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ABSTRACT

The trajectory-aware lowest-cost path selection problem aims to
find the lowest-cost path using trajectory data. Trajectory data is
valuable since it carries information about travel cost along paths,
and also reflects travelers’ routing preference. Path-centric travel
cost estimation models using trajectory data grows popular recently,
which considers the auto-correlation of the energy consumption
on different segments of a path. However, path-centric models are
more computationally expensive than edge-centric models. The
main challenge of this problem is that the travel cost of every can-
didate path explored during the process of searching for the lowest-
cost path need to be estimated, resulting in high computational cost.
The current path selection algorithms that use path-centric cost
estimation models still follow the pattern of “path + edge” when
exploring candidate paths, which may result in redundant com-
putation. We introduce a trajectory-aware graph model in which
each node is a maximal trajectory-aware path. Two nodes in the
trajectory-aware graph are linked by an edge if their union forms a
trajectory-union path. We then propose a path selection algorithm
to find a path in the proposed trajectory-aware graph which cor-
responds to the lowest-cost path in the input spatial network. We
prove theoretically the proposed algorithm is correct and complete.
Moreover, we prove theoretically that the proposed path selection
algorithm cost much less computational time than the algorithm
used in the related work, and validate it through experiments using
real-world trajectory data.
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1 INTRODUCTION

The trajectory-aware lowest-cost path selection (TLPS) problem
aims to find the path with the lowest travel cost between two lo-
cations. Informally, the TLPS problem can be defined as follows:
given a spatial network and trajectory data in the network, a cost
estimation model using the trajectory data, as well as an origin and
a destination, find the path with the lowest estimated cost from the
origin to the destination. The TLPS problem is a variant of the short-
est path selection (SPS) problem with the main difference being that
the travel cost along a path is derived from trajectory data, rather
than given as an attribution of the spatial network. Figure 1 illus-
trates a spatial network composed of eleven nodes (n1, n2, ..,n11)
and twelve edges (el, €2, .., e12), where there are six trajectories
(t1,t2,..,t6). A candidate result path between n1 and n5 of a SPS
problem is in the form of an ordered sequence of individual edges
[e1, e2, 3, e4], while a candidate result path in a TLPS problem is
composed of two subpaths defined by 1 and t4. Our approach takes
advantage of the recently introduced path-centric model [20, 27]
for travel cost estimation using trajectory data, whose basic spatial
unit of cost estimation is a path, but proposes a much more efficient
algorithm for the following path selection accordingly.

Telematics devices installed on vehicles are collecting large
amounts of trajectory data embedded with rich vehicle informa-
tion, such as green house gas emissions and fuel consumption. The
increasing accessibility of such data is inspiring new approaches to
the path selection problem that incorporate trajectory information
along with the spatial network. Trajectory data is valuable because
it reflects the real-world travel cost and the routing preference of
travelers in the past. Trajectory data also contains other information
not carried by the spatial network, such as road closure or impass-
ability due to temporary factors [7, 21]. Even though automated
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map creation and editing using trajectory data has attracted much
attention [4, 16], digital maps still lag reality because the frequency
of map updating does not match the changes of cities, especially
in rapidly developing cities such as Doha (Qatar) or cities where
roads are often occupied for other purposes (e.g., night markets).
In this paper, we study path selection using trajectory data directly
in this paper.

Despite the importance of path selection using trajectory data,
very few studies have been conducted on finding lowest-cost paths.
Some studies focus on finding frequently-used paths, which only
utilizes the spatial information of trajectories [7, 21]. However, a
frequently-used path does not always cost the least. In order to
find the path with the least cost, we need to know the estimated
cost of traveling along the path first. Trajectory data with rich vehi-
cle information facilitates travel cost estimation. The prediction of
expected time cost [19, 26] and energy consumption [6, 17, 28] of
travel using trajectory data has been widely studies because of their
significant societal importance [18, 25]. However, path selection
using these estimation models is rarely discussed. Most path selec-
tion algorithms adopt an edge-centric cost estimation model, which
treats the cost of a path as the sum of the cost on independent edges.
However, it has been shown that when estimating travel cost using
trajectory data, these models lose some information, such as the
auto-correlation between the cost on segments along a trajectory,
because they decompose trajectories into independent segments
on edges [27]. Recently, a path-centric view of cost estimation was
introduced, which treated a path as a sequence of overlapping sub-
paths [20, 27]. Each subpath in the path-centric cost estimation
models has a certain number of trajectories along it. Since a sub-
path is the basic unit in cost estimation, it maintains the holism of
the trajectories along it. However, the path selection algorithms
used in [20, 27] were based on existing path selection algorithms
which apply a “path + edge” pattern to explore candidate paths.

The main challenge of our problem is the expensive computa-
tion of travel cost estimation, which is needed for every candidate
path explored in the process of searching for the lowest-cost path,
which results in redundant computation. Take Figure 1 as an exam-
ple, when exploring candidate paths at n6 given the current path
as [el, e5], a path [el, 5, e8] would be a candidates in a method
following the “path + edge” pattern. However, according to the tra-
jectory data, there is no fork at n9, and no new trajectory starting
from it, which means the estimated cost for [e5, e8] would be the
same as the corresponding part of [e5, €8, e11, e12] without losing
any information. The travel cost for [e5, e8] is estimated repeat-
edly when estimating the travel cost of [e5, e8], [e5, 8, e11], and
[e5, e8,el1,e12].

In this work, we make the following four contributions. First, we
introduce a trajectory-aware graph data model in which each node
is a maximal trajectory-aware path, that is, a path along which
there are at least a certain number of trajectories. Two nodes in
the trajectory-aware graph are linked by an edge if their union
forms a path. Second, we propose a trajectory-aware path selection
algorithm based on the trajectory-aware graph. Then, we prove the
completeness and the correctness of the proposed algorithm. We
also show both theoretically and experimentally, that the proposed
algorithm has a lower computational time cost than the algorithm
in [20].
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Figure 1: A spatial network with six trajectories.

This paper is organized as follows: In §2, we explain the basic
concepts and formally define the trajectory-aware lowest-cost path
selection problem. §3 reviews the related literature. §4 presents
our data model and algorithm for solving the problem, and an
evaluation is given in §5. §6 concludes the paper and presents our
future work.

2 BASIC CONCEPTS AND PROBLEM
DEFINITION

We introduce the basic concepts in this study, based on which the
trajectory-aware lowest-cost path selection problem is formally

defined.

2.1 Basic Concepts

A spatial network G = (N, E) consists of a node set N and an
edge set E, where each element n in N is a geo-referenced point,
while edge set E is a subset of the cross product of N. Each element
e = (n;,n;j) in E is an edge that joins node n; and node n;. Fig.
1 shows an example of a spatial network where circles represent
nodes (e.g. n1, n2) and lines represent edges (e.g. €1, e2). A road
system is an example of a spatial network where nodes are road
intersections and edges are road segments.

A path s aset of edges linking an ordered sequence of nodes. The
first and the last nodes are defined as the origin and the destination
of the path respectively. A subpath of a path is composed of a
subset of consecutive edges of the path. In Figure 1, path [el, e2] is
a subpath of path [e1, €2, e3]. The union (U) of two paths Py U Pg
at a node shared by them is composed of the edges of P, before
the node and those of Py after the node. For example, in Figure 1,
[e2,e3,e4] U [e3,e7] at n4 is [e2, 3, e7].

A trajectory is a log of a vehicle’s trip along a path, in the form
of a list of pairs, each of which describes an edge and the travel cost
on it. Figure 1 shows six trajectories mapped with dashed arrows.

In [20, 27], a trajectory-aware path (Pgyqre) Was introduced
as a path along which there are at least a certain number of trajec-
tories in the same direction. The direction of a Pgyyqre is the same
as the trajectories along it. A trajectory-union path (Pynion) is
the union of several Pgyqres, and a Pynjon is not a subpath of any
Pgayare that forms it. If we set the minimum number of trajectories
along a Pgware as 1 in Figure 1, path [el, e2] is a Pgyware along
which there is a trajectory t1. A sample of Pynjon is [el, €2, €3, e4],
which is formed by the union of two Pgyyqres (€1, €2] and [e2, €3, e4]
at n3.
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Table 1: Example trajectory data.

Id Trajectory Records
t edge el e2
cost 2 9
2 edge el e5
cost 1 1
3 edge e5 e8 ell el2
cost 3 2 4 3
2 4
” edge e e3 e
cost 7 9 2
5 edge e2 e6 €9 el2
cost 9 2 2 7
t edge el2 el0 e7 e4

cost 3 2 2 2

2.2 Problem Definition

We formally define the trajectory-aware lowest-cost path selection
problem as follows:
Input:

o A spatial network.

o A collection of trajectories in the network.

e A cost estimation model for trajectory-aware paths and

trajectory-union paths.

e Two nodes in the spatial network.
Output: A path between the two nodes with the lowest estimated
cost.
Objective: Improve the computational efficiency of the path selec-
tion algorithm.
Constraints:

o The output path is either a Pgiygre O @ Pynion-

e The cost on any path is positive.

An example of the problem we are solving in this paper is in the
following form:

We are given the spatial network shown in Figure 1, a collection
of trajectories on it with details shown in Table 1, two nodes n1 and
n5, and a cost estimation model. For simplicity’s sake, we adopt
a path-centric model simplified from those in [27] and [20]. The
model has three features: it requires that the minimum number of
trajectories along a Pg4yqre be 1; it estimates travel cost on a Pgaygre
by the average cost of trajectories along it; and it estimates travel
cost on the overlapping edges of two Pgywares by the mean of their
cost on the edges. For example, the cost on each edge of path [e1, e2]
would be [2, 9], while the cost on the edges of path [el, €2, €3, e4]
would be [2, 8,9, 2]. The output of the problem would be the path
[e1,e5,e8,el1,e12,e10, e7, e4] with total cost of 18, which is the
path from n1 to n5 with the lowest cost. We will show the details
of the path selection procedure in Section 4.

In this paper, we only focus on accelerating the procedure of
finding a lowest-cost path with enough trajectory data (i.e., Pgware
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Figure 2: A tree of related works.

and Pynion) and using path-centric cost estimation directly [20, 27].
Refinement of cost estimation for paths is outside the scope of
this paper. Furthermore, we assume the cost of a path is positive,
which is applicable for cases such as time cost and green house gas
emissions. In the future, we will generalize our method for negative
cost as well.

3 RELATED WORK AND LIMITATIONS

The trajectory-aware lowest-cost path selection (TLPS) problem is
a variant of the shortest path selection (SPS) problem. Based on the
basic spatial unit of path cost estimation, the related work on the
SPS problem can be categorized into two groups, i.e., edge-centric,
and path-centric methods (the left branch in Figure 2).

The basic spatial unit of cost estimation in edge-centric methods
is an edge. The travel cost on each edge is assumed to be inde-
pendent. Most of the edge-centric methods are based on Dijkstra’s
and Bellman-Ford algorithms which select the shortest path in a
static-weighted graph where the cost on each road segment is a
constant [10, 15]. Later studies have focused on accelerating com-
putation [1, 3, 8, 24], as well as introducing new constraints (e.g.,
battery capacity constraint for electric vehicles [2, 12]) and cost
metrics (e.g., happiness [23], and bi-objectives metric [11]). In order
to represent travel cost more accurately, some work models a road
system as a spatio-temporal network, in which the cost on each
road segment is a function of time [5, 14]. Other research represents
the cost as a stochastic distribution since the factors other than time
which affect the travel cost are assumed to be hard to model directly
[9, 13]. In order to know the cost of each road segment, which is
assumed as a prior in all the aforementioned methods, study has
been conducted to utilize trajectory data from vehicles [17]. How-
ever, all edge-centric methods suffer from the problem that when
decomposing trajectories to estimate the cost of individual road
segments, some information, such as the dependence between the
costs of adjacent parts along a trajectory, will be lost. For example,
when estimating the cost of e6 in Figure 1, edge-centric methods
treat trajectories along it (4, t6) the same, without considering the
influence of vehicle’s movement on the previous road segments,
such as the right turn from €9 to e6.

In recent years, researchers have begun to pay attention to the
dependence of segments in a path. In [26], a convolutional neural
network is adopted to learn the spatial auto-correlation of nearby
trajectory sample points. A path-centric view of path cost estima-
tion introduced by Yang et al. decomposes a path into a sequence of
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overlapping subpaths [27]. Inspired by this view, Li et al. propose a
physics-guided path-centric method for energy consumption esti-
mation [20]. Since the basic spatial unit in any path-centric method
is a subpath, these methods maintain the dependence between the
costs of adjacent parts along a trajectory. However, the path se-
lection algorithms used in [27] and [20] still apply a “path + edge”
algorithm. In other words, a new candidate path is generated by
adding an edge to the end of the current candidate path during
the process of searching for the lowest-cost path, which results in
redundant computational cost for the cost estimation of candidate
paths.

4 APPROACH

We first introduce a trajectory-aware graph data structure to model
the spatial road network and the trajectory data on it. Then we
present a path selection algorithm using the proposed trajectory-
aware graph.

4.1 Trajectory-aware Graph

As introduced in Section 2, a trajectory-aware path (Pgware) is
defined as a path along which there are more than a certain number
of trajectories, which means any subpath of a Paware is @ Paware,
so we define maximal trajectory-aware path as:

Definition 4.1. A maximal trajectory-aware path (Pp4x) is a
trajectory-aware path that is not a subpath of any other trajectory-
aware path.

Since a Piax is @ Pgware, their union at a node may form a
Pyunion- Given a spatial network and trajectory data in it, we can
model Pp,4xs and the relationships between union-forming Pp,qxs
using a trajectory-aware graph.

Definition 4.2. A trajectory-aware graph is a directed graph
whose nodes are Pp,4xs. There is an edge between two Ppaxs (Py
and P/;) if P, U Pgata node in the spatial network is a Pypnion.

Since each node in a trajectory-aware graph, Py, 4y, represents a
path and the travel cost of the path estimated according to trajectory
data, a trajectory-aware graph is the combination of a spatial road
network and the trajectory data on it.

To clarify the terminology, we name the nodes and edges in a
spatial network spatial nodes and spatial edges, while the nodes
and edges in a trajectory-aware graph are called trajectory-aware
nodes and trajectory-aware edges.

In the condition specified by the example problem in Section 2,
the spatial network and trajectories in Figure 1 can be represented
by a trajectory-aware graph shown in Figure 3. In this graph, Pi,
shown as a square, is a P qx along which there is a trajectory ti,
and the edge from Pi to Pj indicates the existence of Pi U Pj as a
Punion- For example, two Ppqxs P1 = [el, e2] and P4 = [e2, €3, e4]
can form a union at n3, so there is an edge directed from P1 to P4.

We define a path in a trajectory-aware graph as an ordered se-
quence of trajectory-aware nodes (P, qxS) linked by the trajectory-
aware edges between them. The union of the Pp,4xs of a pathin a
trajectory-aware graph is a path in the spatial network. If a path in
a spatial network is a subpath of the union of the Pp,4xs within a
path in a trajectory-aware graph, and the origin and the destination
are on the first and the last Py, 4xs respectively, we say the path
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Figure 3: A trajectory-aware graph.

in the spatial network is represented by the path in the trajectory-
aware graph. Since a Pp,qx may have multiple spatial nodes on it,
there may be multiple paths in a spatial network represented by
a path in a trajectory-aware graph. We set the cost of a path in
a trajectory-aware graph equal to the cost of a Pypjon formed by
all but the last P, 4xs in the path except the spatial edges before
the origin, so that the cost of a path in a trajectory-aware graph is
always less or equal to the path it represents in a spatial network.
For example, the cost of a path [P2, P3, P6] with the origin at nl in
Figure 3 is equal to the cost of Pypnion = (€1, €5, €8, el11, e12] in Fig-
ure 1. After finding a path to the destination in a trajectory-aware
graph, the cost of the path in a spatial network from the origin to
the destination is estimated by adding the cost on the edges of the
last Prpqx to the cost of the path in the trajectory-aware graph.

4.2 Trajectory-aware Path Selection Algorithm

The framework for a stochastic path selection algorithm is shown in
Algorithm 1. Given a spatial network, an origin, and a destination,
as well as a cost estimation model, the algorithm generates a path
satisfying certain criteria. The main steps of the algorithm are as
follows. A list of candidate paths CP is initialized in Line 1, typically
using the paths consisting of one edge from the origin. Then in each
iteration (Lines 2-8), the most promising path in CP is extended,
and the result path is added to CP. The iteration ends when the
stop criterion is met. The related work implements these steps in
different ways. For example, Dijkstra’s algorithm’s stop criterion is
that a path is found between the origin and the destination, while
the most promising path in CP is the one with the smallest cost.
In all edge-centric methods, the exploration of candidate paths
in Line 4 follows the pattern of “path + edge". In other words, the
candidate paths generated from a path are composed of all the edges
of the old path and one additional edge linking to the old path’s
destination. The methods which adopt a path-centric view of cost
estimation mainly focus on Line 5, where cost of candidate paths
is estimated, but they still use the “path + edge" pattern in Line 4
[20, 27]. In the physics-guided algorithm in [20], the stop criterion
is that there is no candidate path that can have cost lower than
the already found path. The most promising candidate path is the
one with the lowest cost. Table 2 gives the execution trace for the
algorithm when solving the example problem in Section 2, which is
to find a path between n1 and n5. Column CP is the set of candidate
paths at each step, while column “Cost" is the cost corresponding
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Table 2: Execution trace of the algorithm in [20]

step CP Cost p

1 [e1] 1.5 [e1]

2 [e1,e5],[el, e2] 2,11 [e1,e5]

3 [e1,e5,e8],[el,e2] 5,11 [e1,e5, e8]

4 lel, e5,e8,el1], [el,e2] 9,11 [e1, e5,e8, el1]

5 [e1,e5,e8,ell,e12], 12,11 [e1,e2]
[e1,e2]

6 le1, e5,e8,el1,e12], 12,19,13 [el,e5,e8,el1,e12]
le1,e2,e3],[el,e2,e6]

7 [el,e5,e8,e11,e12,e10], 14,19,13 [el,e2,e6]
[e1, e2,e3],[el, e2, e6]

8 [e1,e5,e8,ell1,el2, 14,19,15 [el,e5,e8,ell,e12,e10]
e10],[e1, e2,e3],
[e1, e2, e6, €9]

9 [e1,e5,e8,el1,el2, 16,19,15 |[el, e2, €6, €9]
e10,e7],[el, e2,e3],
[e1, e2, e6, €9]

10 [e1,e5,e8,el1,e12, 16,19,22 [el,e5,e8,¢ell,el12,e10,e7]
e10,e7],[el, e2,e3],
le1, e2, e6, €9, e12]

11 [e1,e5,e8,el1,e12, 18,19,22

e10,e7,e4],[el, €2, e3],
lel, e2, e6, €9, e12]

to each candidate path which is in the form of a list of the cost on
each edge within a path. The most promising paths in each step

are shown in column p.

Algorithm 1 General algorithm framework

Require:
G: A spatial network;
o and d: Two nodes;

model: A cost estimation model.

Ensure: The path between o and d satisfying the criteria.

1: candidate paths CP « initialization;
2: while stop criteria are not met do

3 p < the most promising path in CP;

for all extensions p’s of p do
compute the cost of p’;

end for

4
5:

6: add p’ to CP;
7

s: end while

In our paper, based on the proposed trajectory-aware graph we
propose a trajectory-aware path selection algorithm which follows
“path + path" pattern in Line 4. The following implementation ex-
plains how the framework shown in Algorithm 1 is applied on a
trajectory-aware graph. In Line 1, the set of candidate paths CP is
initialized with the Py, 4 s where the origin is on. The stop criteria
in Line 2 is that there is no candidate paths with cost lower than the
found path from the origin to the destination. The most promising
path in CP is the path with the lowest cost. In Line 4, as candidate
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Figure 4: A trajectory-aware graph is a dynamic multigraph.

paths are searched, one P4 is added to the currently most promis-
ing path if they can form a Pynjion, and Ppgxs which have already
been visited can be visited again. Once a path is extended to the
destination, we estimate its cost and remove it from the candidate
path set. If the estimated cost is lower than the current lowest cost,
the result path and the lowest cost are updated. The cost estimation
method used in Line 5 is provided as an input.

The main challenge of the algorithm is that a trajectory-aware
graph is a dynamic multigraph where there can be multiple trajectory-
aware edges between two trajectory-aware nodes, and the existence
of a trajectory-aware edge is determined by the previous trajectory-
aware nodes and trajectory-aware edges along a path. For example,
in Figure 4(a) there are two Pp,4x S in a road network. These two
Pmaxs form a trajectory-aware graph in 4(b), where P1 links to
P2 at n4, while P2 links to P1 at n4 and n8. If the trajectory-aware
graph is a common multigraph, there may exist paths going back
and forth between trajectory-aware node P1 and P2 multiple times.
However, since a trajectory-aware graph represents paths existing
in a spatial network, if a path in the spatial network goes from P1
to P2 at n4, it can go back to P1 at n8 and never go back, while if
a path in the spatial network goes from P2 to P1 at n8, it cannot
go back. Therefore, a path in a trajectory-aware graph should keep
track of not only the trajectory-aware nodes (Prqx) on the path,
but also the trajectory-aware edges (the spatial nodes at which two
Ppaxs can form a union).

We can now solve the example problem in Section 2 as follows.
Once we transform the input to the trajectory-aware graph shown
in Figure 3, the problem of selecting a path between n1 and n5 in
a spatial network with eleven nodes and twelve edges becomes a
problem of selecting a path between a set of Pyqxs {P1, P2} and
another set of Py, xS {P4, P6} in a trajectory-aware graph with 6
nodes and 5 edges. The execution trace is shown in Table 3, and is
in the same form as Table 2. At step 1, the candidate paths include
the two Py, qxs that nl is on. Since their cost is both 0, we randomly
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Table 3: Execution trace of the proposed algorithm

step CP Cost p

1 [P1],[P2] 0,0 [P1]

2 [P1,P4],[P1,P5],[P2] 10,11,0 [P2]

3 [P1, P5],[P2, P3] 11,3 [P2, P3]
4 [P1,P5],[P2,P3,P6] 11,12 [P1, P5]
5 [P1, P5, P6] 20

choose a promising one. At step 2, we extend [P1] by adding one
Pmax to it, which results in two candidate paths. Meanwhile, we
find that the path [P1, P4] has already reached the destination, so
we estimate the cost of traveling along it to the destination, which
is 21, and remove it from the candidate path set. At step 4, we find
another path to the destination [P2, P3, P6], along which the cost
to the destination is 18, so we update the result path and the lowest
cost. The algorithm terminates at step 5, where there is no candidate
path with cost less than the found path.

It is obvious from this example that the trajectory-aware graph
simplifies the problem. For example, when generating candidate
paths at n6, an edge-centric method can only explore the path to n9
in one iteration, while the proposed path-centric method explores
the path to n11 directly since there is no other branch on this path
according to the trajectory data. In other words, in the proposed
trajectory-aware algorithm, we reduce the number of spatial nodes
considered by eliminating the nodes at which no Pp,4x form a
union, and reduce the number of edges by eliminating the spatial
edges within each Py, 4x. Since the worst-case time complexity of
a stochastic path selection algorithm is O(|E||V|), where |E] is the
number of edges and |V| is the number of nodes in a spatial network,
the worst-case time complexity of the path selection algorithm in
[27] and [20] is linearly correlated to the number of nodes and edges
in a spatial network, even though some strategies are introduced
to reduce the computational time cost. By reducing the number
of spatial nodes and edges considered when selecting paths, the
proposed trajectory-aware algorithm will always be faster than the
related work, while in the worst case, where at all nodes there exist
Pmaxs which can form a union, the trajectory-aware algorithm
will be as fast as the related work. Since the acceleration of the
proposed algorithm is related to the number of spatial nodes and
edges ignored when transferring a spatial network to a trajectory-
aware graph, we expect the performance of the proposed algorithm
to be affected by the number of trajectories in the input trajectory
dataset and the minimum number of trajectories on a Py, gre, both
of which determine whether a spatial node and edge can be ignored.
Additionally, the length of the result path (the number of edges
within the path) affects the number of iterations needed to reach
the termination of the algorithm, we expect that the longer the
result path the larger the computational time cost. The experiment
results in Section 5 validate our expectation.

4.2.1 Completeness. The completeness of the proposed algorithm
means it can explore all possible Pyyygres and Pypions. The physics-
guided algorithm in [20] explores all Pgwares and Pypions in a
road network by extending any road segment from each candidate
path which can result in a Paware or a Pypion. By contrast, the
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proposed algorithm explores all subpaths of Pp,4xs and unions of
Pmaxs. Since a Ppygx is @ Pgware that is not the subpath of any
other Pgyares, we have the following lemma.

LEMMA 4.1. Any Pgaware is a subpath of at least one Ppqx.

This can be proved by contradiction. Assume that there is a
Pgaware that is not a subpath of any P, 4. If it is not a subpath of
any other Pgyygres, it is @ Ppax itself. This means it is a subpath
of itself, which is a contradiction with the assumption. If it is a
subpath of at least one Pgyyqre that is not a P45, and because the
subpath relation is transitive, there must be an infinite number of
Pgvares that are not Py, s. This contradicts the finite number of
trajectories and edges in a road network. Because of Lemma 4.1, for
any Pynion formed by the union of a set of Pg4y4res we can find a set
of Praxs, each of which has a subpath in the former set of Pgygres.
Since the origin and the destination of the Pyp;on is the origin of
the first Pgyyare and the destination of the last Py, ¢, which are in
the first and the last Pgyy4res, this gives us the following theorem,
which we call the P,;,4x union theorem:

THEOREM 4.2 (Pypqx UNION THEOREM). Any Pynion formed by a
union of a set of Pawares is a subpath of a Pynion formed by a union
of a set of Pmax-

A special case is that of a Pypjon formed by only one Pgygre-
Since there must be a Py, 45 having the Pgyware as a subpath, this
case is covered by the Py, 4x union theorem as well. Therefore, with
the following corollary, we prove the algorithm is complete.

COROLLARY 4.2.1. By exploring Pynions formed by Py gy s in the
proposed algorithm, we can explore all Pgvyqres and Pynions in the
road network.

4.2.2  Correctness. The proposed algorithm is correct if the selected
path is the one with the lowest estimated cost from the origin to
the destination.

We prove the correctness by contradiction. Assume that there is
a path P with a lower cost than the path P found by the proposed
algorithm. If P has been found by the algorithm when the algorithm
terminates, the cost of P should be lower than that of 13 since the
algorithm always returns the found path with the lowest cost, which
is a contradiction with the assumption. If P is not found, and since
the algorithm explores all Pgyqres and Pypions, and PisaPaware
or a Pynion, there must be a subpath P’ of P as a candidate path.
Because the cost on paths is assumed to be positive, the cost of P’
is less than that of both P and P, which is contradicted with the
stop criterion of the proposed algorithm that there is no candidate
paths with cost less than the found path.

5 EVALUATION

We compared the performance of our proposed trajectory-aware
algorithm against the baseline physics-guided algorithm in [20] ona
real dataset. In order to compare the efficiency of the path selection
algorithms, we implemented the cost estimation model in [20] and
used it in both our proposed and the baseline algorithms. We also
tested our algorithm’s sensitivity to different parameter settings. We
used computational time cost as the metric to determine efficiency.
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5.1 Experiment Settings

5.1.1 Dataset. We conducted our experiments on a real dataset
containing 920 vehicle trajectories collected from three UPS trucks
in Fort Worth, Texas 1/1/2017 - 6/30/2018. Each trajectory repre-
sented the trip of one truck in a day. Along with time and location,
each record in the trajectories has more than 250 attributes indicat-
ing the status of the vehicle’s powertrain system (e.g. stop count
and energy used). According to the attribute "stop count”, we split
a trajectory into sub-trajectories between two delivery stops. Each
sub-trajectory reflected the routing preference of the UPS truck
driver between the stops as well as the mechanical performance
of the truck. Then we applied a specially tuned map-matching al-
gorithm derived from [22] to align all sub-trajectories on a digital
map covering all road segments traveled by the three trucks which
contains 9083 road segments and 5717 road intersections. The digi-
tal map data was from OpenStreetMap. After map-matching, each
sub-trajectory was represented in the form defined in Section 2.
The preprocessed trajectory dataset was composed of 17709 sub-
trajectories, whose average length (in terms of the number of road
segments) was 54. In all, 5470 road segments were traveled by at
least one trajectory. Figure 6 shows the spatial distribution of these
road segments in yellow with gradual darkness. The darker the
color, the greater the number of trajectories on them. The origin-
destination (OD) pairs of each lowest-cost path query in the ex-
periments were the OD pairs of the sub-trajectories, so there were
17709 OD pairs in total. In Figure 6, origins are the red triangles,
while destinations are the blue circles. Since the OD pairs in the
experiments were the origins and destinations of real-world deliv-
ery trips, the experiments show the performance of the proposed
algorithm in real cases.

In order to illustrate the sensitivity of the proposed algorithm
on the number of trajectories in the input data, we generated two
subsets of the original trajectory data by randomly sampling with-
out replacement with equal probability. One subset had 75% (13282)
of the trajectories in the original dataset, while the other had 50%
(8855).

5.1.2  Experiment environment. All experiments were performed
on a single server with a quad-core Intel(R) Xeon(R) CPU E5-2623
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Figure 6: A map of the road segments traveled by trajectories
and OD pairs.

v3 (3.00GHz) and 64GB memory. All algorithms were implemented
in C#, and version of the Mono runtime was 4.6.2.

5.1.3 Questions to be answered. The experiments were designed
to answer the following questions:

o Is the proposed algorithm computationally more efficient
than the baseline algorithm?

e What is the effect of the minimum number of trajectories
along a Pgyare on the proposed algorithm?

e What is the effect of the number of road segments in the
lowest-cost path on the proposed algorithm?

e What is the effect of the number of trajectories in the input
data on the proposed algorithm?

5.2 Experiment Results

As explained in Section 4, both the minimum number of trajecto-
ries on a Pgyare and the number of trajectories in the input data
determine the total number of Pgyyqres and Pypions considered in
path selection, which affects the enumeration space of both the
proposed and the baseline algorithm. Additionally, in each lowest-
cost path query, the number of road segments in the result path
affects the number of iterations in both algorithms. Therefore, we
compared the computational performance of both algorithms under
conditions with three controlled parameters: 8, a, the length of the
result path.

First, we set « = 17709 and varied § from 20 to 50. Figure 7
shows the results. As can be seen, the trajectory-aware algorithm
always has a lower time cost than the physics-guided algorithm.
Furthermore, the gap increases and indeed becomes overwhelming
with increasing result path length. We also see that the computa-
tional time cost for the trajectory-aware algorithm does not change
much as f increase. This means it is less sensitive to differences in
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Figure 7: Experiment results with 17709 trajectories and
changing minimum number of trajectories on a Pgygre ().

the minimum number of trajectories on a Pgyyqre compared to the
baseline.

We fixed f# = 50 and varied « from 8855 to 17709. Results for the
two algorithms are shown in Figure 8. Again, the trajectory-aware
algorithm outperforms the baseline at all input settings. In addition,
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while time cost increases for both algorithms with increasing «, the
variance is smaller for the proposed algorithm. This indicates it is
more stable than the baseline.

6 CONCLUSION

We study the problem of finding the lowest-cost path through a
path-centric algorithm using trajectory data, which follows the
pattern of “path + path" when exploring candidate paths instead of
“path + edge" in the edge-centric path selection algorithms. We pro-
posed a novel data model, trajectory-aware graph, which combines
the road network and trajectory data. We then used the graph to
develop a trajectory-aware algorithm. Theoretical analysis proved
that the algorithm is correct and complete, and that its computa-
tional time cost is less than that of the related works. Experiment
results with real-world trajectory and road network data show that
the proposed trajectory-aware algorithm is more efficient than the
baseline physics-guided algorithm [20], and that the proposed al-
gorithm is less sensitive than the baseline to various input settings.

In the future, we plan to investigate the adjustments of the pro-
posed algorithm needed to handle possibly negative travel cost.
Precomputation of the trajectory-aware graph will be studied to
further accelerate the computation.
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