Sampat, Y. Baranwal and R. Ramachandran / Computers and Chemical Engineering 140 (2020) 106935

x)

w

v

t

t

m

t

m

i

i

m

g

fi

c

a

p

3

o

a

t

S

I

(

l

s

a

c

d

s

A

e

o

r

a

R

a

c

3

d

G
+
˙ F in (s i , x, t) − ˙ F out (s i , x, t) (2)

where, F (s i , x) represents the number of solid particles of type i

being studied in each spatial compartment x of the granulator. The

rate of aggregation � agg (s i , x) and the rate of breakage � break (s i , x)

determines the rate at which particles density changes within dif-

ferent size classes. The rate of particles entering, ˙ F in (s i , x) and ex-

iting, ˙ F out (s i , x) , the spatial compartment due to particle transfer

also affects their number in each size class. The rate of change of

internal liquid volume in each particle can be calculated as:

d

dt
F (s i , x) l(s i , x) = � liq,agg (s i , x) + � liq,break (s i , x) +

˙ F in (s i , x) l in (s i , x)

− ˙ F out (s i , x) l out (s i , x) + F (s i , x) ̇ l add (s i , x) (3)

where, l (s i , x) is the internal liquid volume in each particle with

s i as the solid volume for solid type i in the spatial compart-

ment x . � liq,agg (s i , x) and � liq,break (s i , x) are the rates at which liquid

is transferred between size classes due to aggregation and break-

age respectively. l in (s i , x) and l out (s i , x) are the internal liquid vol-

umes of the particles entering and exiting the spatial compart-

ment. ˙ l add (s i , x) is the rate of volume of liquid acquired by each

particle in the compartment at every time step due to external liq-

uid addition. Similarly, the rate of change of gas volume is calcu-

lated using the following equation:

d

dt
F (s i , x) g(s i , x) = � gas,agg (s i , x) + � gas,break (s i , x) +

˙ F in (s i , x) g in (s i ,

− ˙ F out (s i , x) g out (s i , x) + F (s i , x) ˙ g cons (s i , x) (4)

where, g (s i , x) is the gas volume of each particle with solid

volumes of s i in the spatial compartment x . � gas,agg (s i , x) and

� gas,break (s i , x) are the rates of gas transferred between size classes

due to aggregation and breakage respectively. g in (s i , x) and g out (s i ,

x) are the gas volume of the particles entering and leaving the spa-

tial compartment respectively. ˙ g cons (s i , x) represents rate of the vol-

ume of gas particles formed due to process of consolidation oc-

curring inside the system. The rate of aggregation, � agg (s i , x) in

Eq. (2) is calculated as (Chaturbedi et al., 2017):

R agg (s i , x) =

1

2

∫ s i
0

∫ s ′
i

0

β
(
s ′ i , s i − s ′ i , x

)
F
(
s i

′ , x
)
F
(
s i − s ′ i , x

)
d s i d s

′
i

−F (s i , x)

∫ s ma x i
−s i

0

β
(
s i , s

′
i , x

)
F
(
s ′ i , x

)
ds ′ i (5)

where, β(s i , s
′
i
, x) is the aggregation kernel and is expressed as a

function of collision frequency (C) and collision efficiency (ψ). Fur-

ther information on the model can be found in Appendix A.1 .

Similarly, the breakage rate can be expressed as follows:

R break (s i , x) =

∫ s ma x i

0

K break
(
s ′ i , x

)
F
(
s ′ i , x

)
ds ′ i

−K break (s i , x) F (s i , x) ds i (6)

where, K break (s i , x) is the breakage kernel. The formulation for the

breakage kernel is discussed in more detail in Appendix A.2 .

The rate of increase of liquid volume of inside a particle,
˙ l add (s i , x) is expressed as:

˙ l add (s i , x) =

∑

i s i × ˙ m spray

m solid (x)
(7)

where, �i s i is the total solid volume of the particle; ˙ m spray is the

rate of external liquid addition and m solid is the total amount of

solid present in the compartment.

Particle transfer rate, ˙ F out (s i , x) in Eq. (2) is calculated as:

˙ F out (s i , x) =
˙ F (s i , x)

νcompartment (x) × dt

d compartment
(8)
p
here, νcompartment (x) and d compartment are respectively the average

elocity of particles in compartment x and the distance between

he mid-points of two adjacent compartment, which is the dis-

ance particles have to travel to move to the next spatial compart-

ent. dt is the time-step.

A finite difference method was used to solve the developed sys-

em of ordinary differential equations (ODEs) (Barrasso and Ra-

achandran, 2015). Euler integration was used as the numerical

ntegration technique for its speed improvements and its min-

mal impact on accuracy (Barrasso et al., 2013). To avoid nu-

erical instability due to the explicit nature of the Euler inte-

ration, Courant–Friedrichs–Lewis (CFL) condition must be satis-

ed (Courant et al., 1967). For our PBM model, time-step was cal-

ulated at each iteration such that, the number of particles leaving

 particular bin at any time was less than the number of particles

resent at that time (Ramachandran and Barton, 2010).

.2. MPI implementation

The message passing interface (MPI) parallel implementation

f the PBM was focused towards equal distribution of the task

nd memory. The implementation used in this work differs from

he hybrid implementation used by Bettencourt et al. (2017) and

ampat et al. (2018) as only MPI was used to parallelize the code.

t was pointed by Sampat et al. (2018) that open multi-processing

OMP) does not provide significant speed improvements due to

imitations with usage of dynamic vectors which are essential for

uch a system. Thus, the OMP implementation was avoided which

lso meant that lesser number of cores would be required. The fo-

us of this study to localize the computation power rather than

epend on supercomputers/clusters. A pseudo code has been pre-

ented in Algorithm 1 to illustrate the distribution of tasks. For

lgorithm 1 CPU-based Parallel Population Balance Model

1: procedure PBM (N Comp , N MPI) � N Comp is the number of

compartments

2: Divide N Comp in N MPI

3: while t < t f inal do

4: for ∀ n Comp in 1 MPI process do

5: Calculate � aggregation for solid bins s 1 , s 2
6: Calculate � breakage for solid bins s 1 , s 2
7: Calculate n particles using Euler’s method
8: end for

9: Collect n particles from N MPI � Master process collects all

data

10: Calculate timestep using CFL condition
11: t new = t + timestep

12: end while

13: end procedure

ach time step, a MPI process is responsible for a certain section

f the problem, usually a spatial chunk inside the geometry (also

eferred to as compartment).

Simulations for this study were performed on a computer with

n Intel Core i7-7700K processor clocked at 4.2 GHz and 32 GB of

AM. For maximum performance while data reading and writing

 SSD was used. GCC version 7.4 with openMPI 2.0 was used to

ompile the parallel C++ code.

.3. GPU implementation

NVIDIA®’s CUDA® toolkit extends the C language such that user

efined functions called kernels can be created to be run on the

PU. These kernels can be executed several number of times in

arallel using large number of threads. A thread is a sequence of

C. Sampat, Y. Baranwal and R. Ramachandran / Computers and Chemical Engineering 140 (2020) 106935 5

Algorithm 2 GPU-based Parallel Population Balance Model

1: procedure PBM (N Comp)� N Comp is the number of compartments

2: Copy initial variables from CPU memory to GPU memory
3: GPU initial calculation kernel call from CPU �

Performed on GPU

4: Divide N Comp in N blocks

5: Copy back initial values to the CPU RAM
6: while t < t f inal do

7: Copy time-dependent process variables from CPU to
GPU RAM

8: GPU aggregation rate kernel call from CPU
9: Calculate � agg for solid bins s 1 , s 2 � Performed on

GPU

10: GPU aggregation rate kernel call from CPU
11: Calculate � breakage for solid bins s 1 , s 2 � Performed

on GPU

12: Calculate n particles using Euler’s method
13: Copy back process rate data back to the CPU RAM
14: Calculate timestep using CFL condition � Performed

on CPU

15: t new = t + timestep

16: end while

17: Clear GPU memory
18: end procedure

p

s

e

c

n

t

d

(

c

G

c

i

g

m

T

t

T

C

4

4

s

p

n

l

w

C

c

n

t

o

d

l

o

Fig. 2. Workflow of the GPU code indicating data transfers and execution timeline

of the code.

p

o

t

n

d

t

b
rogrammed instructions that can be managed by the computer’s

cheduler. A kernel depending upon the dimensions of the data can

xecute instructions in 1-D, 2-D or 3-D thread blocks. The kernel

an also launch multiple thread blocks at once, thus increasing the

umber of parallel process executions known as grid. Similar to a

hread block, a grid can range from 1-D to 3-D depending upon the

ata under study. The code execution was split between the CPU

also called host) and GPU (also called device). Time sensitive cal-

ulations and calculations that require collection of data from the

PU were handled on the CPU using a single core, while the more

omputationally intensive tasks were distributed on to the GPU us-

ng kernels. Similar to the parallelization using MPI in CPUs, the

eometry was split into multiple compartments. These compart-

ents determined the number of blocks inside each GPU kernel.

he number of solids used helped formed the threads in each of

hese blocks. The work flow of the execution can be found in Fig. 2 .

he arrows in Fig. 2 indicate the interchange of data between the

PU memory to the GPU memory.

. Results and discussions

.1. Performance metrics

Parallel efficiency of an algorithm can be tested either by strong

caling, where the problem size remains the same and number of

rocessing elements are increased or by weak scaling, where the

umber of processing elements remain the same and the prob-

em size is increased. In this study, the number of processing units

ere limited due to the architecture of the GPU and the CUDA®

++ code developed did not utilize more than one GPU during exe-

ution. Thus, a weak scaling approach was preferred in such a sce-

ario. The parallel performance of a code is usually measured in

erms of on ratio of time taken to solve the run the simulations on

ne core to the time taken to run the simulation on N cores. It is

epicted in Eq. (9) , where t 1 is the time taken to the run the prob-

em on one core where as t N is the time taken to run the problem

n N cores.

Speedup =

t 1
t

(9)

N c
The problem size was varied by increasing the number of com-

artments inside the PBM. This in turn increased the total number

f calculations performed without increasing the amount of work

hat needed to be performed by each processing unit (core). The

umber of cores required during the simulation on the GPU was

etermined by the product of the number of compartments and

he number of solid bins for each solid type used. Thus, the num-

er of GPU cores used in this study varied from 256 cores for 1

ompartment to 8192 for 32 compartments.

6 C. Sampat, Y. Baranwal and R. Ramachandran / Computers and Chemical Engineering 140 (2020) 106935

Fig. 3. Relative sum of square error observed for the GPU simulations compared to the serial simulation.

Fig. 4. Time taken to complete 90 s of PBM simulation with varying number of compartments on NVIDIA® Quadro P40 0 0 GPU.

i

i

4

a

a

h

9

u

u

c

e

t

m

i

1
Parallelization of code can lead to deviation in calculations from

the serial execution. This discrepancy in calculation can be at-

tributed to the difference in the precision of the cores of the CPU

or GPU being used. This change in precision can lead to a small er-

ror in one timestep, which can percolate and produce results that

can drastically different from the serial code. To check the valid-

ity of the presented algorithm a relative least sum of squares error

was calculated as shown in Eq. (10) :

rSSE =

t end ∑

i =0

(d 50 serial i
− d 50 paral l el i

) 2

N

(10)

The rSSE was calculated for the algorithm considering the sin-

gle core MPI solution as the base and determining the error val-

ues with respect to this simulation. The error for each of the case

can be found in Fig. 3 . The error for the GPU simulations varied

from 0.45% to about 6% which is an acceptable range. Thus, mak-

ing the solutions from the algorithm quicker with a very small loss

in accuracy. There was an increase in the error with the increase
n number of compartments, which could be due to the increase

n the number of data points compared.

.2. Algorithm performance on a desktop GPU

The desktop configuration used for these studies comprised of

 Intel i 7 − 7700 K CPU clocked at 4.5GHz with 32 GB DDR4 RAM

nd a NVIDIA® Quadro P 40 0 0 GPU. The NVIDIA® Quadro GPU used

ad 1792 CUDA® cores with 8 GB of GDDR5 RAM. CUDA® version

.0 paired with GCC 7.3 was used to the run the desktop GPU sim-

lations with Ubuntu 18.04 operating system (OS).

The number of solid bins for the 2 different types of solids

sed were 16, this meant that there was a maximum of 65,536

alculations that needed to be performed for each time step for

ach compartment. While, the number of calculations increased

o over 2 million per time step when the number of compart-

ents was increased to 32. Each GPU consisted of several stream-

ng multi-processors(SM) which help distribute the problem to the

792 cores inside the GPU. Once the calculations pass from the CPU

C. Sampat, Y. Baranwal and R. Ramachandran / Computers and Chemical Engineering 140 (2020) 106935 7

Fig. 5. Distribution of times taken by different processes inside the GPU-parallelized PBM.

Fig. 6. Time taken to complete 90 s of PBM simulation with varying number of compartments on desktop CPU with varying number of MPI cores.

t

b

o

c

h

t

m

t

c

t

t

t

o

t

A

r

m

c

t

a

w

c

n

t

i

t

Fig. 7. Comparing speedup for CPU and GPU simulations to respective serial simu-

lations.

t

C
o the GPU, the SMs take over and allocate work to the GPU in

locks of 32 threads each. SMs divide these calculations in blocks

f 32 threads and send it to the cores for calculations which ac-

ounts for some overheard time during the simulation. This over-

ead is present for each timestep, which can be compensated by

he number of calculations running in parallel on the GPU.

The PBM simulation was run for 90 s which included 45 s of

ixing and 45 s of liquid addition. The algorithm performance was

ested by weak scaling the problem by changing the number of

ompartments from 1 and doubling them in each simulation un-

il the number of compartments reached 32. Fig. 4 shows the time

aken these simulation. It can be observed that the amount of time

aken for the simulation remains almost constant till the number

f compartments reaches 8, followed by an increase in the time

aken as the number of compartment are increased further to 32.

ccording to parallelization procedure used the cores utilized to

un the code is directly proportional to the number of compart-

ents and the number of solid bins present in the problem. The

onstant time is a result of the problem size being smaller than

he Quadro P 40 0 0’s 1792 CUDA® cores, i.e. the algorithm was not

ble to utilize all the CUDA® cores till the compartment number

as 8. Since the algorithm uses about 256 cores to simulate each

ompartment, the cores would not suffice once the compartment

umber reaches 16 and the SMs would have to wait to distribute

he calculation to cores once initially allocated calculations are fin-

shed. This wait time leads to the increase in the time of simula-

ions as seen in the case for 16 and 32 compartments.

p
The above argument was supported by the profile of the code

hat was obtained using NVIDIA®’s inbuilt code profiler nvprof .

ode profiling is an important step in algorithm development. The

rofiler results can be varied based on the options chosen to ob-

8 C. Sampat, Y. Baranwal and R. Ramachandran / Computers and Chemical Engineering 140 (2020) 106935

Fig. 8. (a) Time taken to run 90s PBM simulation on HPC’s Kepler K20 GPU (b) Speedup achieved for the GPU simulation over the serial simulation on the HPC device.

T

t

n

n

c

a

t

2

t

m

e

o

c

l

t

s

T

c

1

c

T

w

r

m

D

s

p

n

t

t

t

d

t

G

t

4

p

g

K
tain the parameters being studied. In this case, API calls and GPU

activity were exported to understand the performance bottlenecks

and those sections of the code were rectified to improve the speed

of the algorithm. The profiler was executed for each case and it

was observed that aggregation kernel calculations took the most

time for execution followed by the breakage kernel. Consolidation

kernel and other calculations comprised of less than 1% of execu-

tion time. The other parameter studied was the number of times

each API was called by the code and the time spent. API calls in-

cluded the synchronization of threads working inside the GPU de-

vice, memory allocation for arrays, etc. Each thread inside the GPU

operates independently, thus all threads may not be at the same

section of the code at a given moment of time, thus some threads

may finish calculations before others. The time taken to synchro-

nize these threads required the most amount of time during the

execution of the code. When such an API is called by the code

further execution of the code is paused until all the threads of

the GPU are in the same line of code. This accounted for 99% of

the total other API call time. This indicated that there were not

many places where the code could have been optimized further

since synchronization statements were only added before calcula-

tions where complete array of data was required. If further reduc-

tion in these statements was undertaken, it would lead to data loss

and possibly incorrect final calculated particle size distribution. A

comparison of times taken by each process in the simulations is

shown in Fig. 5 . A similar distribution of times was observed for

all simulations on the GPU.

4.3. Performance on GPUs compared to CPUs

The NVIDIA® Quadro P40 0 0 GPU used had its cores at a base

clock speed of 1202 MHz while the CPU cores had a base clock of

40 0 0 MHz. The algorithm used to parallelize on the GPU did not

permit the use of only one core of the GPU for simulation. Thus,

a single MPI core CPU simulation was used as the baseline for all

comparisons. Theoretically, it would take longer on a single core of

the GPU to run a similar simulation than on a single GPU core

The CPU version of the parallel PBM was run on the desktop

with the aforementioned configuration. This meant that the num-

ber of MPI cores available for the simulations was limited to 4.

Weak scaling of the problem by changing the number of compart-

ments was performed for this study. Fig. 6 shows a comparison of

the times taken by the simulation to run on 1, 2 and 4 MPI cores.
he times indicate that with the increase in the number of cores

he model took less time to complete calculations for the same

umber of compartments. It can also be seen that for the same

umber of MPI cores used in a soft scaling the amount of time in-

reases with increase in the number of cores. This increase can be

ttributed to the increase in the number of calculations with addi-

ion of new compartments. There is a plateau in the times when

 and 4 MPI cores were used for 8 and 16 compartments respec-

ively. When a further analysis of the rates was for each compart-

ent was undertaken it was observed that till the particles did not

ach the last few compartments of the granulator no aggregation

r breakage occurred in those spatial sections thus reducing the

ompute time and leading to similar simulation times.

Speedup is important to understand the scalability and paral-

el performance of a code. Speedup for a code is directly propor-

ional to the number of cores used for a simulation. In Fig. 7 , the

peedup increases with the increase in the number of MPI cores.

his increase in speedup can be attributed to the increase in the

omputation power. One unusual trend observed in the case of 8,

6 and 32 number of compartments for both 2 MPI and 4 MPI

ore simulations, the speedup is higher than 2 and 4 respectively.

his phenomena is known as super linear speedup which occurs

hen the speedup is greater than the number of cores used. In

are cases like these speedup increases due to increase in cache

emory and random access memory (RAM) available (Benzi and

amodaran, 2009). The simulations with the GPU parallel code

howed an overall increase in the speedup as the number of com-

artments as seen in Fig. 7 . The speedup was low for compartment

umbers 1 and 2 since the amount of time spent in communica-

ion in between the CPU and the GPU as well as the time taken by

he thread synchronization in the GPU to had a larger contribution

o the simulation time. The increase in number of compartments

iminished this communication time effect as amount of calcula-

ions is significantly higher. The highest speeedup achieved for a

PU simulation was about 12.3, which means it took 12 times less

ime than a serial CPU computation.

.4. Server level GPU code performance

The high performance computing (HPC) device used to run the

arallel PBM GPU code was present at Rutgers at the School of En-

ineering (SoE). The SoE HPC cluster was equipped with a NVIDIA®

epler K20 GPU. This GPU contains 2496 CUDA® cores which are

C. Sampat, Y. Baranwal and R. Ramachandran / Computers and Chemical Engineering 140 (2020) 106935 9

h

T

P

T

t

t

P

i

p

C

o

r

i

t

f

s

t

t

f

O

t

(

5

C

o

w

w

a

t

w

a

v

T

t

fi

l

b

r

b

f

m

f

o

a

b

t

S

m

A

A

B

β

T

t

s

d

s

s

S

S

S

H

a

μ

t

c

B

S

T

�

w

m

A

K

S

w

l

U

w

(

S

f

1

C

W

t

e

R

A

B

B

ave a base clock of 706 MHz and only 5 GB of GDDR5 of memory.

he Kepler series GPUs were a couple of generations older than the

ascal generation Quadro P400 used in desktop simulation studies.

he clock speed and memory of the desktop GPU were higher than

he one present on the HPC.

The time taken to complete the 90 second PBM simulation on

he HPC’s GPU are shown in Fig. 8 (a). The time taken to run the

BM initially remains constant upto 16 compartments, but a large

ncrease in the time is observed for the simulation with 32 com-

artments. This increase could be attributed to the saturation of

UDA® cores of the GPU and that SMs had to wait for the previ-

us calculations to complete before the threads were assigned the

emnant of calculations. This trend is similar to the trend observed

n Fig. 7 for the desktop GPU. A serial simulation was performed on

he HPC and used as a baseline for speedup calculations. Speedup

rom the server GPUs are shown in Fig. 8 (b). The increase in the

peed of the simulation for these studies is lower than the desk-

op studies which could be directly connected to clock speeds of

he CUDA® cores. The server GPU cores were clocked at a lower

requency which meant the rate of calculations would decrease.

ne other reason for reduced speedup could be the older architec-

ure of Kepler GPU which are slower in floating point calculations

 NVIDIA Corporation, 2016).

. Conclusions

In the presented study, a PBM was developed using NVIDIA®’s

UDA® C/C++ language to run in parallel on a GPU. The time

f the simulations on the GPU were compared to CPUs. In cases

ith larger problem size, it was observed that GPU simulations

ere faster than CPU simulations and there was minimal loss in

ccuracy. It can be observed that GPUs are more efficient when

he complexity of the problem is high in terms of compartments,

hich is a commonly observed in general application of PBMs. The

daptive structure of the algorithm enabled the simulation to use

arying number of GPU cores to parallelize the PBM simulations.

he GPU architecture also plays a major role in the simulation

ime. This work also highlighted that a desktop PC could be suf-

cient for a computationally intensive simulation instead of a uti-

izing a supercomputer or cluster. A similar parallel strategy could

e developed for growth terms for internal coordinates and other

ate processes inside the PBM using CUDA kernels. This work can

e extended in the future by testing it on newer GPU platforms

rom NVIDIA® such as the Volta and Turing platforms, which are

ore optimized for float point calculations than the Pascal plat-

orm GPU used in this study. This strategy can also be extended to

ther manufacturer GPUs using other programming languages such

s OpenCL. The presented algorithm can also be improved further

y eliminating loops inside the kernels using dynamic paralleliza-

ion supported by newer versions of CUDA®.

oftware and data

Source code and input scripts for reproduction of the experi-

ents can be found at: https://github.com/csampat/pbmOnGPUs .

ppendix A. PBM model

1. Aggregation kernel

The aggregation kernel used in this work was formulated as in

arrasso et al. (2015) :

(s i , s
′
i , x) = C(s i , s

′
i , x) ψ(s i , s

′
i , x) (A.1)

he collision frequency of the solid particles was evaluated from

he existing DEM data from Sampat et al. (2018) . To facilitate this
tudy, it was assumed that the collision frequency was indepen-

ent of the liquid particles present in the system.

The collision efficiency ψ was estimated based on Stokes, which

tates that a collision is successful when the Stokes number St v as-

ociated with the collision is lesser than the critical Stokes number

t ∗v for the particles. These number are calculated as follows:

t v =

8 ̃ m U

3 π ˜ d 2 μ
(A.2)

t ∗v =

(
1 +

1

e

)
log

(
h

h a

)
(A.3)

ere, ˜ m &
˜ d represent the harmonic mean of the masses and di-

meters of the particles respectively. U is the collision velocity,

is the viscosity of the system and e is the coefficient of resti-

ution. The thickness of the liquid on the surface of the parti-

le h and the height of surface asperities h a were obtained from

arrasso et al. (2015) . U critical is defined as the ratio of the critical

tokes number to the Stokes number associated with the collision.

he collision frequency ψ is defined as:

=

∫ U c ritical
0

p(U) dU (A.4)

here it is assumed that the collision velocities follow a log nor-

al distribution:

p(U) =

1

U

√

2 πσ
exp

[
− (lnU − μ) 2

2 σ 2

]
(A.5)

2. Breakage kernel

The breakage kernel K break (s i , x) is formulated as:

 break (s i , x) = C impact

∫ ∞

U break

p(U) dU (A.6)

imilar to the aggregation kernel, C impact is defined as rate at

hich the particles impact with the geometry in the DEM simu-

ation. Critical velocity for breakage to occur is defined as:

 break =

2 St ∗
de f

ρs i

× 9

8
× (1 − ε) 2

ε
× 9 μ

16 d p i
(A.7)

here 2 St ∗
de f

is defined as critical Stokes deformation number

 Iveson et al., 2001) and d p i is diameter of the solid particle s i .

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.compchemeng.2020.

06935 .

RediT authorship contribution statement

Chaitanya Sampat: Conceptualization, Methodology, Software,

riting - original draft. Yukteshwar Baranwal: Software, Valida-

ion. Rohit Ramachandran: Conceptualization, Writing - review &

diting.

eferences

lmasi, G.S. , Gottlieb, A. , 1989. Highly Parallel Computing. Benjamin-Cummings

Publishing Co., Inc., Redwood City, CA, USA .
arrasso, D. , Eppinger, T. , Pereira, F.E. , Aglave, R. , Debus, K. , Bermingham, S.K. , Ra-

machandran, R. , 2015. A multi-scale, mechanistic model of a wet granulation

process using a novel bi-directional PBM–DEM coupling algorithm. Chem. Eng.
Sci. 123, 500–513 .

arrasso, D. , Ramachandran, R. , 2015. Multi-scale modeling of granulation pro-
cesses: bi-directional coupling of PBM with DEM via collision frequencies.

Chem. Eng. Res. Des. 93, 304–317 .

https://github.com/csampat/pbmOnGPUs
https://doi.org/10.1016/j.compchemeng.2020.106935
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0001
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0001
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0001
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0002
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0003
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0003
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0003

10 C. Sampat, Y. Baranwal and R. Ramachandran / Computers and Chemical Engineering 140 (2020) 106935

B

K

N

P

R

S

S

S

S

S

X

Barrasso, D. , Walia, S. , Ramachandran, R. , 2013. Multi-component population bal-
ance modeling of continuous granulation processes: a parametric study and

comparison with experimental trends. Powder Technol. 241, 85–97 .
enzi, J. , Damodaran, M. , 2009. Parallel three dimensional direct simulation Monte

Carlo for simulating micro flows. In: Parallel Computational Fluid Dynamics
2007: Implementations and Experiences on Large Scale and Grid Computing,

67. Springer Science & Business Media, pp. 91–98 .
Bettencourt, F.E. , Chaturbedi, A. , Ramachandran, R. , 2017. Parallelization methods for

efficient simulation of high dimensional population balance models of granula-

tion. Comput. Chem. Eng. 107 (Suppl C), 158–170 .
Chaturbedi, A. , Bandi, C.K. , Reddy, D. , Pandey, P. , Narang, A. , Bindra, D. , Tao, L. ,

Zhao, J. , Li, J. , Hussain, M. , Ramachandran, R. , 2017. Compartment based pop-
ulation balance model development of a high shear wet granulation process via

dry and wet binder addition. Chem. Eng. Res. Des. 123, 187–200 .
Courant, R. , Friedrichs, K. , Lewy, H. , 1967. On the partial difference equations of

mathematical physics. IBM J. Res. Dev. 11 (2), 215–234 .

Gunawan, R. , Fusman, I. , Braatz, R.D. , 2008. Parallel high-resolution finite volume
simulation of particulate processes. AlChE J. 54 (6), 1449–1458 .

Iveson, S.M. , Litster, J.D. , Hapgood, K. , Ennis, B.J. , 2001. Nucleation, growth and
breakage phenomena in agitated wet granulation processes: a review. Powder

Technol. 117 (1), 3–39 .
androt, E. , Sanders, J. , 2011. CUDA By Example: An Introduction to General-Purpose

GPU Programming. Addison-Wesley Professional .

Keckler, S.W. , Dally, W.J. , Khailany, B. , Garland, M. , Glasco, D. , 2011. GPUS and the
future of parallel computing. IEEE Micro 31 (5), 7–17 .

VIDIA Corporation, 2012. NVIDIA CUDA C Programming Guide. NVIDIA Corpora-
tion, 2701 San Tomas Expressway, Santa Clara, CA 95050. version 4.2 edition.

NVIDIA Corporation , 2016. NVIDIA Tesla P100: The Most Advanced Datacenter Ac-
celator Ever Built. Technical Report .

rakash, A.V. , Chaudhury, A. , Barrasso, D. , Ramachandran, R. , 2013. Simulation of

population balance model-based particulate processes via parallel and dis-
tributed computing. Chem. Eng. Res. Des. 91 (7), 1259–1271 .

Prakash, A.V. , Chaudhury, A. , Ramachandran, R. , 2013. Parallel simulation of popula-
tion balance model-based particulate processes using multicore CPUs and GPUs.

Model. Simul. Eng. 2013, 2 .
Ramachandran, R. , Barton, P.I. , 2010. Effective parameter estimation within a mul-
ti-dimensional population balance model framework. Chem. Eng. Sci. 65 (16),

4 884–4 893 .
amkrishna, D. , Singh, M.R. , 2014. Population balance modeling: current status and

future prospects. Annu. Rev. Chem. Biomol. Eng. 5, 123–146 .
Sampat, C. , Bettencourt, F. , Baranwal, Y. , Paraskevakos, I. , Chaturbedi, A. , Karkala, S. ,

Jha, S. , Ramachandran, R. , Ierapetritou, M. , 2018. A parallel unidirectional cou-
pled DEM-PBM model for the efficient simulation of computationally intensive

particulate process systems. Comput. Chem. Eng. 119, 128–142 .

Santos, F.P. , Senocak, I. , Favero, J.L. , Lage, P.L. , 2013. Solution of the population bal-
ance equation using parallel adaptive cubature on GPUs. Comput. Chem. Eng.

55, 61–70 .
en, M. , Barrasso, D. , Singh, R. , Ramachandran, R. , 2014. A multi-scale hybrid

CFD-DEM-PBM description of a fluid-bed granulation process. Processes 2 (1),
89–111 .

eville, J. , Tüzün, U. , Clift, R. , 2012. Processing of Particulate Solids, 9. Springer Sci-

ence & Business Media .
hi, Y. , Green, W.H. , Wong, H.-W. , Oluwole, O.O. , 2012. Accelerating multi-dimen-

sional combustion simulations using GPU and hybrid explicit/implicit ode inte-
gration. Combust. Flame 159 (7), 2388–2397 .

olihin, Y. , 2015. Fundamentals of Parallel Multicore Architecture. Chapman and
Hall/CRC, New York, USA .

zilágyi, B. , Nagy, Z.K. , 2016. Graphical processing unit (GPU) acceleration for nu-

merical solution of population balance models using high resolution finite vol-
ume algorithm. Comput. Chem. Eng. 91, 167–181 .

MathWorks TM Documentation, 2017. Parallel computing toolbox – MATLAB®. https:
//www.mathworks.com/products/parallel-computing.html .

u, Z. , Zhao, H. , Zheng, C. , 2015. Accelerating population balance-monte carlo simu-
lation for coagulation dynamics from the Markov jump model, stochastic algo-

rithm and GPU parallel computing. J. Comput. Phys. 281, 844–863 .

http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0004
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0004
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0004
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0004
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0005
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0005
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0005
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0006
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0006
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0006
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0006
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0007
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0008
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0008
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0008
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0008
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0009
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0009
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0009
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0009
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0010
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0010
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0010
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0010
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0010
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0011
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0011
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0011
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0012
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0012
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0012
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0012
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0012
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0012
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0013
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0013
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0014
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0015
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0015
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0015
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0015
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0016
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0016
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0016
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0017
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0017
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0017
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0018
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0020
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0020
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0020
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0020
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0020
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0021
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0021
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0021
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0021
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0022
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0022
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0022
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0022
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0022
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0023
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0023
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0024
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0024
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0024
https://www.mathworks.com/products/parallel-computing.html
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0025
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0025
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0025
http://refhub.elsevier.com/S0098-1354(20)30160-5/sbref0025

	Accelerating multi-dimensional population balance model simulations via a highly scalable framework using GPUs
	1 Introduction
	2 Background and previous works
	2.1 Population balance modeling and wet granulation
	2.2 Parallel computing
	2.3 GPU based parallel computing
	2.4 Previous parallelized PBM works

	3 Method and implementation
	3.1 PBM implementation
	3.2 MPI implementation
	3.3 GPU implementation

	4 Results and discussions
	4.1 Performance metrics
	4.2 Algorithm performance on a desktop GPU
	4.3 Performance on GPUs compared to CPUs
	4.4 Server level GPU code performance

	5 Conclusions
	Software and data
	Appendix A PBM model
	A1 Aggregation kernel
	A2 Breakage kernel

	Supplementary material
	CRediT authorship contribution statement
	References

