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The differential invariant yield as a function of transverse momentum (pT) of electrons from semileptonic 
heavy-flavour hadron decays was measured at midrapidity in central (0–10%), semi-central (30–50%) and 
peripheral (60–80%) lead–lead (Pb–Pb) collisions at √sNN = 5.02 TeV in the pT intervals 0.5–26 GeV/c
(0–10% and 30–50%) and 0.5–10 GeV/c (60–80%). The production cross section in proton–proton (pp) 
collisions at 

√
s = 5.02 TeV was measured as well in 0.5 < pT < 10 GeV/c and it lies close to 

the upper band of perturbative QCD calculation uncertainties up to pT = 5 GeV/c and close to the 
mean value for larger pT. The modification of the electron yield with respect to what is expected 
for an incoherent superposition of nucleon–nucleon collisions is evaluated by measuring the nuclear 
modification factor RAA. The measurement of the RAA in different centrality classes allows in-medium 
energy loss of charm and beauty quarks to be investigated. The RAA shows a suppression with respect to 
unity at intermediate pT, which increases while moving towards more central collisions. Moreover, the 
measured RAA is sensitive to the modification of the parton distribution functions (PDF) in nuclei, like 
nuclear shadowing, which causes a suppression of the heavy-quark production at low pT in heavy-ion 
collisions at LHC.
© 2020 Conseil Européen pour la Recherche Nucléaire. Published by Elsevier B.V. This is an open access 

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The main goal of ALICE is the study of the Quark-Gluon Plasma 
(QGP), a state of matter which is expected to be created in ultra-
relativistic heavy-ion collisions where high temperatures and high 
energy densities are reached at the LHC [1]. Due to their large 
masses (mc ≈ 1.5 GeV/c2, mb ≈ 4.8 GeV/c2), charm and beauty 
quarks (heavy-flavour) are mostly produced via partonic scatter-
ing processes with high momentum transfer, which have typical 
time scales smaller than the QGP thermalisation time (1 fm/c [2]). 
Furthermore, additional thermal production, as well as annihila-
tion rates, of charm and beauty quarks in the strongly-interacting 
matter are expected to be small in Pb–Pb collisions even at LHC 
energies [3,4]. Consequently, charm and beauty quarks experience 
the full evolution of the hot and dense medium produced in high-
energy heavy-ion collisions, therefore they are ideal probes to in-
vestigate the properties of the QGP.

Quarks and gluons interact strongly with the medium and they 
are expected to lose energy through elastic collisions [5,6] and 
radiative processes [7,8]. Quarks have a smaller colour coupling 
factor with respect to gluons, hence the energy loss for quarks is 
expected to be smaller than that for gluons. In addition, the dead-
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cone effect is expected to reduce small-angle gluon radiation for 
heavy quarks with moderate energy to mass ratio [9], thus further 
attenuating the effect of the medium. The combination of all these 
effects results in the observed hierarchical mass dependent energy 
loss [8,10–22].

In order to quantify medium effects on heavy-flavour observ-
ables measured in heavy-ion collisions, they are compared with 
measurements in proton–proton (pp) collisions, where these ef-
fects are expected to be absent.

In pp collisions, heavy-quark production can be described by 
perturbative Quantum Chromodynamics (pQCD) calculations for all 
transverse momenta, whereas pQCD is not applicable for the calcu-
lation of light quark and gluon production at low transverse mo-
menta [3]. Moreover, measurements of heavy-flavour production 
cross sections in pp collisions provide the necessary experimental 
reference for heavy-ion collisions.

The medium effects on heavy quarks are quantified through the 
measurement of the nuclear modification factor, defined as the ra-
tio between the yield of particles produced in ion–ion collisions 
(d2NAA/dpTdy) and the cross section measured in proton-proton 
collisions at the same energy (d2σpp/dpTdy), normalised by the 
average nuclear overlap function 〈TAA〉:

RAA(pT, y) = 1

〈TAA〉 · d
2NAA/dpTdy

d2σpp/dpTdy
. (1)
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The 〈TAA〉 is defined as the average number of nucleon–nucleon 
collisions 〈Ncoll〉, which can be estimated via Glauber model cal-
culations [23,24], divided by the inelastic nucleon-nucleon cross 
section. In-medium energy loss shifts the transverse momenta 
towards lower values, therefore at intermediate and high pT
(pT � 2 GeV/c) a suppression of the production is expected
(RAA < 1). Assuming the total cross section evaluated using 〈Ncoll〉
scaling is not modified, the nuclear modification factor is ex-
pected to increase towards lower pT, compensating the depletion 
at higher momenta. Such a rise was measured by the PHENIX 
and STAR experiments at RHIC in Au–Au and Cu–Cu collisions at√
sNN = 200 GeV for electrons from heavy-flavour hadron de-

cays [25–27]. The nuclear modification factor for electrons from 
semileptonic heavy-flavour hadron decays was also measured by 
the ALICE collaboration in Pb–Pb collisions at 

√
sNN = 2.76 TeV

[28,29], where the mentioned trend of RAA was also observed. 
At low pT, the nuclear modification factor reaches a maximum 
around 1 GeV/c and tends to decrease at lower pT. This trend can 
be explained by initial and final state effects, like the collective 
expansion of the hot and dense system [30–32], the interplay be-
tween hadronisation via fragmentation and coalescence [22,33,34]
and the modification of the parton distribution functions (PDF) in-
side bound nucleons [35].

Initial-state effects at the LHC are explored with proton–nucleus 
collisions, where an extended QGP phase is not expected to be 
formed. The nuclear modification factor of electrons from charm 
and beauty hadron decays [14,36] and of D mesons [37] in
p–Pb collisions at 

√
sNN = 5.02 TeV was found to be consistent 

with unity within uncertainties. From this, one can conclude that 
the strong suppression observed in Pb–Pb collisions is due to 
substantial final-state interactions of heavy quarks with the QGP 
formed in these collisions. However, it is important to note that 
recently the measurement of the elliptic flow of electrons from 
semileptonic heavy-flavour hadron decays [38] and of D mesons 
[39] have been published, showing intriguing and not yet fully un-
derstood collective effects in high-multiplicity p–Pb collisions in 
the heavy-flavour sector.

This paper reports the measurement of the production cross 
section in pp collisions, the invariant yields and the nuclear 
modification factor, RAA, in Pb–Pb collisions as a function of 
pT of electrons from semileptonic heavy-flavour hadron decays 
at mid-rapidity at the centre-of-mass energy per nucleon pair√
sNN = 5.02 TeV. In order to study how the yield and RAA change 

with centrality in Pb–Pb collisions, the measurement was done in 
three representative classes: the 0-10% class for central Pb–Pb col-
lisions, the 30-50% for semi-central Pb–Pb collisions and 60-80% 
for peripheral Pb–Pb collisions.

2. Experimental apparatus and data sample

The ALICE detector is described in detail in Refs. [1,40]. The 
experiment mainly consists of a central barrel at midrapidity
(|η| < 0.9), embedded in a cylindrical solenoid which provides a 
magnetic field of 0.5 T parallel to the beam direction, and a muon 
spectrometer at forward rapidity (−4 < η < −2.5).

Charged particles produced in the collisions and originating 
from particle decays are tracked by the Inner Tracking System (ITS) 
[41] and the Time Projection Chamber (TPC) [42]. The ITS detector, 
composed of the Silicon Pixel Detector (SPD), Silicon Drift Detector 
(SDD), and Silicon Strip Detector (SSD), consists of six cylindrical 
silicon layers surrounding the beam vacuum pipe. These provide 
measurements of particle momenta and energy loss (dE/dx) used 
for charged-particle identification (PID), together with the TPC. The 
particle identification is complemented by a Time-Of-Flight (TOF) 
[43] detector, which measures the time-of-flight of charged parti-
cles. The TOF detector distinguishes electrons from kaons, protons, 

Table 1
Number of events and 〈TAA〉 [46,47] used in the analysis, split by collisions system, 
trigger configuration, and centrality class.

Centrality MB EMCal trigger 〈TAA〉 (mb−1)

pp – 881 × 106 – –

0–10% 6 ×106 1.2 ×106 23.26 ± 0.17
Pb–Pb 30–50% 12 ×106 0.3 ×106 3.917 ± 0.065

60–80% 12× 106 – 0.4188± 0.0106

and pions up to pT � 2.5 GeV/c, pT � 4 GeV/c and pT � 1 GeV/c, 
respectively. The ElectroMagnetic Calorimeter (EMCal) [44] covers 
a pseudorapidity region of |η| < 0.7 and it is used to measure 
electrons, photons, and jets in an azimuthal region of ∼ 107o. 
The electron identification in the EMCal is based on the measure-
ment of the E/p ratio, where E is the energy of the EMCal cluster 
matched to the prolongation of the track with momentum p re-
constructed with the TPC and ITS detectors. The V0 detectors [45]
consist of two arrays of 32 scintillator tiles covering the pseudo-
rapidity ranges 2.8 < η < 5.1 (V0A) and −3.7 < η < −1.7 (V0C), 
respectively, and are used for event characterisation.

The results presented in this paper are based on data samples 
of Pb–Pb collisions recorded in 2015 and of pp collisions at the 
same energy recorded in 2017. The analysed events were collected 
with a minimum bias (MB) trigger of a logic AND between the 
V0A and V0C detectors. Pb–Pb collisions were also recorded using 
the EMCal trigger, which requires an EMCal cluster energy summed 
over a group of 4×4 calorimeter cells larger than an energy thresh-
old of 10 GeV. The EMCAL triggered events were used for electron 
measurements for pT > 12 GeV/c. The centrality classes were de-
fined in terms of percentiles of the hadronic Pb–Pb cross section, 
defined by selections on the sum of the V0 signal amplitudes [46].

For both collision systems, only events with at least two tracks 
and a reconstructed primary vertex located between ± 10 cm with 
respect to the nominal interaction point along the z-axis are con-
sidered. Events affected by pile-up from different bunch crossings, 
which constitute less than 1% of the recorded sample, were re-
jected [28]. The number of events analysed in the two collision 
systems with the different trigger configurations is summarised in 
Table 1, together with the average nuclear overlap function 〈TAA〉
[46,47].

3. Data analysis

The pT-differential yield of electrons from semileptonic heavy-
flavour hadron decays is computed by measuring the inclusive 
electron yield and subtracting the contribution of electrons that 
do not originate from semileptonic heavy-flavour hadron decays. 
In the following, the inclusive electron identification strategy and 
the subtraction of electrons originating from background sources 
are described.

3.1. Track selection and electron identification

The selection criteria are similar to the ones described in 
Refs. [28,29]. They are summarised together with the kinematic 
cuts applied in the analyses in Table 2.

It is important to note that only tracks that have hits on both 
SPD layers are accepted so that electrons from late photon con-
versions in the detector material are significantly reduced. In the 
Pb–Pb analysis for pT >3 GeV/c, also tracks with a single hit in 
the SPD are considered, since the amount of photonic background 
starts to become negligible. In the analysis in which the EMCal de-
tector is used, specific track-cluster matching criteria are adopted.

As in the procedure followed in Refs. [28,29], electron candi-
dates are identified according to the criteria listed in Table 3. These 
requirements depend on the data sample and on the transverse 
momentum interval in which the analyses are performed.
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Table 2
Track selection criteria used in the analyses. “DCA” is an abbreviation for “distance of closest approach” of a track to the primary vertex.
Parameter pp Pb–Pb Pb–Pb

(pT < 3 GeV/c) (pT > 3 GeV/c)

|y| < 0.8 < 0.8 < 0.6
Number of clusters in TPC ≥ 100 ≥ 120 ≥ 80
TPC clusters in dE/dx calculation ≥ 80 ≥ 80 –
Number of clusters in ITS ≥ 3 ≥ 4 ≥ 3
Minimum number of clusters in SPD 2 2 1
|DCAxy| < 1 cm < 1 cm < 2.4 cm
|DCAz| < 2 cm < 2 cm < 3.2 cm
Found / findable clusters in TPC > 0.6 > 0.6 > 0.6
χ2/clusters in TPC < 4 < 4 < 4
track-cluster matching in EMCal – –

√
�ϕ2 + �η2 < 0.02

Table 3
Electron identification criteria. The following momentum-dependent function is used for the electron identification in pp collisions, based on the TPC dE/dx:
f (p) = Min(0.12, 0.02 + 0.07p). For the electron selection based on clusters in the EMCAL, a criterion on the “σ 2

s ” parameter [29], corresponding to the shorter-axis of 
the shower shape, is used. For brevity, the “low pT” label is used in place of “pT < 3 GeV/c”, as well as “high pT” in place of “pT > 3 GeV/c”.

Centrality nTPC
σ ,e nTOF

σ ,e nITS
σ ,e E/p Shower shape

pp (low pT) – [−0.5+ f (p), 3] [−3,3] – – –

pp (high pT) – [0.12, 3] – – – –

0–10% [−0.16,3]
Pb–Pb (low pT) 30–50% [0,3] [−3,3] [−4,2] – –

60–80% [0.2,3]
0–10%

Pb–Pb (high pT) 30–50% [−1,3] – – [0.8, 1.3] 0.01 < σ 2
s < 0.35

60–80%

The electron identification in pp collisions is performed by eval-
uating the signal from the TPC and TOF detectors. The discriminant 
variable in the former detector is the deviation of dE/dx from 
the parameterised electron Bethe-Bloch [48] expectation value, ex-
pressed in units of the dE/dx resolution, nTPCσ ,e , while in the latter 
one the analogous variable nTOFσ ,e , referring to the particle time-
of-flight, is considered. The criterion |nTOFσ ,e | < 3, used for electron 
identification up to pT = 3 GeV/c, is required to reduce background 
from kaons and protons. A momentum dependent criterion on nTPCσ ,e
is adopted to guarantee a constant electron identification efficiency 
of 70% for pT < 3 GeV/c and of 50% for higher transverse momenta 
by reducing the selection window in nTPCσ ,e , in order to keep the 
hadron contamination sufficiently low. In the Pb–Pb analysis for 
pT < 3 GeV/c, the electron identification is performed by apply-
ing the same requirement on TOF and due to the large densities of 
tracks, a selection between −4 < nITSσ ,e < 2 on the energy deposited 
in the SDD and SSD detectors is applied in all centrality classes. 
Finally, the selection on nTPCσ ,e ensures a constant electron identifica-
tion efficiency of 50% for all centrality classes. The hadron contam-
ination fraction after the PID is estimated by fitting the nTPCσ ,e distri-
bution for each particle species with an analytic function in differ-
ent momentum intervals [28,29]. The inclusive electron sample is 
then selected by applying a further criterion on nTPCσ ,e , which is cho-
sen in order to have a constant efficiency as a function of the mo-
mentum, as well as to have the hadron contamination under con-
trol. This criterion is loosened for pT > 3 GeV/c, due to the lower 
amount of selected hadrons when the EMCal detector is employed.

In the Pb–Pb analysis for pT > 3 GeV/c, the electron candidates 
are first selected by the measurement of the TPC dE/dx with the 
criterion −1 < nTPCσ ,e <3. Then, the selection 0.8 < E/p < 1.3 on the 
energy over momentum ratio is applied. Unlike for hadrons, the 
ratio E/p is close to 1 for electrons because they deposit most 
of their energy in the EMCal. Furthermore, the electromagnetic 
showers of electrons are more circular than the ones produced by 
hadrons. Generally, the shower shape produced in the calorimeter 
has an elliptical shape which can be characterised by its two axes: 

σ 2
l for the long, and σ 2

s for the short axis. A rather lose selection 
of 0.01 < σ 2

s < 0.35 is chosen, since it reduces the hadron con-
tamination while at the same time it does not affect significantly 
the electron signal [29]. The residual hadron background in the 
electron sample is evaluated using the E/p distribution for hadron-
dominated tracks selected with nTPCσ ,e < −3.5. The E/p distribution 
of the hadrons is then normalised to match the distribution of the 
electron candidates in 0.4 < E/p < 0.7 (away from the true elec-
tron peak), so that the fraction of contaminating hadrons under 
the electron peak can be estimated.

In pp events, the hadron contamination is below 1% at low 
pT, while it reaches about 40% at pT = 10 GeV/c. In Pb–Pb, the 
largest hadron contamination is measured in the most central col-
lisions, where a contamination of about 7% and 10% mainly due to 
kaon and proton crossing the electron band at pT = 0.5 GeV/c and 
pT = 1 GeV/c respectively is present. The total hadron contamina-
tion contribution amounts to 5% at pT = 3 GeV/c in central events 
and tends to decrease towards more peripheral collisions. In the 
EMCal analysis a maximum residual contamination of about 10% is 
subtracted at the highest transverse momenta in the 0–10% cen-
trality class. In both collision systems, the hadron contamination is 
subtracted statistically from the inclusive electron candidate yield.

In Pb–Pb collisions, the rapidity ranges used in the ITS-TPC-TOF 
(pT < 3 GeV/c) and TPC-EMCal (pT > 3 GeV/c) analyses are re-
stricted to |y| < 0.8 and |y| < 0.6, respectively, to avoid the edges 
of the detectors, where the systematic uncertainties related to par-
ticle identification increase.

3.2. Subtraction of electrons from non heavy-flavour sources

The selected inclusive electron sample does not only contain 
electrons from open heavy-flavour hadron decays, but also differ-
ent sources of background:

1. electrons from Dalitz decays of light neutral mesons, mainly 
π0 and η, and from photon conversions in the detector ma-
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Table 4
Selection criteria for tagging photonic electrons.
Associated electron pp Pb–Pb Pb–Pb

(pT < 3 GeV/c) (pT > 3 GeV/c)

pmin
T (GeV/c) 0.1 0.1 0.2

|y| < 0.8 < 0.8 < 0.9
Number of clusters in TPC ≥ 60 ≥ 60 ≥ 70
TPC clusters in dE/dx calculation ≥ 60 ≥ 60 –
Number of clusters in ITS ≥ 2 ≥ 2 ≥ 2
|DCAxy| < 1 cm < 1 cm < 2.4 cm
|DCAz| < 2 cm < 2 cm < 3.2 cm
Found / findable clusters in TPC > 0.6 > 0.6 –
χ2/d.o.f TPC < 4 < 4 < 4
nTPCσ ,e [−3,3] [−3,3] [−3,3]
me+e− (MeV/c2) < 140 < 140 < 100

terial as well as from thermal and hard scattering processes, 
called photonic in the following;

2. electrons from weak decays of kaons: K0/± → e±π∓/0 (−)

νe
(Ke3);

3. di-electron decays of quarkonia: J/ψ , ϒ → e+e−;
4. di-electron decays of light vector mesons: ω, φ, ρ0 → e+e−;
5. electrons from W and Z/γ ∗ .

The photonic tagging method [21,28,29,36,49] is the technique 
adopted in the present analyses to estimate the contribution from 
photonic electrons. With a contribution of 80% to the inclusive 
electron sample, photonic electrons constitute the main back-
ground at pT = 0.5 GeV/c [28]. Their contribution decreases with 
pT reaching 25% at about 3 GeV/c. The contribution from di-
electron decays of light vector mesons (ρ , ω and φ) is negligible 
compared to the contributions from the photonic sources [50].

Photonic electrons are reconstructed statistically by pairing 
electron (positron) tracks with opposite charge tracks identified as 
positrons (electrons), called associated electrons in the following, 
forming the so-called unlike-sign pairs. The combinatorial back-
ground is subtracted using the like-sign invariant mass distribution 
in the same interval. Associated electrons are selected with the cri-
teria listed in Table 4, which are intentionally looser than the ones 
applied for the inclusive electron selection, shown in Table 2, in 
order to maximise the probability to find the photonic partners.

Due to the limited acceptance of the detector and the rejection 
of some associated electrons by applying the mentioned criteria, 
a certain fraction of photonic pairs is not reconstructed. There-
fore, the raw yield of tagged photonic electrons is corrected for 
efficiency to find the associated electron (positron), the so called 
tagging efficiency (εtag). This is evaluated using Monte Carlo (MC) 
simulations; pp and Pb–Pb collisions are simulated by the PYTHIA 
6 [51] and HIJING [52] event generators, respectively. Primary par-
ticle generation is followed by particle transport with GEANT3 [53]
and a detailed detector response simulation and reconstruction. 
The tagging efficiency is defined as the ratio of the number of 
true reconstructed unlike-sign pair electrons and the number of 
those generated in the simulations. The simulated pT distributions 
of π0 or η mesons are weighted in MC to match the measured 
spectra. In both pp and Pb–Pb collisions, the weighting factor for 
π0 is provided by using the measured distributions of charged pi-
ons [54]. The weighting factor for η mesons is computed using 
an mT–scaling approach [55,56]. The total tagging efficiency has a 
monotonic trend. In pp collisions, it starts at 0.4 for pT = 0.5 GeV/c
and rises until pT = 3 GeV/c, where it flattens at 0.7. In Pb–Pb col-
lisions, it follows the same trend, increasing from 0.3 to 0.7 in the 
same pT range.

It was observed in the previous analysis [28] that the contri-
bution from J/ψ decays reaches a maximum of around 5% in the 
region 2 < pT < 3 GeV/c in central Pb–Pb collisions, decreasing to 

a few percent in more peripheral events. At lower and higher mo-
menta, this contribution quickly decreases and becomes negligible, 
hence it is not subtracted in the present analyses. The associated 
systematic uncertainty is taken from similar works [28,29]. Due to 
the requirement of hits in both pixel layers, it was also observed 
from similar studies in previous measurements [28] that the rel-
ative contribution from Ke3 decays to the electron background is 
negligible, hence this contribution is not subtracted in the present 
analyses. Additional sources of background, such as electrons from 
W and Z/γ ∗ decays, are subtracted from the fully corrected and 
normalised electron yield in Pb–Pb collisions at high pT. These 
contributions are obtained from calculations using the POWHEG 
event generator [57] for pp collisions and scaling it by 〈Ncoll〉, as-
suming RAA = 1. The contribution from W decays increases from 
1% at pT = 10 GeV/c to about 20% at pT = 25 GeV/c in the 0–10% 
centrality class, while the Z contribution reaches about 10% at the 
same transverse momentum.

3.3. Efficiency correction and normalisation

After the statistical subtraction of the hadron contamination 
and the background from photonic electrons, the raw yield of elec-
trons and positrons in bins of pT is divided by the number of 
analysed events (NMB

ev ), by the transverse momentum value at the 
bin centre pcentre

T and the bin width �pT, by the width �y of 
the covered rapidity interval, by the geometrical acceptance (εgeo) 
times the reconstruction (εreco) and PID efficiencies (εeID), and by 
a factor of two to obtain the charge averaged invariant differential 
yield, since in the analyses the distinction between positive and 
negative charges is not done:

1

2π pT

d2Ne±

dpTdy
= 1

2

1

2π pcentre
T

1

NMB
ev

1

�y�pT

Ne±
raw(pT)

(εgeo × εreco × εeID)
.

(2)

The production cross section in pp collisions is calculated by mul-
tiplying the invariant yield of Eq. (2) by the minimum bias trigger 
cross section at 

√
s = 5.02 TeV, that is 50.9 ± 0.9 mb [58]. The 

per-event yield of electrons from the EMCal triggered sample was 
scaled to the minimum bias yield by normalisation factors deter-
mined with a data-driven method based on the ratio of the energy 
distributions of EMCal clusters for the two triggers, as described in 
Ref. [29]. The normalisation is 64.5 ± 0.5 in 0–10% and 246 ± 2.6 
in 30–50% centrality intervals, respectively.

The efficiencies are determined using specific MC simulations, 
where every collision event is produced with at least either a cc
or bb pair and heavy-flavour hadrons are forced to decay semilep-
tonically to electrons [28,29]. The underlying Pb–Pb events were 
simulated using the HIJING generator [52] and heavy-flavour sig-
nals were added using the PYTHIA 6 generator [51]. The efficiency 
of reconstructing electrons from semileptonic heavy-flavour hadron 
decays is about 20% at pT = 0.5 GeV/c, then it increases with pT
up to 58% in pp collisions. In Pb–Pb collisions, it follows the same 
trend, increasing from 5% to 10% in the same pT range.

3.4. Systematic uncertainties

The overall systematic uncertainties on the pT spectra are cal-
culated summing in quadrature the different contributions, which 
are assumed to be uncorrelated. They are summarised in Table 5
and discussed in the following.

The systematic uncertainties on the total reconstruction effi-
ciency arising from the comparison between MC and data are esti-
mated by varying the track selection and PID requirements around 
the default values chosen in the analyses. The analysis is repeated 
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Table 5
Contributions to the systematic uncertainties on the cross section (yield) of electrons from heavy-flavour hadron decays in pp (Pb–Pb) collisions, quoted for the transverse 
momentum intervals 0.5 < pT < 0.7 GeV/c and 8 < pT < 10 GeV/c. These pT intervals are listed because the detectors used for particle identification in the two cases are 
different. In addition, they also represent the first and the last pT intervals in common for the centrality classes in Pb–Pb collisions, as well as for the pp cross section. At 
higher pT the uncertainties are generally lower, apart from the one related to the electroweak background, which stays below 4%. The uncertainties quoted with * are not 
summed in quadrature together with the others, because they are the RAA normalization uncertainties.

pp Pb–Pb (0–10%) Pb–Pb (30–50%) Pb–Pb (60–80%)

pT (GeV/c) 0.5–0.7 8–10 0.5–0.7 8–10 0.5–0.7 8–10 0.5–0.7 8–10

Track selections 1% 1% 4% 2% 1% 2% 2% 2%
Photonic tagging 4% – 13% 4% 7% 4% 7% 4%
SPD hit requirement 3% 3% 10% – – – – –
J/ψ→e – – 2% – 2% – 2% –
W→e – – – <4% – <1% – <1%
Z/γ ∗ →e – – – <1% – <1% – <1%
nTPCσ ,e selection – 5% – 5% – 5% – 2%
E/p selection – – – 6% – 6% – 6%
Hadron contamination – 5% 6% – 2% – – –
ITS–TPC matching 2% 2% 2% 2% 2% 2% 2% 2%
TPC–TOF matching 2% – 3% – – – – –
η 5% 4% 10% – 5% – 5% –
ϕ – – 10% – – – – –
Interaction rate – – 5% – – – – –

Centrality limit* – – < 1% < 1% 2% 2% 3% 3%

Luminosity* 2.1% 2.1% – – – – – –

Total uncertainty 9% 9% 24% 9% 9% 9% 9% 8%

with tighter and looser conditions with respect to the default se-
lection criteria and the systematic uncertainty is calculated as the 
root mean square (RMS) of the distribution of the resulting cor-
rected yields (or cross sections in pp) in each centrality and pT
interval. The systematic uncertainty estimated in pp collisions is 
less than 2%, while in Pb–Pb collisions it reaches a maximum value 
of 4% in 0–10% centrality class for pT < 0.9 GeV/c.

Similarly, the systematic uncertainty arising from the photonic-
electron subtraction technique is estimated as the RMS of the dis-
tribution of yields obtained by varying the selection criteria listed 
in Table 4. In pp collisions this contribution has a maximum of 
4% for 0.5 < pT < 0.7 GeV/c and then it gradually decreases with 
increasing pT, while in the 0–10% Pb–Pb centrality class it is the 
dominant source of systematic uncertainty, being 13% in the first 
pT interval. This systematic uncertainty mainly arises when the in-
variant mass criterion on the photonic pairs is varied and it reflects 
the large contribution of photonic electrons in the low-pT region.

In order to further test the robustness of the photonic electron 
tagging, the requirement on the number of clusters for electron 
candidates in the SPD is relaxed in order to increase the fraction of 
electrons coming from photon conversions in the detector material. 
A variation of 3% is observed for the measured pp cross section in 
the full pT range, while in central Pb–Pb collisions the observed 
deviation amounts to 10% for 0.5 < pT < 0.7 GeV/c, decreasing 
with increasing pT. This systematic uncertainty is less relevant in 
semi-central collisions, and it is compatible with the variation de-
termined in pp measurements for 1.5 < pT < 3 GeV/c.

In addition, the systematic uncertainty related to the subtrac-
tion of the background electrons from W and Z/γ ∗ is estimated by 
propagating 15% of uncertainty, which covers the possible differ-
ence between the measurements and the theoretical calculations 
[59–61]. The uncertainty from the subtraction on the final result, 
which is relevant only at high pT, is less than 4% for electrons from 
semileptonic heavy-flavour hadron decays in central (0–10%) Pb–Pb 
collisions for 24 < pT < 26 GeV/c, and less than 1% in other cen-
trality classes for the same pT interval. In the pp analysis, a 5% sys-
tematic uncertainty is found while varying the selection criterion 
in the TPC for pT > 8 GeV/c due to the increasing relative amount 
of hadrons. An additional systematic uncertainty of 5%, related to 
the precision of the estimated hadron contamination, is assigned 
for pT > 8 GeV/c. In Pb–Pb collisions, a 10% systematic uncertainty 

is assigned for pT > 12 GeV/c due to the variation of electron iden-
tification in the TPC, while this contribution is within 5% at lower 
pT. Moreover, a 6% uncertainty is assigned due to the E/p selec-
tion criterion. Finally, for pT < 3 GeV/c, different functional forms 
are used for the parametrisation of the pion contribution in the 
fitting procedure adopted to evaluate the hadron contamination. A 
systematic uncertainty of about 6% is assigned for pT < 3 GeV/c
in the 0–10% centrality class, while this contribution decreases for 
more peripheral collisions.

In the pp (Pb–Pb) analysis, a systematic uncertainty of about 2% 
(3%) is assigned due to the incomplete knowledge of the efficiency 
in matching tracks reconstructed in the ITS and TPC and another 
2% (5%) for the track matching between TPC and TOF.

The effects due to the presence of non-uniformity in the cor-
rection for the space-charge distortion in the TPC drift volume 
or irregularities in the detector coverage are then evaluated by 
repeating the analysis in different geometrical regions. In pp colli-
sions, a maximum systematic uncertainty of 5% is estimated from 
varying the pseudorapidity range used for the cross section mea-
surement. The same value is assigned in the 30–50% and 60–80% 
Pb–Pb centrality intervals, while a 10% systematic uncertainty is 
assigned for 0.5 < pT < 0.7 GeV/c in the 0–10% centrality interval, 
due to the larger sensitivity to the electrons from photon conver-
sions. An additional uncertainty of 10% for pT < 1 GeV/c and of 5% 
up to pT = 3 GeV/c is estimated from varying the azimuthal region 
in central Pb–Pb collisions. Furthermore, the analysis of Pb–Pb col-
lisions is repeated using different interaction rate regimes. A 5% 
deviation is observed at low pT in central Pb–Pb collisions when 
selecting only high (> 5 kHz) or low (< 5 kHz) interaction rate 
events.

The uncertainty from the EMCal trigger normalisation in Pb–Pb 
collisions at pT > 12 GeV/c is estimated as the RMS of the rejection 
factor values computed at different transverse momenta [29]. The 
RMS is 4% and assigned as the systematic uncertainty.

The uncertainties on the RAA normalisation are the quadratic 
sum of the uncertainties on the average nuclear overlap functions 
in Table 1, the normalisation uncertainty due to the luminosity and 
the uncertainty related to the determination of the centrality inter-
vals, which reflects the uncertainty on the fraction of the hadronic 
cross section used in the Glauber fit to determine the centrality 
[16,62].
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Fig. 1. pT-differential invariant production cross section of electrons from semilep-
tonic heavy-flavour hadron decays in pp collisions at √s = 5.02 TeV. The measure-
ment is compared with the FONLL calculation [63]. In the bottom panel, the ratios 
with respect to the central values of the FONLL calculation are shown. An additional 
2.1% normalisation uncertainty, due to the measurement of the minimum bias trig-
gered cross section [46], is not shown in the results.

4. Results

4.1. pT-differential cross section in pp collisions and invariant yield in 
Pb–Pb collisions

The pT-differential production cross section of electrons from 
semileptonic heavy-flavour hadron decays in pp collisions at√
s = 5.02 TeV is shown in Fig. 1. The data in the region

0.5 < pT < 10 GeV/c is compared with the Fixed-Order-Next-to-
Leading-Log (FONLL) [63] pQCD calculation. The uncertainties of 
the FONLL calculations (dashed area) reflect different choices for 
the charm and beauty quark masses, the factorisation and renor-
malisation scales as well as the uncertainty on the set of parton 
distribution functions (PDF) used in the pQCD calculation (CTEQ6.6 
[64]). The measured cross section is close to the upper edge of 
the theoretical prediction up to pT � 5 GeV/c, as observed in pp 
collisions at 

√
s = 2.76 and 7 TeV [28,49,50], while at higher pT, 

where electrons from semileptonic beauty hadron decays are ex-
pected to dominate, the measurement is close to the mean value 
of the FONLL prediction.

The pT-differential invariant yield of electrons from semilep-
tonic heavy-flavour hadron decays measured in central (0–10%), 
semi-central (30–50%), and peripheral (60–80%) Pb–Pb collisions 
at 

√
sNN = 5.02 TeV is shown in Fig. 2. The measurements are 

performed in the pT interval 0.5–26 GeV/c in the 0–10% and in 
the 30–50% centrality intervals, and only up to pT = 10 GeV/c in 
the 60–80% centrality class due to limited statistics in Pb-Pb data 
recorded in 2015.

4.2. Nuclear modification factor

The nuclear modification factor of electrons from semilep-
tonic heavy-flavour hadron decays measured in central (0–10%), 
semi-central (30–50%), and peripheral (60–80%) Pb–Pb collisions 
at 

√
sNN = 5.02 TeV is shown in Fig. 3. The measured cross sec-

Fig. 2. pT-differential invariant yield in central (0–10%), semi-central (30–50%), and 
peripheral (60–80%) Pb–Pb collisions at √sNN = 5.02 TeV.

tion in pp collisions at 
√
s = 5.02 TeV (Fig. 1) is used as a ref-

erence up to pT = 10 GeV/c. For pT > 10 GeV/c, the reference 
is obtained by a pT-dependent scaling of the measurement at√
s = 7 TeV by the ATLAS collaboration [65] with the ratio of 

the cross section at the two collision energies computed with 
the FONLL calculation [66]. This ratio is performed by consid-
ering the different rapidity coverage of the ATLAS measurement 
(|y| < 2 excluding 1.37 < |y| < 1.52). The systematic uncertain-
ties of the cross section at 

√
s = 5.02 TeV range from 13% to 18% 

depending on the pT interval, and they are computed as the prop-
agation of the uncertainties associated with FONLL calculations at√
s = 5.02 TeV and 

√
s = 7 TeV and the systematic uncertainties of 

the ATLAS measurement. The statistical uncertainties are from the 
ATLAS measurement.

Statistical and systematic uncertainties of the pT-differential 
yields and cross sections in Pb–Pb and pp collisions, respectively, 
are propagated as uncorrelated uncertainties. The uncertainties on 
the RAA normalisation are reported in Fig. 3 as boxes at unity. The 
measured RAA shows a clear dependence on the collision central-
ity, since in most central events it reaches a minimum of about 
0.3 around pT = 7 GeV/c, while moving to more peripheral Pb–Pb
collisions the RAA gets closer to unity at pT > 3 GeV/c. Such a 
suppression is not observed in proton-lead collisions at the same 
energy where the QGP is not expected to be formed and the nu-
clear modification factor is consistent with unity [14,36,37]. Thus 
the suppression of electron production is due to final-state effects, 
such as partonic energy loss in the medium. Since electrons from 
semileptonic beauty decays are expected to dominate the spec-
trum at high pT while charm production dominates at low pT [14], 
the measurements show that charm and beauty quarks lose energy 
in the medium. The centrality dependence of the RAA is compat-
ible with the hypothesis of a partonic energy loss dependence on 
medium density, being larger in a hotter and denser QGP, like the 
one created in the most central collisions. In addition, it reflects 
a path-length dependence of energy loss. Moreover, it has been 
shown in Refs. [67,68] that a centrality selection bias is present 
in peripheral Pb–Pb collisions which reduces the RAA below unity 
even in the absence of any nuclear modification effects. This effect 
may be responsible for a significant part of the apparent suppres-
sion seen in the RAA of electrons from semileptonic heavy-flavour 
hadron decays in the 60-80% centrality class.

For pT < 7 GeV/c, the RAA of electrons from semileptonic 
heavy-flavour hadron decays increases with decreasing pT as a 
consequence of the scaling of the total heavy-flavour yield with 
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Fig. 3. Nuclear modification factor of electrons from semileptonic heavy-flavour hadron decays measured in the three centrality intervals in Pb–Pb collisions at√
sNN = 5.02 TeV.

the number of binary collisions among nucleons in Pb–Pb colli-
sions. On the other hand, the nuclear modification factor at low pT
does not rise above unity. This kinematic region is sensitive to the 
effects of nuclear shadowing: the depletion of parton densities in 
nuclei at low Bjorken x values can reduce the heavy-quark produc-
tion cross section per binary collision in Pb–Pb with respect to the 
pp case [28]. This initial-state effect is studied in p–Pb collisions, 
however, the present uncertainties on the RpPb measurement do 
not allow quantitative conclusions on the modification of the PDF 
in nuclei in the low pT region to be made [36]. Furthermore, the 
amount of electrons from semileptonic heavy-flavour hadron de-
cays is reduced due to the presence of hadrochemistry effects. For 
example, �+

c baryons decay into electrons with a branching ra-
tio of 5%, while for the D mesons the branching ratio is less than 
10%. Since in Pb–Pb collisions more charm quarks might hadronize 
into baryons [69], this effect reduces the total amount of electrons 
from semileptonic heavy-flavour hadron decays. Additional effects, 
such as collective motion induced by the medium, also have an in-
fluence on the measured RAA. Also, it has been observed that the 
radial flow can provoke an additional yield enhancement at inter-
mediate pT [70–73]. In this case, the radial flow pushes up slow 
particles to higher momenta, causing a small increase in the nu-
clear modification factor around pT = 1 GeV/c.

It should be noted that the RAA measurements in the most cen-
tral collisions at 

√
sNN = 2.76 TeV [28] and 5.02 TeV are compatible 

within uncertainties, as shown in Fig. 3. This effect was predicted 
by the Djordjevic model [74], and it results from the combina-
tion of a higher medium temperature at 5.02 TeV, which would 
decrease the RAA by about 10%, with a harder pT distribution of 
heavy quarks at 5.02 TeV, which would increase the RAA by about 
5% if the medium temperature were the same as at 2.76 TeV. An 
analogous behaviour between the measured RAA at the two ener-
gies is also observed for the D mesons [16].

4.3. Comparison with model predictions

In Fig. 4 the measured RAA in the 0–10% (left panel) and 
30–50% (right panel) centrality intervals are compared with model 
calculations [74–81]. The model calculations take into account dif-
ferent hypotheses about mass dependence of energy loss processes, 
transport dynamics, charm and beauty quark interactions with the 
QGP constituents, hadronisation mechanisms of heavy quarks in 
the plasma, and heavy-quark production cross section in nucleus–
nucleus collisions.

Most of the models provide a fair description of the data in the 
region pT < 5 GeV/c in both centrality classes, except for BAMPS 
[76]. The predictions from the MC@sHQ+EPOS2 [81], PHSD [77], 

TAMU [78], and POWLANG [80] models also include nuclear mod-
ification of the parton distribution functions, which is necessary 
to predict the observed suppression of the RAA at low pT. The fol-
lowing observations about the comparison with model calculations 
are fully in agreement with what is observed in the RAA measure-
ments of D mesons [16].

The nuclear modification factor for central Pb–Pb collisions is 
well described by the TAMU [78] prediction at pT < 3 GeV/c
within the uncertainties related to the shadowing effect on charm 
quarks. However, this model tends to overestimate the RAA for
pT > 3 GeV/c, probably due to the missing implementation of the 
radiative energy loss in the model, which may become the domi-
nant energy loss mechanism at high pT.

The agreement with TAMU [78] at low pT, on the other hand, 
confirms the dominance of elastic collisions at low momenta, to-
gether with the importance of the inclusion of shadowing effects in 
the model calculations [35], which reduce the total heavy-flavour 
production in Pb–Pb collisions with respect to an expectation from 
the binary scaling.

In semi-central Pb–Pb collisions the TAMU [78] and POWLANG 
[80] predictions are close to the lower edge of the uncertain-
ties of the measured RAA for pT < 3 GeV/c. The latter calculation 
describes the data better up to pT � 8 GeV/c, while the former 
provides a good description even at higher transverse momenta. 
The CUJET3.0 [75] and Djordjevic [74,79] models provide a good 
description of the RAA within the uncertainties in both central-
ity intervals for pT > 5 GeV/c, suggesting that the dependence 
of radiative energy loss on the path length in the hot and dense 
medium is well understood.

5. Conclusions

The invariant yield of electrons from semileptonic heavy-
flavour hadron decays was measured in central (0–10%), semi-
central (30–50%), and peripheral (60–80%) Pb–Pb collisions at √
sNN =5.02 TeV. The measurement of the nuclear modification 

factor in all the centrality classes for pT < 10 GeV/c is provided 
using as reference the cross section measured in pp collisions at 
the same centre-of-mass energy. The systematic uncertainties of 
this measurement are reduced by a factor of about 2 compared 
to the published reference in pp collisions at 

√
s = 2.76 TeV [28]

and the measured cross section is close to the upper edge of the 
FONLL uncertainty band. At higher pT the reference is obtained by 
a pT-dependent scaling of the measurement at 

√
s = 7 TeV by the 

ATLAS collaboration [65] with the ratio of the cross section at the 
two collision energies computed with the FONLL calculation [66]. 
As in the Pb–Pb analysis at 

√
sNN = 2.76 TeV [28,29], the main 

source of background electrons, constituted by photonic electrons, 
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Fig. 4. Nuclear modification factor of electrons semileptonic from heavy-flavour hadron decays measured in 0–10% and 30–50% centrality in Pb–Pb collisions at√
sNN = 5.02 TeV compared with model predictions [74–81].

is removed via the photonic tagging method. In addition, compared 
with the measurements performed in pp and Pb–Pb collisions at 
2.76 TeV, the pT range is extended, and an additional centrality 
class is added.

The measured RAA confirms the evidence of a strong suppres-
sion with respect to what is expected from a simple binary scaling 
for large pT. This is a clear signature of the medium induced en-
ergy loss on heavy quarks traversing the QGP produced in heavy-
ion collisions.

The measurement of electrons from semileptonic heavy-flavour 
hadron decays in different centrality classes exhibits the depen-
dence of energy loss on the path length and energy density in 
the hot and dense medium. The RAA at high pT (above 5 GeV/c) 
is fairly described in the 0–10% and 30–50% centrality intervals 
by model calculations that include both radiative and collisional 
energy loss. This indicates that the centrality dependence of radia-
tive energy loss is theoretically understood. Further investigations 
and measurement of electrons from semileptonic decays of beauty 
hadrons will give more information about the mass dependence of 
the energy loss in the heavy-flavour sector.

With the good precision of the results presented here, the 
Pb–Pb data exhibit their sensitivity to the modification of the PDF 
in nuclei, like nuclear shadowing, which causes a suppression of 
the heavy-quark production in heavy-ion collisions. The implemen-
tation of the nuclear modification of the PDF in theoretical calcu-
lations is a necessary ingredient in order for the model predictions 
to correctly describe the measured RAA [28].
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L. Bianchi 26,125, N. Bianchi 51, J. Bielčík 37, J. Bielčíková 93, A. Bilandzic 103,117, G. Biro 145, R. Biswas 3, 
S. Biswas 3, J.T. Blair 119, D. Blau 86, C. Blume 68, G. Boca 139, F. Bock 34,94, A. Bogdanov 91, L. Boldizsár 145, 
A. Bolozdynya 91, M. Bombara 38, G. Bonomi 140, H. Borel 137, A. Borissov 91,144, M. Borri 127, H. Bossi 146, 
E. Botta 26, L. Bratrud 68, P. Braun-Munzinger 105, M. Bregant 121, T.A. Broker 68, M. Broz 37, E.J. Brucken 43, 
E. Bruna 58, G.E. Bruno 33,104, M.D. Buckland 127, D. Budnikov 107, H. Buesching 68, S. Bufalino 31, 
O. Bugnon 114, P. Buhler 113, P. Buncic 34, Z. Buthelezi 72, J.B. Butt 15, J.T. Buxton 95, S.A. Bysiak 118, 
D. Caffarri 88, A. Caliva 105, E. Calvo Villar 110, R.S. Camacho 44, P. Camerini 25, A.A. Capon 113, 
F. Carnesecchi 10, J. Castillo Castellanos 137, A.J. Castro 130, E.A.R. Casula 54, F. Catalano 31, 
C. Ceballos Sanchez 52, P. Chakraborty 48, S. Chandra 141, B. Chang 126, W. Chang 6, S. Chapeland 34, 
M. Chartier 127, S. Chattopadhyay 141, S. Chattopadhyay 108, A. Chauvin 24, C. Cheshkov 135, B. Cheynis 135, 
V. Chibante Barroso 34, D.D. Chinellato 122, S. Cho 60, P. Chochula 34, T. Chowdhury 134, P. Christakoglou 88, 
C.H. Christensen 87, P. Christiansen 79, T. Chujo 133, C. Cicalo 54, L. Cifarelli 10,27, F. Cindolo 53, 
M.R. Ciupek 105, J. Cleymans 124, F. Colamaria 52, D. Colella 52, A. Collu 78, M. Colocci 27, M. Concas 58,ii, 
G. Conesa Balbastre 77, Z. Conesa del Valle 61, G. Contin 59,127, J.G. Contreras 37, T.M. Cormier 94, 
Y. Corrales Morales 26,58, P. Cortese 32, M.R. Cosentino 123, F. Costa 34, S. Costanza 139, J. Crkovská 61, 
P. Crochet 134, E. Cuautle 69, L. Cunqueiro 94, D. Dabrowski 142, T. Dahms 103,117, A. Dainese 56, 
F.P.A. Damas 114,137, S. Dani 65, M.C. Danisch 102, A. Danu 67, D. Das 108, I. Das 108, P. Das 3, S. Das 3, 
A. Dash 84, S. Dash 48, A. Dashi 103, S. De 49,84, A. De Caro 30, G. de Cataldo 52, C. de Conti 121, 
J. de Cuveland 39, A. De Falco 24, D. De Gruttola 10, N. De Marco 58, S. De Pasquale 30, R.D. De Souza 122, 
S. Deb 49, H.F. Degenhardt 121, K.R. Deja 142, A. Deloff 83, S. Delsanto 26,131, P. Dhankher 48, D. Di Bari 33, 
A. Di Mauro 34, R.A. Diaz 8, T. Dietel 124, P. Dillenseger 68, Y. Ding 6, R. Divià 34, Ø. Djuvsland 22, 
U. Dmitrieva 62, A. Dobrin 34,67, B. Dönigus 68, O. Dordic 21, A.K. Dubey 141, A. Dubla 105, S. Dudi 98, 
M. Dukhishyam84, P. Dupieux 134, R.J. Ehlers 146, D. Elia 52, H. Engel 73, E. Epple 146, B. Erazmus 114, 
F. Erhardt 97, A. Erokhin 112, M.R. Ersdal 22, B. Espagnon 61, G. Eulisse 34, J. Eum 18, D. Evans 109, 
S. Evdokimov 89, L. Fabbietti 103,117, M. Faggin 29, J. Faivre 77, A. Fantoni 51, M. Fasel 94, P. Fecchio 31, 
A. Feliciello 58, G. Feofilov 112, A. Fernández Téllez 44, A. Ferrero 137, A. Ferretti 26, A. Festanti 34, 
V.J.G. Feuillard 102, J. Figiel 118, S. Filchagin 107, D. Finogeev 62, F.M. Fionda 22, G. Fiorenza 52, F. Flor 125, 
S. Foertsch 72, P. Foka 105, S. Fokin 86, E. Fragiacomo 59, U. Frankenfeld 105, G.G. Fronze 26, U. Fuchs 34, 
C. Furget 77, A. Furs 62, M. Fusco Girard 30, J.J. Gaardhøje 87, M. Gagliardi 26, A.M. Gago 110, A. Gal 136, 
C.D. Galvan 120, P. Ganoti 82, C. Garabatos 105, E. Garcia-Solis 11, K. Garg 28, C. Gargiulo 34, A. Garibli 85, 
K. Garner 144, P. Gasik 103,117, E.F. Gauger 119, M.B. Gay Ducati 70, M. Germain 114, J. Ghosh 108, 
P. Ghosh 141, S.K. Ghosh 3, P. Gianotti 51, P. Giubellino 58,105, P. Giubilato 29, P. Glässel 102, 
D.M. Goméz Coral 71, A. Gomez Ramirez 73, V. Gonzalez 105, P. González-Zamora 44, S. Gorbunov 39, 
L. Görlich 118, S. Gotovac 35, V. Grabski 71, L.K. Graczykowski 142, K.L. Graham109, L. Greiner 78, A. Grelli 63, 
C. Grigoras 34, V. Grigoriev 91, A. Grigoryan 1, S. Grigoryan 74, O.S. Groettvik 22, J.M. Gronefeld 105, 
F. Grosa 31, J.F. Grosse-Oetringhaus 34, R. Grosso 105, R. Guernane 77, B. Guerzoni 27, M. Guittiere 114, 
K. Gulbrandsen 87, T. Gunji 132, A. Gupta 99, R. Gupta 99, I.B. Guzman 44, R. Haake 34,146, M.K. Habib 105, 
C. Hadjidakis 61, H. Hamagaki 80, G. Hamar 145, M. Hamid 6, R. Hannigan 119, M.R. Haque 63, 
A. Harlenderova 105, J.W. Harris 146, A. Harton 11, J.A. Hasenbichler 34, H. Hassan 77, D. Hatzifotiadou 10,53, 
P. Hauer 42, S. Hayashi 132, A.D.L.B. Hechavarria 144, S.T. Heckel 68, E. Hellbär 68, H. Helstrup 36, 
A. Herghelegiu 47, E.G. Hernandez 44, G. Herrera Corral 9, F. Herrmann 144, K.F. Hetland 36, T.E. Hilden 43, 
H. Hillemanns 34, C. Hills 127, B. Hippolyte 136, B. Hohlweger 103, D. Horak 37, S. Hornung 105, 
R. Hosokawa 133, P. Hristov 34, C. Huang 61, C. Hughes 130, P. Huhn 68, T.J. Humanic 95, H. Hushnud 108, 
L.A. Husova 144, N. Hussain 41, S.A. Hussain 15, T. Hussain 17, D. Hutter 39, D.S. Hwang 19, J.P. Iddon 34,127, 
R. Ilkaev 107, M. Inaba 133, M. Ippolitov 86, M.S. Islam 108, M. Ivanov 105, V. Ivanov 96, V. Izucheev 89, 
B. Jacak 78, N. Jacazio 27, P.M. Jacobs 78, M.B. Jadhav 48, S. Jadlovska 116, J. Jadlovsky 116, S. Jaelani 63, 
C. Jahnke 121, M.J. Jakubowska 142, M.A. Janik 142, M. Jercic 97, O. Jevons 109, R.T. Jimenez Bustamante 105, 
M. Jin 125, F. Jonas 94,144, P.G. Jones 109, J. Jung 68, M. Jung 68, A. Jusko 109, P. Kalinak 64, A. Kalweit 34, 
J.H. Kang 147, V. Kaplin 91, S. Kar 6, A. Karasu Uysal 76, O. Karavichev 62, T. Karavicheva 62, 
P. Karczmarczyk 34, E. Karpechev 62, U. Kebschull 73, R. Keidel 46, M. Keil 34, B. Ketzer 42, Z. Khabanova 88, 
A.M. Khan 6, S. Khan 17, S.A. Khan 141, A. Khanzadeev 96, Y. Kharlov 89, A. Khatun 17, A. Khuntia 49,118, 
B. Kileng 36, B. Kim 60, B. Kim 133, D. Kim 147, D.J. Kim 126, E.J. Kim 13, H. Kim 147, J. Kim 147, J.S. Kim 40, 



12 ALICE Collaboration / Physics Letters B 804 (2020) 135377

J. Kim 102, J. Kim 147, J. Kim 13, M. Kim 102, S. Kim 19, T. Kim 147, T. Kim 147, S. Kirsch 39, I. Kisel 39, 
S. Kiselev 90, A. Kisiel 142, J.L. Klay 5, C. Klein 68, J. Klein 58, S. Klein 78, C. Klein-Bösing 144, S. Klewin 102, 
A. Kluge 34, M.L. Knichel 34, A.G. Knospe 125, C. Kobdaj 115, M.K. Köhler 102, T. Kollegger 105, 
A. Kondratyev 74, N. Kondratyeva 91, E. Kondratyuk 89, P.J. Konopka 34, L. Koska 116, O. Kovalenko 83, 
V. Kovalenko 112, M. Kowalski 118, I. Králik 64, A. Kravčáková 38, L. Kreis 105, M. Krivda 64,109, F. Krizek 93, 
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M. Pikna 14, P. Pillot 114, L.O.D.L. Pimentel 87, O. Pinazza 34,53, L. Pinsky 125, C. Pinto 28, S. Pisano 51, 
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94 Oak Ridge National Laboratory, Oak Ridge, TN, United States
95 Ohio State University, Columbus, OH, United States
96 Petersburg Nuclear Physics Institute, Gatchina, Russia
97 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
98 Physics Department, Panjab University, Chandigarh, India
99 Physics Department, University of Jammu, Jammu, India
100 Physics Department, University of Rajasthan, Jaipur, India



ALICE Collaboration / Physics Letters B 804 (2020) 135377 15

101 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
102 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
103 Physik Department, Technische Universität München, Munich, Germany
104 Politecnico di Bari, Bari, Italy
105 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
106 Rudjer Bošković Institute, Zagreb, Croatia
107 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
108 Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
109 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
110 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
111 Shanghai Institute of Applied Physics, Shanghai, China
112 St. Petersburg State University, St. Petersburg, Russia
113 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
114 SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
115 Suranaree University of Technology, Nakhon Ratchasima, Thailand
116 Technical University of Košice, Košice, Slovakia
117 Technische Universität München, Excellence Cluster ‘Universe’, Munich, Germany
118 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
119 The University of Texas at Austin, Austin, TX, United States
120 Universidad Autónoma de Sinaloa, Culiacán, Mexico
121 Universidade de São Paulo (USP), São Paulo, Brazil
122 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
123 Universidade Federal do ABC, Santo Andre, Brazil
124 University of Cape Town, Cape Town, South Africa
125 University of Houston, Houston, TX, United States
126 University of Jyväskylä, Jyväskylä, Finland
127 University of Liverpool, Liverpool, United Kingdom
128 University of Science and Technology of China, Hefei, China
129 University of South-Eastern Norway, Tonsberg, Norway
130 University of Tennessee, Knoxville, TN, United States
131 University of the Witwatersrand, Johannesburg, South Africa
132 University of Tokyo, Tokyo, Japan
133 University of Tsukuba, Tsukuba, Japan
134 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
135 Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
136 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
137 Université Paris-Saclay Centre d’Etudes de Saclay (CEA), IRFU, Départment de Physique Nucléaire (DPhN), Saclay, France
138 Università degli Studi di Foggia, Foggia, Italy
139 Università degli Studi di Pavia, Pavia, Italy
140 Università di Brescia, Brescia, Italy
141 Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
142 Warsaw University of Technology, Warsaw, Poland
143 Wayne State University, Detroit, MI, United States
144 Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
145 Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
146 Yale University, New Haven, CT, United States
147 Yonsei University, Seoul, Republic of Korea

i Deceased.
ii Dipartimento DET del Politecnico di Torino, Turin, Italy.
iii M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia.
iv Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
v Institute of Theoretical Physics, University of Wroclaw, Poland.


	Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb--Pb collisions at √sNN=5...
	1 Introduction
	2 Experimental apparatus and data sample
	3 Data analysis
	3.1 Track selection and electron identification
	3.2 Subtraction of electrons from non heavy-flavour sources
	3.3 Efficiency correction and normalisation
	3.4 Systematic uncertainties

	4 Results
	4.1 pT-differential cross section in pp collisions and invariant yield in Pb--Pb collisions
	4.2 Nuclear modification factor
	4.3 Comparison with model predictions

	5 Conclusions
	Acknowledgements
	References
	ALICE Collaboration


