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ABSTRACT 

1. Despite the wide application of meta-analysis in ecology, some of the traditional methods used 

for meta-analysis may not perform well given the type of data characteristic of ecological 

meta-analyses.

2. We reviewed published meta-analyses on the ecological impacts of global climate change, 

evaluating the number of replicates used in the primary studies ( ) and the number of studies 𝑛𝑖

or records (k) that were aggregated to calculate a mean effect size. We used the results of the 

review in a simulation experiment to assess the performance of conventional frequentist and 

Bayesian meta-analysis methods for estimating a mean effect size and its uncertainty interval.

3. Our literature review showed that  and k were highly variable, distributions were right-𝑛𝑖

skewed, and were generally small (median  =5, median k=44). Our simulations show that the 𝑛𝑖

choice of method for calculating uncertainty intervals was critical for obtaining appropriate 

coverage (close to the nominal value of 0.95). When k was low (<40), 95% coverage was 

achieved by a confidence interval based on the t-distribution that uses an adjusted standard 

error (the Hartung-Knapp-Sidik-Jonkman, HKSJ), or by a Bayesian credible interval, whereas 

bootstrap or z-distribution confidence intervals had lower coverage. Despite the importance of 

the method to calculate the uncertainty interval, 39% of the meta-analyses reviewed did not 

report the method used, and of the 61% that did, 94% used a potentially problematic method, 

which may be a consequence of software defaults.

4.  In general, for a simple random-effects meta-analysis, the performance of the best frequentist 

and Bayesian methods were similar for the same combinations of factors (k and mean 

replication), though the Bayesian approach had higher than nominal (>95%) coverage for the 

mean effect when k was very low (k<15). Our literature review suggests that many meta-

analyses that used z-distribution or bootstrapping confidence intervals may have over-

estimated the statistical significance of their results when the number of studies was low; more 

appropriate methods need to be adopted in ecological meta-analyses. 

RESUMEN
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1. A pesar del uso generalizado del meta-análisis en el área de Ecología, algunos de los métodos 

de análisis tradicionalmente utilizados pueden dar resultados no ideales dado el tipo de datos 

que los caracteriza. 

2. En este trabajo se realizó una revisión de los meta-análisis publicados sobre los impactos 

ecológicos del cambio climático global, evaluando el número de réplicas utilizadas en las 

publicaciones originales ( ) y el número de estudios o registros (k) que fueron agrupados para 𝑛𝑖

calcular un tamaño de efecto promedio. Se utilizaron los resultados de la revisión en un 

experimento de simulación para evaluar el desempeño de métodos frecuentistas 

convencionales y métodos Bayesianos para estimar un tamaño de efecto promedio y su 

intervalo de incertidumbre.

3. La revisión de la literatura demostró que  y k fueron muy variables, con distribuciones 𝑛𝑖

sesgadas, y con valores en general bajos (mediana  =5, mediana k=44). Nuestras 𝑛𝑖

simulaciones muestran que la elección del método para calcular un intervalo de incertidumbre 

fue crítica para obtener una cobertura apropiada (alrededor del valor nominal de 0.95). Cuando 

k fue bajo (<40), obtuvimos una cobertura de 95% utilizando un intervalo de confianza basado 

en la distribución t de student que usa un ajuste por el error estándar (llamada Hartung-Knapp-

Sidik-Jonkman, HKSJ), o utilizando un intervalo de credibilidad Bayesiano, mientras que los 

intervalos de remuestreo o con una distribución Normal tuvieron cobertura baja. A pesar de la 

importancia del método utilizado para calcular el intervalo de incertidumbre, 39% de los meta-

análisis revisados no reportaron el método utilizado y, de los 61% que si lo reportaron, 94% 

usaron uno de los métodos potencialmente problemáticos, lo que puede ser una consecuencia 

de la configuración por defecto de los programas informáticos utilizados para meta-análisis. 

4.  En general, para un meta-análisis simple con efectos aleatorios, el desempeño del mejor 

método frecuentista y el método Bayesiano fueron similares para las mismas combinaciones 

de factores  (k y número de réplicas promedio), aunque el método Bayesiano tuvo cobertura 

mayor de la nominal (>95%) para el efecto promedio cuando k fue muy bajo (k<15). Nuestra 

revisión sugiere que muchos de los meta-análisis que utilizaron una distribución Normal o 

intervalos de remuestreo pueden haber sobreestimado la significancia estadística de sus 
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resultados cuando el número de estudios fue bajo. Otros métodos más apropiados deberían ser 

usados para meta-análisis en Ecología. 
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INTRODUCTION

Meta-analysis uses statistical techniques to quantitatively summarize information from different 

studies and is highly influential in the contemporary practice of science. To conduct a meta-analysis 

an investigator gathers summary statistics from each study to calculate an effect size, with the goal of 

computing an overall effect size (and its uncertainty) and exploring the factors contributing to 

variation in effect sizes (Nakagawa, Noble, Senior, & Lagisz, 2017). The use of meta-analysis in 

ecology has been growing rapidly since the 1990s, and has proven particularly useful in discerning 

general patterns by comparing information from different species, study sites, and systems (Cadotte, 

Mehrkens, & Menge, 2012). Advice on best methodological practices for meta-analysis is widespread 

in disciplines with a longer history of meta-analytic research (e.g. medical sciences) but is lagging 

behind in ecology (Gates, 2002). This can be problematic because ecological meta-analyses have 

specific challenges not necessarily typically in other disciplines. 

One pervasive characteristic of ecological meta-analyses is the high heterogeneity (i.e., large 

among-study variation in effect sizes). Senior et al. (2016) analyzed 86 meta-analyses in ecology and 

evolution and found that the among-study variation averaged 92% of the total variance. In contrast, a 

review of 509 meta-analyses in medicine found that there was no detectable among-study variation in 

50% of the studies (Higgins, Thompson, & Spiegelhalter, 2009). Ecological studies also differ from 

many other disciplines in the typical level of within-study replication, which is fewer than 10 

replicates per study (Hillebrand & Gurevitch, 2014). Such low levels of replication will influence the 

precision of the estimates of effect size from the primary studies (Langan, Higgins, & Simmons, 

2016). Importantly, the low level of replication typical of ecological studies is outside the range used 

in most simulation studies designed to assess meta-analytic methods, which typically range from 

dozens to hundreds (Langan et al., 2016). Thus differences between ecology and other disciplines 

potentially limit the insights ecologists can gain from existing simulations that compare different 

meta-analytic methods.

Specific advice for conducting ecological meta-analyses include suggestions on the type of 

meta-analytic model and effect size calculation to use (Gurevitch & Hedges, 1999; Osenberg, 

Sarnelle, Cooper, & Holt, 1999; Lajeunesse, 2015), and how to deal with non-independence 

(Gurevitch & Hedges, 1999; Noble, Lagisz, O’dea, & Nakagawa, 2017; Song, Peacor, Osenberg, & A
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Bence, 2020). For example, a random-effects model is often recommended for ecological meta-

analysis over a fixed-effects model (Gurevitch & Hedges, 1999), and multi-level models are 

increasingly being used to incorporate the non-independence commonly found in ecological meta-

analyses (Nakagawa & Santos, 2012). A topic addressed in the medical literature that has received 

little attention in ecology (but see Adams, Gurevitch, & Rosenberg, 1997) is the choice of confidence 

interval (CI) used to estimate the mean effect size in a meta-analysis (Hartung & Knapp, 2001; Sidik 

& Jonkman, 2003, Sánchez-Meca & Marín-Martínez, 2008).

Simulation studies have shown that when the number of studies (k) in the meta-analysis is low, 

the CIs for a mean effect size calculated using a normal approximation are too narrow, leading to 

coverage below the nominal level (i.e., a 95% CI should include the true value 95% of the time) 

(Brockwell & Gordon, 2001; Sánchez-Meca & Marín-Martínez, 2008). To avoid this problem, meta-

analyses in the medical literature often use the HKSJ (Hartung-Knapp-Sidik-Jonkman; Hartung & 

Knapp, 2001; Sidik & Jonkman, 2003) method, which is based on a t-distribution and can achieve 

good coverage even when k is small (Inthout, Ioannidis, & Borm, 2014). Bootstrap techniques have 

been recommended for estimating CIs for means in ecological meta-analyses, due to its robustness to 

departures from normality (Adams et al., 1997). On the other hand, boot-strapped CIs can lead to poor 

coverage when estimating the among-study variance (Viechtbauer, 2007). 

Bayesian methods, and the credible interval, offer an alternative approach to estimating 

uncertainty in meta-analyses. Although Bayesian methods may have a steep learning curve, they offer 

advantages in handling hierarchical models, for incorporating prior information, and for dealing with 

missing data (Ogle, Barber, & Sartor, 2013). Bayesian meta-analytic techniques produce a posterior 

distribution of the mean effect size and associated variance terms. Estimates of uncertainty, including 

credible intervals, can be directly obtained from the posterior distributions, offering an easier to 

interpret alternative to the frequentist-based CI (Kruschke & Liddell, 2008). 

Our main goal is to compare the performance of traditional and Bayesian methods to measure 

the uncertainty around the estimation of a mean effect in the context of ecological meta-analysis. To 

achieve this goal, we conducted a two-pronged study. First, we reviewed published ecological meta-

analyses to characterize the types of confidence interval used in ecological meta-analyses, the number 

of replicates used in the primary studies ( ) included in published meta-analyses, and the number of 𝑛𝑖A
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studies (k) that were aggregated to calculate a mean effect size. Second, we used the  and k found in 𝑛𝑖

our literature review to inform the range of parameter values to use in conducting simulation 

experiments relevant to ecological meta-analyses. In particular, we determined the typical levels of , 𝑛𝑖

k, and the among-study variance and then varied them systematically in our simulation studies. We 

then evaluated performance of frequentist and Bayesian meta-analysis methods when applied to the 

simulated data, especially with respect to their ability to estimate the true mean effect and among-

study variance, and their quantification of uncertainty intervals (i.e., confidence or credible intervals). 

Based on our findings, we generate recommendations on the methods to measure uncertainty that 

perform best for ecological meta-analysis and highlight how simple choices (sometimes overlooked 

by the investigators) can affect the results of meta-analyses. 

MATERIALS AND METHODS

Literature review to assess characteristics of ecological datasets

Literature search. We searched the Core Collection of the ISI Web of Science database in March 

2017; the search string for TOPIC included ([“meta-analy*” OR “metaanaly*” OR “meta analy*”] 

AND [“climate change” OR “global change”]). We only included articles and reviews within the 

“Ecology”, “Environmental Sciences”, “Biodiversity Conservation” and “Plant Sciences” categories. 

The search resulted in 581 citations; the PRISMA diagram detailing the screening process is provided 

in Figure S1. After abstract screening, we checked the full text of the 205 articles published between 

2013 and 2016. Of these, 96 papers satisfied the inclusion criteria for the final analysis. 

Criteria for inclusion. We focused on narrow sense meta-analyses: i.e., those that used a quantitative 

meta-analytic method to combine effect sizes that compared a control and a treatment group. We 

excluded studies that 1) only cited published meta-analyses, 2) reviewed meta-analytic methods, but 

did not perform a meta-analysis, 3) were identified as meta-analysis by the authors but did not use a 

meta-analytic model or did not calculate effect sizes, 4) used the correlation between two variables as 

an effect size, and 5) were not “biological meta-analyses” (as defined in Nakagawa et al., 2017), such 

as studies related to human health or human behavior. A
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Information extracted. For each paper we extracted the number of studies (k) from the text, figure 

captions, figures, and supplementary materials. Here we define a “study” as yielding an estimate of an 

effect, so that a given primary paper could generate multiple effects and thus multiple studies. The k 

values were determined at three levels, 1) overall: i.e., the total k collected by the authors (e.g., if they 

conducted meta-analyses on different response variables, then we summed the k across these 

variables); 2) analysis: i.e., the total k used in a particular analysis (e.g., if an analysis examined 

variation among four levels of a moderator, then we summed up the number of studies in each level); 

and 3) category: i.e., the k included in each category of a categorical analysis. In some cases, authors 

calculated mean effect sizes for different categories separately and only compared the categories 

using confidence intervals (i.e., there was no integrated analysis incorporating a category effect). In 

this case, we considered each’s categories’ k to apply at the “analysis” level.

When available, we also recorded the number of replicates ( ) in the original studies. If the 𝑛𝑖

level of replication was unequal for the control and treatment groups, we recorded the average. 

Finally, from each meta-analysis, we also recorded the inferential paradigm used (frequentist vs. 

Bayesian) and the method used to obtain confidence intervals for the frequentist approaches (e.g., 

non-parametric bootstrap, normal-based, KHSJ, etc.). 

Simulation Experiments

Our literature review showed that 67% of the reported primary studies had less than ten replicates. In 

addition, the review of meta-analyses in ecology and evolution by Senior et al. (2012) showed that 

among-study variation was important, and typically large, in ecological studies. Given these 

characteristics of ecological data, we simulated data in a full-factorial design that considered the 

following levels: mean number of replicates n = {3, 5, 10, 15, 20, 30}, number of studies k = {5, 10, 

15, 25, 35, 50}, and among-study variance  = {0.1, 0.25, 0.5, 1, 2, 5}. We simulated 2,000 𝜎2
𝑎𝑚𝑜𝑛𝑔

replicated meta-analyses for each combination of n, k, and . We then evaluated the 𝜎2
𝑎𝑚𝑜𝑛𝑔

performance of four meta-analytic methods applied to the simulated data: three frequentist approaches 

that differed in how they calculated confidence intervals for a mean effect and a Bayesian approach. 

Simulating raw data for a study. We first determined the number of replicates for study i ( ) based 𝑛𝑖

on a random draw from a Poisson distribution:A
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                   𝑛 ∗
𝑖 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛 ― 2) (Eq. 1)

     𝑛𝑖 = 𝑛 ∗
𝑖 +2 (Eq. 2)

where  is the mean number of replicates representative of ecological meta-analyses. We subtracted 2 𝑛

to sample from the Poisson and added 2 to the simulated  to make the minimum number of 𝑛 ∗
𝑖

replicates for each simulated study equal 2 rather than 0. For each study, we assumed equal number of 

replicates for the control and treatment groups. 

Individual observations ( ) for the control and treatment groups were generated 𝑗 = 1, 2, …, 𝑛𝑖

from a lognormal distribution (LN) such that for study i and observation j:

 (Eq. 3) 𝑦𝐶𝑖𝑗~𝐿𝑁(0, 𝜎2
𝑟𝑒𝑝)

 (Eq. 4) 𝑦𝑇𝑖𝑗~𝐿𝑁(0 + 𝜇 + 𝜀𝑖, 𝜎2
𝑟𝑒𝑝)

where  is the among-replicates variation,  is the true overall effect, and  and  are the 𝜎2
𝑟𝑒𝑝 𝜇 𝑦𝐶𝑖𝑗 𝑦𝑇𝑖𝑗

simulated observations for study i and observation j of the control and treatment group, respectively. 

We set the among-replicate variation equal to 1 for both the control and treatment. For convenience, 

we set the location parameter for the control group equal to zero, resulting in median ( ) = 1. For the 𝑦𝐶

treatment group in study i, we set median ( ) , where  is the overall true treatment effect 𝑦𝑇 = 𝜇 + 𝜀𝑖

(hereafter, true effect size) and  is the random effect associated with study i. We simulated  as:𝜀𝑖 𝜀𝑖

 (Eq. 5) 𝜀𝑖~ 𝑁(0,𝜎2
𝑎𝑚𝑜𝑛𝑔)

Thus, the true effect size from any given study departs from  due to its random effect (determined by 

), while the estimated effect size differs from the true effect size due to within-study sampling error 𝜀𝑖

(i.e., as influenced by  and ). The range of values used for  were chosen to produce a 𝑛𝑖 𝜎2
𝑟𝑒𝑝 𝜎2

𝑎𝑚𝑜𝑛𝑔

similar distribution of I2 (the proportion of variation among effect sizes not explained by sampling 

error) to that reported by Senior et al. (2016) for meta-analyses in ecology and evolution (I2 

simulation results are presented in Figure S2). 

Estimating the effect size and within-study variance. Using the raw data simulated from each 

study, we computed the observed effect size for study i as the log response ratio (lnRRi), which is 

widely used in ecology (Nakagawa & Santos, 2012) and it is often a reasonable approximation of 

ecological phenomena (Osenberg, Sarnelle, & Cooper, 1997):A
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 (6)𝑙𝑛𝑅𝑅𝑖 = ln(𝑦𝑇𝑖

𝑦𝐶𝑖
)

where  and  are the sample means of the treatment and control groups, respectively. 𝑦𝑇𝑖 𝑦𝐶𝑖

The expected sample means for each treatment in a simulated study are  and 𝐸(𝑦𝐶𝑖𝑗
) = exp (𝜎2

𝑟𝑒𝑝

2 ) 𝐸

. Thus, the log of the ratio of the expected values for the treatment and (𝑦𝑇𝑖𝑗
) = 𝑒𝑥𝑝(𝜇 + 𝜀𝑖 +

𝜎2
𝑟𝑒𝑝

2 )
control groups is , corresponding to what we call the true study-specific effect size.𝜇 +  𝜀𝑖

We calculated the estimated within-study variance of the log ratio (Eq. 1 in Hedges, 

Gurevitch, & Curtis, 1999) ( ) as:𝜎2
𝑤𝑖𝑡ℎ𝑖𝑛𝑖

(7) 𝜎2
𝑤𝑖𝑡ℎ𝑖𝑛𝑖 =

𝑆𝐷𝑇𝑖
2

𝑛𝑇𝑖 ∙ 𝑦2
𝑇𝑖

+
𝑆𝐷𝐶𝑖

2

𝑛𝐶𝑖 ∙ 𝑦2
𝐶𝑖

where  and  are the sample standard deviations of the treatment and control groups, 𝑆𝐷𝑇 𝑆𝐷𝐶

respectively, and  are the simulated number of replicates in study i.𝑛𝑇𝑖 = 𝑛𝐶𝑖 = 𝑛𝑖

Meta-analytic approaches

Given that we simulated independent data to highlight how the choice of uncertainty interval affects 

the estimation of a mean effect, we used a standard random-effects model (Gurevitch & Hedges, 

1999). We comment on how our results may change with a multi-level (hierarchical) model in the 

Discussion section. We assume the simulated effect size for study i (lnRRi, calculated from Eq. 6) 

follows a normal distribution with mean  (the true effect for study ) and within-study variance 𝜃𝑖 𝑖

: 𝜎2
𝑤𝑖𝑡ℎ𝑖𝑛𝑖

 (8) 𝑙𝑛𝑅𝑅𝑖~ 𝑁(𝜃𝑖, 𝜎2
𝑤𝑖𝑡ℎ𝑖𝑛𝑖)

 (9) 𝜃𝑖~𝑁(𝜇, 𝜎2
𝑎𝑚𝑜𝑛𝑔)

We assume  is known, as calculated via Eq. 7. Likewise, the true study-specific effect size, , 𝜎2
𝑤𝑖𝑡ℎ𝑖𝑛𝑖 𝜃𝑖

is assumed to follow a normal distribution with mean  (the true overall effect) and among-study 𝜇

variance,  (which is sometimes referred to as  in other meta-analytic papers).  𝜎2
𝑎𝑚𝑜𝑛𝑔 𝜏2

We compared different methods to construct confidence intervals (CIs) for a mean effect (at 

the analysis level) within the frequentist methods versus Bayesian credible intervals. For the A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

frequentist-based analyses, we compared: a) a CI based on a z-distribution, which is a large sample 

approximation, b) a weighted CI based on the Hartung-Knapp-Sidik-Jonkman (HKSJ) method, which 

does not assume a large sample and instead uses a t-distribution, and c) bootstrap methods. For the 

Bayesian-based analysis, we calculated the highest posterior density (HPD) credible interval. 

Frequentist approaches. We applied the random-effects model described by Eqs. 8 and 9 with 

inverse variance weights using the “rma” function in the R package metafor (Viechtbauer, 2010), and 

estimated  with the default REML method. To calculate the z-distribution CI, we used the 𝜎2
𝑎𝑚𝑜𝑛𝑔

default settings for the random-effects model in metafor, which returns a 95% CI for  based on the 

normal distribution. To apply the HKSJ CI, we set the option knha=T in metafor. The resulting CI for 

 is based on both a refined estimate of  and a Student’s t-distribution (Hartung & Knapp, 𝜎2
𝑎𝑚𝑜𝑛𝑔

2001; Sidik & Jonkman, 2003), which accounts for the fact that  is estimated and not known. 𝜎2
𝑎𝑚𝑜𝑛𝑔

For the bootstrapped CI, we estimated the bias-corrected non-parametric bootstrapped 95% CI for 

both  and  via the boot package in R (Canty & Ripley, 2017). Since the choice of HKSJ or z-𝜎2
𝑎𝑚𝑜𝑛𝑔

distribution for the  CI does not affect the estimation of , in both cases we used metafor’s 𝜎2
𝑎𝑚𝑜𝑛𝑔

function “confint” to obtain the CI for  (“confint” applies a Q-profile method in combination 𝜎2
𝑎𝑚𝑜𝑛𝑔

with REML). 

Bayesian approach. We used a “hybrid” Bayesian framework to implement the random-effects 

model (Eqs. 8 and 9) in which we treat  as known; whereas a fully Bayesian model may treat 𝜎2
𝑤𝑖𝑡ℎ𝑖𝑛

 as unknown (this hybrid model is comparable to the “empirical Bayes” method discussed in 𝜎2
𝑤𝑖𝑡ℎ𝑖𝑛

Schmid & Mengersen, 2013). Initial explorations with full and hybrid models gave qualitatively 

similar results and we only include the hybrid model in our analysis.

We specified relatively non-informative priors for the unknown quantities (e.g.,  and 𝜎2
𝑎𝑚𝑜𝑛𝑔

). For the mean effect size, , we specified a conjugate normal prior with a mean of zero and large 

variance: N(0, 10000). Given that even diffuse priors for  can influence the posterior for 𝜎2
𝑎𝑚𝑜𝑛𝑔

, particularly under small group size (Gelman, 2006), we explored five different priors for 𝜎2
𝑎𝑚𝑜𝑛𝑔

 (Supporting Information Figures S12-15). For the final analysis, convergence statistics and 𝜎2
𝑎𝑚𝑜𝑛𝑔

computational speed led us to focus on the Uniform(0,10) prior for the standard deviation ( ).𝜎𝑎𝑚𝑜𝑛𝑔A
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The Bayesian meta-analyses were implemented in JAGS with the rjags R package (Plummer, 

2018). For each model, we ran three parallel Markov chain Monte Carlo (MCMC) sequences for 

200,000 iterations, and discarded the first 100,000 iterations as the burn-in period. We used the  𝑅

convergence diagnostic (Gelman & Rubin, 1992) to evaluate convergence of the MCMC sequences to 

the posterior. For the final simulations, we only included runs that had  < 1.1, and checked that the 𝑅

proportion of discarded runs was lower than 1%. Using post-burn-in MCMC samples, we computed 

posterior means for quantities of interest (e.g.,  and ) as point estimates. We computed 95% 𝜎2
𝑎𝑚𝑜𝑛𝑔

credible intervals as HPD intervals for both  and  using the “HPDinterval” function in the 𝜎2
𝑎𝑚𝑜𝑛𝑔

coda package (Plummer, 2006).

Implementation and Assessment of the Meta-analysis Approaches

We ran all the analyses and simulations in the R environment (R Core Team, 2019); code is provided 

in the Supporting Information. For each simulated dataset, we estimated  and  via the 𝜎2
𝑎𝑚𝑜𝑛𝑔

frequentist and Bayesian methods described above. We summarized the results from the 2,000 

replicated meta-analyses for each combination of factors (n, k, ) and modeling approaches (i.e., 𝜎2
𝑎𝑚𝑜𝑛𝑔

frequentist and Bayesian methods to measure uncertainty). The results for the model performance 

associated with estimating  are presented in Figures S7-10.𝜎2
𝑎𝑚𝑜𝑛𝑔 

We evaluated model performance using: coverage, width of the uncertainty intervals, bias, and 

efficiency. We estimated coverage for both  and as the proportion (out of the 2,000 𝜎2
𝑎𝑚𝑜𝑛𝑔 

simulation replicates) of calculated 95% uncertainty intervals (CIs for the frequentist methods and 

credible interval for the Bayesian approach) that included the corresponding true value. Ideally, 

coverage should equal the nominal value of 0.95 (95%). CIs for these “coverage proportions” were 

computed using the “binom.confint” function in the R binom (Sundar, 2014) package, with the 

method “wilson” (Agresti & Coull, 1998). 

We summarized the perceived uncertainty for  and as the mean width of the 95% 𝜎2
𝑎𝑚𝑜𝑛𝑔

uncertainty intervals for the 2,000 intervals for each scenario, and assessed how well the mean width 

was estimated using a 95% CI based on a t-distribution. All else being equal, smaller uncertainty is a 

desirable feature, but not if it is accompanied by a reduction in coverage below the nominal level. A
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To evaluate bias, we calculated the mean difference between the point estimates for  and 

 and their true values based on the 2,000 simulation replicates, and report a 95% CI for this 𝜎2
𝑎𝑚𝑜𝑛𝑔

estimate based on the t-distribution. Ideally, bias should be centered on zero. 

Finally, to quantify the efficiency of the point estimates, we calculated the root mean squared 

error (RMSE) between the estimated and true values for  and as:𝜎2
𝑎𝑚𝑜𝑛𝑔

  , (10)𝑅𝑀𝑆𝐸 =
∑𝑁𝑠𝑖𝑚

𝑠 = 1 (𝑎𝑠 ― 𝑎𝑡𝑟𝑢𝑒𝑠)2

𝑁𝑠𝑖𝑚

where =  or ,  is the point estimate from each model,  is the true value used in the 𝑎 𝜎2
𝑎𝑚𝑜𝑛𝑔 𝑎 𝑎𝑡𝑟𝑢𝑒

simulations, and  is the number of simulations. 𝑁𝑠𝑖𝑚

RESULTS

Literature review to assess characteristic of ecological datasets

Of the 96 meta-analyses that satisfied our criteria (Table S1), 95 and 26 provided information on the 

number of studies (k) and number of replicates ( ) associated with the original dataset, respectively. 𝑛𝑖

Only three meta-analyses used a Bayesian approach. The majority of meta-analyses were published in 

Global Change Biology (23), followed by Agriculture Ecosystems & Environment (7) and Ecology (6) 

(Figure S3 displays the full list). The quality of reporting varied, and is discussed in more detail in the 

Supporting Information. We also provide additional information on k and  (by taxa, environment, 𝑛𝑖

and topic) in the Supporting Information (Table S2, Figures S4-S5).

Number of studies. The number of studies (k) used to estimate an effect was highly skewed at the 

three levels we considered: overall, analysis, and category (Figure 1). The overall k ranged from 25 to 

32,567 (Figure 1A upper panel), with a median of 273 and with relatively few (12%) including more 

than 1,000 studies. For most papers, however, analyses were performed for different response 

variables or different moderators, and the k used for a particular analysis was considerably lower 

(Figure 1A middle panel), ranging from k = 1 (for a paper that presented all possible comparisons, 

even when one potential analysis was represented by only a single study) to k = 8,474, with a median 

of k = 44 (i.e., 50% of meta-analysis included 44 or fewer studies); 16% had k ≤ 10. The number of A
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studies included within categories ranged from k = 1 to 1,430, with a median of 16; 36% had k ≤ 10 

(Figure 1A lower panel).

Number of replicates. The distribution of the reported number of replicates in the original studies (𝑛𝑖

) cited by the climate change meta-analyses was highly skewed, ranging from ni = 1 to 21,600, with 

most studies having only a few replicates; the median was 5 (Figure 1B). The strong skewness in 

these data led us to inspect some of the original publications from which exceptionally large  values 𝑛𝑖

were reported. We found publications in which  values were likely misreported or greatly inflated 𝑛𝑖

by pseudoreplication (details in Table S3 and Figure S6).

Analytic method to estimate the uncertainty interval for a mean effect. In 38.5% of the papers 

reviewed, the method used to calculate the frequentist-based CI for the mean effect was not 

mentioned (Figure 2). Of the papers reporting how the CI was calculated, the majority used 

bootstrapped or z-distribution CIs; only three papers used credible intervals (Bayesian method), and a 

few used a combination of methods (Figure 2). No papers reported using HKSJ method. Of the papers 

that did not specify the method, nine used Metawin (which defaults to a t-distribution for the 

parametric CI, without the KHSJ refinement); 12 papers used the packages meta or metafor in R 

(which default to a z-distribution); and two used the Comprehensive Meta-Analysis software (which 

defaults to a z-distribution). Assuming these 23 papers used the software defaults, then 31 papers used 

a z-distribution, and nine used a t-distribution but without the KHSJ refinement. Thus, bootstrapped 

and z-distribution CIs likely comprise the vast majority of approaches, with KHSJ CIs being entirely 

absent from our dataset.

Simulation experiments: estimation of a mean effect

The number of studies, k, used to estimate a mean effect size, , substantially affected the coverage of 

the frequentist methods, but this effect of k depended on the type of method used to estimate the 95% 

CIs (Figure 3A). For example, z-distribution CIs for  had coverage lower than the nominal level 

when k < 40, and coverage was appreciably lower for k < 20 (Figure 3A). Similarly, bootstrapped CIs A
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had lower than nominal coverage when k < 40 (Figure 3A). In contrast, KHSJ CIs had close to 

nominal coverage over all values of k (Figure 3A). The Bayesian credible interval generally showed 

coverages around 95%, but when k = 5, coverage was >95% (Figure 3A).

Coverage can be smaller than nominal levels either because of bias or because the width of the 

uncertainty interval is inappropriately narrow (i.e., uncertainty is underestimated). The three 

frequentist methods for computing CIs for  used the same approach for obtaining point estimates and 

had minimal bias centered on zero (Figures S11 A,C,E). Thus, the observed differences in coverage 

for  resulted from differences in the width of the uncertainty interval (Figure 3B). The Bayesian 

credible interval was generally wider than the frequentist-based CIs, and of the frequentist CIs, the 

KHSJ CI tended to be the widest; when k was small, the z-distribution and boot-strapped CIs were 

~1/3 smaller than they should be based upon the more appropriate KHSJ CI (Fig. 3B).

Increasing the mean number of replicates (n) in the primary studies did not greatly affect 

coverage (Figure 3B), the width of the uncertainty interval (Figure 3E), bias (Figure S11C), or RMSE 

(Figure S11D) for  . Our results were likely produced because the among-study variation dominated 

within-study variation over the range of levels considered for the simulation factors (as determined by 

the review by Senior et al., 2016). 

Increasing the among-study variance ( increased the width of the uncertainty interval 𝜎2
𝑎𝑚𝑜𝑛𝑔) 

for  (Figure 3F), but had only small effects on coverage (Figure 3C). Bias in the estimation of  was 

negligible and unaffected by an increase in  (Figure S11E), but the error in the estimation 𝜎2
𝑎𝑚𝑜𝑛𝑔

increased with the increase in heterogeneity (RMSE, Figure S11F).

DISCUSSION

Our literature review shows that ecological meta-analyses are highly variable in terms of how 

many studies (k) are included in the meta-analysis and the number of replicates reported in the 

original publications ( ). Despite this high variability, both across and within meta-analyses, k and  𝑛𝑖 𝑛𝑖

tend to be low. The high frequency of meta-analyses with comparatively few studies (k  44 in 50% 

of meta-analyses reviewed) is not unique to ecology; even lower number of studies are pervasive in A
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medical research (Kontopantelis, Springate, & Reeves, 2013) where there has been an effort to develop 

methods that improve the performance of meta-analyses in such scenarios (Inthout et al., 2014). 

Furthermore, our simulations show that the method used to calculate an uncertainty interval greatly 

influences how often the interval includes the true mean effect and is very important for producing 

intervals with close to correct coverage when k is low. Despite its importance, a large proportion of 

the ecological meta-analyses we reviewed (38%) did not report the type of uncertainty interval used, 

and the ones that did report their methods used intervals that are problematic when k is low.

Low coverage of the z-distribution confidence interval (CI) when the number of observations 

(in the meta-analysis context, the number of studies, k) are low is well known in classical statistical 

contexts as well as in meta-analyses (Hedges et al., 1999; Brockwell & Gordon, 2001; IntHout et al., 

2014). In meta-analyses, however, approaches typically default to assuming large k and thus justify 

the application of the z-distribution. In ecology, this large-sample approach is often unwarranted 

(Figure 1A). Furthermore, bootstrapped CIs are also well known to be problematic with small k 

(Hesterberg, 2015), although ecological meta-analyses tend to prioritize the potential for non-normal 

distributions over concerns about small k (Adams et al., 1997) – based upon our results, such 

prioritization may be misplaced. 

When k is low, the CI for a mean effect size () based on the z-distribution is too narrow. 

Some practitioners have addressed this problem by not calculating CIs when k is very small (e.g.: 

Augusto, Delerue, Gallet-Budynek, & Achat, 2013). Others have resorted to using bootstrapped CIs 

(e.g.: Thébault, Mariotte, Lortie, & MacDougall, 2014). Given that bootstrapped CIs also had poor 

coverage when k < 40, this approach appears to be ill-advised. In our review, nearly half of the mean 

effect sizes used in an individual analysis were calculated with k < 40 effect sizes, where the choice of 

method for computing uncertainty intervals matters. As a result, many effects declared as significant 

probably should not have been. This is exemplified in a review of medical meta-analyses from the 

Cochrane Database, where of the 315 meta-analyses that yielded significant effects with the z-

distribution CI, only 79 were significant using the HKSJ CI (Inthout et al., 2014).

The default option for frequentist CIs for  varies among software packages. For example, a t-

distribution CI (but without the HKSJ refinement) is Metawin’s default, whereas the z-distribution is 

the default in the Comprehensive Meta-Analysis software and in the R packages meta and metafor A
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(metafor is one of the most common software packages currently in use by ecologists). For those 

planning to conduct a random-effects meta-analysis using frequentist methods, we advise use of the 

HKSJ CI, which employs both a weighted estimator of the variance for the overall effect size and a t-

distribution for its associated CI (this can be set up in metafor using the option knha= T). Sánchez-

Meca and Marín-Martínez (2008) report that the HKSJ method outperforms the simple CI-based on 

the t-distribution. However, in some scenarios, coverage could be as low as 90% even using the HKSJ 

CI, for example, when heterogeneity is high, k < 10, and the number of replicates varies greatly 

among studies (Inthout et al., 2014). In our simulations that did not include highly uneven number of 

replicates, we showed that HKSJ CI’s and the Bayesian credible intervals provide accurate (or at least 

conservative, >95%) coverage and performed best. We encourage researchers to be aware of the 

software defaults when calculating an uncertainty interval, and to report the method used.

The climate change meta-analyses showed exceedingly high variation in the number of 

replicates reported ( ), spanning five orders of magnitude, but the majority of values were low. In 𝑛𝑖

fact,  < 10 in 67% of the cases, and   5 in 51% of the cases we reviewed. This pattern may be 𝑛𝑖 𝑛𝑖

similar in other fields of ecology (Table S2, Figures S4, S5). For example, a competition meta-

analysis found ni ranging from 1 to 1,455, with a median of 10 (Gurevitch et al., 1992). To obtain a 

more accurate estimate of , some authors specify a minimum  to calculate mean effect sizes 𝑛𝑖

(Gurevitch et al., 1992; Schirmel et al., 2016). Such censuring might improve confidence interval 

performance by reducing variation in replication among studies (Inthout et al. 2014) but at the high 

cost of discarding important information. While one would in general expect better estimates with 

more replication, our simulation experiment did not show important effects of the mean number of 

replicates on the estimation of and inferences about . A similar insensitivity to the number of 

replicates  has been observed in other studies (Sánchez-Meca & Marín-Martínez 2008), although we 

included fewer replicates than most other simulations. Variation in replication among studies, should 

produce variation in within-study variance, especially when the number of replicates is small. 

However, in our simulations among-study variation was much larger than within-study variation, 

consistent with the characteristics of ecological meta-analyses (Senior et al., 2016), minimizing the 

role of variation in the number of replicates. 
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When the number of replicates reported ( ) was unusually high, we checked a few of the 𝑛𝑖

original papers cited in each meta-analysis. Upon revisiting 17 of the original publications, we found 

at least 15 cases in which  was misreported (Table S3). This manifested in different ways. Some 𝑛𝑖

meta-analyses reported the total in an experiment instead of the number of replicates per treatment. 𝑛𝑖 

In other cases, authors reported the total  from repeated measurements or the numbers of individuals 𝑛𝑖

rather than the number of true replicates (e.g., plots or cages). There were also cases in which we were 

unable to verify the origin of the number reported in the meta-analysis. An incorrect   decreases the 𝑛𝑖

sampling variance for that effect size, which affects the weights and also the estimation of the overall 

heterogeneity (Noble et al., 2017). Researchers conducting a meta-analysis should be cautious when 

extracting data from the original studies to avoid misreporting (or inflating) the number of replicates. 

Publication of the data and code used to conduct a meta-analysis would also be useful to inform 

research on best practices for meta-analysis.

In our simulations using a random-effects model, the performance in the estimation of the 

among-study variance ( was better when the true was high (Figures S4-7). In 𝜎2
𝑎𝑚𝑜𝑛𝑔)  𝜎2

𝑎𝑚𝑜𝑛𝑔

agreement with Viechtbauer (2007), we observed that the Q-profile CI method for performed 𝜎2
𝑎𝑚𝑜𝑛𝑔 

better than the bootstrap method (Figures S7-10). The Bayesian method performed best, but had 

coverage above the nominal level when the number of studies was low (k < 20). Bayesian methods led 

to higher perceived uncertainty in such cases, which could be real, but this could also be a 

consequence of positive bias in the  estimates, which was more pronounced for the Bayesian 𝜎2
𝑎𝑚𝑜𝑛𝑔

methods when k < 20. In this scenario, one approach to improve coverage is to use priors for 𝜎2
𝑎𝑚𝑜𝑛𝑔

that perform better when k is low (Gelman, 2006). Another solution is to specify more informative 

priors for based on a synthesis of past publications (Higgins et al., 2009). One reason to desire 𝜎2
𝑎𝑚𝑜𝑛𝑔

good estimation of  is because overestimation of this variance component can lead to higher 𝜎2
𝑎𝑚𝑜𝑛𝑔

perceived uncertainty in the estimate of . An additional reason is that the estimates of 𝜎2
𝑎𝑚𝑜𝑛𝑔

represent real variation in effects and could be of importance in risk assessment. 

In the initial explorations with the full Bayesian model, the MCMC chains for  converged 

quickly, but they converged more slowly for , often falling into a “zero variance trap” 𝜎2
𝑎𝑚𝑜𝑛𝑔

(Gelman, 2004) when the true among-study variance was close to zero. In general, convergence and A
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mixing problems were most frequent for low k and low . While low is rare in ecology, 𝜎2
𝑎𝑚𝑜𝑛𝑔 𝜎2

𝑎𝑚𝑜𝑛𝑔

low k is not. Of the priors we explored (Supporting Information Figures S12-15), the folded-t and the 

uniform prior for the standard deviation performed best when k was low (we chose the uniform prior 

for the final simulations because it ran slightly faster). In our simulations, the hybrid Bayesian model 

exhibited the practical advantages of the Bayesian methods (e.g., produces full posteriors and direct 

evaluation of uncertainty without approximating assumptions, among others), and was easy (and 

faster) to implement than the full model. On the other hand, a full Bayesian approach may be more 

useful for multi-level models that include missing data, hierarchical structures, and/or covariate 

effects (Ogle et al., 2013), and could benefit from informative priors for , particularly when k is 𝜎2
𝑎𝑚𝑜𝑛𝑔

low.

Our study simulated independent effect sizes. Often though, observed effect sizes are not 

independent (e.g., multiple observed effect sizes might be obtained from a single published article). 

As observed effect sizes within a group might respond similarly (due to similar methods, or similar 

environmental conditions), some of the among-study variation could be common to all members of a 

group or subgroup. Multi-level (hierarchical) models can be used to account for this. We believe that 

our results, including the insensitivity of our results to n, would not be materially altered in such 

situations, assuming the among-study variation still dominates the within-study variation. There are 

some challenges to be faced, however, when applying our results to more complex multi-level 

models. In particular, although the R package metafor has a function that handles multi-level models 

(rma.mv), the KHSJ adjustment is not available in this context, and the best that can be done with 

metafor is to construct t-based confidence intervals of the mean (also referred to as conditional t-test). 

For multi-level models, these t-based confidence intervals have inflated error rates (Luke, 2017; Song 

et al., in press), although they do outperform normal-based confidence intervals (Song, personal 

communication). Song et al. (in press) speculated that the inflated error rates of t-based confidence 

intervals resulted from not accounting for uncertainty in estimated variances. Methods exist for 

adjusting tests and confidence intervals to account for uncertainty in estimated variances in multi-

level models, such as the Kenward-Rogers adjustment, or simulation of null distributions (Halekoh & 

Hojsgaard, 2014), but to our knowledge these have not been implemented in any readily available 

software for conducting meta-analyses. A
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FIGURE LEGENDS

Figure 1. Results from the literature review of ecological meta-analyses: A) distribution of the 

number of studies (k) reported for overall, analysis, and category levels; the median k is indicated in 

each panel; B) distribution of the number of replicates used in the original studies ( ), as reported in   𝑛𝑖

each meta-analysis; the median  is indicated with a dashed line. Note that the x-axes are on a log 𝑛𝑖

scale.

Figure 2. Types of uncertainty intervals reported by the ecological meta-analyses. In some cases, 

more than one type of uncertainty interval was reported.

Figure 3. Coverage and the width of the 95% uncertainty interval for different methods used to 

estimate the mean effect size () in a meta-analysis as a function of the number of studies (A, D), the 

mean number of replicates (B, E), and the among-study variance (C, F). The dashed horizontal line in 

panels A, B, and C indicates the nominal value of 95%. Different colors denote the method used to 

estimate the uncertainty interval. Error bars provide the 95% CI.

SUPPLEMENTARY FIGURE LEGENDS

Figure S1. PRISMA diagram.

Figure S2. Mean I2 as a function of the true (simulated) among-study variance for different 

combinations of the mean number of replicates, , and number of studies, k, in the simulated datasets.𝑛𝑖

Figure S3. Number of climate-change meta-analyses reviewed, summarized by journal in which each 

was published, between 2013 and 2016.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Figure S4. Results from the exploratory literature search on sub-disciplines of ecological meta-

analyses. A) distribution of the number of studies (k) by sub-discipline; B) distribution of the number 

of replicates ( ) used in the primary papers, as reported in each meta-analysis. Replication was not 𝑛𝑖

reported in any meta-analyses for ocean acidification. Note that the x-axes are on a log scale.

Figure S5. Additional results for the climate/global change meta-analysis. Variability on the median 

number of studies at the analysis level (A) and the median number of replicates (B) by type of 

organism (or variable) measured, type of environment, and meta-analysis topic.

Figure S6. Distribution of the number of replicates, , in the original studies for each of the 26 meta-𝑛𝑖

analysis publications in our review that provided the original data. The boxplots represent the median 

(thick vertical line), the 25th and 75th percentiles (box), the upper whisker extends from the box to the 

larger value no further than 1.5xIQR, and the lower whisker extends from the box to the smallest 

value at most 1.5xIQR. Extreme values that exceed the whiskers are plotted individually as solid 

points.

Figure S7. Performance measures of the estimation of the among-study variance as a function of the 

number of studies (left column), the number of replicates in the original studies (middle column) and 

the simulated among-study variance (right column). Performance was assessed using coverage (A, B, 

C), perceived uncertainty (width of the uncertainty interval) (D, E, F), bias (G, H, I), and RMSE (J, K, 

L). Error bars provide the 95% CI for panels A-I. Please note different scales in the y-axis for bias and 

width of the uncertainty interval. Simulation parameters: , except for the 𝑛 = 5,𝑘 = 25, σ2
among = 0.5

cases in which that parameter was varied.

Figure S8. Performance measures of the estimation of the among-study variance as a function of the 

number of studies (left column), the number of replicates in the original studies (middle column) and 

the simulated among-study variance (right column). Performance was assessed using coverage (A, B, 

C), perceived uncertainty (width of the uncertainty interval) (D, E, F), bias (G, H, I), and RMSE (J, K, 

L). Error bars provide the 95% CI for panels A-I. Please note different scales in the y-axis for bias and 

width of the uncertainty interval. Simulation parameters: , except for the  𝑛 = 5,𝑘 = 25,𝜎2
among = 2

cases in which that parameter was varied.A
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Figure S9. Performance measures of the estimation of the among-study variance as a function of the 

number of studies (left column), the number of replicates in the original studies (middle column) and 

the simulated among-study variance (right column). Performance was assessed using coverage (A, B, 

C), perceived uncertainty (width of the uncertainty interval) (D, E, F), bias (G, H, I), and RMSE (J, K, 

L). Error bars provide the 95% CI for panels A-I. Please note different scales in the y-axis for bias and 

width of the uncertainty interval. Simulation parameters: , except for the 𝑛 = 20,𝑘 = 25,𝜎2
among = 2

cases in which that parameter was varied.

Figure S10. Performance measures of the estimation of the among-study variance as a function of the 

number of studies (left column), the number of replicates in the original studies (middle column) and 

the simulated among-study variance (right column). Performance was assessed using coverage (A, B, 

C), perceived uncertainty (width of the uncertainty interval) (D, E, F), bias (G, H, I), and RMSE (J, K, 

L). Error bars provide the 95% CI for panels A-I. Please note different scales in the y-axis for bias and 

width of the uncertainty interval. Simulation parameters: , except for the 𝑛 = 20,𝑘 = 25,𝜎2
among = 0.5

cases in which that parameter was varied.

Figure S11. Bias and RMSE from the estimation of a mean effect in 2000 replicated meta-analyses as 

a function of the number of studies (A, B), the mean number of replicates in the original studies (C, 

D), and the among-study variance (E, F). Simulation parameters: , except for 𝑛 = 5,𝑘 = 25,𝜎2
among = 2

the cases in which that parameter was varied.  Error bars provide the 95% CI for panels A-E. 

Figure S12. Number of replicates yielding bad  (   1.1) for different combinations of priors, true 𝑅 𝑅

among-study variance, mean number of replicates, and number of studies.

Figure S13. Median of the posterior distribution of the among-study variance for all the different 

priors tested, number of replicates, number of studies, and true among-study variance. A) ; B) 𝑛 = 5

. The vertical dashed line in each panel indicates the true among-study variance.𝑛 = 25

Figure S14. Median of the posterior distribution of the among-study variance for the four priors with 

the best performance (i.e., Uniform (0, 10), Uniform (0, 100), Gamma, Folded-t), number of 

replicates, number of studies, and true among-study variance. A) ; B) . The vertical 𝑛 = 5 𝑛 = 25

dashed line in each panel indicates the true among-study variance.A
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Figure S15. Median of the posterior distribution of the among-study variance for the four priors with 

the best performance (i.e., Uniform (0, 10), Uniform (0, 100), Gamma, Folded-t), when the number of 

studies was low (k = 5). A) ; B) . The vertical dashed line in each panel indicates the true 𝑛 = 5 𝑛 = 25

among-study variance. 

A
cc

ep
te

d 
A

rt
ic

le



Figure 1

Median= 273

Median= 44

Median= 16

O
verall

A
n

alysis
C

ateg
o

ry

1 10 100 1000

0

10

20

30

0

100

200

300

0

200

400

600

Number of studies

F
re

q
u

en
cy

A

Median= 5

0

2000

4000

1 10 100 1000

Number of replicates

F
re

q
u

en
cy

B

mee3_13445_f1.pdf

This	article	is	protected	by	copyright.	All	rights	reserved

A
cc

ep
te

d 
A

rt
ic

le



Figure 2

2

1

34

37

2

17

3

0KHSJ

Bayesian and bootstrap

standard error

Bayesian

z and bootstrap

z-distribution

bootstrap

not mentioned

0 10 20 30 40

Number of papers reviewed

Ty
p

e 
o

f 
u

n
ce

rt
ai

n
ty

 i
n

te
rv

al

mee3_13445_f2.pdf

This	article	is	protected	by	copyright.	All	rights	reserved

A
cc

ep
te

d 
A

rt
ic

le



0.80

0.85

0.90

0.95

1.00

10 20 30 40 50

Number of studies (k )

C
o

ve
ra

g
e

n 5,among
2  2A

0.80

0.85

0.90

0.95

1.00

10 20 30

Number of replicates (n)

C
o

ve
ra

g
e

k 25,among
2  2B

0.80

0.85

0.90

0.95

1.00

0 1 2 3 4 5

Among-study variance ( among
2

 )

C
o

ve
ra

g
e

n = 5, k  = 25C

0

1

2

3

4

5

10 20 30 40 50

Number of studies (k )

W
id

th
 o

f 
u

n
ce

rt
ai

n
ty

 in
te

rv
al

n 5,among
2  2D

0

1

2

3

4

5

10 20 30

Number of replicates (n)

W
id

th
 o

f 
u

n
ce

rt
ai

n
ty

 in
te

rv
al

k 25,among
2  2E

0

1

2

3

4

5

0 1 2 3 4 5

Among-study variance ( among
2  )

W
id

th
 o

f 
u

n
ce

rt
ai

n
ty

 in
te

rv
al

n = 5, k  = 25F

Bayesian Bootstrapped KHSJ z-distribution

n

n

k

k

Figure 3

mee3_13445_f3.pdf

This	article	is	protected	by	copyright.	All	rights	reserved

A
cc

ep
te

d 
A

rt
ic

le




