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The differential invariant yield as a function of transverse momentum (pt) of electrons from semileptonic
heavy-flavour hadron decays was measured at midrapidity in central (0-10%), semi-central (30-50%) and
peripheral (60-80%) lead-lead (Pb-Pb) collisions at /sy = 5.02 TeV in the pr intervals 0.5-26 GeV/c
(0-10% and 30-50%) and 0.5-10 GeV/c (60-80%). The production cross section in proton-proton (pp)
collisions at +/s = 5.02 TeV was measured as well in 0.5 < pr < 10 GeV/c and it lies close to
the upper band of perturbative QCD calculation uncertainties up to pr =5 GeV/c and close to the
mean value for larger pr. The modification of the electron yield with respect to what is expected
for an incoherent superposition of nucleon-nucleon collisions is evaluated by measuring the nuclear
modification factor Raa. The measurement of the Raa in different centrality classes allows in-medium
energy loss of charm and beauty quarks to be investigated. The Raa shows a suppression with respect to
unity at intermediate prt, which increases while moving towards more central collisions. Moreover, the
measured Raa is sensitive to the modification of the parton distribution functions (PDF) in nuclei, like
nuclear shadowing, which causes a suppression of the heavy-quark production at low pr in heavy-ion
collisions at LHC.
© 2020 Conseil Européen pour la Recherche Nucléaire. Published by Elsevier B.V. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction cone effect is expected to reduce small-angle gluon radiation for
heavy quarks with moderate energy to mass ratio [9], thus further
attenuating the effect of the medium. The combination of all these
effects results in the observed hierarchical mass dependent energy
loss [8,10-22].

In order to quantify medium effects on heavy-flavour observ-
ables measured in heavy-ion collisions, they are compared with
measurements in proton-proton (pp) collisions, where these ef-
fects are expected to be absent.

In pp collisions, heavy-quark production can be described by
perturbative Quantum Chromodynamics (pQCD) calculations for all
transverse momenta, whereas pQCD is not applicable for the calcu-
lation of light quark and gluon production at low transverse mo-
menta [3]. Moreover, measurements of heavy-flavour production
cross sections in pp collisions provide the necessary experimental
reference for heavy-ion collisions.

The main goal of ALICE is the study of the Quark-Gluon Plasma
(QGP), a state of matter which is expected to be created in ultra-
relativistic heavy-ion collisions where high temperatures and high
energy densities are reached at the LHC [1]. Due to their large
masses (mc ~ 1.5 GeV/c2, my ~ 4.8 GeV/c?), charm and beauty
quarks (heavy-flavour) are mostly produced via partonic scatter-
ing processes with high momentum transfer, which have typical
time scales smaller than the QGP thermalisation time (1 fm/c [2]).
Furthermore, additional thermal production, as well as annihila-
tion rates, of charm and beauty quarks in the strongly-interacting
matter are expected to be small in Pb-Pb collisions even at LHC
energies [3,4]. Consequently, charm and beauty quarks experience
the full evolution of the hot and dense medium produced in high-
energy heavy-ion collisions, therefore they are ideal probes to in-

vestigate the properties of the QGP.

Quarks and gluons interact strongly with the medium and they
are expected to lose energy through elastic collisions [5,6] and
radiative processes [7,8]. Quarks have a smaller colour coupling
factor with respect to gluons, hence the energy loss for quarks is
expected to be smaller than that for gluons. In addition, the dead-
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The medium effects on heavy quarks are quantified through the
measurement of the nuclear modification factor, defined as the ra-
tio between the yield of particles produced in ion-ion collisions
(d®Naa/dprdy) and the cross section measured in proton-proton
collisions at the same energy (dzopp/dedy), normalised by the
average nuclear overlap function (Tpa):

1 d’Naa/dprdy
(Taa) dzapp/dedy .

Raa(pT, ¥) = (1)
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The (Taa) is defined as the average number of nucleon-nucleon
collisions (N¢oy), which can be estimated via Glauber model cal-
culations [23,24], divided by the inelastic nucleon-nucleon cross
section. In-medium energy loss shifts the transverse momenta
towards lower values, therefore at intermediate and high pr
(pt = 2 GeV/c) a suppression of the production is expected
(Raa < 1). Assuming the total cross section evaluated using (N¢oj)
scaling is not modified, the nuclear modification factor is ex-
pected to increase towards lower pt, compensating the depletion
at higher momenta. Such a rise was measured by the PHENIX
and STAR experiments at RHIC in Au-Au and Cu-Cu collisions at
J/SNN = 200 GeV for electrons from heavy-flavour hadron de-
cays [25-27]. The nuclear modification factor for electrons from
semileptonic heavy-flavour hadron decays was also measured by
the ALICE collaboration in Pb-Pb collisions at /SNy = 2.76 TeV
[28,29], where the mentioned trend of Raa was also observed.
At low pr, the nuclear modification factor reaches a maximum
around 1 GeV/c and tends to decrease at lower pr. This trend can
be explained by initial and final state effects, like the collective
expansion of the hot and dense system [30-32], the interplay be-
tween hadronisation via fragmentation and coalescence [22,33,34]
and the modification of the parton distribution functions (PDF) in-
side bound nucleons [35].

Initial-state effects at the LHC are explored with proton-nucleus
collisions, where an extended QGP phase is not expected to be
formed. The nuclear modification factor of electrons from charm
and beauty hadron decays [14,36] and of D mesons [37] in
p-Pb collisions at /sy = 5.02 TeV was found to be consistent
with unity within uncertainties. From this, one can conclude that
the strong suppression observed in Pb-Pb collisions is due to
substantial final-state interactions of heavy quarks with the QGP
formed in these collisions. However, it is important to note that
recently the measurement of the elliptic flow of electrons from
semileptonic heavy-flavour hadron decays [38] and of D mesons
[39] have been published, showing intriguing and not yet fully un-
derstood collective effects in high-multiplicity p-Pb collisions in
the heavy-flavour sector.

This paper reports the measurement of the production cross
section in pp collisions, the invariant yields and the nuclear
modification factor, Raa, in Pb-Pb collisions as a function of
pr of electrons from semileptonic heavy-flavour hadron decays
at mid-rapidity at the centre-of-mass energy per nucleon pair
A/SNN = 5.02 TeV. In order to study how the yield and Raa change
with centrality in Pb-Pb collisions, the measurement was done in
three representative classes: the 0-10% class for central Pb-Pb col-
lisions, the 30-50% for semi-central Pb-Pb collisions and 60-80%
for peripheral Pb-Pb collisions.

2. Experimental apparatus and data sample

The ALICE detector is described in detail in Refs. [1,40]. The
experiment mainly consists of a central barrel at midrapidity
(Inl < 0.9), embedded in a cylindrical solenoid which provides a
magnetic field of 0.5 T parallel to the beam direction, and a muon
spectrometer at forward rapidity (—4 < n < —2.5).

Charged particles produced in the collisions and originating
from particle decays are tracked by the Inner Tracking System (ITS)
[41] and the Time Projection Chamber (TPC) [42]. The ITS detector,
composed of the Silicon Pixel Detector (SPD), Silicon Drift Detector
(SDD), and Silicon Strip Detector (SSD), consists of six cylindrical
silicon layers surrounding the beam vacuum pipe. These provide
measurements of particle momenta and energy loss (dE/dx) used
for charged-particle identification (PID), together with the TPC. The
particle identification is complemented by a Time-Of-Flight (TOF)
[43] detector, which measures the time-of-flight of charged parti-
cles. The TOF detector distinguishes electrons from kaons, protons,

Table 1
Number of events and (Taa) [46,47] used in the analysis, split by collisions system,
trigger configuration, and centrality class.

Centrality MB EMCal trigger (Taa) (mb~1)
) - 881 x 106 - -

0-10% 6 x10° 1.2 x108 23.264+0.17
Pb-Pb 30-50% 12 x108 0.3 x10° 3.917 4 0.065

60-80% 12 x 10° - 0.4188 4 0.0106

and pions up to pr >~ 2.5 GeV/c, pr ~4 GeV/c and pr >~ 1 GeV/c,
respectively. The ElectroMagnetic Calorimeter (EMCal) [44] covers
a pseudorapidity region of || < 0.7 and it is used to measure
electrons, photons, and jets in an azimuthal region of ~ 107°.
The electron identification in the EMCal is based on the measure-
ment of the E/p ratio, where E is the energy of the EMCal cluster
matched to the prolongation of the track with momentum p re-
constructed with the TPC and ITS detectors. The VO detectors [45]
consist of two arrays of 32 scintillator tiles covering the pseudo-
rapidity ranges 2.8 <7 < 5.1 (VOA) and —3.7 < n < —1.7 (VOC),
respectively, and are used for event characterisation.

The results presented in this paper are based on data samples
of Pb-Pb collisions recorded in 2015 and of pp collisions at the
same energy recorded in 2017. The analysed events were collected
with a minimum bias (MB) trigger of a logic AND between the
VOA and VOC detectors. Pb-Pb collisions were also recorded using
the EMCal trigger, which requires an EMCal cluster energy summed
over a group of 4x4 calorimeter cells larger than an energy thresh-
old of 10 GeV. The EMCAL triggered events were used for electron
measurements for pr > 12 GeV/c. The centrality classes were de-
fined in terms of percentiles of the hadronic Pb-Pb cross section,
defined by selections on the sum of the VO signal amplitudes [46].

For both collision systems, only events with at least two tracks
and a reconstructed primary vertex located between £ 10 cm with
respect to the nominal interaction point along the z-axis are con-
sidered. Events affected by pile-up from different bunch crossings,
which constitute less than 1% of the recorded sample, were re-
jected [28]. The number of events analysed in the two collision
systems with the different trigger configurations is summarised in
Table 1, together with the average nuclear overlap function (Taa)
[46,47].

3. Data analysis

The pr-differential yield of electrons from semileptonic heavy-
flavour hadron decays is computed by measuring the inclusive
electron yield and subtracting the contribution of electrons that
do not originate from semileptonic heavy-flavour hadron decays.
In the following, the inclusive electron identification strategy and
the subtraction of electrons originating from background sources
are described.

3.1. Track selection and electron identification

The selection criteria are similar to the ones described in
Refs. [28,29]. They are summarised together with the kinematic
cuts applied in the analyses in Table 2.

It is important to note that only tracks that have hits on both
SPD layers are accepted so that electrons from late photon con-
versions in the detector material are significantly reduced. In the
Pb-Pb analysis for pr >3 GeV/c, also tracks with a single hit in
the SPD are considered, since the amount of photonic background
starts to become negligible. In the analysis in which the EMCal de-
tector is used, specific track-cluster matching criteria are adopted.

As in the procedure followed in Refs. [28,29], electron candi-
dates are identified according to the criteria listed in Table 3. These
requirements depend on the data sample and on the transverse
momentum interval in which the analyses are performed.
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Table 2

Track selection criteria used in the analyses. “DCA” is an abbreviation for “distance of closest approach” of a track to the primary vertex.
Parameter pp Pb-Pb Pb-Pb

(pt < 3 GeVJc) (pr > 3 GeV/c)

[yl <08 <038 < 06
Number of clusters in TPC > 100 >120 >80
TPC clusters in dE/dx calculation >80 >80 -
Number of clusters in ITS >3 >4 >3
Minimum number of clusters in SPD 2 2 1
[DCAyy| <1cm <1cm < 2.4 cm
|DCA;| <2cm <2cm <3.2 cm
Found | findable clusters in TPC >0.6 >0.6 >0.6
x2/clusters in TPC <4 <4 <4
track-cluster matching in EMCal - - VAQ? + An? <0.02

Table 3

Electron identification criteria. The following momentum-dependent function is used for the electron identification in pp collisions, based on the TPC dE/dx:
f(p) =Min(0.12,0.02 + 0.07p). For the electron selection based on clusters in the EMCAL, a criterion on the “052“ parameter [29], corresponding to the shorter-axis of
the shower shape, is used. For brevity, the “low pt” label is used in place of “pr <3 GeV/c”, as well as “high pt” in place of “pt > 3 GeV/c".

Centrality nP¢ nloF % E/p Shower shape
pp (low pr) - [-0.5+ f(p). 3] [(-3.3] - - -
pp (high pr) - [0.12, 3] - - - -
0-10% [-0.16, 3]
Pb-Pb (low pr) 30-50% [0,3] [=3,3] [—4,2] - -
60-80% [0.2,3]
0-10%
Pb-Pb (high pr) 30-50% [=1,3] - - [0.8, 1.3] 0.01 <02 <0.35
60-80%

The electron identification in pp collisions is performed by eval-
uating the signal from the TPC and TOF detectors. The discriminant
variable in the former detector is the deviation of dE/dx from
the parameterised electron Bethe-Bloch [48] expectation value, ex-
pressed in units of the dE/dx resolution, nIFS, while in the latter

o,e’
one the analogous variable nl%, referring to the particle time-

of-flight, is considered. The criterion |nJ%| < 3, used for electron
identification up to pt = 3 GeV/c, is required to reduce background
from kaons and protons. A momentum dependent criterion on nl's
is adopted to guarantee a constant electron identification efficiency
of 70% for pt <3 GeV/c and of 50% for higher transverse momenta
by reducing the selection window in nlfS, in order to keep the
hadron contamination sufficiently low. In the Pb-Pb analysis for
pr < 3 GeV/c, the electron identification is performed by apply-
ing the same requirement on TOF and due to the large densities of
tracks, a selection between —4 < ngse < 2 on the energy deposited
in the SDD and SSD detectors is applied in all centrality classes.
Finally, the selection on nl'S ensures a constant electron identifica-
tion efficiency of 50% for all centrality classes. The hadron contam-
ination fraction after the PID is estimated by fitting the nlF¢ distri-
bution for each particle species with an analytic function in differ-
ent momentum intervals [28,29]. The inclusive electron sample is
then selected by applying a further criterion on ny’g which is cho-
sen in order to have a constant efficiency as a function of the mo-
mentum, as well as to have the hadron contamination under con-
trol. This criterion is loosened for pt > 3 GeV/c, due to the lower
amount of selected hadrons when the EMCal detector is employed.

In the Pb-Pb analysis for pt > 3 GeV/c, the electron candidates
are first selected by the measurement of the TPC dE/dx with the
criterion —1 <nlFS <3. Then, the selection 0.8 < E/p < 1.3 on the
energy over momentum ratio is applied. Unlike for hadrons, the
ratio E/p is close to 1 for electrons because they deposit most
of their energy in the EMCal. Furthermore, the electromagnetic
showers of electrons are more circular than the ones produced by
hadrons. Generally, the shower shape produced in the calorimeter

has an elliptical shape which can be characterised by its two axes:

o} for the long, and o for the short axis. A rather lose selection
of 0.01 < USZ < 0.35 is chosen, since it reduces the hadron con-
tamination while at the same time it does not affect significantly
the electron signal [29]. The residual hadron background in the
electron sample is evaluated using the E/p distribution for hadron-
dominated tracks selected with nl’¢ < —3.5. The E/p distribution
of the hadrons is then normalised to match the distribution of the
electron candidates in 0.4 < E/p < 0.7 (away from the true elec-
tron peak), so that the fraction of contaminating hadrons under
the electron peak can be estimated.

In pp events, the hadron contamination is below 1% at low
pr, while it reaches about 40% at pr = 10 GeV/c. In Pb-Pb, the
largest hadron contamination is measured in the most central col-
lisions, where a contamination of about 7% and 10% mainly due to
kaon and proton crossing the electron band at pt = 0.5 GeV/c and
pt =1 GeV/c respectively is present. The total hadron contamina-
tion contribution amounts to 5% at pr =3 GeV/c in central events
and tends to decrease towards more peripheral collisions. In the
EMCal analysis a maximum residual contamination of about 10% is
subtracted at the highest transverse momenta in the 0-10% cen-
trality class. In both collision systems, the hadron contamination is
subtracted statistically from the inclusive electron candidate yield.

In Pb-Pb collisions, the rapidity ranges used in the ITS-TPC-TOF
(pr < 3 GeV/c) and TPC-EMCal (pt > 3 GeV/c) analyses are re-
stricted to |y| < 0.8 and |y| < 0.6, respectively, to avoid the edges
of the detectors, where the systematic uncertainties related to par-
ticle identification increase.

3.2. Subtraction of electrons from non heavy-flavour sources
The selected inclusive electron sample does not only contain
electrons from open heavy-flavour hadron decays, but also differ-

ent sources of background:

1. electrons from Dalitz decays of light neutral mesons, mainly
70 and 7, and from photon conversions in the detector ma-



4 ALICE Collaboration / Physics Letters B 804 (2020) 135377

Table 4

Selection criteria for tagging photonic electrons.
Associated electron pp Pb-Pb Pb-Pb

(pr <3 GeV/c) (pr > 3 GeVc)

piin (GeV/c) 0.1 0.1 0.2
[yl <08 <038 <09
Number of clusters in TPC > 60 > 60 >70
TPC clusters in dE/dx calculation > 60 > 60 -
Number of clusters in ITS >2 >2 >2
[DCAxy| <1cm <1cm < 2.4 cm
|DCA;| <2cm <2 cm <32 cm
Found |/ findable clusters in TPC > 0.6 >0.6 -
x?/d.o.f TPC <4 <4 <4
niFe [-3.31  [-3.3] [-3.3]
Mete- (MeV/c?) <140 <140 <100

terial as well as from thermal and hard scattering processes,
called photonic in the following;
2. electrons from weak decays of kaons: K¥/%* — e=zg¥/0y)
(Ke3);
3. di-electron decays of quarkonia: J/y, T — ete™;
. di-electron decays of light vector mesons: w, ¢, oo — e*e™;
5. electrons from W and Z/y*.

S

The photonic tagging method [21,28,29,36,49] is the technique
adopted in the present analyses to estimate the contribution from
photonic electrons. With a contribution of 80% to the inclusive
electron sample, photonic electrons constitute the main back-
ground at pt = 0.5 GeV/c [28]. Their contribution decreases with
pr reaching 25% at about 3 GeV/c. The contribution from di-
electron decays of light vector mesons (p, w and ¢) is negligible
compared to the contributions from the photonic sources [50].

Photonic electrons are reconstructed statistically by pairing
electron (positron) tracks with opposite charge tracks identified as
positrons (electrons), called associated electrons in the following,
forming the so-called unlike-sign pairs. The combinatorial back-
ground is subtracted using the like-sign invariant mass distribution
in the same interval. Associated electrons are selected with the cri-
teria listed in Table 4, which are intentionally looser than the ones
applied for the inclusive electron selection, shown in Table 2, in
order to maximise the probability to find the photonic partners.

Due to the limited acceptance of the detector and the rejection
of some associated electrons by applying the mentioned criteria,
a certain fraction of photonic pairs is not reconstructed. There-
fore, the raw yield of tagged photonic electrons is corrected for
efficiency to find the associated electron (positron), the so called
tagging efficiency (&tag). This is evaluated using Monte Carlo (MC)
simulations; pp and Pb-Pb collisions are simulated by the PYTHIA
6 [51] and HIJING [52] event generators, respectively. Primary par-
ticle generation is followed by particle transport with GEANT3 [53]
and a detailed detector response simulation and reconstruction.
The tagging efficiency is defined as the ratio of the number of
true reconstructed unlike-sign pair electrons and the number of
those generated in the simulations. The simulated pt distributions
of 70 or n mesons are weighted in MC to match the measured
spectra. In both pp and Pb-Pb collisions, the weighting factor for
70 is provided by using the measured distributions of charged pi-
ons [54]. The weighting factor for n mesons is computed using
an mr-scaling approach [55,56]. The total tagging efficiency has a
monotonic trend. In pp collisions, it starts at 0.4 for pr = 0.5 GeV/c
and rises until pr = 3 GeV/c, where it flattens at 0.7. In Pb-Pb col-
lisions, it follows the same trend, increasing from 0.3 to 0.7 in the
same pr range.

It was observed in the previous analysis [28] that the contri-
bution from J/vs decays reaches a maximum of around 5% in the
region 2 < pt < 3 GeV/c in central Pb-Pb collisions, decreasing to

a few percent in more peripheral events. At lower and higher mo-
menta, this contribution quickly decreases and becomes negligible,
hence it is not subtracted in the present analyses. The associated
systematic uncertainty is taken from similar works [28,29]. Due to
the requirement of hits in both pixel layers, it was also observed
from similar studies in previous measurements [28] that the rel-
ative contribution from K.3 decays to the electron background is
negligible, hence this contribution is not subtracted in the present
analyses. Additional sources of background, such as electrons from
W and Z/y* decays, are subtracted from the fully corrected and
normalised electron yield in Pb-Pb collisions at high pt. These
contributions are obtained from calculations using the POWHEG
event generator [57] for pp collisions and scaling it by (Ncoy), as-
suming Raa = 1. The contribution from W decays increases from
1% at pr =10 GeV/c to about 20% at pr = 25 GeV/c in the 0-10%
centrality class, while the Z contribution reaches about 10% at the
same transverse momentum.

3.3. Efficiency correction and normalisation

After the statistical subtraction of the hadron contamination
and the background from photonic electrons, the raw yield of elec-
trons and positrons in bins of pt is divided by the number of
analysed events (N'Q(‘,B), by the transverse momentum value at the
bin centre p$t™© and the bin width Apr, by the width Ay of
the covered rapidity interval, by the geometrical acceptance (£2%°)
times the reconstruction (£™) and PID efficiencies (¢¢'P), and by
a factor of two to obtain the charge averaged invariant differential
yield, since in the analyses the distinction between positive and
negative charges is not done:

+ +
1 d’Ne 11 1 1 N{w (PT)
27TPT dedy 2 zﬂp%entre Ng/‘l,B A_VAPT (Egeo x greco geID)'

(2)

The production cross section in pp collisions is calculated by mul-
tiplying the invariant yield of Eq. (2) by the minimum bias trigger
cross section at /s =5.02 TeV, that is 50.9 & 0.9 mb [58]. The
per-event yield of electrons from the EMCal triggered sample was
scaled to the minimum bias yield by normalisation factors deter-
mined with a data-driven method based on the ratio of the energy
distributions of EMCal clusters for the two triggers, as described in
Ref. [29]. The normalisation is 64.5 £+ 0.5 in 0-10% and 246 + 2.6
in 30-50% centrality intervals, respectively.

The efficiencies are determined using specific MC simulations,
where every collision event is produced with at least either a cc
or bb pair and heavy-flavour hadrons are forced to decay semilep-
tonically to electrons [28,29]. The underlying Pb-Pb events were
simulated using the HIJING generator [52] and heavy-flavour sig-
nals were added using the PYTHIA 6 generator [51]. The efficiency
of reconstructing electrons from semileptonic heavy-flavour hadron
decays is about 20% at ptr = 0.5 GeV/c, then it increases with pt
up to 58% in pp collisions. In Pb-Pb collisions, it follows the same
trend, increasing from 5% to 10% in the same pt range.

3.4. Systematic uncertainties

The overall systematic uncertainties on the pr spectra are cal-
culated summing in quadrature the different contributions, which
are assumed to be uncorrelated. They are summarised in Table 5
and discussed in the following.

The systematic uncertainties on the total reconstruction effi-
ciency arising from the comparison between MC and data are esti-
mated by varying the track selection and PID requirements around
the default values chosen in the analyses. The analysis is repeated
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Table 5

Contributions to the systematic uncertainties on the cross section (yield) of electrons from heavy-flavour hadron decays in pp (Pb-Pb) collisions, quoted for the transverse
momentum intervals 0.5 < pr < 0.7 GeV/c and 8 < pr < 10 GeV/c. These pr intervals are listed because the detectors used for particle identification in the two cases are
different. In addition, they also represent the first and the last pt intervals in common for the centrality classes in Pb-Pb collisions, as well as for the pp cross section. At
higher pr the uncertainties are generally lower, apart from the one related to the electroweak background, which stays below 4%. The uncertainties quoted with * are not
summed in quadrature together with the others, because they are the Raa normalization uncertainties.

pp Pb-Pb (0-10%) Pb-Pb (30-50%) Pb-Pb (60-80%)

pr (GeVJc) 0.5-0.7 8-10 0.5-0.7 8-10 0.5-0.7 8-10 0.5-0.7 8-10
Track selections 1% 1% 4% 2% 1% 2% 2% 2%
Photonic tagging 4% - 13% 4% 7% 4% 7% 4%
SPD hit requirement 3% 3% 10% - - - - -
Jv—e - - 2% - 2% - 2% -
W—e - - - <4% - <1% - <1%
Zly* —e - - - <1% - <1% - <1%
nIPC selection - 5% - 5% - 5% - 2%
E/p selection - - - 6% - 6% - 6%
Hadron contamination - 5% 6% - 2% - - -
ITS-TPC matching 2% 2% 2% 2% 2% 2% 2% 2%
TPC-TOF matching 2% - 3% - - - - -

n 5% 4% 10% - 5% - 5% -

@ - - 10% - - - - -
Interaction rate - - 5% - - - - -
Centrality limit* - - <1% <1% 2% 2% 3% 3%
Luminosity* 2.1% 21% - - - - - -
Total uncertainty 9% 9% 24% 9% 9% 9% 9% 8%

with tighter and looser conditions with respect to the default se-
lection criteria and the systematic uncertainty is calculated as the
root mean square (RMS) of the distribution of the resulting cor-
rected yields (or cross sections in pp) in each centrality and pr
interval. The systematic uncertainty estimated in pp collisions is
less than 2%, while in Pb-Pb collisions it reaches a maximum value
of 4% in 0-10% centrality class for pt < 0.9 GeV/c.

Similarly, the systematic uncertainty arising from the photonic-
electron subtraction technique is estimated as the RMS of the dis-
tribution of yields obtained by varying the selection criteria listed
in Table 4. In pp collisions this contribution has a maximum of
4% for 0.5 < pt < 0.7 GeV/c and then it gradually decreases with
increasing pr, while in the 0-10% Pb-Pb centrality class it is the
dominant source of systematic uncertainty, being 13% in the first
pr interval. This systematic uncertainty mainly arises when the in-
variant mass criterion on the photonic pairs is varied and it reflects
the large contribution of photonic electrons in the low-pt region.

In order to further test the robustness of the photonic electron
tagging, the requirement on the number of clusters for electron
candidates in the SPD is relaxed in order to increase the fraction of
electrons coming from photon conversions in the detector material.
A variation of 3% is observed for the measured pp cross section in
the full pr range, while in central Pb-Pb collisions the observed
deviation amounts to 10% for 0.5 < pr < 0.7 GeV/c, decreasing
with increasing pt. This systematic uncertainty is less relevant in
semi-central collisions, and it is compatible with the variation de-
termined in pp measurements for 1.5 < pr <3 GeV/c.

In addition, the systematic uncertainty related to the subtrac-
tion of the background electrons from W and Z/y* is estimated by
propagating 15% of uncertainty, which covers the possible differ-
ence between the measurements and the theoretical calculations
[59-61]. The uncertainty from the subtraction on the final result,
which is relevant only at high pr, is less than 4% for electrons from
semileptonic heavy-flavour hadron decays in central (0-10%) Pb-Pb
collisions for 24 < pr < 26 GeV/c, and less than 1% in other cen-
trality classes for the same pr interval. In the pp analysis, a 5% sys-
tematic uncertainty is found while varying the selection criterion
in the TPC for pt > 8 GeV/c due to the increasing relative amount
of hadrons. An additional systematic uncertainty of 5%, related to
the precision of the estimated hadron contamination, is assigned
for pt > 8 GeV/c. In Pb-Pb collisions, a 10% systematic uncertainty

is assigned for pt > 12 GeV/c due to the variation of electron iden-
tification in the TPC, while this contribution is within 5% at lower
pr. Moreover, a 6% uncertainty is assigned due to the E/p selec-
tion criterion. Finally, for pt < 3 GeV/c, different functional forms
are used for the parametrisation of the pion contribution in the
fitting procedure adopted to evaluate the hadron contamination. A
systematic uncertainty of about 6% is assigned for pt < 3 GeV/c
in the 0-10% centrality class, while this contribution decreases for
more peripheral collisions.

In the pp (Pb-Pb) analysis, a systematic uncertainty of about 2%
(3%) is assigned due to the incomplete knowledge of the efficiency
in matching tracks reconstructed in the ITS and TPC and another
2% (5%) for the track matching between TPC and TOF.

The effects due to the presence of non-uniformity in the cor-
rection for the space-charge distortion in the TPC drift volume
or irregularities in the detector coverage are then evaluated by
repeating the analysis in different geometrical regions. In pp colli-
sions, @ maximum systematic uncertainty of 5% is estimated from
varying the pseudorapidity range used for the cross section mea-
surement. The same value is assigned in the 30-50% and 60-80%
Pb-Pb centrality intervals, while a 10% systematic uncertainty is
assigned for 0.5 < pr < 0.7 GeV/c in the 0-10% centrality interval,
due to the larger sensitivity to the electrons from photon conver-
sions. An additional uncertainty of 10% for pr <1 GeV/c and of 5%
up to pr =3 GeV/c is estimated from varying the azimuthal region
in central Pb-Pb collisions. Furthermore, the analysis of Pb-Pb col-
lisions is repeated using different interaction rate regimes. A 5%
deviation is observed at low pr in central Pb-Pb collisions when
selecting only high (> 5 kHz) or low (< 5 kHz) interaction rate
events.

The uncertainty from the EMCal trigger normalisation in Pb-Pb
collisions at pt > 12 GeV/c is estimated as the RMS of the rejection
factor values computed at different transverse momenta [29]. The
RMS is 4% and assigned as the systematic uncertainty.

The uncertainties on the Ras normalisation are the quadratic
sum of the uncertainties on the average nuclear overlap functions
in Table 1, the normalisation uncertainty due to the luminosity and
the uncertainty related to the determination of the centrality inter-
vals, which reflects the uncertainty on the fraction of the hadronic
cross section used in the Glauber fit to determine the centrality
[16,62].
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4. Results

4.1. pr-differential cross section in pp collisions and invariant yield in
Pb-Pb collisions

The pr-differential production cross section of electrons from
semileptonic heavy-flavour hadron decays in pp collisions at
A/s =5.02 TeV is shown in Fig. 1. The data in the region
0.5 < pr < 10 GeV/c is compared with the Fixed-Order-Next-to-
Leading-Log (FONLL) [63] pQCD calculation. The uncertainties of
the FONLL calculations (dashed area) reflect different choices for
the charm and beauty quark masses, the factorisation and renor-
malisation scales as well as the uncertainty on the set of parton
distribution functions (PDF) used in the pQCD calculation (CTEQ6.6
[64]). The measured cross section is close to the upper edge of
the theoretical prediction up to pr ~5 GeV/c, as observed in pp
collisions at /s =2.76 and 7 TeV [28,49,50], while at higher pr,
where electrons from semileptonic beauty hadron decays are ex-
pected to dominate, the measurement is close to the mean value
of the FONLL prediction.

The pr-differential invariant yield of electrons from semilep-
tonic heavy-flavour hadron decays measured in central (0-10%),
semi-central (30-50%), and peripheral (60-80%) Pb-Pb collisions
at /sny = 5.02 TeV is shown in Fig. 2. The measurements are
performed in the pr interval 0.5-26 GeV/c in the 0-10% and in
the 30-50% centrality intervals, and only up to pt = 10 GeV/c in
the 60-80% centrality class due to limited statistics in Pb-Pb data
recorded in 2015.

4.2. Nuclear modification factor

The nuclear modification factor of electrons from semilep-
tonic heavy-flavour hadron decays measured in central (0-10%),
semi-central (30-50%), and peripheral (60-80%) Pb-Pb collisions
at /snN = 5.02 TeV is shown in Fig. 3. The measured cross sec-
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Fig. 2. pr-differential invariant yield in central (0-10%), semi-central (30-50%), and
peripheral (60-80%) Pb-Pb collisions at /sy = 5.02 TeV.

tion in pp collisions at /s =5.02 TeV (Fig. 1) is used as a ref-
erence up to pr = 10 GeV/c. For pr > 10 GeV/c, the reference
is obtained by a pr-dependent scaling of the measurement at
/s =7 TeV by the ATLAS collaboration [65] with the ratio of
the cross section at the two collision energies computed with
the FONLL calculation [66]. This ratio is performed by consid-
ering the different rapidity coverage of the ATLAS measurement
(ly] < 2 excluding 1.37 < |y| < 1.52). The systematic uncertain-
ties of the cross section at /s = 5.02 TeV range from 13% to 18%
depending on the p interval, and they are computed as the prop-
agation of the uncertainties associated with FONLL calculations at
/s =5.02 TeV and /s =7 TeV and the systematic uncertainties of
the ATLAS measurement. The statistical uncertainties are from the
ATLAS measurement.

Statistical and systematic uncertainties of the pry-differential
yields and cross sections in Pb-Pb and pp collisions, respectively,
are propagated as uncorrelated uncertainties. The uncertainties on
the Raa normalisation are reported in Fig. 3 as boxes at unity. The
measured Raa shows a clear dependence on the collision central-
ity, since in most central events it reaches a minimum of about
0.3 around pt =7 GeV/c, while moving to more peripheral Pb-Pb
collisions the Raa gets closer to unity at pr > 3 GeV/c. Such a
suppression is not observed in proton-lead collisions at the same
energy where the QGP is not expected to be formed and the nu-
clear modification factor is consistent with unity [14,36,37]. Thus
the suppression of electron production is due to final-state effects,
such as partonic energy loss in the medium. Since electrons from
semileptonic beauty decays are expected to dominate the spec-
trum at high pt while charm production dominates at low pt [14],
the measurements show that charm and beauty quarks lose energy
in the medium. The centrality dependence of the Ras is compat-
ible with the hypothesis of a partonic energy loss dependence on
medium density, being larger in a hotter and denser QGP, like the
one created in the most central collisions. In addition, it reflects
a path-length dependence of energy loss. Moreover, it has been
shown in Refs. [67,68] that a centrality selection bias is present
in peripheral Pb-Pb collisions which reduces the Raa below unity
even in the absence of any nuclear modification effects. This effect
may be responsible for a significant part of the apparent suppres-
sion seen in the Rap of electrons from semileptonic heavy-flavour
hadron decays in the 60-80% centrality class.

For pr < 7 GeV/c, the Raa of electrons from semileptonic
heavy-flavour hadron decays increases with decreasing pr as a
consequence of the scaling of the total heavy-flavour yield with
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Fig. 3. Nuclear modification factor of electrons from semileptonic heavy-flavour hadron decays measured in the three centrality intervals

J/SNN = 5.02 TeV.

the number of binary collisions among nucleons in Pb-Pb colli-
sions. On the other hand, the nuclear modification factor at low pt
does not rise above unity. This kinematic region is sensitive to the
effects of nuclear shadowing: the depletion of parton densities in
nuclei at low Bjorken x values can reduce the heavy-quark produc-
tion cross section per binary collision in Pb-Pb with respect to the
pp case [28]. This initial-state effect is studied in p-Pb collisions,
however, the present uncertainties on the R,p, measurement do
not allow quantitative conclusions on the modification of the PDF
in nuclei in the low pr region to be made [36]. Furthermore, the
amount of electrons from semileptonic heavy-flavour hadron de-
cays is reduced due to the presence of hadrochemistry effects. For
example, A baryons decay into electrons with a branching ra-
tio of 5%, while for the D mesons the branching ratio is less than
10%. Since in Pb-Pb collisions more charm quarks might hadronize
into baryons [69], this effect reduces the total amount of electrons
from semileptonic heavy-flavour hadron decays. Additional effects,
such as collective motion induced by the medium, also have an in-
fluence on the measured Raa. Also, it has been observed that the
radial flow can provoke an additional yield enhancement at inter-
mediate pr [70-73]. In this case, the radial flow pushes up slow
particles to higher momenta, causing a small increase in the nu-
clear modification factor around pr =1 GeV/c.

It should be noted that the Ry measurements in the most cen-
tral collisions at /sy = 2.76 TeV [28] and 5.02 TeV are compatible
within uncertainties, as shown in Fig. 3. This effect was predicted
by the Djordjevic model [74], and it results from the combina-
tion of a higher medium temperature at 5.02 TeV, which would
decrease the Raa by about 10%, with a harder pr distribution of
heavy quarks at 5.02 TeV, which would increase the Rpas by about
5% if the medium temperature were the same as at 2.76 TeV. An
analogous behaviour between the measured Raa at the two ener-
gies is also observed for the D mesons [16].

4.3. Comparison with model predictions

In Fig. 4 the measured Raa in the 0-10% (left panel) and
30-50% (right panel) centrality intervals are compared with model
calculations [74-81]. The model calculations take into account dif-
ferent hypotheses about mass dependence of energy loss processes,
transport dynamics, charm and beauty quark interactions with the
QGP constituents, hadronisation mechanisms of heavy quarks in
the plasma, and heavy-quark production cross section in nucleus-
nucleus collisions.

Most of the models provide a fair description of the data in the
region pr < 5 GeV/c in both centrality classes, except for BAMPS
[76]. The predictions from the MC@sHQ+EPOS2 [81], PHSD [77],

in Pb-Pb collisions at

TAMU [78], and POWLANG [80] models also include nuclear mod-
ification of the parton distribution functions, which is necessary
to predict the observed suppression of the Raa at low p. The fol-
lowing observations about the comparison with model calculations
are fully in agreement with what is observed in the Raa measure-
ments of D mesons [16].

The nuclear modification factor for central Pb-Pb collisions is
well described by the TAMU [78] prediction at pt < 3 GeV/c
within the uncertainties related to the shadowing effect on charm
quarks. However, this model tends to overestimate the Ras for
pt > 3 GeV/c, probably due to the missing implementation of the
radiative energy loss in the model, which may become the domi-
nant energy loss mechanism at high pr.

The agreement with TAMU [78] at low pr, on the other hand,
confirms the dominance of elastic collisions at low momenta, to-
gether with the importance of the inclusion of shadowing effects in
the model calculations [35], which reduce the total heavy-flavour
production in Pb-Pb collisions with respect to an expectation from
the binary scaling.

In semi-central Pb-Pb collisions the TAMU [78] and POWLANG
[80] predictions are close to the lower edge of the uncertain-
ties of the measured Raa for pt < 3 GeV/c. The latter calculation
describes the data better up to pt >~ 8 GeV/c, while the former
provides a good description even at higher transverse momenta.
The CUJET3.0 [75] and Djordjevic [74,79] models provide a good
description of the Rap within the uncertainties in both central-
ity intervals for pr > 5 GeV/c, suggesting that the dependence
of radiative energy loss on the path length in the hot and dense
medium is well understood.

5. Conclusions

The invariant yield of electrons from semileptonic heavy-
flavour hadron decays was measured in central (0-10%), semi-
central (30-50%), and peripheral (60-80%) Pb-Pb collisions at
J/SNN=5.02 TeV. The measurement of the nuclear modification
factor in all the centrality classes for pr < 10 GeV/c is provided
using as reference the cross section measured in pp collisions at
the same centre-of-mass energy. The systematic uncertainties of
this measurement are reduced by a factor of about 2 compared
to the published reference in pp collisions at /s = 2.76 TeV [28]
and the measured cross section is close to the upper edge of the
FONLL uncertainty band. At higher pt the reference is obtained by
a pr-dependent scaling of the measurement at /s =7 TeV by the
ATLAS collaboration [65] with the ratio of the cross section at the
two collision energies computed with the FONLL calculation [66].
As in the Pb-Pb analysis at /sy = 2.76 TeV [28,29], the main
source of background electrons, constituted by photonic electrons,
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Fig. 4. Nuclear modification factor of electrons semileptonic from heavy-flavour hadron decays measured in 0-10% and 30-50% centrality in Pb-Pb collisions at

VSNN = 5.02 TeV compared with model predictions [74-81].

is removed via the photonic tagging method. In addition, compared
with the measurements performed in pp and Pb-Pb collisions at
2.76 TeV, the pr range is extended, and an additional centrality
class is added.

The measured Raa confirms the evidence of a strong suppres-
sion with respect to what is expected from a simple binary scaling
for large pr. This is a clear signature of the medium induced en-
ergy loss on heavy quarks traversing the QGP produced in heavy-
ion collisions.

The measurement of electrons from semileptonic heavy-flavour
hadron decays in different centrality classes exhibits the depen-
dence of energy loss on the path length and energy density in
the hot and dense medium. The Raa at high pr (above 5 GeV/c)
is fairly described in the 0-10% and 30-50% centrality intervals
by model calculations that include both radiative and collisional
energy loss. This indicates that the centrality dependence of radia-
tive energy loss is theoretically understood. Further investigations
and measurement of electrons from semileptonic decays of beauty
hadrons will give more information about the mass dependence of
the energy loss in the heavy-flavour sector.

With the good precision of the results presented here, the
Pb-Pb data exhibit their sensitivity to the modification of the PDF
in nuclei, like nuclear shadowing, which causes a suppression of
the heavy-quark production in heavy-ion collisions. The implemen-
tation of the nuclear modification of the PDF in theoretical calcu-
lations is a necessary ingredient in order for the model predictions
to correctly describe the measured Raa [28].
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