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This Letter presents the first direct investigation of the p–�0 interaction, using the femtoscopy technique 
in high-multiplicity pp collisions at 

√
s = 13 TeV measured by the ALICE detector. The �0 is reconstructed 

via the decay channel to �γ , and the subsequent decay of � to pπ−. The photon is detected via the 
conversion in material to e+e− pairs exploiting the capability of the ALICE detector to measure electrons 
at low transverse momenta. The measured p–�0 correlation indicates a shallow strong interaction. The 
comparison of the data to several theoretical predictions obtained employing the Correlation Analysis 
Tool using the Schrödinger Equation (CATS) and the Lednický–Lyuboshits approach shows that the current 
experimental precision does not yet allow to discriminate between different models, as it is the case 
for the available scattering and hypernuclei data. Nevertheless, the p–�0 correlation function is found 
to be sensitive to the strong interaction, and driven by the interplay of the different spin and isospin 
channels. This pioneering study demonstrates the feasibility of a femtoscopic measurement in the p–�0

channel and with the expected larger data samples in LHC Run 3 and Run 4, the p–�0 interaction will 
be constrained with high precision.

© 2020 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A quantitative understanding of the hyperon–nucleon interac-
tion in the strangeness S = −1 sector is fundamental to pin down 
the role of strangeness within low energy quantum chromody-
namics and to study the properties of baryonic matter at finite 
densities. The possible presence of the isoscalar � and the isovec-
tor (�+, �0, �−) hyperon states in the inner core of neutron stars 
(NS) is currently under debate due to the limited knowledge of 
the interaction of such hyperons with nuclear matter. The inclu-
sion of hyperons in the description of the nuclear matter inside 
NS typically contains only � states, and the on-average attrac-
tive nucleon–� (N–�) interaction leads to rather soft Equations 
of State (EoS) for NS. These are then unable to provide stability for 
stars of about two solar masses [1,2]. The � hyperons are rarely in-
cluded in the EoS for NS because of the limited knowledge about 
the N–� strong interaction.

Indeed, while the attractive N–� interaction is reasonably well 
constrained from the available scattering and light hypernuclei 
data [3–5], the nature of the N–� interaction lacks conclusive 
experimental measurements. One of the major complications for 
experimental studies is the fact that the decay of all � states in-
volves neutral decay products [6], thus requiring high-resolution 
calorimeters.

� E-mail address: alice -publications @cern .ch.

The main source of experimental constraints on the N–� sys-
tem comes from scattering measurements [7–9], analysis of �−
atoms [10–12], and hypernuclei production data [13–16], although 
the latter are mainly dominated by large statistical uncertain-
ties and large kaon decay background. Latest hypernuclear results 
obtained from different nuclear targets point towards an attrac-
tive interaction in the isospin I = 1/2 channel of the N–� sys-
tem [13,14], and repulsion in the I = 3/2 channel [15,16]. Hyper-
nuclear measurements, however, are performed at nuclear satura-
tion density and hence in the presence of more than one nucleon, 
resulting in a substantial model dependence in the interpretation 
of the experimental data [17].

Additionally, the hyperon–nucleon dynamics are strongly af-
fected by the conversion process N–� ↔ N–�, occurring in the 
I = 1/2 channel due to the close kinematic threshold between 
the two systems (about 80 MeV) [18–22]. This coupling is ex-
pected to provide an additional attractive contribution in the two-
body N–� interaction in vacuum [21,22]. Indeed, depending on 
the strength of the N–� ↔ N–� coupling at the two-body level, 
the corresponding in-medium hyperon properties are very differ-
ent. For a strong coupling, this leads to a repulsive single-particle 
potential U� at large densities [21,22]. For the � hyperon, the 
in-medium properties are mostly determined by the overall repul-
sion in the I = 3/2 component [21,22]. A repulsive component in 
the hyperon–nucleon interactions could shift the onset for hyperon 
production to larger densities, above 2–3 times the normal satura-
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tion density, thus leading to stiffer EoS which are able to describe 
the experimental constraint of NS.

To this end, different theoretical approaches including chiral ef-
fective field theories (χEFT) [20] and meson-exchange models with 
hadronic [23] and quark [24] degrees of freedom provide a simi-
lar description of the available data by assuming a strong repulsion 
in the spin singlet S = 0, I = 1/2 and spin triplet S = 1, I = 3/2
and an overall attraction in the remaining channels. Recent ab ini-
tio lattice calculations at quark physical masses show a similar 
dependence on spin-isospin configurations for the central poten-
tial term [25]. The strength of the coupled-channel N–� ↔ N–�
is strongly model dependent as well. Calculations based on chi-
ral models [20,21] and meson-exchange models [18,26] predict 
a rather strong or much weaker coupling, respectively. A self-
consistent description of this coupled-channel demands a detailed 
knowledge of the strong interaction in the N–� system.

Recently, the study of two-particle correlations in momen-
tum space measured in ultra-relativistic proton–proton (pp) and 
proton–nucleus collisions has proven to provide direct access to 
the interaction between particle pairs in vacuum [27–29]. The 
small size of the colliding systems of about 1 fm results in a 
pronounced correlation signal from strong final state interactions, 
which permits the latter to be precisely constrained. These mea-
surements provided additional data in the hyperon sector with an 
unprecedented precision in the low momentum regime. In this Let-
ter, these studies are extended to the � sector. The electromagnetic 
decay of the �0 is exploited for the first direct measurement of the 
p–�0 interaction in pp collisions. This study paves the way for ex-
tending these investigations to the charged � states, in particular 
in light of the larger data samples expected from the LHC Runs 3 
and 4.

2. Data analysis

This Letter presents results obtained from a data sample of pp 
collisions at 

√
s = 13 TeV recorded with the ALICE detector [30,31]

during the LHC Run 2 (2015–2018). The sample was collected em-
ploying a high-multiplicity trigger with the V0 detectors, which 
consist of two small-angle plastic scintillator arrays located on ei-
ther side of the collision vertex at pseudorapidities 2.8 < η < 5.1
and −3.7 < η < −1.7 [32]. The high-multiplicity trigger is defined 
by coincident hits in both V0 detectors synchronous with the LHC 
bunch crossing and by additionally requiring the sum of the mea-
sured signal amplitudes in the V0 to exceed a multiple of the 
average value in minimum bias collisions. This corresponds, at the 
analysis level, to the highest multiplicity interval containing the 
top 0.17% of all inelastic collisions with at least one charged par-
ticle in |η| < 1 (referred to as INEL > 0). This data set presents 
a suitable environment to study correlations due to the enhanced 
production of strange particles in such collisions [33]. Addition-
ally, the larger charged-particle multiplicity density with respect 
to the minimum bias sample significantly increases the probabil-
ity to detect particle pairs. The V0 is also employed to suppress 
background events, such as the interaction of beam particles with 
mechanical structures of the beam line, or beam-gas interactions. 
In-bunch pile-up events with more than one collision per bunch 
crossing are rejected by evaluating the presence of additional event 
vertices [31]. The remaining contamination from pile-up events is 
on the percent level and does not influence the final results.

Charged-particle tracking within the ALICE central barrel is con-
ducted with the Inner Tracking System (ITS) [30] and the Time 
Projection Chamber (TPC) [34]. The detectors are immersed in a 
homogeneous 0.5 T solenoidal magnetic field along the beam di-
rection. The ITS consists of six cylindrical layers of high position-
resolution silicon detectors placed radially between 3.9 and 43 cm 
around the beam pipe. The two innermost layers are Silicon Pixel 

Detectors (SPD) and cover the pseudorapidity range |η| < 2.0 and 
|η| < 1.4, respectively. The two intermediate layers are composed 
of Silicon Drift Detectors, and the two outermost layers are made 
of double-sided Silicon micro-Strip Detectors (SSD), covering |η| <
0.9 and |η| < 1.0, respectively. The TPC consists of a 5 m long, 
cylindrical gaseous detector with full azimuthal coverage in the 
pseudorapidity range |η| < 0.9. Particle identification (PID) is con-
ducted via the measurement of the specific ionization energy loss 
(dE/dx) with up to 159 reconstructed space points along the par-
ticle trajectory. The Time-Of-Flight (TOF) [35] detector system is 
located at a radial distance of 3.7 m from the nominal interaction 
point and consists of Multigap Resistive Plate Chambers covering 
the full azimuthal angle in |η| < 0.9. PID is accomplished by mea-
suring the particle’s velocity β via the time of flight of the particles 
in conjunction with their trajectory. The event collision time is pro-
vided as a combination of the measurements in the TOF and the 
T0 detector, two Cherenkov counter arrays placed at forward ra-
pidity [36].

The primary event vertex (PV) is reconstructed with the com-
bined track information of the ITS and the TPC, and independently 
with SPD tracklets. When both vertex reconstruction methods are 
available, the difference of the corresponding z coordinates is re-
quired to be smaller than 5 mm. A uniform detector coverage is 
assured by restricting the maximal deviation between the z coor-
dinate of the reconstructed PV and the nominal interaction point 
to ±10 cm. A total of 1.0 × 109 high-multiplicity events are used 
for the analysis after event selection.

The proton candidates are reconstructed following the analysis 
methods used for minimum bias pp collisions at 

√
s = 7 TeV [27]

and 13 TeV [28,29], and are selected from the charged-particle 
tracks reconstructed with the TPC in the kinematic range 0.5 <
pT < 4.05 GeV/c and |η| < 0.8. The TPC and TOF PID capabilities 
are employed to select proton candidates by the deviation nσ be-
tween the signal hypothesis for a proton and the experimental 
measurement, normalized by the detector resolution σ . For can-
didates with p < 0.75 GeV/c, PID is performed with the TPC only, 
requiring |nσ | < 3. For larger momenta, the PID information of TPC 
and TOF are combined. Secondary particles stemming from weak 
decays or the interaction of primary particles with the detector 
material contaminate the signal. The corresponding fraction of pri-
mary and secondary protons are extracted using Monte Carlo (MC) 
template fits to the measured distribution of the Distance of Clos-
est Approach (DCA) of the track to the primary vertex [27]. The 
MC templates are generated using PYTHIA 8.2 [37] and filtered 
through the ALICE detector [38] and reconstruction algorithm [30]. 
The resulting purity of protons is found to be 99%, with a primary 
fraction of 82%.

The �0 is reconstructed via the decay channel �0 → �γ with 
a branching ratio of almost 100% [6]. The decay is characterized 
by a short life time rendering the decay products indistinguish-
able from primary particles produced in the initial collision. Due 
to the small mass difference between the � and the �0 of about 
77 MeV/c2, the γ has typically energies of only few hundreds 
of MeV. Therefore, it is reconstructed relying on conversions to 
e+e− pairs in the detector material of the central barrel exploit-
ing the unique capability of the ALICE detector to identify elec-
trons down to transverse momenta of 0.05 GeV/c. For transverse 
radii R < 180 cm and |η| < 0.9 the material budget corresponds 
to (11.4 ± 0.5)% of a radiation length X0, and accordingly to a 
conversion probability of (8.6 ± 0.4)% [39]. Details of the photon 
conversion analysis and the corresponding selection criteria are de-
scribed in [39,40]. The reconstruction relies on the identification 
of secondary vertices by forming so-called V 0 decay candidates 
from two oppositely-charged tracks using a procedure described 
in detail in [41]. The products of the potential γ conversion are 
reconstructed with the TPC and the ITS in the kinematic range 
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Fig. 1. Invariant mass distribution of the �γ and �γ candidates, in two pT intervals of 1.5 − 2.0 GeV/c and 6.5 − 7.0 GeV/c. The signal is described by a single Gaussian, 
and the background by a polynomial of third order. The number of �0 candidates is evaluated within M�0 (pT) ± 3 MeV/c2. Only statistical uncertainties are shown.

pT > 0.05 GeV/c and |η| < 0.9. The candidates for the e+e− pair 
are identified by a broad PID selection in the TPC −6 < nσ < 7. 
The resulting γ candidate is obtained as the combination of the 
daughter tracks. Only candidates with pT > 0.02 GeV/c and within 
|η| < 0.9 are accepted. Combinatorial background from primary 
e+e− pairs, or Dalitz decays of the π0 and η mesons is removed 
by requiring that the radial distance of the conversion point, with 
respect to the detector centre, ranges from 5 cm to 180 cm. Resid-
ual contaminations from K0

S and � are removed by a selection 
in the Armenteros-Podolandski space [40,42]. Random combina-
tions of electrons and positrons are further suppressed by a two-
dimensional selection on the angle between the plane defined by 
the e+e− pair, and the magnetic field [43] in combination with the 
reduced χ2 of a refit of the reconstructed V 0 assuming that the 
particle originates from the primary vertex and has MV 0 = 0 [40]. 
The Cosine of the Pointing Angle (CPA) between the γ momen-
tum and the vector pointing from the PV to the decay vertex is 
required to be CPA > 0.999. In addition to the tight CPA selection, 
the contribution of particles stemming from out-of-bunch pile-up 
is suppressed by restricting the DCA of the photon to be along the 
beam direction (DCAz < 0.5 cm). After application of the selection 
criteria, about 946 ×106 γ candidates with a purity of about 95.4% 
are available for further processing.

The � particle candidates are reconstructed via the subsequent 
decay � → pπ− with a branching ratio of 63.9% [6], following the 
procedures described in [27,28]. For the � the charge conjugate 
decay is exploited, and the same selection criteria are applied. The 
decay products are reconstructed with the TPC and the ITS within 
|η| < 0.9. The daughter candidates are identified by a broad PID se-
lection in the TPC |nσ | < 5. The resulting � candidate is obtained 
as the combination of the daughter tracks. The contribution of fake 
candidates is reduced by requesting a minimum pT > 0.3 GeV/c. 
The coarse PID selection of the daughter tracks introduces a resid-
ual K0

S contamination in the sample of the � candidates. This con-
tamination is removed by a 1.5σ rejection on the invariant mass 
assuming a decay into π+π− , where σ corresponds to the width 
of a Gaussian fitted to the K0

S signal. Topological selections further 
enhance the purity of the � sample. The radial distance of the de-
cay vertex with respect to the detector centre ranges from 0.2 cm 
to 100 cm and CPA > 0.999. In addition to the tight CPA selection, 
particles stemming from out-of-bunch pile-up are rejected using 
the timing information of the SPD and SSD, and the TOF detector. 
One of the two daughter tracks is required to have a hit in one 
of these detectors. After application of the selection criteria, about 

188 × 106 (178 × 106) � (�) candidates with a purity of 94.6% 
(95.3%) are available for further processing.

The �0 (�0) candidates are obtained by combining all � (�) 
and γ candidates from the same event, where the nominal particle 
masses [6] are assumed for the daughters. In particular the tim-
ing selection on the daughter tracks of the � assures that the �0

candidates stem from the right bunch crossing. In case a daughter 
track is used to construct two γ , �, and � candidates, or a combi-
nation thereof, the one with the smaller CPA is removed from the 
sample. In order to further optimize the yield and the purity of the 
sample, only �0 candidates with pT > 1 GeV/c are used.

The resulting invariant mass spectrum is shown in Fig. 1 for 
two pT intervals. In order to obtain the raw yield, the signal is 
fitted with a single Gaussian, and the background with a third-
order polynomial. Due to the deteriorating momentum resolution 
for low pT tracks, the mean value of the Gaussian M�0 exhibits 
a slight pT dependence, which is well reproduced in MC simu-
lations. The �0 (�0) candidates for femtoscopy are selected as 
M�0(pT) ±3 MeV/c2. The width of the interval is chosen as a com-
promise between the candidate counts and purity. In total, about 
115 × 103 (110 × 103) �0 (�0) candidates are found at a purity 
of about 34.6%. Due to the enhanced combinatorial background 
at low pT, the purity increases from about 20% at the lower pT
threshold to its saturation value of about 60% above 5 GeV/c. Only 
one candidate per event is used, and is randomly selected in the 
very rare case in which more than one is available. In less than 
one per mille of the cases when the track of a primary proton is 
also employed as the daughter track of the γ or the �, the cor-
responding �0 candidate is rejected. Since only strongly decaying 
resonances feed to the �0 [6], all candidates are considered to be 
primary particles.

3. Analysis of the correlation function

The experimental definition of the two-particle correlation 
function, for both p–p and p–�0 pairs, is given by [44],

C(k∗) = N × Nsame(k∗)
Nmixed(k∗)

k∗→∞−−−−→ 1, (1)

with the same (Nsame) and mixed (Nmixed) event distributions of k∗
and a normalization constant N . The relative momentum of the 
pair k∗ is defined as k∗ = 1

2 × |p∗
1 − p∗

2|, where p∗
1 and p∗

2 are the 
momenta of the two particles in the pair rest frame, denoted by 
the ∗ . The normalization is evaluated in k∗ ∈ [240, 340] MeV/c for 



4 ALICE Collaboration / Physics Letters B 805 (2020) 135419

p–p and in k∗ ∈ [250, 400] MeV/c for p–�0 pairs, where effects of 
final state interactions are absent and hence the correlation func-
tion approaches unity.

The trajectories of the p–p and p–p pairs at low k∗ are al-
most collinear, and might therefore be affected by detector effects 
like track splitting and merging [45]. Accordingly, the reconstruc-
tion efficiency for pairs in the same and mixed event might differ. 
To this end, a close-pair rejection criterion is employed remov-
ing p–p and p–p pairs fulfilling 

√
�η2 + �ϕ∗2 < 0.01, where the 

azimuthal coordinate ϕ∗ considers the track curvature in the mag-
netic field.

A total number of 1.7 × 106 (1.3 × 106) p–p (p–p ) and 587 
(539) p–�0 (p–�0) pairs contribute to the respective correlation 
function in the region k∗ < 200 MeV/c. To enhance the statistical 
significance of the results, the correlation functions of baryon–
baryon and antibaryon–antibaryon pairs are combined. Therefore, 
in the following p–�0 denotes the combination p–�0 ⊕ p–�0, and 
correspondingly for p–p.

The systematic uncertainties of the experimental correlation 
function are evaluated by simultaneously varying all proton, �, γ , 
and �0 single-particle selection criteria by up to 20% around the 
nominal values. Only variations that modify the pair yield by less 
than 10% (20%) for p–�0 (p–p) with respect to the default choice 
are considered, and the �0 purity by less than 5%. The impact of 
statistical fluctuations is reduced by evaluating the systematic un-
certainties in intervals of 100 MeV/c (20 MeV/c) in k∗ for p–�0

(p–p). The resulting systematic uncertainties are parametrized by 
an exponential function and interpolated to obtain the final point-
by-point uncertainties. At the respectively lowest k∗ , the total sys-
tematic uncertainties are of the order of 2.5% for both p–p and 
p–�0.

Using the femtoscopy formalism [44], the correlation function 
can be related to the source function S(r∗) and the two-particle 
wave function 
( 	r∗, 	k∗) incorporating the interaction,

C(k∗) =
∫

d3r∗ S(r∗) | 
( 	r∗, 	k∗) |2, (2)

where r∗ refers to the relative distance between the two parti-
cles. As demonstrated in [27–29,46] the correlation function be-
comes particularly sensitive to the strong interaction for small 
emission sources formed in pp and p–Pb collisions. For this study, 
a spherically symmetric emitting source is assumed, with a Gaus-
sian shaped core density profile parametrized by a radius r0, which 
is obtained from a fit to the p–p correlation function, similarly as 
in [28,29]. Following the premise of a common emission source the 
such extracted radius is then used as an input to fit the p–�0 cor-
relation function. Possible modifications of the source profile due 
to the influence of strongly decaying resonances [47–49] are con-
sidered in the evaluation of the systematic uncertainties associated 
with the fitting procedure.

The genuine p–p correlation function is modeled using the 
Correlation Analysis Tool using the Schrödinger equation (CATS) [46], 
which allows one to use either a local potential V (r) or directly 
the two-particle wave function, and additionally any source distri-
bution as input to compute the correlation function. For the p–p
correlation function the strong Argonne v18 potential [50] in the 
S , P , and D waves is used as an input to CATS.

The theoretical correlation function for p–�0 is modeled em-
ploying two different approaches. On the one hand, in CATS the 
correlation function is computed from the isospin-averaged wave 
functions obtained within a coupled-channel formalism. On the 
other hand, the Lednický–Lyuboshits approach [51] relies on the 
effective-range expansion using scattering parameters as input to 
evaluate the correlation function. The coupling of the n-�+ sys-
tem to p–�0 considering the different thresholds is explicitly in-
cluded by means of a coupled-channel approach, while the effect 

Table 1
Weight parameters for the individual components of the measured correlation func-
tion. Contributions from feed-down contain the mother particle listed as a sub-
index. Non-flat contributions are listed individually.
p–p p–�0

Pair λ parameter 
(%)

Pair λ parameter 
(%)

p–p 67.0 p–�0 22.0
p�–p 20.3 p–(�γ ) 73.1
Feed-down (flat) 11.6 Feed-down (flat) 4.7
Misidentification (flat) 1.1 Misidentification (flat) 0.2

of the p–� channel is incorporated by complex scattering parame-
ters [52]. Details of the employed models are described in the next 
Section.

The experimental data are compared with the modeled cor-
relation function considering the finite experimental momentum 
resolution [27]. In addition to the genuine correlation function of 
interest, the measured correlation function also contains residual 
correlations due to protons coming from weak decays of other 
particles, such as � and �+ (feed-down), and misidentifications. 
These effects are included by modeling the total correlation func-
tion as a decomposition,

Cmodel(k
∗) = 1+

∑
i

λi × (Ci(k
∗) − 1), (3)

where the sum runs over all contributions. Their relative contribu-
tion is given by the λ parameters computed in a data-driven way 
from single-particle properties such as the purity and feed-down 
fractions [27], and are summarized in Table 1.

Apart from the genuine p–p correlation function, a significant 
contribution comes from the decay of � particles feeding to the 
proton pair. The residual p–� correlation function is modeled us-
ing either the Usmani potential [53], chiral effective field the-
ory calculations at Leading (LO) [54], or Next-To-Leading order 
(NLO) [20]. The resulting correlation function is transformed into 
the momentum basis of the p–p pair by applying the correspond-
ing decay matrices [55]. All other contributions are assumed to be 
C(k∗) ∼ 1. Due to the challenging reconstruction of the �0, the ex-
perimental purity of the �0 sample is rather low, and additionally 
exhibits a strong dependence on the transverse momentum pT as 
demonstrated in Fig. 1. The average pT of the �0 candidates used 
to construct the correlation function at k∗ < 200 MeV/c, however, 
is lower than the 〈pT〉 of all inclusive �0 candidates. Considering 
this effect, the �0 purity employed to compute the λ parame-
ters is found to be 27.4%. Accordingly, the main contribution to 
the p–�0 correlation function stems from the combinatorial back-
ground appearing in the invariant mass spectrum around the �0

peak, which in the following is referred to as (�γ ). The shape of 
the p–(�γ ) correlation function is extracted from the sidebands 
of the invariant mass selection, and is found to be independent of 
the choice of mass window. The non-flat behavior is mainly de-
termined by residual p–� correlations which are smeared by an 
uncorrelated γ , and defines the baseline of the measurement of 
the p–�0 correlation function. The shape is parametrized with a 
Gaussian distribution and weighted by its λ parameter. All other 
contributions stemming from misidentified protons or from feed-
down are assumed to be C(k∗) ∼ 1.

The total correlation function including all corrections is then 
multiplied by a polynomial baseline Cnon-femto(k∗),

C(k∗) = Cnon-femto(k
∗) × Cmodel(k

∗), (4)

to account for the normalization and non-femtoscopic background 
effects stemming e.g. from momentum and energy conserva-
tion [27]. The p–p correlation function is fitted in the range 
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Fig. 2. Measured correlation function of p–p⊕ p–p . Statistical (bars) and systematic 
uncertainties (boxes) are shown separately. The width of the band corresponds to 
one standard deviation of the systematic uncertainty of the fit.

k∗ ∈ [0, 375] MeV/c to determine simultaneously the femtoscopic 
radius r0 and the parameters of the baseline. To assess the sys-
tematic uncertainties on r0 related to the fitting procedure the 
upper limit of the fit region is varied within k∗ ∈ [350, 400] MeV/c. 
The baseline is modeled as a polynomial of zeroth, first, and sec-
ond order. Additionally, as discussed above, all three models for 
the p–� residual correlation function are employed, and the in-
put to the λ parameters is modified by ±20% while maintaining 
a constant sum of the primary and secondary fractions. The p–p
correlation function is shown in Fig. 2, where the width of the 
bands corresponds to one standard deviation of the total system-
atic uncertainty of the fit. The inset shows a zoom of the p–p
correlation function at intermediate k∗ , where the effect of re-
pulsion becomes apparent. The femtoscopic fit yields a radius of 
r0 = 1.249 ± 0.008 (stat) +0.024

−0.021 (syst) fm.
Analyses of π–π and K–K correlation functions at ultrarelativis-

tic energies in elementary [56] and heavy-ion collisions [57] indi-
cate a source distribution significantly deviating from a Gaussian. 
Indeed, strongly decaying resonances are known to introduce sig-
nificant exponential tails to the source distribution, especially for 
π–π pairs [47–49]. This becomes evident when studying the cor-
responding resonance contributions obtained from the statistical 
hadronization model within the canonical approach [58]. The main 
resonances feeding to pions, ρ and ω, are significantly longer-lived 
than those feeding to protons (�) and �0 (�(1405)). Hence, it is 
not surprising that the source distribution for π–π deviates from 
a Gaussian. These conclusions are underlined when fitting the p–p
correlation function with a Lévy-stable source distribution [59,60]. 
Leaving both the femtoscopic radius and the stability parameter α
for the fit to determine, the Gaussian source shape (α = 2) is re-
covered. Employing a Cauchy-type source distribution (α = 1), the 
data cannot be satisfactorily described. Therefore, the premise of a 
Gaussian source holds for baryon–baryon pairs.

Accordingly, a Gaussian source with femtoscopic radius r0 is 
used to fit the p–�0 correlation function. The parameters of the 
linear baseline are obtained from a fit to the p–(�γ ) correlation 
function in k∗ ∈ [250, 600] MeV/c, where it is consistent and kine-
matically comparable with p–�0, however featuring significantly 
smaller uncertainties. The experimental p–�0 correlation function 
is then fitted in the range k∗ < 550 MeV/c, and varied during the 
fitting procedure within k∗ ∈ [500, 600] MeV/c to determine the 
systematic uncertainty. Additionally, the input to the λ parame-
ters is modified by ±20% while maintaining a constant sum of 
the primary and secondary fractions. The parameters of the base-

Fig. 3. Measured correlation function of p–�0 ⊕ p–�0. Statistical (bars) and system-
atic uncertainties (boxes) are shown separately. The gray band denotes the p–(�γ )

baseline. The data are compared with different theoretical models. The correspond-
ing correlation functions are computed using CATS [46] for χEFT [20], NSC97f [26]
and ESC16 [23], and using the Lednický–Lyuboshits approach [51,52] for fss2 [24]. 
The width of the bands corresponds to one standard deviation of the systematic 
uncertainty of the fit. The absolute correlated uncertainty due to the modeling of 
the p–(�γ ) baseline is shown separately as the hatched area at the bottom of the 
figure.

line are varied within 1σ of their uncertainties considering their 
correlation, including the case of a constant baseline. Finally, the 
femtoscopic radius is varied according to its uncertainties. Possible 
variations of the p–�0 source due to contributions of mT scaling 
and strong decays are incorporated by decreasing r0 by 15%, sim-
ilarly as in [28,29]. The corresponding resonance yields are taken 
from the statistical hadronization model within the canonical ap-
proach [58].

All correlation functions resulting from the above mentioned 
variations of the selection criteria are fitted during the procedure, 
additionally considering variations of the mass window to extract 
the p–(�γ ) baseline. The width of the bands in Fig. 3 corresponds 
to one standard deviation of the total systematic uncertainty of the 
fit. The absolute correlated uncertainty due to the modeling of the 
p–(�γ ) baseline correlation function is shown separately at the 
bottom of the figure.

4. Results

The experimental p–�0 ⊕ p–�0 correlation function is shown 
in Fig. 3. The k∗ value of the data points is chosen according to the 
〈k∗〉 of the same event distribution Nsame(k∗) in the correspond-
ing interval. Therefore, due to the low number of counts in the 
first bin, the data point is shifted with respect to the bin centre. 
Since the uncertainties of the data are sizable, a direct determina-
tion of scattering parameters via a femtoscopic fit is not feasible. 
Instead, the data are directly compared with the various models of 
the interaction. These include, on the one hand, meson-exchange 
models, such as fss2 [24] and two versions of soft-core Nijmegen 
models (ESC16 [23], NSC97f [61]), and on the other hand results of 
χEFT at Next-to-Leading Order (NLO) [20]. The correlation function 
is modeled using the Lednický–Lyuboshits approach [51] consider-
ing the couplings of the p–�0 system to p–� and n-�+ [52] with 
scattering parameters extracted from the fss2 model. For the case 
of ESC16, NSC97f and χEFT, the wave function of the p–�0 system, 
including the couplings, is used as an input to CATS to compute the 
correlation function. The degree of consistency of the data with the 
discussed models is expressed by the number of standard devia-
tions nσ , computed in the range k∗ < 150 MeV/c from the p-value 
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Table 2
Degree of consistency of the different models with the experimental correlation 
function.

Model p–(�γ )

baseline
fss2 χEFT NSC97f ESC16

nσ (k∗ < 150 MeV/c) 0.2−0.8 0.2−0.9 0.3−1.0 0.2−0.6 0.1−0.5

of the theoretical curves. The range of nσ shown in Table 2 is 
computed as one standard deviation of the corresponding distribu-
tion. The data are within (0.2−0.8)σ consistent with the p–(�γ )

baseline, indicating the presence of an overall shallow strong po-
tential in the p–�0 channel. The main source of uncertainty of the 
modeling of the correlation function is the parametrization of the 
p–(�γ ) baseline due the sizeable statistical uncertainties of the 
latter.

All employed models for the N–� interaction potential suc-
ceed in reproducing the scattering data in the S = −1 sector [7]. 
Due to the available experimental constraints, the overall descrip-
tion of the p–� interaction yields a consistent description. On the 
other hand, the corresponding p–�0 correlation functions differ 
significantly among each other. This demonstrates that femtoscopic 
measurements can discriminate and constrain models, and there-
fore represent a unique probe to study the N–� interaction. Both 
fss2 and χEFT exhibit an overall repulsion in N–� at intermedi-
ate k∗ , which mainly occurs in the spin singlet S = 0, I = 1/2 and 
spin triplet S = 1, I = 3/2 components [20,24]. In the low momen-
tum region, below roughly 50 MeV/c, both models yield attraction, 
which is reflected in the profile of the correlation function. The 
Nijmegen models, on the other hand, are characterized by a rather 
constant attraction over the whole range of k∗ . In particular at low 
relative momenta, however, the behavior of the two models devi-
ates significantly. The shape of the correlation function of the most 
recent Nijmegen model, ESC16, differs significantly from that of the 
other calculations. This is mainly due to the fact that the occur-
rence of bound states in the strangeness sector (S = −1, −2, −3) 
is not allowed in the model [23]. This leads to a repulsive core 
in all the N–� channels, which can well be observed in Fig. 3 as 
the non-monotonic behavior at small relative momenta. In contrast 
to all other discussed models, NSC97f yields attraction in the spin 
triplet S = 1, I = 3/2 channel [61]. Accordingly, the corresponding 
correlation function demonstrates the strongest attraction at low 
momenta. The rather large differences among the modeled p–�0

correlation functions demonstrate that the shape of the latter is 
very sensitive to details of the strong interaction, and driven by the 
interplay of the different spin and isospin channels. This shows the 
strength of femtoscopic measurements, in particular in the N–�

channel.
The underlying two-body N–� interaction obtained within 

these models, however, translates into significantly different val-
ues for the in-medium single-particle potential U� when included 
in many-body calculations. Both the fss2 quark-model, along with 
χEFT, deliver similar results at nuclear saturation density, lead-
ing to an overall repulsive U� of around 10–17 MeV [20,21,24]. 
This is in agreement with evidence from relativistic mean field 
calculations fitting experimental data of �− atoms [12] and the 
experimental absence of bound states in � hypernuclei [16]. On 
the contrary, both Nijmegen models yield a slightly attractive �
single-particle potential, ranging from ≈ −16 MeV for NSC97f to 
≈ −3 MeV for ESC16. As already mentioned, however, the inter-
pretation of hypernuclear measurements introduces a significant 
model dependence. This concerns not only the extraction of the 
experimental results, relying for instance on the framework of 
the distorted-wave impulse approximation [17], but also the ex-
trapolation of theoretical calculations to finite density via e.g. the 
G-matrix approach [62,63].

5. Summary

This Letter presents the first direct investigation of the p–�0 in-
teraction in high-multiplicity pp collisions at 

√
s = 13 TeV, hence 

proving the feasibility of femtoscopic studies in the N–� sector. 
The p–�0 correlation function is consistent with the p–(�γ ) base-
line, and therefore the measurement indicates the presence of an 
overall shallow strong potential. The data are compared with state-
of-the-art descriptions of the interaction, including chiral effective 
field theory and meson-exchange models. Due to the scarce ex-
perimental constraints in the N–� sector, the modeled correlation 
functions differ significantly among each other. The shape of the 
modeled correlation functions appears to be very sensitive to de-
tails of the strong interaction, and is driven by the interplay of the 
different spin and isospin channels. This proves that femtoscopic 
measurements in high-energy pp collisions provide a direct study 
of the genuine two-body N–� strong interaction. The presented 
femtoscopic data cannot discriminate between different models, 
which is also the case for the available scattering and hypernu-
clei data.

Further femtoscopic studies enabled by the about two orders 
of magnitude larger pp data samples of 6 pb−1 in minimum bias 
collisions at 

√
s = 5.5 TeV and of 200 pb−1 in high-multiplicity 

at 
√
s = 14 TeV, foreseen to be collected in the LHC Runs 3 and 

4 [64], will therefore shed light on the N–� sector and provide 
constraints on the models describing the interaction.
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