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Very fast CRISPR on demand
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Bin Wu1,5,6‡, Taekjip Ha1,2,4,7‡

CRISPR-Cas systems provide versatile tools for programmable genome editing. Here, we developed
a caged RNA strategy that allows Cas9 to bind DNA but not cleave until light-induced activation.
This approach, referred to as very fast CRISPR (vfCRISPR), creates double-strand breaks (DSBs)
at the submicrometer and second scales. Synchronized cleavage improved kinetic analysis of
DNA repair, revealing that cells respond to Cas9-induced DSBs within minutes and can retain
MRE11 after DNA ligation. Phosphorylation of H2AX after DNA damage propagated more than
100 kilobases per minute, reaching up to 30 megabases. Using single-cell fluorescence imaging,
we characterized multiple cycles of 53BP1 repair foci formation and dissolution, with the first
cycle taking longer than subsequent cycles and its duration modulated by inhibition of repair.
Imaging-guided subcellular Cas9 activation further facilitated genomic manipulation with
single-allele resolution. vfCRISPR enables DNA-repair studies at high resolution in space, time,
and genomic coordinates.

R
NA-guided DNA targeting with CRISPR-
Cas9 has revolutionized biomedical re-
search for genome editing and beyond
(1). After genomic DNA cleavage by Cas9,
DNA damage response (DDR) proteins

are recruited to initiate complex repair pro-
cesses (2). Although DDR is known to be in-
fluenced by factors such as target sequence
(3, 4), cell cycle (5), and chromatin dynamics
(6), the precise timing and sequence of cellular
events require further investigation. Cas9 has
potential as a tool to study the dynamics of
DDR but currently lacks the necessary level
of control to initiate precise DNA damage on
demand. To unveil the sequence of Cas9-
inducedDDRevents in living cells, an inducible
Cas9 systemwith the spatiotemporal resolution
that matches the rapidity and subcellularity of
DDR would be powerful.
Numerous inducible Cas9 systems have been

developed (7–11).However, thesemethods often
exhibit compromised function in the engi-
neered proteins, coarse temporal control in
the hour time scale (because Cas9 still has to
find the target after induction), and no spa-
tial control or control at the millimeter length
scale at best.
Here, we report a very fast CRISPR-Cas9 sys-

tem (vfCRISPR) that allows genome editing on
demand at the submicrometer space scale and

the second time scale. Through synchronized
double-strand break (DSB) induction followed
by complementary biochemical, sequencing,
and imaging-based assays, we characterized
the early molecular events that underlie the
initiation and progression of DNA repair with
high spatiotemporal precision.
The design principle of vfCRISPR is based

on the Streptococcus pyogenes Cas9 (Cas9
henceforth) cleavage mechanism. The proto-
spacer adjacent motif (PAM)–proximal 9- to
10-bp region of guide RNA (gRNA) governs
Cas9 binding to its target DNA, whereas ad-
ditional base pairing at the PAM-distal region
(10 to 20 bp) is required for cleavage (12, 13).
Mismatches in the PAM-distal region pre-
vent full unwinding of target DNA (14) and
conformational changes of the HNH domain
(15) required for cleavage. On the basis of this
mechanistic understanding, we replaced two
or three uracils at the PAM-distal region of
crRNA with light-sensitive, 6-nitropiperonyl-
oxymethyl–modified deoxynucleotide thymine
caged nucleotides (16), forming a caged gRNA
(cgRNA) when hybridized to wild-type trans-
activating CRISPR RNA (tracrRNA) (Fig. 1A).
The Cas9/cgRNA complex retains the ability to
bind its target DNA but cannot cleave because
the steric hindrance imposed by the caging
groups prevents full DNA unwinding and nu-
clease activation. Upon light stimulation at
365 or 405 nm, the caging groups are removed
and the prebound, now-activated Cas9/cgRNA
complex rapidly cleaves target DNA.
An electrophoretic mobility shift assay con-

firmed that Cas9/cgRNA stably bound to target
DNA without light and no cleavage was ob-
served (Fig. 1B). After uncaging with light, the
Cas9/cgRNA complex efficiently cleaved DNA
within seconds in vitro (Fig. 1, C and D, and
fig. S1).
Next,wecharacterized theactivityof vfCRISPR

in human embryonic kidney 293 cells by tar-

geting four endogenous loci and found light-
induced indel efficiency up to 97%, whereas
cells without light exposure had almost no
detectable indels (Fig. 1E and fig. S2). Cells
exposed to this dosage of light exhibited no ap-
parent phototoxicity (fig. S3). Approximately
50% of DNA cleavage was found within 30 s
after light activation (Fig. 1F and fig. S4). Com-
pared with other Cas9 induction methods,
vfCRISPR exhibited much faster cleavage ki-
netics and higher cleavage efficiency (17, 18)
(Fig. 1, G and H). We attribute the very fast
kinetics to skipped nuclear localization or
target-searching steps, and the higher cleavage
efficiency to the use ofwild-type Cas9. Genome-
wide analysis of off-target editing usingGUIDE-
seq (19) also revealed reduced off-target activity
compared with wild-type gRNA (fig. S5), con-
sistent with improved specificity from deoxy-
ribonucleotide incorporation into the guide
RNA (20). These experiments demonstrated
that cgRNA enables very fast and efficient in-
ducible DNA cleavage in mammalian cells.
With a precisely defined time for cleavage,

vfCRISPR allowed us to investigate the gener-
ation and repair kinetics of Cas9-mediated
DSBs. We measured the percentage of DSBs
and indels as a function of time after Cas9
activation at multiple target sites and adopted
mathematical models to describe the kinetics
of DSB and indel formation (21) (Fig. 1I, fig. S6,
and supplementary materials, models I and
II). Model fitting led us to hypothesize the
recutting of +1 insertion DNA at ACTB, which
we subsequently verified both in vitro and in
cells through recutting of a monoclonal cell
line with a pure +A indel product at ACTB
(figs. S7 and S8).
Using highly synchronizedDNA cleavage, we

performed time-resolved chromatin immuno-
precipitation followed by sequencing (trChIP-
seq) to track the recruitment of MRE11, which
forms the MRN complex with Rad50 and
Nbs1, to the ACTB cleavage site (18) (Fig. 2A).
We observed rapid MRE11 recruitment that
reached half-maximal signal between 5 and
15 min (Fig. 2, B and C, and fig. S9A). This is
slower than recruitment of another MRN com-
ponent, Rad50, after laser microirradiation
(22), potentially because of the delay in ex-
posure of Cas9-induced DSBs (fig. S9B). Both
ChIP-seq and probe-based ChIP-quantitative
polymerase chain reaction (qPCR) detected
the emergence of MRE11-bound DNA that
spanned the cleavage site 15 min after Cas9
activation (Fig. 2, B andD, and fig. S10A). This
spanning population, which we attribute to
repaired DNA still bound by MRE11, was pres-
ent across different target sequences and cell
types (18) (fig. S10, B to D, and fig. S11). Inhibi-
tion of the catalytic subunit of DNA-dependent
protein kinase (DNA-PKcs) with KU-0060648
led to a reduction in spanning fragments with
a concomitant increase in fragments that ended
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at the cut site (Fig. 2E and fig. S12). Deep
amplicon sequencing of spanning DNA re-
vealed consistent 10 to 15% indels,whereas total
indels rose from 2 to 20% within that period
of time (Fig. 2F and fig. S13). Together, these
results are consistent with transient MRE11
retention on ligated genomic DNA that was
processed in a DNA-PKcs–dependent manner.
H2AX is known to be phosphorylated

(gH2AX) for 1 to 2 Mb around a DSB under-
going active repair (23), but the dynamics of
initial gH2AX spreading is unknown. trChIP-
seq for gH2AX revealed rapid expansion of
a “main peak” around the cleavage site at
the speed of ~150 kb/min, reaching 8 Mb at
1 hour (Fig. 2, G and H, and fig. S14). Statis-
tical testing (see the materials and methods)
revealed another layer of gH2AX enrichment
that expanded linearly at 460 kb/min and
spanned up to 30 Mb at 1 hour (Fig. 2, I and
J, and fig. S15). To our knowledge, gH2AX

enrichment up to tens of megabases has not
been previously reported. Although this may
be a feature specific to Cas9-induced DSBs,
synchronized, high-efficiency cleavage with
vfCRISPR may have contributed to the detec-
tion of lower levels of enrichment.
Next, we performed single-cell fluorescence

imaging to capture the dynamics of repair
protein recruitment induced by vfCRISPR. To
a monoclonal U-2 OS cell line stably express-
ing Cas9-EGFP, we cotransfected a truncated
gRNA (11-mer in the protospacer) targeting
a highly repetitive region in chromosome 3
(Ch3Rep) with a cgRNA targeting the PPP1R2
gene, only 36 kb downstream of Ch3Rep (24–26).
Upon light activation, a single DSB is generated
at PPP1R2, which is fluorescently marked by
an array of Cas9-EGFPs decorating Ch3Rep
(Fig. 3A). We confirmed recruitment of multi-
ple endogenous repair factors (pATM, MDC1,
53BP1, and gH2AX) to the single break sites

(fig. S16, A to D). gH2AX foci size increased
over time (fig. S16D), consistent with the gH2AX
spreading reported by trChIP-seq.
To track real-time repair dynamics through

live-cell imaging, we stably coexpressed 53BP1-
mCherry (27) with Cas9-EGFP in U-2 OS cells
(Fig. 3, A to C).Most of the Cas9-EGFP–labeled
alleles colocalized with 53BP1-mCherry foci
over the course of 8 hours after Cas9 activation
(fig. S17A and movie S1), indicating efficient
cleavage at PPP1R2. The onset time for 53BP1
recruitment (T1) was heterogeneous between
cells and alleles, with most foci appearing
within 1 hour (Fig. 3D). Maximum likelihood
estimation of a two-stepmathematical model
for T1 yielded a DSB detection time (td) of 12 ±
2.2 min and a Cas9 target-searching time (ts)
of 43 ± 3.6 min (Fig. 4C and supplementary
materials).
Each 53BP1 focus underwent a cycle of enlarge-

ment anddissolution,withmost exhibitingmore
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Fig. 1. Characterization of vfCRISPR in vitro and in cells. (A) Schematic of
Cas9 activation by modulating base pairing between the PAM-distal region of cgRNA
and genomic DNA. (B) Without light, Cas9/cgRNA ribonucleoprotein (RNP) bound to
target DNA without cleavage, causing a clear band shift. Proteinase K degraded
Cas9, causing target DNA to shift back to the original position. (C and D) Fast and
efficient in vitro cleavage kinetics of Cas9 after light activation. (E) Indels detected by
high-throughput sequencing of PCR-amplified genomic DNA extracted from cells

without RNP, with RNP but no light, and with RNP 48 hours after light activation.
(F) DSBs detected by DSB-droplet digital PCR of genomic DNA extracted from
cells without RNP, with RNP but no light, and with RNP 30 s after light activation.
(G and H) Percentage of DSBs over time using vfCRISPR (red) compared with
either RNP electroporation [(G), target sequence at ACTB] or a chemically
inducible system [(H), target sequence at MYC]. (I) DSBs and normalized indels
(see the materials and methods) at ACTB over time after Cas9 activation.
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than one and up to five cycles over 8 hours,
consistent with a previous report (26) (fig.
S17B). The estimated ts and td for subsequent
rounds of 53BP1 recruitment agreed well with
those for the first round, suggesting that each
53BP1 cycle corresponds to at least one repair
event (Fig. 3E and table S6).
Duration of the initial 53BP1 cycle (D1) was

on average significantly longer than subse-
quent cycles (Fig. 3H). D1 varied over a wide
range and was positively correlated between
two alleles in the same cell but not between
different cells (Fig. 3, F and G, and figs. S18
and S19), suggesting that stochastic differences
in chromatin environments between the two
alleles is not the main reason for the large
variation in D1. Inhibition of ATM using KU-

0055933 eliminated 53BP1 foci (fig. S20), con-
sistent with its role as an upstream regulator
of 53BP1 recruitment. Inhibition of DNA-PKcs
prolonged 53BP1 foci without affecting 53BP1
recruitment (Fig. 3, H to J, and fig. S20), lead-
ing to fewer 53BP1 cycles and further sup-
porting our interpretation that 53BP1 cycles
mark successive rounds of DSBs and repair
(figs. S21 to S23).
Finally, we extended vfCRISPR to spatially

manipulate single genomic alleles. Both Ch3Rep
alleles were bound by an array of Cas9/cgRNAs
within the same nucleus. We focused a 405-nm
laser beam to one Ch3Rep allele, which locally
activated Cas9 to cleave the targeted allele while
keeping the other one intact (fig. S24). Almost
half of cells exhibited 53BP1 recruitment to the

targeted allele within 1 hour, whereas only
6% of cells showed recruitment to both alleles,
showing single-allele specificity (Fig. 4, A and
B, andmovie S2).We also demonstrated allele-
specific manipulation of a nonrepetitive cleav-
age site at PPP1R2 (Fig. 4, C and D, and movie
S3). We observed only one round of 53BP1-
mCherry recruitment, likely because only one
round of cleavage was possible owing to the
activation of only a small subset of Cas9/cgRNA
in the nucleus (fig. S25). Laser beam alone was
not responsible for 53BP1 recruitment (fig.
S26), and conditions were optimized to max-
imize single-allele specificity, which was 80%
or higher for both experimental schemes (Fig.
4, B and D). The capability of vfCRISPR to
manipulate single genomic alleles with high
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Fig. 2. trChIP-seq reveals dynamics of MRE11 recruitment and H2AX phos-
phorylation after synchronized Cas9-induced DSBs. (A) Schematic of
MRE11 ChIP-seq analysis for paired-end reads. (B) Visualization of MRE11 peak
features over time after Cas9 activation. The left column (“total”) piles all
fragments. The right column (“span”) only piles fragments that span the cleavage
site. (C) Fragments per million in the 5-kb window around the cleavage site
over time. (D) Fragments per million that either span or start and/or end at the
cleavage site over time. Fragments that start and/or end at the DSB site are
enriched first, followed by an ~15-min delay by fragments that span the DSB site.
(E) Proportion of fragments that span the DSB site that are depleted with DNA-PKcs

inhibition. (F) Percentage of indels calculated from deep sequencing of PCR
amplicons from both ChIP input (dark gray) and MRE11 ChIP (red) DNA that span the
cleavage site. Indel kinetics from Fig. 1I are included for comparison (light gray,
dashed, “gDNA”). (G) gH2AX enrichment over time in an 11-mb window around the
cleavage site. Red bars mark the width of the “main” gH2AX peak detected using
MACS2. (H) Width of the main gH2AX peak over time detected using MACS2.
(I) Width of total enrichment detected using Student’s t test with Bonferroni
correction (P < 0.05) comparing no-light results with all after-activation results.
(J) Illustration of enrichment up to ~30 mb along Chr7:1-40,000,000 (P < 0.05).
Red bars mark the width of total gH2AX enrichment detected using Student’s t test.
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Fig. 3. Live-cell imaging
reveals the spatiotemporal
dynamics of 53BP1 after
synchronized Cas9 DSBs.
(A) Schematic of orthogonal
genomic imaging and
cleavage using Cas9-EGFP.
(B) Snapshots showing 53BP1
recruitment to two different
PPP1R2 alleles (magenta
square and cyan circle). Scale
bar, 5 mm. Magnified images
show multiple cycles of 53BP1
foci at one PPP1R2 allele
(magenta square). Scale bar,
0.7 mm. (C) Fluorescence
intensity traces of 53BP1-
mCherry for both alleles
monitored in (B). T1, t1, and
D1 denote the start, end, and
dwell times for the first cycle of
DNA repair, respectively. The
time interval Tgap is calculated
as Tn + 1 – tn (e.g., T2 – t1).
(D) Histogram of initial 53BP1
recruitment time (T1) at the
PPP1R2 locus after light stimu-
lation. (E) Histogram of time
interval (Tgap) between consec-
utive 53BP1 cycles for 8 hours.
(F) Rastergram of 53BP1 foci at
124 paired alleles in 62 cells.
Each row displays time courses
of 53BP1 foci at a pair of alleles
residing in the same nucleus.
Gray bars indicate presence
of 53BP1-mCherry at each
PPP1R2 allele. Cells are ranked
by the mean dwell time of the
first 53BP1 recruitment at two
alleles (longest to shortest). (G) Scatter plot showing positive correlation in dwell time between two alleles in the same cell nucleus (r = 0.45). (H) Dwell time of 53BP1
foci at PPP1R2 for the first 53BP1 cycle (n = 167 foci in 5 biological replicates), later cycles (n = 109 foci in 5 biological replicates), or after DNA-PKcs inhibition
(DNA-PKi; n = 92 foci in 3 biological replicates). Unpaired t test was performed (****P < 0.0001). Error bars indicate 95% confidence interval. (I) Snapshots showing
longer 53BP1 dwell time in cells with DNA-PKcs inhibition. Scale bars, 5 and 1 mm. (J) 53BP1 recruitment time was unchanged (P > 0.2) in DNA-PKcs–inhibited cells.

Fig. 4. DSB cleavage at single-allele resolution using subcellular Cas9
activation. (A) Single-cell snapshots showing targeted cleavage of Ch3Rep at
one of the two alleles (pink). Scale bar, 5 mm. (B) Summary of 53BP1-mCh
recruitment to Ch3Rep alleles. “Single allele” (red) indicates 53BP1-mCherry
recruitment to the targeted allele only; “both alleles” (blue) indicates recruitment
to both the targeted and nontargeted alleles; “no response” (gray) indicates no
recruitment to either allele (n = 99 foci in 4 biological replicates). (C) Single-cell

snapshots showing targeted cleavage of a single PPP1R2 allele (pink). Scale bar,
5 mm. (D) Summary of 53BP1-mCh recruitment to PPP1R2 alleles (n = 95 foci
in 4 biological replicates). Single-allele specificity was calculated by dividing
the percentage of monoallelic activation by the percentage of total activation
(both monoallelic and biallelic activation). For repetitive cutting (B), this
was 42.4/(42.4 + 6.1) × 100 = 87.4%, whereas for single cutting (D), it was
8.4/(8.4 + 2.1) × 100 = 80%.
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specificity motivates applications such as sim-
plifying generation of heterozygous mutants
(28) and potentially reducing and/or eliminat-
ing off-target genome editing.
To the best of our knowledge, vfCRISPR

provides the highest spatial and temporal
resolutions to induce site-specific DSBs in
living cells. This study sets the blueprint for
further systematic studies of the DDR that
combine vfCRISPR with time-resolved bio-
chemical, sequencing, and imaging readouts.
The use of cgRNA with other Cas9-based sys-
tems such as nickases, base editors, and prime
editors may facilitate the study of single-strand
break, base excision or mismatch, and flap
repair, respectively. Combining vfCRISPR
with subcellular photoactivation potentially
enables precise genome editing with single-
allele specificity and elimination of off-target
activity.
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Very fast CRISPR on demand
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