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ABSTRACT

1.

Despite the wide application of meta-analysis in ecology, some of the traditional methods used
for meta-analysis may not perform well given the type of data characteristic of ecological
meta-analyses.

We reviewed published meta-analyses on the ecological impacts of global climate change,
evaluating the number of replicates used in the primary studies (n;) and the number of studies
or records (k) that were aggregated to calculate a mean effect size. We used the results of the
review in a simulation experiment to assess the performance of conventional frequentist and
Bayesian meta-analysis methods for estimating a mean effect size and its uncertainty interval.
Our literature review showed that n; and & were highly variable, distributions were right-
skewed, and were generally small (median n; =5, median £=44). Our simulations show that the
choice of method for calculating uncertainty intervals was critical for obtaining appropriate
coverage (close to the nominal value of 0.95). When &k was low (<40), 95% coverage was
achieved by a confidence interval based on the z-distribution that uses an adjusted standard
error (the Hartung-Knapp-Sidik-Jonkman, HKSJ), or by a Bayesian credible interval, whereas
bootstrap or z-distribution confidence intervals had lower coverage. Despite the importance of
the method to calculate the uncertainty interval, 39% of the meta-analyses reviewed did not
report the method used, and of the 61% that did, 94% used a potentially problematic method,
which may be a consequence of software defaults.

In general, for a simple random-effects meta-analysis, the performance of the best frequentist
and Bayesian methods were similar for the same combinations of factors (k and mean
replication), though the Bayesian approach had higher than nominal (>95%) coverage for the
mean effect when & was very low (k<15). Our literature review suggests that many meta-
analyses that used z-distribution or bootstrapping confidence intervals may have over-
estimated the statistical significance of their results when the number of studies was low; more

appropriate methods need to be adopted in ecological meta-analyses.

RESUMEN
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1. A pesar del uso generalizado del meta-andlisis en el area de Ecologia, algunos de los métodos
de analisis tradicionalmente utilizados pueden dar resultados no ideales dado el tipo de datos
que los caracteriza.

2. En este trabajo se realizd una revision de los meta-analisis publicados sobre los impactos
ecologicos del cambio climatico global, evaluando el nimero de réplicas utilizadas en las
publicaciones originales (n;) y el nimero de estudios o registros (k) que fueron agrupados para
calcular un tamafio de efecto promedio. Se utilizaron los resultados de la revision en un
experimento de simulacion para evaluar el desempefio de métodos frecuentistas
convencionales y métodos Bayesianos para estimar un tamafio de efecto promedio y su
intervalo de incertidumbre.

3. La revision de la literatura demostrdo que n; y & fueron muy variables, con distribuciones
sesgadas, y con valores en general bajos (mediana n; =5, mediana k=44). Nuestras
simulaciones muestran que la eleccion del método para calcular un intervalo de incertidumbre
fue critica para obtener una cobertura apropiada (alrededor del valor nominal de 0.95). Cuando
k fue bajo (<40), obtuvimos una cobertura de 95% utilizando un intervalo de confianza basado
en la distribucion t de student que usa un ajuste por el error estdndar (llamada Hartung-Knapp-
Sidik-Jonkman, HKSJ), o utilizando un intervalo de credibilidad Bayesiano, mientras que los
intervalos de remuestreo o con una distribuciéon Normal tuvieron cobertura baja. A pesar de la
importancia del método utilizado para calcular el intervalo de incertidumbre, 39% de los meta-
analisis revisados no reportaron el método utilizado y, de los 61% que si lo reportaron, 94%
usaron uno de los métodos potencialmente problematicos, lo que puede ser una consecuencia
de la configuracion por defecto de los programas informaticos utilizados para meta-analisis.

4. En general, para un meta-andlisis simple con efectos aleatorios, el desempefio del mejor
método frecuentista y el método Bayesiano fueron similares para las mismas combinaciones
de factores (ky numero de réplicas promedio), aunque el método Bayesiano tuvo cobertura
mayor de la nominal (>95%) para el efecto promedio cuando k fue muy bajo (k<15). Nuestra
revision sugiere que muchos de los meta-analisis que utilizaron una distribuciéon Normal o

intervalos de remuestreo pueden haber sobreestimado la significancia estadistica de sus
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resultados cuando el numero de estudios fue bajo. Otros métodos mas apropiados deberian ser

usados para meta-analisis en Ecologia.
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INTRODUCTION

Meta-analysis uses statistical techniques to quantitatively summarize information from different
studies and is highly influential in the contemporary practice of science. To conduct a meta-analysis
an investigator gathers summary statistics from each study to calculate an effect size, with the goal of
computing an overall effect size (and its uncertainty) and exploring the factors contributing to
variation in effect sizes (Nakagawa, Noble, Senior, & Lagisz, 2017). The use of meta-analysis in
ecology has been growing rapidly since the 1990s, and has proven particularly useful in discerning
general patterns by comparing information from different species, study sites, and systems (Cadotte,
Mehrkens, & Menge, 2012). Advice on best methodological practices for meta-analysis is widespread
in disciplines with a longer history of meta-analytic research (e.g. medical sciences) but is lagging
behind in ecology (Gates, 2002). This can be problematic because ecological meta-analyses have
specific challenges not necessarily typically in other disciplines.

One pervasive characteristic of ecological meta-analyses is the high heterogeneity (i.e., large
among-study variation in effect sizes). Senior et al. (2016) analyzed 86 meta-analyses in ecology and
evolution and found that the among-study variation averaged 92% of the total variance. In contrast, a
review of 509 meta-analyses in medicine found that there was no detectable among-study variation in
50% of the studies (Higgins, Thompson, & Spiegelhalter, 2009). Ecological studies also differ from
many other disciplines in the typical level of within-study replication, which is fewer than 10
replicates per study (Hillebrand & Gurevitch, 2014). Such low levels of replication will influence the
precision of the estimates of effect size from the primary studies (Langan, Higgins, & Simmons,
2016). Importantly, the low level of replication typical of ecological studies is outside the range used
in most simulation studies designed to assess meta-analytic methods, which typically range from
dozens to hundreds (Langan et al., 2016). Thus differences between ecology and other disciplines
potentially limit the insights ecologists can gain from existing simulations that compare different
meta-analytic methods.

Specific advice for conducting ecological meta-analyses include suggestions on the type of
meta-analytic model and effect size calculation to use (Gurevitch & Hedges, 1999; Osenberg,
Sarnelle, Cooper, & Holt, 1999; Lajeunesse, 2015), and how to deal with non-independence
(Gurevitch & Hedges, 1999; Noble, Lagisz, O’dea, & Nakagawa, 2017; Song, Peacor, Osenberg, &
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Bence, 2020). For example, a random-effects model is often recommended for ecological meta-
analysis over a fixed-effects model (Gurevitch & Hedges, 1999), and multi-level models are
increasingly being used to incorporate the non-independence commonly found in ecological meta-
analyses (Nakagawa & Santos, 2012). A topic addressed in the medical literature that has received
little attention in ecology (but see Adams, Gurevitch, & Rosenberg, 1997) is the choice of confidence
interval (CI) used to estimate the mean effect size in a meta-analysis (Hartung & Knapp, 2001; Sidik
& Jonkman, 2003, Sanchez-Meca & Marin-Martinez, 2008).

Simulation studies have shown that when the number of studies (k) in the meta-analysis is low,
the CIs for a mean effect size calculated using a normal approximation are too narrow, leading to
coverage below the nominal level (i.e., a 95% CI should include the true value 95% of the time)
(Brockwell & Gordon, 2001; Sdnchez-Meca & Marin-Martinez, 2008). To avoid this problem, meta-
analyses in the medical literature often use the HKSJ (Hartung-Knapp-Sidik-Jonkman; Hartung &
Knapp, 2001; Sidik & Jonkman, 2003) method, which is based on a #-distribution and can achieve
good coverage even when £ is small (Inthout, loannidis, & Borm, 2014). Bootstrap techniques have
been recommended for estimating CIs for means in ecological meta-analyses, due to its robustness to
departures from normality (Adams et al., 1997). On the other hand, boot-strapped Cls can lead to poor
coverage when estimating the among-study variance (Viechtbauer, 2007).

Bayesian methods, and the credible interval, offer an alternative approach to estimating
uncertainty in meta-analyses. Although Bayesian methods may have a steep learning curve, they offer
advantages in handling hierarchical models, for incorporating prior information, and for dealing with
missing data (Ogle, Barber, & Sartor, 2013). Bayesian meta-analytic techniques produce a posterior
distribution of the mean effect size and associated variance terms. Estimates of uncertainty, including
credible intervals, can be directly obtained from the posterior distributions, offering an easier to
interpret alternative to the frequentist-based CI (Kruschke & Liddell, 2008).

Our main goal is to compare the performance of traditional and Bayesian methods to measure
the uncertainty around the estimation of a mean effect in the context of ecological meta-analysis. To
achieve this goal, we conducted a two-pronged study. First, we reviewed published ecological meta-
analyses to characterize the types of confidence interval used in ecological meta-analyses, the number

of replicates used in the primary studies (n;) included in published meta-analyses, and the number of
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studies (k) that were aggregated to calculate a mean effect size. Second, we used the n; and & found in
our literature review to inform the range of parameter values to use in conducting simulation
experiments relevant to ecological meta-analyses. In particular, we determined the typical levels of n;,
k, and the among-study variance and then varied them systematically in our simulation studies. We
then evaluated performance of frequentist and Bayesian meta-analysis methods when applied to the
simulated data, especially with respect to their ability to estimate the true mean effect and among-
study variance, and their quantification of uncertainty intervals (i.e., confidence or credible intervals).
Based on our findings, we generate recommendations on the methods to measure uncertainty that
perform best for ecological meta-analysis and highlight how simple choices (sometimes overlooked

by the investigators) can affect the results of meta-analyses.

MATERIALS AND METHODS
Literature review to assess characteristics of ecological datasets

Literature search. We searched the Core Collection of the ISI Web of Science database in March
2017; the search string for TOPIC included ([“meta-analy*” OR “metaanaly*” OR “meta analy*”]
AND [“climate change” OR “global change”]). We only included articles and reviews within the
“Ecology”, “Environmental Sciences”, “Biodiversity Conservation” and “Plant Sciences” categories.
The search resulted in 581 citations; the PRISMA diagram detailing the screening process is provided
in Figure S1. After abstract screening, we checked the full text of the 205 articles published between
2013 and 2016. Of these, 96 papers satisfied the inclusion criteria for the final analysis.

Criteria for inclusion. We focused on narrow sense meta-analyses: i.e., those that used a quantitative
meta-analytic method to combine effect sizes that compared a control and a treatment group. We
excluded studies that 1) only cited published meta-analyses, 2) reviewed meta-analytic methods, but
did not perform a meta-analysis, 3) were identified as meta-analysis by the authors but did not use a
meta-analytic model or did not calculate effect sizes, 4) used the correlation between two variables as
an effect size, and 5) were not “biological meta-analyses” (as defined in Nakagawa et al., 2017), such

as studies related to human health or human behavior.
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Information extracted. For each paper we extracted the number of studies (k) from the text, figure
captions, figures, and supplementary materials. Here we define a “study” as yielding an estimate of an
effect, so that a given primary paper could generate multiple effects and thus multiple studies. The k&
values were determined at three levels, 1) overall: i.e., the total k collected by the authors (e.g., if they
conducted meta-analyses on different response variables, then we summed the k across these
variables); 2) analysis: i.e., the total £ used in a particular analysis (e.g., if an analysis examined
variation among four levels of a moderator, then we summed up the number of studies in each level);
and 3) category: i.e., the k included in each category of a categorical analysis. In some cases, authors
calculated mean effect sizes for different categories separately and only compared the categories
using confidence intervals (i.e., there was no integrated analysis incorporating a category effect). In
this case, we considered each’s categories’ k to apply at the “analysis” level.

When available, we also recorded the number of replicates (n;) in the original studies. If the
level of replication was unequal for the control and treatment groups, we recorded the average.
Finally, from each meta-analysis, we also recorded the inferential paradigm used (frequentist vs.
Bayesian) and the method used to obtain confidence intervals for the frequentist approaches (e.g.,

non-parametric bootstrap, normal-based, KHSJ, etc.).

Simulation Experiments

Our literature review showed that 67% of the reported primary studies had less than ten replicates. In
addition, the review of meta-analyses in ecology and evolution by Senior et al. (2012) showed that
among-study variation was important, and typically large, in ecological studies. Given these
characteristics of ecological data, we simulated data in a full-factorial design that considered the
following levels: mean number of replicates n = {3, 5, 10, 15, 20, 30}, number of studies k£ = {5, 10,
15, 25, 35, 50}, and among-study variance U(szong = {0.1, 0.25, 0.5, 1, 2, 5}. We simulated 2,000
replicated meta-analyses for each combination of n, &k, and aﬁmong. We then evaluated the
performance of four meta-analytic methods applied to the simulated data: three frequentist approaches

that differed in how they calculated confidence intervals for a mean effect and a Bayesian approach.

Simulating raw data for a study. We first determined the number of replicates for study i (n;) based

on a random draw from a Poisson distribution:
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n;" ~Poisson(n — 2) (Eq. 1)
n; = Tll'* +2 (Eq 2)

where n is the mean number of replicates representative of ecological meta-analyses. We subtracted 2
to sample from the Poisson and added 2 to the simulated n;" to make the minimum number of
replicates for each simulated study equal 2 rather than 0. For each study, we assumed equal number of
replicates for the control and treatment groups.
Individual observations (j =1, 2, ..., n;) for the control and treatment groups were generated

from a lognormal distribution (LN) such that for study i and observation j:

Yci~LN(O, o.%gp) (Eq. 3)

YTij"'LN(O tu+e, 072”ep) (Eq. 4)
where afep is the among-replicates variation, u is the true overall effect, and y¢;; and yr;; are the
simulated observations for study i and observation j of the control and treatment group, respectively.
We set the among-replicate variation equal to 1 for both the control and treatment. For convenience,
we set the location parameter for the control group equal to zero, resulting in median (y¢) = 1. For the
treatment group in study i, we set median (y7) = u + €;, where u is the overall true treatment effect
(hereafter, true effect size) and ¢; is the random effect associated with study i. We simulated ¢; as:

£~ N(0,02mong) (Eg. 5)
Thus, the true effect size from any given study departs from u due to its random effect (determined by
€;), while the estimated effect size differs from the true effect size due to within-study sampling error
(i.e., as influenced by n; and agep). The range of values used for aémong were chosen to produce a
similar distribution of /2 (the proportion of variation among effect sizes not explained by sampling
error) to that reported by Senior et al. (2016) for meta-analyses in ecology and evolution (/2

simulation results are presented in Figure S2).

Estimating the effect size and within-study variance. Using the raw data simulated from each
study, we computed the observed effect size for study i as the log response ratio (/nRR;), which is
widely used in ecology (Nakagawa & Santos, 2012) and it is often a reasonable approximation of

ecological phenomena (Osenberg, Sarnelle, & Cooper, 1997):
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Vr;
InRR; = ln()—;) 6)
where yr, and y¢, are the sample means of the treatment and control groups, respectively.

2
The expected sample means for each treatment in a simulated study are E (yci].) = exp (?) and E

2
rep

(yTL.].) = exp(u + &+ GT) Thus, the log of the ratio of the expected values for the treatment and

control groups is i + ¢&;, corresponding to what we call the true study-specific effect size.

We calculated the estimated within-study variance of the log ratio (Eq. 1 in Hedges,
Gurevitch, & Curtis, 1999) (0%hin,) as:

SDrf? SD¢?

Owithing = — =2
within; =2 =2
: nTL-'yTl, nCi'yci

()

where SDr and SD; are the sample standard deviations of the treatment and control groups,

respectively, and ny, = n¢, = n; are the simulated number of replicates in study i.

Meta-analytic approaches
Given that we simulated independent data to highlight how the choice of uncertainty interval affects
the estimation of a mean effect, we used a standard random-effects model (Gurevitch & Hedges,
1999). We comment on how our results may change with a multi-level (hierarchical) model in the
Discussion section. We assume the simulated effect size for study i (/nRR;, calculated from Eq. 6)
follows a normal distribution with mean 6; (the true effect for study i) and within-study variance
Ugvithini:

INRR~ N(6;, Olyithin,) (8)

0i~N (1, 0Zmong) ©)
We assume aﬁ,ithmi is known, as calculated via Eq. 7. Likewise, the true study-specific effect size, 6;,

is assumed to follow a normal distribution with mean u (the true overall effect) and among-study

2

variance, aémong (which is sometimes referred to as 7~ in other meta-analytic papers).

We compared different methods to construct confidence intervals (Cls) for a mean effect (at

the analysis level) within the frequentist methods versus Bayesian credible intervals. For the

This article is protected by copyright. All rights reserved



frequentist-based analyses, we compared: a) a CI based on a z-distribution, which is a large sample
approximation, b) a weighted CI based on the Hartung-Knapp-Sidik-Jonkman (HKSJ) method, which
does not assume a large sample and instead uses a ¢-distribution, and c¢) bootstrap methods. For the

Bayesian-based analysis, we calculated the highest posterior density (HPD) credible interval.

Frequentist approaches. We applied the random-effects model described by Eqgs. 8 and 9 with
inverse variance weights using the “rma” function in the R package metafor (Viechtbauer, 2010), and
estimated a%mong with the default REML method. To calculate the z-distribution CI, we used the
default settings for the random-effects model in metafor, which returns a 95% CI for x based on the
normal distribution. To apply the HKSJ CI, we set the option knha=T in metafor. The resulting CI for
4 1s based on both a refined estimate of aémong and a Student’s t-distribution (Hartung & Knapp,
2001; Sidik & Jonkman, 2003), which accounts for the fact that aﬁmong is estimated and not known.
For the bootstrapped CI, we estimated the bias-corrected non-parametric bootstrapped 95% CI for
both x and aémong via the boot package in R (Canty & Ripley, 2017). Since the choice of HKSJ or z-
distribution for the x CI does not affect the estimation of agmong, in both cases we used metafor’s
function “confint” to obtain the CI for aémong (“confint” applies a Q-profile method in combination

with REML).

Bayesian approach. We used a “hybrid” Bayesian framework to implement the random-effects

model (Egs. 8 and 9) in which we treat 02, as known; whereas a fully Bayesian model may treat
02ithin @S unknown (this hybrid model is comparable to the “empirical Bayes” method discussed in
Schmid & Mengersen, 2013). Initial explorations with full and hybrid models gave qualitatively
similar results and we only include the hybrid model in our analysis.

We specified relatively non-informative priors for the unknown quantities (e.g., ¢ and aémong
). For the mean effect size, 1, we specified a conjugate normal prior with a mean of zero and large
variance: N(0, 10000). Given that even diffuse priors for agmong can influence the posterior for
ngong, particularly under small group size (Gelman, 2006), we explored five different priors for
O-czlmong (Supporting Information Figures S12-15). For the final analysis, convergence statistics and

computational speed led us to focus on the Uniform(0,10) prior for the standard deviation (0 4mong)-
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The Bayesian meta-analyses were implemented in JAGS with the rjags R package (Plummer,
2018). For each model, we ran three parallel Markov chain Monte Carlo (MCMC) sequences for
200,000 iterations, and discarded the first 100,000 iterations as the burn-in period. We used the R
convergence diagnostic (Gelman & Rubin, 1992) to evaluate convergence of the MCMC sequences to
the posterior. For the final simulations, we only included runs that had R < 1.1, and checked that the
proportion of discarded runs was lower than 1%. Using post-burn-in MCMC samples, we computed

posterior means for quantities of interest (e.g., ¢ and ag_mong) as point estimates. We computed 95%
credible intervals as HPD intervals for both x and aﬁmong using the “HPDinterval” function in the

coda package (Plummer, 2006).
Implementation and Assessment of the Meta-analysis Approaches

We ran all the analyses and simulations in the R environment (R Core Team, 2019); code is provided
in the Supporting Information. For each simulated dataset, we estimated x and aflmong via the
frequentist and Bayesian methods described above. We summarized the results from the 2,000
replicated meta-analyses for each combination of factors (n, &, agmong) and modeling approaches (i.e.,
frequentist and Bayesian methods to measure uncertainty). The results for the model performance
associated with estimating aﬁmong are presented in Figures S7-10.

We evaluated model performance using: coverage, width of the uncertainty intervals, bias, and
efficiency. We estimated coverage for both x and aémong as the proportion (out of the 2,000
simulation replicates) of calculated 95% uncertainty intervals (Cls for the frequentist methods and
credible interval for the Bayesian approach) that included the corresponding true value. Ideally,
coverage should equal the nominal value of 0.95 (95%). CIs for these “coverage proportions” were
computed using the “binom.confint” function in the R binom (Sundar, 2014) package, with the
method “wilson” (Agresti & Coull, 1998).

We summarized the perceived uncertainty for x and agmongas the mean width of the 95%
uncertainty intervals for the 2,000 intervals for each scenario, and assessed how well the mean width
was estimated using a 95% CI based on a ¢-distribution. All else being equal, smaller uncertainty is a

desirable feature, but not if it is accompanied by a reduction in coverage below the nominal level.

This article is protected by copyright. All rights reserved



To evaluate bias, we calculated the mean difference between the point estimates for x and
aémong and their true values based on the 2,000 simulation replicates, and report a 95% CI for this
estimate based on the ¢-distribution. Ideally, bias should be centered on zero.

Finally, to quantify the efficiency of the point estimates, we calculated the root mean squared

error (RMSE) between the estimated and true values for ¢ and aﬁmongas:

Zivi”{l(&s - atrues)z

N sim

RMSE = , (10)

where a = u or aémong, a is the point estimate from each model, a;, is the true value used in the

simulations, and N;,,, is the number of simulations.

RESULTS

Literature review to assess characteristic of ecological datasets

Of the 96 meta-analyses that satisfied our criteria (Table S1), 95 and 26 provided information on the
number of studies (k) and number of replicates (n;) associated with the original dataset, respectively.
Only three meta-analyses used a Bayesian approach. The majority of meta-analyses were published in
Global Change Biology (23), followed by Agriculture Ecosystems & Environment (7) and Ecology (6)
(Figure S3 displays the full list). The quality of reporting varied, and is discussed in more detail in the
Supporting Information. We also provide additional information on & and n; (by taxa, environment,

and topic) in the Supporting Information (Table S2, Figures S4-S5).

Number of studies. The number of studies (k) used to estimate an effect was highly skewed at the
three levels we considered: overall, analysis, and category (Figure 1). The overall £ ranged from 25 to
32,567 (Figure 1A upper panel), with a median of 273 and with relatively few (12%) including more
than 1,000 studies. For most papers, however, analyses were performed for different response
variables or different moderators, and the & used for a particular analysis was considerably lower
(Figure 1A middle panel), ranging from k£ = 1 (for a paper that presented all possible comparisons,
even when one potential analysis was represented by only a single study) to k = 8,474, with a median

of k = 44 (i.e., 50% of meta-analysis included 44 or fewer studies); 16% had £ < 10. The number of
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studies included within categories ranged from & = 1 to 1,430, with a median of 16; 36% had £ < 10

(Figure 1A lower panel).

Number of replicates. The distribution of the reported number of replicates in the original studies (n;
) cited by the climate change meta-analyses was highly skewed, ranging from »n; = 1 to 21,600, with
most studies having only a few replicates; the median was 5 (Figure 1B). The strong skewness in
these data led us to inspect some of the original publications from which exceptionally large n; values
were reported. We found publications in which n; values were likely misreported or greatly inflated

by pseudoreplication (details in Table S3 and Figure S6).

Analytic method to estimate the uncertainty interval for a mean effect. In 38.5% of the papers
reviewed, the method used to calculate the frequentist-based CI for the mean effect was not
mentioned (Figure 2). Of the papers reporting how the CI was calculated, the majority used
bootstrapped or z-distribution Cls; only three papers used credible intervals (Bayesian method), and a
few used a combination of methods (Figure 2). No papers reported using HKSJ method. Of the papers
that did not specify the method, nine used Metawin (which defaults to a #-distribution for the
parametric CI, without the KHSJ refinement); 12 papers used the packages meta or metafor in R
(which default to a z-distribution); and two used the Comprehensive Meta-Analysis software (which
defaults to a z-distribution). Assuming these 23 papers used the software defaults, then 31 papers used
a z-distribution, and nine used a #-distribution but without the KHSJ refinement. Thus, bootstrapped
and z-distribution CIs likely comprise the vast majority of approaches, with KHSJ Cls being entirely

absent from our dataset.

Simulation experiments: estimation of a mean effect

The number of studies, &, used to estimate a mean effect size, 4, substantially affected the coverage of
the frequentist methods, but this effect of £ depended on the type of method used to estimate the 95%
Cls (Figure 3A). For example, z-distribution Cls for z had coverage lower than the nominal level

when £ < 40, and coverage was appreciably lower for £ < 20 (Figure 3A). Similarly, bootstrapped Cls
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had lower than nominal coverage when k& < 40 (Figure 3A). In contrast, KHSJ CIs had close to
nominal coverage over all values of £ (Figure 3A). The Bayesian credible interval generally showed
coverages around 95%, but when k =5, coverage was >95% (Figure 3A).

Coverage can be smaller than nominal levels either because of bias or because the width of the
uncertainty interval is inappropriately narrow (i.e., uncertainty is underestimated). The three
frequentist methods for computing CIs for p used the same approach for obtaining point estimates and
had minimal bias centered on zero (Figures S11 A,C,E). Thus, the observed differences in coverage
for p resulted from differences in the width of the uncertainty interval (Figure 3B). The Bayesian
credible interval was generally wider than the frequentist-based Cls, and of the frequentist Cls, the
KHSJ CI tended to be the widest; when k£ was small, the z-distribution and boot-strapped Cls were
~1/3 smaller than they should be based upon the more appropriate KHSJ CI (Fig. 3B).

Increasing the mean number of replicates (n) in the primary studies did not greatly affect
coverage (Figure 3B), the width of the uncertainty interval (Figure 3E), bias (Figure S11C), or RMSE
(Figure S11D) for . Our results were likely produced because the among-study variation dominated
within-study variation over the range of levels considered for the simulation factors (as determined by
the review by Senior et al., 2016).

Increasing the among-study variance (aﬁmong) increased the width of the uncertainty interval
for x (Figure 3F), but had only small effects on coverage (Figure 3C). Bias in the estimation of x was
negligible and unaffected by an increase in agmong (Figure S11E), but the error in the estimation

increased with the increase in heterogeneity (RMSE, Figure S11F).

DISCUSSION

Our literature review shows that ecological meta-analyses are highly variable in terms of how
many studies (k) are included in the meta-analysis and the number of replicates reported in the
original publications (n;). Despite this high variability, both across and within meta-analyses, £ and n;
tend to be low. The high frequency of meta-analyses with comparatively few studies (k < 44 in 50%

of meta-analyses reviewed) is not unique to ecology; even lower number of studies are pervasive in

This article is protected by copyright. All rights reserved



medical research (Kontopantelis, Springate, & Reeves, 2013) where there has been an effort to develop
methods that improve the performance of meta-analyses in such scenarios (Inthout et al., 2014).
Furthermore, our simulations show that the method used to calculate an uncertainty interval greatly
influences how often the interval includes the true mean effect and is very important for producing
intervals with close to correct coverage when k is low. Despite its importance, a large proportion of
the ecological meta-analyses we reviewed (38%) did not report the type of uncertainty interval used,
and the ones that did report their methods used intervals that are problematic when £ is low.

Low coverage of the z-distribution confidence interval (CI) when the number of observations
(in the meta-analysis context, the number of studies, k) are low is well known in classical statistical
contexts as well as in meta-analyses (Hedges et al., 1999; Brockwell & Gordon, 2001; IntHout et al.,
2014). In meta-analyses, however, approaches typically default to assuming large k& and thus justify
the application of the z-distribution. In ecology, this large-sample approach is often unwarranted
(Figure 1A). Furthermore, bootstrapped Cls are also well known to be problematic with small &
(Hesterberg, 2015), although ecological meta-analyses tend to prioritize the potential for non-normal
distributions over concerns about small £ (Adams et al., 1997) — based upon our results, such
prioritization may be misplaced.

When £ is low, the CI for a mean effect size (1) based on the z-distribution is too narrow.
Some practitioners have addressed this problem by not calculating CIs when £ is very small (e.g.:
Augusto, Delerue, Gallet-Budynek, & Achat, 2013). Others have resorted to using bootstrapped Cls
(e.g.: Thébault, Mariotte, Lortie, & MacDougall, 2014). Given that bootstrapped Cls also had poor
coverage when k < 40, this approach appears to be ill-advised. In our review, nearly half of the mean
effect sizes used in an individual analysis were calculated with k£ < 40 effect sizes, where the choice of
method for computing uncertainty intervals matters. As a result, many effects declared as significant
probably should not have been. This is exemplified in a review of medical meta-analyses from the
Cochrane Database, where of the 315 meta-analyses that yielded significant effects with the z-
distribution CI, only 79 were significant using the HKSJ CI (Inthout et al., 2014).

The default option for frequentist Cls for i varies among software packages. For example, a ¢-
distribution CI (but without the HKSJ refinement) is Metawin’s default, whereas the z-distribution is

the default in the Comprehensive Meta-Analysis software and in the R packages meta and metafor

This article is protected by copyright. All rights reserved



(metafor is one of the most common software packages currently in use by ecologists). For those
planning to conduct a random-effects meta-analysis using frequentist methods, we advise use of the
HKSJ CI, which employs both a weighted estimator of the variance for the overall effect size and a ¢-
distribution for its associated CI (this can be set up in metafor using the option knha= T). Sanchez-
Meca and Marin-Martinez (2008) report that the HKSJ method outperforms the simple CI-based on
the ¢-distribution. However, in some scenarios, coverage could be as low as 90% even using the HKSJ
CI, for example, when heterogeneity is high, £ < 10, and the number of replicates varies greatly
among studies (Inthout et al., 2014). In our simulations that did not include highly uneven number of
replicates, we showed that HKSJ CI’s and the Bayesian credible intervals provide accurate (or at least
conservative, >95%) coverage and performed best. We encourage researchers to be aware of the
software defaults when calculating an uncertainty interval, and to report the method used.

The climate change meta-analyses showed exceedingly high variation in the number of
replicates reported (n;), spanning five orders of magnitude, but the majority of values were low. In
fact, n; < 10 in 67% of the cases, and n; < 5 in 51% of the cases we reviewed. This pattern may be
similar in other fields of ecology (Table S2, Figures S4, S5). For example, a competition meta-
analysis found »; ranging from 1 to 1,455, with a median of 10 (Gurevitch et al., 1992). To obtain a
more accurate estimate of x, some authors specify a minimum n; to calculate mean effect sizes
(Gurevitch et al., 1992; Schirmel et al., 2016). Such censuring might improve confidence interval
performance by reducing variation in replication among studies (Inthout et al. 2014) but at the high
cost of discarding important information. While one would in general expect better estimates with
more replication, our simulation experiment did not show important effects of the mean number of
replicates on the estimation of and inferences about g A similar insensitivity to the number of
replicates has been observed in other studies (Sanchez-Meca & Marin-Martinez 2008), although we
included fewer replicates than most other simulations. Variation in replication among studies, should
produce variation in within-study variance, especially when the number of replicates is small.
However, in our simulations among-study variation was much larger than within-study variation,
consistent with the characteristics of ecological meta-analyses (Senior et al., 2016), minimizing the

role of variation in the number of replicates.
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When the number of replicates reported (n;) was unusually high, we checked a few of the
original papers cited in each meta-analysis. Upon revisiting 17 of the original publications, we found
at least 15 cases in which n; was misreported (Table S3). This manifested in different ways. Some
meta-analyses reported the total n; in an experiment instead of the number of replicates per treatment.
In other cases, authors reported the total n; from repeated measurements or the numbers of individuals
rather than the number of true replicates (e.g., plots or cages). There were also cases in which we were
unable to verify the origin of the number reported in the meta-analysis. An incorrect n; decreases the
sampling variance for that effect size, which affects the weights and also the estimation of the overall
heterogeneity (Noble et al., 2017). Researchers conducting a meta-analysis should be cautious when
extracting data from the original studies to avoid misreporting (or inflating) the number of replicates.
Publication of the data and code used to conduct a meta-analysis would also be useful to inform
research on best practices for meta-analysis.

In our simulations using a random-effects model, the performance in the estimation of the
among-study variance (U(Zlmong) was better when the true oﬁmongwas high (Figures S4-7). In
agreement with Viechtbauer (2007), we observed that the Q-profile CI method for aﬁmong performed
better than the bootstrap method (Figures S7-10). The Bayesian method performed best, but had
coverage above the nominal level when the number of studies was low (k < 20). Bayesian methods led
to higher perceived uncertainty in such cases, which could be real, but this could also be a
consequence of positive bias in the agmong estimates, which was more pronounced for the Bayesian
methods when & < 20. In this scenario, one approach to improve coverage is to use priors for agmong
that perform better when £ is low (Gelman, 2006). Another solution is to specify more informative
priors for a(zlmongbased on a synthesis of past publications (Higgins et al., 2009). One reason to desire
good estimation of aémong is because overestimation of this variance component can lead to higher
perceived uncertainty in the estimate of 4 An additional reason is that the estimates of aémong
represent real variation in effects and could be of importance in risk assessment.

In the initial explorations with the full Bayesian model, the MCMC chains for x converged
quickly, but they converged more slowly for aﬁmong, often falling into a ‘“zero variance trap”

(Gelman, 2004) when the true among-study variance was close to zero. In general, convergence and
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mixing problems were most frequent for low £ and low aﬁmong. While low aﬁmongis rare in ecology,

low £ is not. Of the priors we explored (Supporting Information Figures S12-15), the folded-z and the
uniform prior for the standard deviation performed best when k was low (we chose the uniform prior
for the final simulations because it ran slightly faster). In our simulations, the hybrid Bayesian model
exhibited the practical advantages of the Bayesian methods (e.g., produces full posteriors and direct
evaluation of uncertainty without approximating assumptions, among others), and was easy (and
faster) to implement than the full model. On the other hand, a full Bayesian approach may be more
useful for multi-level models that include missing data, hierarchical structures, and/or covariate
effects (Ogle et al., 2013), and could benefit from informative priors for aémong, particularly when £ is

low.

Our study simulated independent effect sizes. Often though, observed effect sizes are not
independent (e.g., multiple observed effect sizes might be obtained from a single published article).
As observed effect sizes within a group might respond similarly (due to similar methods, or similar
environmental conditions), some of the among-study variation could be common to all members of a
group or subgroup. Multi-level (hierarchical) models can be used to account for this. We believe that
our results, including the insensitivity of our results to », would not be materially altered in such
situations, assuming the among-study variation still dominates the within-study variation. There are
some challenges to be faced, however, when applying our results to more complex multi-level
models. In particular, although the R package metafor has a function that handles multi-level models
(rma.mv), the KHSJ adjustment is not available in this context, and the best that can be done with
metafor is to construct z-based confidence intervals of the mean (also referred to as conditional #-test).
For multi-level models, these #-based confidence intervals have inflated error rates (Luke, 2017; Song
et al., in press), although they do outperform normal-based confidence intervals (Song, personal
communication). Song et al. (in press) speculated that the inflated error rates of #-based confidence
intervals resulted from not accounting for uncertainty in estimated variances. Methods exist for
adjusting tests and confidence intervals to account for uncertainty in estimated variances in multi-
level models, such as the Kenward-Rogers adjustment, or simulation of null distributions (Halekoh &
Hojsgaard, 2014), but to our knowledge these have not been implemented in any readily available

software for conducting meta-analyses.
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FIGURE LEGENDS

Figure 1. Results from the literature review of ecological meta-analyses: A) distribution of the
number of studies (k) reported for overall, analysis, and category levels; the median £ is indicated in
each panel; B) distribution of the number of replicates used in the original studies ( n;), as reported in
each meta-analysis; the median n; is indicated with a dashed line. Note that the x-axes are on a log

scale.

Figure 2. Types of uncertainty intervals reported by the ecological meta-analyses. In some cases,

more than one type of uncertainty interval was reported.

Figure 3. Coverage and the width of the 95% uncertainty interval for different methods used to
estimate the mean effect size (1) in a meta-analysis as a function of the number of studies (A, D), the
mean number of replicates (B, E), and the among-study variance (C, F). The dashed horizontal line in
panels A, B, and C indicates the nominal value of 95%. Different colors denote the method used to

estimate the uncertainty interval. Error bars provide the 95% CI.

SUPPLEMENTARY FIGURE LEGENDS

Figure S1. PRISMA diagram.

Figure S2. Mean I as a function of the true (simulated) among-study variance for different

combinations of the mean number of replicates, n;, and number of studies, 4, in the simulated datasets.

Figure S3. Number of climate-change meta-analyses reviewed, summarized by journal in which each

was published, between 2013 and 2016.
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Figure S4. Results from the exploratory literature search on sub-disciplines of ecological meta-
analyses. A) distribution of the number of studies (k) by sub-discipline; B) distribution of the number
of replicates (n;) used in the primary papers, as reported in each meta-analysis. Replication was not

reported in any meta-analyses for ocean acidification. Note that the x-axes are on a log scale.

Figure S5. Additional results for the climate/global change meta-analysis. Variability on the median
number of studies at the analysis level (A) and the median number of replicates (B) by type of

organism (or variable) measured, type of environment, and meta-analysis topic.

Figure S6. Distribution of the number of replicates, n;, in the original studies for each of the 26 meta-
analysis publications in our review that provided the original data. The boxplots represent the median
(thick vertical line), the 25™ and 75™ percentiles (box), the upper whisker extends from the box to the
larger value no further than 1.5xIQR, and the lower whisker extends from the box to the smallest
value at most 1.5xIQR. Extreme values that exceed the whiskers are plotted individually as solid

points.

Figure S7. Performance measures of the estimation of the among-study variance as a function of the
number of studies (left column), the number of replicates in the original studies (middle column) and
the simulated among-study variance (right column). Performance was assessed using coverage (A, B,
C), perceived uncertainty (width of the uncertainty interval) (D, E, F), bias (G, H, I), and RMSE (J, K,
L). Error bars provide the 95% CI for panels A-I. Please note different scales in the y-axis for bias and

width of the uncertainty interval. Simulation parameters: n = 5,k = 25, cgmong = 0.5, except for the

cases in which that parameter was varied.

Figure S8. Performance measures of the estimation of the among-study variance as a function of the
number of studies (left column), the number of replicates in the original studies (middle column) and
the simulated among-study variance (right column). Performance was assessed using coverage (A, B,
C), perceived uncertainty (width of the uncertainty interval) (D, E, F), bias (G, H, I), and RMSE (J, K,
L). Error bars provide the 95% CI for panels A-I. Please note different scales in the y-axis for bias and

width of the uncertainty interval. Simulation parameters: n =5,k = 25,0§m0ng = 2, except for the

cases in which that parameter was varied.
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Figure S9. Performance measures of the estimation of the among-study variance as a function of the
number of studies (left column), the number of replicates in the original studies (middle column) and
the simulated among-study variance (right column). Performance was assessed using coverage (A, B,
C), perceived uncertainty (width of the uncertainty interval) (D, E, F), bias (G, H, I), and RMSE (J, K,
L). Error bars provide the 95% CI for panels A-I. Please note different scales in the y-axis for bias and

width of the uncertainty interval. Simulation parameters: n = 20,k = 25,a§mong = 2, except for the

cases in which that parameter was varied.

Figure S10. Performance measures of the estimation of the among-study variance as a function of the
number of studies (left column), the number of replicates in the original studies (middle column) and
the simulated among-study variance (right column). Performance was assessed using coverage (A, B,
C), perceived uncertainty (width of the uncertainty interval) (D, E, F), bias (G, H, I), and RMSE (J, K,
L). Error bars provide the 95% CI for panels A-I. Please note different scales in the y-axis for bias and

width of the uncertainty interval. Simulation parameters: n = 20,k = 25,0§m0ng = 0.5, except for the

cases in which that parameter was varied.

Figure S11. Bias and RMSE from the estimation of a mean effect in 2000 replicated meta-analyses as
a function of the number of studies (A, B), the mean number of replicates in the original studies (C,
D), and the among-study variance (E, F). Simulation parameters: n = 5,k = 25,0§mong = 2, except for

the cases in which that parameter was varied. Error bars provide the 95% CI for panels A-E.

Figure S12. Number of replicates yielding bad R (R > 1.1) for different combinations of priors, true

among-study variance, mean number of replicates, and number of studies.

Figure S13. Median of the posterior distribution of the among-study variance for all the different
priors tested, number of replicates, number of studies, and true among-study variance. A) n =5; B)

n = 25. The vertical dashed line in each panel indicates the true among-study variance.

Figure S14. Median of the posterior distribution of the among-study variance for the four priors with
the best performance (i.e., Uniform (0, 10), Uniform (0, 100), Gamma, Folded-t), number of
replicates, number of studies, and true among-study variance. A) n=5; B) n=25. The vertical

dashed line in each panel indicates the true among-study variance.
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Figure S15. Median of the posterior distribution of the among-study variance for the four priors with
the best performance (i.e., Uniform (0, 10), Uniform (0, 100), Gamma, Folded-t), when the number of
studies was low (k= 5). A) n = 5; B) n = 25. The vertical dashed line in each panel indicates the true

among-study variance.
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