
Trajectory-aware Lowest-cost Path Selection: A Summary of
Results

Yan Li

lixx4266@umn.edu

Dept. of Computer Science & Eng

University of Minnesota - Twin Cities

Minneapolis, MN

Pratik Kotwal

kotwa007@umn.edu

Dept. of Computer Science & Eng

University of Minnesota - Twin Cities

Minneapolis, MN

Pengyue Wang

wang6609@umn.edu

Dept. of Mechanical Engineering

University of Minnesota - Twin Cities

Minneapolis, MN

Shashi Shekhar

shekhar@umn.edu

Dept. of Computer Science & Eng

University of Minnesota - Twin Cities

Minneapolis, MN

William Northrop

wnorthro@umn.edu

Dept. of Mechanical Engineering

University of Minnesota - Twin Cities

Minneapolis, Minnesota

ABSTRACT
The trajectory-aware lowest-cost path selection problem aims to

find the lowest-cost path using trajectory data. Trajectory data is

valuable since it carries information about travel cost along paths,

and also reflects travelers’ routing preference. Path-centric travel

cost estimationmodels using trajectory data grows popular recently,

which considers the auto-correlation of the energy consumption

on different segments of a path. However, path-centric models are

more computationally expensive than edge-centric models. The

main challenge of this problem is that the travel cost of every can-

didate path explored during the process of searching for the lowest-

cost path need to be estimated, resulting in high computational cost.

The current path selection algorithms that use path-centric cost

estimation models still follow the pattern of “path + edge” when

exploring candidate paths, which may result in redundant com-

putation. We introduce a trajectory-aware graph model in which

each node is a maximal trajectory-aware path. Two nodes in the

trajectory-aware graph are linked by an edge if their union forms a

trajectory-union path. We then propose a path selection algorithm

to find a path in the proposed trajectory-aware graph which cor-

responds to the lowest-cost path in the input spatial network. We

prove theoretically the proposed algorithm is correct and complete.

Moreover, we prove theoretically that the proposed path selection

algorithm cost much less computational time than the algorithm

used in the related work, and validate it through experiments using

real-world trajectory data.

CCS CONCEPTS
• Information systems → Geographic information systems;
Data mining;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SSTD ’19, August 19–21, 2019, Vienna, Austria
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6280-1/19/08. . . $15.00

https://doi.org/10.1145/3340964.3340971

KEYWORDS
path selection, routing, trajectory, shortest path, path-centric

ACM Reference Format:
Yan Li, Pratik Kotwal, PengyueWang, Shashi Shekhar, andWilliamNorthrop.

2019. Trajectory-aware Lowest-cost Path Selection: A Summary of Results.

In 16th International Symposium on Spatial and Temporal Databases (SSTD
’19), August 19–21, 2019, Vienna, Austria. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3340964.3340971

1 INTRODUCTION
The trajectory-aware lowest-cost path selection (TLPS) problem

aims to find the path with the lowest travel cost between two lo-

cations. Informally, the TLPS problem can be defined as follows:

given a spatial network and trajectory data in the network, a cost

estimation model using the trajectory data, as well as an origin and

a destination, find the path with the lowest estimated cost from the

origin to the destination. The TLPS problem is a variant of the short-

est path selection (SPS) problem with the main difference being that

the travel cost along a path is derived from trajectory data, rather

than given as an attribution of the spatial network. Figure 1 illus-

trates a spatial network composed of eleven nodes (n1,n2, ..,n11)
and twelve edges (e1, e2, .., e12), where there are six trajectories

(t1, t2, .., t6). A candidate result path between n1 and n5 of a SPS
problem is in the form of an ordered sequence of individual edges

[e1, e2, e3, e4], while a candidate result path in a TLPS problem is

composed of two subpaths defined by t1 and t4. Our approach takes
advantage of the recently introduced path-centric model [20, 27]

for travel cost estimation using trajectory data, whose basic spatial

unit of cost estimation is a path, but proposes a much more efficient

algorithm for the following path selection accordingly.

Telematics devices installed on vehicles are collecting large

amounts of trajectory data embedded with rich vehicle informa-

tion, such as green house gas emissions and fuel consumption. The

increasing accessibility of such data is inspiring new approaches to

the path selection problem that incorporate trajectory information

along with the spatial network. Trajectory data is valuable because

it reflects the real-world travel cost and the routing preference of

travelers in the past. Trajectory data also contains other information

not carried by the spatial network, such as road closure or impass-

ability due to temporary factors [7, 21]. Even though automated

https://doi.org/10.1145/3340964.3340971
https://doi.org/10.1145/3340964.3340971

SSTD ’19, August 19–21, 2019, Vienna, Austria Yan Li, Pratik Kotwal, Pengyue Wang, Shashi Shekhar, and William Northrop

map creation and editing using trajectory data has attracted much

attention [4, 16], digital maps still lag reality because the frequency

of map updating does not match the changes of cities, especially

in rapidly developing cities such as Doha (Qatar) or cities where

roads are often occupied for other purposes (e.g., night markets).

In this paper, we study path selection using trajectory data directly

in this paper.

Despite the importance of path selection using trajectory data,

very few studies have been conducted on finding lowest-cost paths.

Some studies focus on finding frequently-used paths, which only

utilizes the spatial information of trajectories [7, 21]. However, a

frequently-used path does not always cost the least. In order to

find the path with the least cost, we need to know the estimated

cost of traveling along the path first. Trajectory data with rich vehi-

cle information facilitates travel cost estimation. The prediction of

expected time cost [19, 26] and energy consumption [6, 17, 28] of

travel using trajectory data has been widely studies because of their

significant societal importance [18, 25]. However, path selection

using these estimation models is rarely discussed. Most path selec-

tion algorithms adopt an edge-centric cost estimation model, which

treats the cost of a path as the sum of the cost on independent edges.

However, it has been shown that when estimating travel cost using

trajectory data, these models lose some information, such as the

auto-correlation between the cost on segments along a trajectory,

because they decompose trajectories into independent segments

on edges [27]. Recently, a path-centric view of cost estimation was

introduced, which treated a path as a sequence of overlapping sub-

paths [20, 27]. Each subpath in the path-centric cost estimation

models has a certain number of trajectories along it. Since a sub-

path is the basic unit in cost estimation, it maintains the holism of

the trajectories along it. However, the path selection algorithms

used in [20, 27] were based on existing path selection algorithms

which apply a “path + edge” pattern to explore candidate paths.

The main challenge of our problem is the expensive computa-

tion of travel cost estimation, which is needed for every candidate

path explored in the process of searching for the lowest-cost path,

which results in redundant computation. Take Figure 1 as an exam-

ple, when exploring candidate paths at n6 given the current path

as [e1, e5], a path [e1, e5, e8] would be a candidates in a method

following the “path + edge” pattern. However, according to the tra-

jectory data, there is no fork at n9, and no new trajectory starting

from it, which means the estimated cost for [e5, e8] would be the

same as the corresponding part of [e5, e8, e11, e12] without losing
any information. The travel cost for [e5, e8] is estimated repeat-

edly when estimating the travel cost of [e5, e8], [e5, e8, e11], and
[e5, e8, e11, e12].

In this work, we make the following four contributions. First, we

introduce a trajectory-aware graph data model in which each node

is a maximal trajectory-aware path, that is, a path along which

there are at least a certain number of trajectories. Two nodes in

the trajectory-aware graph are linked by an edge if their union

forms a path. Second, we propose a trajectory-aware path selection

algorithm based on the trajectory-aware graph. Then, we prove the

completeness and the correctness of the proposed algorithm. We

also show both theoretically and experimentally, that the proposed

algorithm has a lower computational time cost than the algorithm

in [20].

d

e1

e6

e3e2

e8

e5

e4

e12e11

e10e9

e7

node
edge

trajectory

n2 n3 n4 n5

n9 n10 n11

n6 n7 n8

n1

t1

t4

t3

t2

t5

t6

d

Figure 1: A spatial network with six trajectories.

This paper is organized as follows: In §2, we explain the basic

concepts and formally define the trajectory-aware lowest-cost path

selection problem. §3 reviews the related literature. §4 presents

our data model and algorithm for solving the problem, and an

evaluation is given in §5. §6 concludes the paper and presents our

future work.

2 BASIC CONCEPTS AND PROBLEM
DEFINITION

We introduce the basic concepts in this study, based on which the

trajectory-aware lowest-cost path selection problem is formally

defined.

2.1 Basic Concepts
A spatial network G = (N ,E) consists of a node set N and an

edge set E, where each element n in N is a geo-referenced point,

while edge set E is a subset of the cross product of N . Each element

e = (ni ,nj) in E is an edge that joins node ni and node nj . Fig.
1 shows an example of a spatial network where circles represent

nodes (e.g. n1, n2) and lines represent edges (e.g. e1, e2). A road

system is an example of a spatial network where nodes are road

intersections and edges are road segments.

Apath is a set of edges linking an ordered sequence of nodes. The

first and the last nodes are defined as the origin and the destination

of the path respectively. A subpath of a path is composed of a

subset of consecutive edges of the path. In Figure 1, path [e1, e2] is
a subpath of path [e1, e2, e3]. The union (∪) of two paths Pα ∪ Pβ
at a node shared by them is composed of the edges of Pα before

the node and those of Pβ after the node. For example, in Figure 1,

[e2, e3, e4] ∪ [e3, e7] at n4 is [e2, e3, e7].
A trajectory is a log of a vehicle’s trip along a path, in the form

of a list of pairs, each of which describes an edge and the travel cost

on it. Figure 1 shows six trajectories mapped with dashed arrows.

In [20, 27], a trajectory-aware path (Paware) was introduced

as a path along which there are at least a certain number of trajec-

tories in the same direction. The direction of a Paware is the same

as the trajectories along it. A trajectory-union path (Punion) is
the union of several Paware s, and a Punion is not a subpath of any

Paware that forms it. If we set the minimum number of trajectories

along a Paware as 1 in Figure 1, path [e1, e2] is a Paware along

which there is a trajectory t1. A sample of Punion is [e1, e2, e3, e4],
which is formed by the union of two Paware s [e1, e2] and [e2, e3, e4]
at n3.

Trajectory-aware Lowest-cost Path Selection: A Summary of Results SSTD ’19, August 19–21, 2019, Vienna, Austria

Table 1: Example trajectory data.

Id Trajectory Records

t1

edge e1 e2

cost 2 9

t2

edge e1 e5

cost 1 1

t3

edge e5 e8 e11 e12

cost 3 2 4 3

t4

edge e2 e3 e4

cost 7 9 2

t5

edge e2 e6 e9 e12

cost 9 2 2 7

t6

edge e12 e10 e7 e4

cost 3 2 2 2

2.2 Problem Definition
We formally define the trajectory-aware lowest-cost path selection

problem as follows:

Input:
• A spatial network.

• A collection of trajectories in the network.

• A cost estimation model for trajectory-aware paths and

trajectory-union paths.

• Two nodes in the spatial network.

Output: A path between the two nodes with the lowest estimated

cost.

Objective: Improve the computational efficiency of the path selec-

tion algorithm.

Constraints:
• The output path is either a Paware or a Punion .
• The cost on any path is positive.

An example of the problem we are solving in this paper is in the

following form:

We are given the spatial network shown in Figure 1, a collection

of trajectories on it with details shown in Table 1, two nodes n1 and
n5, and a cost estimation model. For simplicity’s sake, we adopt

a path-centric model simplified from those in [27] and [20]. The

model has three features: it requires that the minimum number of

trajectories along a Paware be 1; it estimates travel cost on a Paware
by the average cost of trajectories along it; and it estimates travel

cost on the overlapping edges of two Paware s by the mean of their

cost on the edges. For example, the cost on each edge of path [e1, e2]
would be [2, 9], while the cost on the edges of path [e1, e2, e3, e4]
would be [2, 8, 9, 2]. The output of the problem would be the path

[e1, e5, e8, e11, e12, e10, e7, e4] with total cost of 18, which is the

path from n1 to n5 with the lowest cost. We will show the details

of the path selection procedure in Section 4.

In this paper, we only focus on accelerating the procedure of

finding a lowest-cost path with enough trajectory data (i.e., Paware

Extending path in path selection

Cost estimation model

Edge-centric path selection
algorithm

(e.g. Dijkstra's, Bellman-ford)
[1-3,5,8-15,17,23,24]

PACE [27] and
Physics-guided [20]

by edge

Edge-centric Path-centric

by path

This work

Figure 2: A tree of related works.

and Punion) and using path-centric cost estimation directly [20, 27].

Refinement of cost estimation for paths is outside the scope of

this paper. Furthermore, we assume the cost of a path is positive,

which is applicable for cases such as time cost and green house gas

emissions. In the future, we will generalize our method for negative

cost as well.

3 RELATEDWORK AND LIMITATIONS
The trajectory-aware lowest-cost path selection (TLPS) problem is

a variant of the shortest path selection (SPS) problem. Based on the

basic spatial unit of path cost estimation, the related work on the

SPS problem can be categorized into two groups, i.e., edge-centric,

and path-centric methods (the left branch in Figure 2).

The basic spatial unit of cost estimation in edge-centric methods

is an edge. The travel cost on each edge is assumed to be inde-

pendent. Most of the edge-centric methods are based on Dijkstra’s

and Bellman-Ford algorithms which select the shortest path in a

static-weighted graph where the cost on each road segment is a

constant [10, 15]. Later studies have focused on accelerating com-

putation [1, 3, 8, 24], as well as introducing new constraints (e.g.,

battery capacity constraint for electric vehicles [2, 12]) and cost

metrics (e.g., happiness [23], and bi-objectives metric [11]). In order

to represent travel cost more accurately, some work models a road

system as a spatio-temporal network, in which the cost on each

road segment is a function of time [5, 14]. Other research represents

the cost as a stochastic distribution since the factors other than time

which affect the travel cost are assumed to be hard to model directly

[9, 13]. In order to know the cost of each road segment, which is

assumed as a prior in all the aforementioned methods, study has

been conducted to utilize trajectory data from vehicles [17]. How-

ever, all edge-centric methods suffer from the problem that when

decomposing trajectories to estimate the cost of individual road

segments, some information, such as the dependence between the

costs of adjacent parts along a trajectory, will be lost. For example,

when estimating the cost of e6 in Figure 1, edge-centric methods

treat trajectories along it (t4, t6) the same, without considering the

influence of vehicle’s movement on the previous road segments,

such as the right turn from e9 to e6.
In recent years, researchers have begun to pay attention to the

dependence of segments in a path. In [26], a convolutional neural

network is adopted to learn the spatial auto-correlation of nearby

trajectory sample points. A path-centric view of path cost estima-

tion introduced by Yang et al. decomposes a path into a sequence of

SSTD ’19, August 19–21, 2019, Vienna, Austria Yan Li, Pratik Kotwal, Pengyue Wang, Shashi Shekhar, and William Northrop

overlapping subpaths [27]. Inspired by this view, Li et al. propose a

physics-guided path-centric method for energy consumption esti-

mation [20]. Since the basic spatial unit in any path-centric method

is a subpath, these methods maintain the dependence between the

costs of adjacent parts along a trajectory. However, the path se-

lection algorithms used in [27] and [20] still apply a “path + edge”

algorithm. In other words, a new candidate path is generated by

adding an edge to the end of the current candidate path during

the process of searching for the lowest-cost path, which results in

redundant computational cost for the cost estimation of candidate

paths.

4 APPROACH
We first introduce a trajectory-aware graph data structure to model

the spatial road network and the trajectory data on it. Then we

present a path selection algorithm using the proposed trajectory-

aware graph.

4.1 Trajectory-aware Graph
As introduced in Section 2, a trajectory-aware path (Paware) is

defined as a path along which there are more than a certain number

of trajectories, which means any subpath of a Paware is a Paware ,

so we define maximal trajectory-aware path as:

Definition 4.1. Amaximal trajectory-aware path (Pmax) is a

trajectory-aware path that is not a subpath of any other trajectory-

aware path.

Since a Pmax is a Paware , their union at a node may form a

Punion . Given a spatial network and trajectory data in it, we can

model Pmax s and the relationships between union-forming Pmax s

using a trajectory-aware graph.

Definition 4.2. A trajectory-aware graph is a directed graph

whose nodes are Pmax s. There is an edge between two Pmax s (Pα
and Pβ) if Pα ∪ Pβ at a node in the spatial network is a Punion .

Since each node in a trajectory-aware graph, Pmax , represents a

path and the travel cost of the path estimated according to trajectory

data, a trajectory-aware graph is the combination of a spatial road

network and the trajectory data on it.

To clarify the terminology, we name the nodes and edges in a

spatial network spatial nodes and spatial edges, while the nodes

and edges in a trajectory-aware graph are called trajectory-aware

nodes and trajectory-aware edges.

In the condition specified by the example problem in Section 2,

the spatial network and trajectories in Figure 1 can be represented

by a trajectory-aware graph shown in Figure 3. In this graph, Pi ,
shown as a square, is a Pmax along which there is a trajectory ti ,
and the edge from Pi to Pj indicates the existence of Pi ∪ Pj as a
Punion . For example, two Pmax s P1 = [e1, e2] and P4 = [e2, e3, e4]
can form a union at n3, so there is an edge directed from P1 to P4.

We define a path in a trajectory-aware graph as an ordered se-

quence of trajectory-aware nodes (Pmax s) linked by the trajectory-

aware edges between them. The union of the Pmax s of a path in a

trajectory-aware graph is a path in the spatial network. If a path in

a spatial network is a subpath of the union of the Pmax s within a

path in a trajectory-aware graph, and the origin and the destination

are on the first and the last Pmax s respectively, we say the path

P1

P2 P3

P4

P5

P6

n1 n5

Pmax

spatial node

edge between Pmax

relationship of spatial
node on Pmax

Figure 3: A trajectory-aware graph.

in the spatial network is represented by the path in the trajectory-

aware graph. Since a Pmax may have multiple spatial nodes on it,

there may be multiple paths in a spatial network represented by

a path in a trajectory-aware graph. We set the cost of a path in

a trajectory-aware graph equal to the cost of a Punion formed by

all but the last Pmax s in the path except the spatial edges before

the origin, so that the cost of a path in a trajectory-aware graph is

always less or equal to the path it represents in a spatial network.

For example, the cost of a path [P2, P3, P6] with the origin at n1 in
Figure 3 is equal to the cost of Punion = [e1, e5, e8, e11, e12] in Fig-

ure 1. After finding a path to the destination in a trajectory-aware

graph, the cost of the path in a spatial network from the origin to

the destination is estimated by adding the cost on the edges of the

last Pmax to the cost of the path in the trajectory-aware graph.

4.2 Trajectory-aware Path Selection Algorithm
The framework for a stochastic path selection algorithm is shown in

Algorithm 1. Given a spatial network, an origin, and a destination,

as well as a cost estimation model, the algorithm generates a path

satisfying certain criteria. The main steps of the algorithm are as

follows. A list of candidate pathsCP is initialized in Line 1, typically

using the paths consisting of one edge from the origin. Then in each

iteration (Lines 2-8), the most promising path in CP is extended,

and the result path is added to CP . The iteration ends when the

stop criterion is met. The related work implements these steps in

different ways. For example, Dijkstra’s algorithm’s stop criterion is

that a path is found between the origin and the destination, while

the most promising path in CP is the one with the smallest cost.

In all edge-centric methods, the exploration of candidate paths

in Line 4 follows the pattern of “path + edge". In other words, the

candidate paths generated from a path are composed of all the edges

of the old path and one additional edge linking to the old path’s

destination. The methods which adopt a path-centric view of cost

estimation mainly focus on Line 5, where cost of candidate paths

is estimated, but they still use the “path + edge" pattern in Line 4

[20, 27]. In the physics-guided algorithm in [20], the stop criterion

is that there is no candidate path that can have cost lower than

the already found path. The most promising candidate path is the

one with the lowest cost. Table 2 gives the execution trace for the

algorithm when solving the example problem in Section 2, which is

to find a path between n1 and n5. ColumnCP is the set of candidate

paths at each step, while column “Cost" is the cost corresponding

Trajectory-aware Lowest-cost Path Selection: A Summary of Results SSTD ’19, August 19–21, 2019, Vienna, Austria

Table 2: Execution trace of the algorithm in [20]

step CP Cost p

1 [e1] 1.5 [e1]
2 [e1, e5],[e1, e2] 2,11 [e1, e5]
3 [e1, e5, e8],[e1, e2] 5,11 [e1, e5, e8]
4 [e1, e5, e8, e11], [e1, e2] 9,11 [e1, e5, e8, e11]
5 [e1, e5, e8, e11, e12],

[e1, e2]
12,11 [e1, e2]

6 [e1, e5, e8, e11, e12],
[e1, e2, e3],[e1, e2, e6]

12,19,13 [e1, e5, e8, e11, e12]

7 [e1, e5, e8, e11, e12, e10],
[e1, e2, e3],[e1, e2, e6]

14,19,13 [e1, e2, e6]

8 [e1, e5, e8, e11, e12,
e10],[e1, e2, e3],
[e1, e2, e6, e9]

14,19,15 [e1, e5, e8, e11, e12, e10]

9 [e1, e5, e8, e11, e12,
e10, e7],[e1, e2, e3],
[e1, e2, e6, e9]

16,19,15 [e1, e2, e6, e9]

10 [e1, e5, e8, e11, e12,
e10, e7],[e1, e2, e3],
[e1, e2, e6, e9, e12]

16,19,22 [e1, e5, e8, e11, e12, e10, e7]

11 [e1, e5, e8, e11, e12,
e10, e7, e4],[e1, e2, e3],
[e1, e2, e6, e9, e12]

18,19,22

to each candidate path which is in the form of a list of the cost on

each edge within a path. The most promising paths in each step

are shown in column p.

Algorithm 1 General algorithm framework

Require:
G: A spatial network;

o and d : Two nodes;

model : A cost estimation model.

Ensure: The path between o and d satisfying the criteria.

1: candidate paths CP ← initialization;

2: while stop criteria are not met do
3: p ← the most promising path in CP ;
4: for all extensions p′s of p do
5: compute the cost of p′;
6: add p′ to CP ;
7: end for
8: end while

In our paper, based on the proposed trajectory-aware graph we

propose a trajectory-aware path selection algorithm which follows

“path + path" pattern in Line 4. The following implementation ex-

plains how the framework shown in Algorithm 1 is applied on a

trajectory-aware graph. In Line 1, the set of candidate paths CP is

initialized with the Pmax s where the origin is on. The stop criteria

in Line 2 is that there is no candidate paths with cost lower than the

found path from the origin to the destination. The most promising

path in CP is the path with the lowest cost. In Line 4, as candidate

n1 n3 n4 n7 n8 n9

n5 n6

n2

P1

P2

spatial node

spatial edge

Pmax

(a) road network & Pmax

P1 P2

Pmax

(b) trajectory-aware graph

n4at

at n4

at n8

Figure 4: A trajectory-aware graph is a dynamicmultigraph.

paths are searched, one Pmax is added to the currently most promis-

ing path if they can form a Punion , and Pmax s which have already

been visited can be visited again. Once a path is extended to the

destination, we estimate its cost and remove it from the candidate

path set. If the estimated cost is lower than the current lowest cost,

the result path and the lowest cost are updated. The cost estimation

method used in Line 5 is provided as an input.

The main challenge of the algorithm is that a trajectory-aware

graph is a dynamicmultigraphwhere there can bemultiple trajectory-

aware edges between two trajectory-aware nodes, and the existence

of a trajectory-aware edge is determined by the previous trajectory-

aware nodes and trajectory-aware edges along a path. For example,

in Figure 4(a) there are two Pmax s in a road network. These two

Pmax s form a trajectory-aware graph in 4(b), where P1 links to

P2 at n4, while P2 links to P1 at n4 and n8. If the trajectory-aware
graph is a common multigraph, there may exist paths going back

and forth between trajectory-aware node P1 and P2 multiple times.

However, since a trajectory-aware graph represents paths existing

in a spatial network, if a path in the spatial network goes from P1
to P2 at n4, it can go back to P1 at n8 and never go back, while if

a path in the spatial network goes from P2 to P1 at n8, it cannot
go back. Therefore, a path in a trajectory-aware graph should keep

track of not only the trajectory-aware nodes (Pmax) on the path,

but also the trajectory-aware edges (the spatial nodes at which two

Pmax s can form a union).

We can now solve the example problem in Section 2 as follows.

Once we transform the input to the trajectory-aware graph shown

in Figure 3, the problem of selecting a path between n1 and n5 in
a spatial network with eleven nodes and twelve edges becomes a

problem of selecting a path between a set of Pmax s {P1, P2} and
another set of Pmax s {P4, P6} in a trajectory-aware graph with 6

nodes and 5 edges. The execution trace is shown in Table 3, and is

in the same form as Table 2. At step 1, the candidate paths include

the two Pmax s that n1 is on. Since their cost is both 0, we randomly

SSTD ’19, August 19–21, 2019, Vienna, Austria Yan Li, Pratik Kotwal, Pengyue Wang, Shashi Shekhar, and William Northrop

Table 3: Execution trace of the proposed algorithm

step CP Cost p

1 [P1],[P2] 0,0 [P1]
2 [P1, P4],[P1, P5],[P2] 10,11,0 [P2]
3 [P1, P5],[P2, P3] 11,3 [P2, P3]
4 [P1, P5],[P2, P3, P6] 11,12 [P1, P5]
5 [P1, P5, P6] 20

choose a promising one. At step 2, we extend [P1] by adding one

Pmax to it, which results in two candidate paths. Meanwhile, we

find that the path [P1, P4] has already reached the destination, so

we estimate the cost of traveling along it to the destination, which

is 21, and remove it from the candidate path set. At step 4, we find

another path to the destination [P2, P3, P6], along which the cost

to the destination is 18, so we update the result path and the lowest

cost. The algorithm terminates at step 5, where there is no candidate

path with cost less than the found path.

It is obvious from this example that the trajectory-aware graph

simplifies the problem. For example, when generating candidate

paths at n6, an edge-centric method can only explore the path to n9
in one iteration, while the proposed path-centric method explores

the path to n11 directly since there is no other branch on this path

according to the trajectory data. In other words, in the proposed

trajectory-aware algorithm, we reduce the number of spatial nodes

considered by eliminating the nodes at which no Pmax form a

union, and reduce the number of edges by eliminating the spatial

edges within each Pmax . Since the worst-case time complexity of

a stochastic path selection algorithm is O(|E | |V |), where |E | is the
number of edges and |V | is the number of nodes in a spatial network,

the worst-case time complexity of the path selection algorithm in

[27] and [20] is linearly correlated to the number of nodes and edges

in a spatial network, even though some strategies are introduced

to reduce the computational time cost. By reducing the number

of spatial nodes and edges considered when selecting paths, the

proposed trajectory-aware algorithm will always be faster than the

related work, while in the worst case, where at all nodes there exist

Pmax s which can form a union, the trajectory-aware algorithm

will be as fast as the related work. Since the acceleration of the

proposed algorithm is related to the number of spatial nodes and

edges ignored when transferring a spatial network to a trajectory-

aware graph, we expect the performance of the proposed algorithm

to be affected by the number of trajectories in the input trajectory

dataset and the minimum number of trajectories on a Paware , both

of which determine whether a spatial node and edge can be ignored.

Additionally, the length of the result path (the number of edges

within the path) affects the number of iterations needed to reach

the termination of the algorithm, we expect that the longer the

result path the larger the computational time cost. The experiment

results in Section 5 validate our expectation.

4.2.1 Completeness. The completeness of the proposed algorithm

means it can explore all possible Paware s and Punions. The physics-
guided algorithm in [20] explores all Paware s and Punions in a

road network by extending any road segment from each candidate

path which can result in a Paware or a Punion . By contrast, the

proposed algorithm explores all subpaths of Pmax s and unions of

Pmax s. Since a Pmax is a Paware that is not the subpath of any

other Paware s, we have the following lemma.

Lemma 4.1. Any Paware is a subpath of at least one Pmax .

This can be proved by contradiction. Assume that there is a

Paware that is not a subpath of any Pmax . If it is not a subpath of

any other Paware s, it is a Pmax itself. This means it is a subpath

of itself, which is a contradiction with the assumption. If it is a

subpath of at least one Paware that is not a Pmax , and because the

subpath relation is transitive, there must be an infinite number of

Paware s that are not Pmax s. This contradicts the finite number of

trajectories and edges in a road network. Because of Lemma 4.1, for

any Punion formed by the union of a set of Paware s we can find a set

of Pmax s, each of which has a subpath in the former set of Paware s.

Since the origin and the destination of the Punion is the origin of

the first Paware and the destination of the last Paware , which are in

the first and the last Paware s, this gives us the following theorem,

which we call the Pmax union theorem:

Theorem 4.2 (Pmax union theorem). Any Punion formed by a
union of a set of Paware s is a subpath of a Punion formed by a union
of a set of Pmax .

A special case is that of a Punion formed by only one Paware .

Since there must be a Pmax having the Paware as a subpath, this

case is covered by the Pmax union theorem as well. Therefore, with

the following corollary, we prove the algorithm is complete.

Corollary 4.2.1. By exploring Punions formed by Pmax s in the
proposed algorithm, we can explore all Paware s and Punions in the
road network.

4.2.2 Correctness. The proposed algorithm is correct if the selected

path is the one with the lowest estimated cost from the origin to

the destination.

We prove the correctness by contradiction. Assume that there is

a path P̂ with a lower cost than the path P found by the proposed

algorithm. If P̂ has been found by the algorithm when the algorithm

terminates, the cost of P should be lower than that of P̂ , since the
algorithm always returns the found pathwith the lowest cost, which

is a contradiction with the assumption. If P̂ is not found, and since

the algorithm explores all Paware s and Punions, and P̂ is a Paware
or a Punion , there must be a subpath P̂ ′ of P̂ as a candidate path.

Because the cost on paths is assumed to be positive, the cost of P̂ ′

is less than that of both P̂ and P , which is contradicted with the

stop criterion of the proposed algorithm that there is no candidate

paths with cost less than the found path.

5 EVALUATION
We compared the performance of our proposed trajectory-aware

algorithm against the baseline physics-guided algorithm in [20] on a

real dataset. In order to compare the efficiency of the path selection

algorithms, we implemented the cost estimation model in [20] and

used it in both our proposed and the baseline algorithms. We also

tested our algorithm’s sensitivity to different parameter settings.We

used computational time cost as the metric to determine efficiency.

Trajectory-aware Lowest-cost Path Selection: A Summary of Results SSTD ’19, August 19–21, 2019, Vienna, Austria

OD pairs

trajectory data

Methods
Physics-guided by edge

trajectory-aware by path

Metric

Time cost

Controlled parameters:

Minimum number of trajectories
along a Paware
Number of trajectories
Length of the result paths

Data

road network

Figure 5: Experiment design.

5.1 Experiment Settings
5.1.1 Dataset. We conducted our experiments on a real dataset

containing 920 vehicle trajectories collected from three UPS trucks

in Fort Worth, Texas 1/1/2017 - 6/30/2018. Each trajectory repre-

sented the trip of one truck in a day. Along with time and location,

each record in the trajectories has more than 250 attributes indicat-

ing the status of the vehicle’s powertrain system (e.g. stop count

and energy used). According to the attribute "stop count", we split

a trajectory into sub-trajectories between two delivery stops. Each

sub-trajectory reflected the routing preference of the UPS truck

driver between the stops as well as the mechanical performance

of the truck. Then we applied a specially tuned map-matching al-

gorithm derived from [22] to align all sub-trajectories on a digital

map covering all road segments traveled by the three trucks which

contains 9083 road segments and 5717 road intersections. The digi-

tal map data was from OpenStreetMap. After map-matching, each

sub-trajectory was represented in the form defined in Section 2.

The preprocessed trajectory dataset was composed of 17709 sub-

trajectories, whose average length (in terms of the number of road

segments) was 54. In all, 5470 road segments were traveled by at

least one trajectory. Figure 6 shows the spatial distribution of these

road segments in yellow with gradual darkness. The darker the

color, the greater the number of trajectories on them. The origin-

destination (OD) pairs of each lowest-cost path query in the ex-

periments were the OD pairs of the sub-trajectories, so there were

17709 OD pairs in total. In Figure 6, origins are the red triangles,

while destinations are the blue circles. Since the OD pairs in the

experiments were the origins and destinations of real-world deliv-

ery trips, the experiments show the performance of the proposed

algorithm in real cases.

In order to illustrate the sensitivity of the proposed algorithm

on the number of trajectories in the input data, we generated two

subsets of the original trajectory data by randomly sampling with-

out replacement with equal probability. One subset had 75% (13282)

of the trajectories in the original dataset, while the other had 50%

(8855).

5.1.2 Experiment environment. All experiments were performed

on a single server with a quad-core Intel(R) Xeon(R) CPU E5-2623

Figure 6: Amap of the road segments traveled by trajectories
and OD pairs.

v3 (3.00GHz) and 64GB memory. All algorithms were implemented

in C#, and version of the Mono runtime was 4.6.2.

5.1.3 Questions to be answered. The experiments were designed

to answer the following questions:

• Is the proposed algorithm computationally more efficient

than the baseline algorithm?

• What is the effect of the minimum number of trajectories

along a Paware on the proposed algorithm?

• What is the effect of the number of road segments in the

lowest-cost path on the proposed algorithm?

• What is the effect of the number of trajectories in the input

data on the proposed algorithm?

5.2 Experiment Results
As explained in Section 4, both the minimum number of trajecto-

ries on a Paware and the number of trajectories in the input data

determine the total number of Paware s and Punions considered in

path selection, which affects the enumeration space of both the

proposed and the baseline algorithm. Additionally, in each lowest-

cost path query, the number of road segments in the result path

affects the number of iterations in both algorithms. Therefore, we

compared the computational performance of both algorithms under

conditions with three controlled parameters: β , α , the length of the

result path.

First, we set α = 17709 and varied β from 20 to 50. Figure 7

shows the results. As can be seen, the trajectory-aware algorithm

always has a lower time cost than the physics-guided algorithm.

Furthermore, the gap increases and indeed becomes overwhelming

with increasing result path length. We also see that the computa-

tional time cost for the trajectory-aware algorithm does not change

much as β increase. This means it is less sensitive to differences in

SSTD ’19, August 19–21, 2019, Vienna, Austria Yan Li, Pratik Kotwal, Pengyue Wang, Shashi Shekhar, and William Northrop

(a) β = 20.

(b) β = 35.

(c) β = 50.

Figure 7: Experiment results with 17709 trajectories and
changing minimum number of trajectories on a Paware (β).

the minimum number of trajectories on a Paware compared to the

baseline.

We fixed β = 50 and varied α from 8855 to 17709. Results for the

two algorithms are shown in Figure 8. Again, the trajectory-aware

algorithm outperforms the baseline at all input settings. In addition,

(a) α = 8855.

(b) α = 13282.

(c) α = 17709.

Figure 8: Experiment results with fixed minimum number
of trajectories on a Paware as 20 and changing number of
input trajectories (α).

Trajectory-aware Lowest-cost Path Selection: A Summary of Results SSTD ’19, August 19–21, 2019, Vienna, Austria

while time cost increases for both algorithms with increasing α , the
variance is smaller for the proposed algorithm. This indicates it is

more stable than the baseline.

6 CONCLUSION
We study the problem of finding the lowest-cost path through a

path-centric algorithm using trajectory data, which follows the

pattern of “path + path" when exploring candidate paths instead of

“path + edge" in the edge-centric path selection algorithms. We pro-

posed a novel data model, trajectory-aware graph, which combines

the road network and trajectory data. We then used the graph to

develop a trajectory-aware algorithm. Theoretical analysis proved

that the algorithm is correct and complete, and that its computa-

tional time cost is less than that of the related works. Experiment

results with real-world trajectory and road network data show that

the proposed trajectory-aware algorithm is more efficient than the

baseline physics-guided algorithm [20], and that the proposed al-

gorithm is less sensitive than the baseline to various input settings.

In the future, we plan to investigate the adjustments of the pro-

posed algorithm needed to handle possibly negative travel cost.

Precomputation of the trajectory-aware graph will be studied to

further accelerate the computation.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science

Foundation under Grants No. 1541876, 1029711 , IIS-1320580 , IIS-

0940818, and IIS-1218168 , the USDOD under Grants No. HM1582-

08-1-0017 and HM0210-13-1-0005, the Advanced Research Projects

Agency-Energy (ARPA-E), U.S. Department of Energy under Award

No. DE-AR0000795, the NIH under Grant No. UL1 TR002494, KL2

TR002492, and TL1 TR002493, the USDA under Grant No. 2017-

51181-27222, and the OVPR Infrastructure Investment Initiative

and Minnesota Supercomputing Institute (MSI) at the University

of Minnesota. The views and opinions of authors expressed herein

do not necessarily state or reflect those of the United States Gov-

ernment or any agency thereof. The authors would like to thank

Kim Koffolt and the University of Minnesota Spatial Computing

Research Group for their comments.

REFERENCES
[1] Sabeur Aridhi, Philippe Lacomme, Libo Ren, and Benjamin Vincent. 2015. A

MapReduce-based approach for shortest path problem in large-scale networks.

Engineering Applications of Artificial Intelligence 41 (May 2015), 151–165.

[2] Andreas Artmeier, Julian Haselmayr, Martin Leucker, and Martin Sachenbacher.

2010. The Shortest Path Problem Revisited: Optimal Routing for Electric Vehicles.

In KI 2010: Advances in Artificial Intelligence (Lecture Notes in Computer Science).
Springer, Berlin, Heidelberg, 309–316.

[3] JÃÿrgen Bang-Jensen and Gregory Z. Gutin. 2008. Digraphs: Theory, Algorithms
and Applications. Springer.

[4] Favyen Bastani, Songtao He, Sofiane Abbar, Mohammad Alizadeh, Hari Balakr-

ishnan, Sanjay Chawla, and Sam Madden. 2018. Machine-assisted Map Editing.

In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems (SIGSPATIAL ’18). ACM, New York, NY, USA,

23–32. https://doi.org/10.1145/3274895.3274927 event-place: Seattle, Washing-

ton.

[5] B. Y. Chen,W. H. K. Lam, Q. Li, A. Sumalee, and K. Yan. 2013. Shortest Path Finding

Problem in Stochastic Time-Dependent Road Networks With Stochastic First-In-

First-Out Property. IEEE Transactions on Intelligent Transportation Systems 14, 4
(Dec. 2013), 1907–1917.

[6] Yuche Chen, Lei Zhu, Jeffrey Gonder, Stanley Young, and Kevin Walkowicz. 2017.

Data-driven fuel consumption estimation: A multivariate adaptive regression

spline approach. Transportation Research Part C: Emerging Technologies 83, 0 (Oct.
2017). https://trid.trb.org/view/1482146

[7] J. Dai, B. Yang, C. Guo, and Z. Ding. 2015. Personalized route recommendation

using big trajectory data. In 2015 IEEE 31st International Conference on Data
Engineering. 543–554. https://doi.org/10.1109/ICDE.2015.7113313

[8] Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F. Werneck.

2013. PHAST: Hardware-accelerated shortest path trees. J. Parallel and Distrib.
Comput. 73, 7 (July 2013), 940–952.

[9] Yong Deng, Yuxin Chen, Yajuan Zhang, and SankaranMahadevan. 2012. Fuzzy Di-

jkstra algorithm for shortest path problem under uncertain environment. Applied
Soft Computing 12, 3 (March 2012), 1231–1237.

[10] E. W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numer.
Math. 1, 1 (Dec. 1959), 269–271.

[11] Daniel Duque, Leonardo Lozano, and AndrÃľs L. Medaglia. 2015. An exact

method for the biobjective shortest path problem for large-scale road networks.

European Journal of Operational Research 242, 3 (May 2015), 788–797.

[12] Jochen Eisner, Stefan Funke, and Sabine Storandt. 2011. Optimal Route Plan-

ning for Electric Vehicles in Large Networks. In Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence (AAAI’11). AAAI Press, San Francisco,

California, 1108–1113. http://dl.acm.org/citation.cfm?id=2900423.2900599

[13] Yuan Gao. 2011. Shortest path problem with uncertain arc lengths. Computers &
Mathematics with Applications 62, 6 (Sept. 2011), 2591–2600.

[14] V.M. V. Gunturi, S. Shekhar, and K. Yang. 2015. A Critical-Time-Point Approach to

All-Departure-Time Lagrangian Shortest Paths. IEEE Transactions on Knowledge
and Data Engineering 27, 10 (Oct. 2015), 2591–2603.

[15] P. E. Hart, N. J. Nilsson, and B. Raphael. 1968. A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics 4, 2 (July 1968), 100–107.

[16] Songtao He, Favyen Bastani, Sofiane Abbar, Mohammad Alizadeh, Hari Bal-

akrishnan, Sanjay Chawla, and Sam Madden. 2018. RoadRunner: Improving

the Precision of Road Network Inference from GPS Trajectories. In Proceed-
ings of the 26th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems (SIGSPATIAL ’18). ACM, New York, NY, USA, 3–12.

https://doi.org/10.1145/3274895.3274974 event-place: Seattle, Washington.

[17] Xianan Huang and Huei Peng. 2018. Eco-Routing based on a Data Driven Fuel

Consumption Model. arXiv:1801.08602 [stat] (Jan. 2018). arXiv: 1801.08602.
[18] Phil LeBeau. 2019. Traffic jams cost the US an estimated $87 bil-

lion in lost productivity. https://www.cnbc.com/2019/02/11/

americas-87-billion-traffic-jam-ranks-boston-and-dc-as-worst-in-us.html

[19] Yaguang Li, Kun Fu, Zheng Wang, Cyrus Shahabi, Jieping Ye, and Yan Liu. 2018.

Multi-task Representation Learning for Travel Time Estimation. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD ’18). ACM, New York, NY, USA, 1695–1704. https://doi.org/10.

1145/3219819.3220033 event-place: London, United Kingdom.

[20] Yan Li, Shashi Shekhar, Pengyue Wang, and William Northrop. 2018. Physics-

guided Energy-efficient Path Selection: A Summary of Results. In Proceedings of
the 26th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (SIGSPATIAL ’18). ACM, New York, NY, USA, 99–108. https:

//doi.org/10.1145/3274895.3274933

[21] Wuman Luo, Haoyu Tan, Lei Chen, and Lionel M. Ni. 2013. Finding Time Period-

based Most Frequent Path in Big Trajectory Data. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’13). ACM,

New York, NY, USA, 713–724. https://doi.org/10.1145/2463676.2465287

[22] Paul Newson and John Krumm. 2009. Hidden Markov Map Matching Through

Noise and Sparseness. In Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (GIS ’09). ACM, New

York, NY, USA, 336–343. https://doi.org/10.1145/1653771.1653818 event-place:

Seattle, Washington.

[23] Daniele Quercia, Rossano Schifanella, and Luca Maria Aiello. 2014. The Shortest

Path to Happiness: Recommending Beautiful, Quiet, and Happy Routes in the

City. In Proceedings of the 25th ACM Conference on Hypertext and Social Media
(HT ’14). ACM, New York, NY, USA, 116–125.

[24] Christian Sommer. 2014. Shortest-path Queries in Static Networks. ACM Comput.
Surv. 46, 4 (March 2014), 45:1–45:31.

[25] U.S. Energy Information Administration. 2017. Total U.S. energy expenditures in

2015 were the lowest in more than a decade. https://www.eia.gov/todayinenergy/

detail.php?id=32432

[26] Dong Wang, Junbo Zhang, Wei Cao, Jian Li, and Yu Zheng. 2018. When Will

You Arrive? Estimating Travel Time Based on Deep Neural Networks. In Thirty-
Second AAAI Conference on Artificial Intelligence. https://www.aaai.org/ocs/

index.php/AAAI/AAAI18/paper/view/16657

[27] Bin Yang, Jian Dai, Chenjuan Guo, Christian S. Jensen, and Jilin Hu. 2018. PACE:

a PAth-CEntric paradigm for stochastic path finding. The VLDB Journal 27, 2
(April 2018), 153–178.

[28] L. Zhu, J. Holden, E. Wood, and J. Gonder. 2017. Green routing fuel saving

opportunity assessment: A case study using large-scale real-world travel data. In

2017 IEEE Intelligent Vehicles Symposium (IV). 1242–1248.

https://doi.org/10.1145/3274895.3274927
https://trid.trb.org/view/1482146
https://doi.org/10.1109/ICDE.2015.7113313
http://dl.acm.org/citation.cfm?id=2900423.2900599
https://doi.org/10.1145/3274895.3274974
https://www.cnbc.com/2019/02/11/americas-87-billion-traffic-jam-ranks-boston-and-dc-as-worst-in-us.html
https://www.cnbc.com/2019/02/11/americas-87-billion-traffic-jam-ranks-boston-and-dc-as-worst-in-us.html
https://doi.org/10.1145/3219819.3220033
https://doi.org/10.1145/3219819.3220033
https://doi.org/10.1145/3274895.3274933
https://doi.org/10.1145/3274895.3274933
https://doi.org/10.1145/2463676.2465287
https://doi.org/10.1145/1653771.1653818
https://www.eia.gov/todayinenergy/detail.php?id=32432
https://www.eia.gov/todayinenergy/detail.php?id=32432
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16657
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16657

	Abstract
	1 Introduction
	2 Basic Concepts and Problem Definition
	2.1 Basic Concepts
	2.2 Problem Definition

	3 Related Work and Limitations
	4 Approach
	4.1 Trajectory-aware Graph
	4.2 Trajectory-aware Path Selection Algorithm

	5 Evaluation
	5.1 Experiment Settings
	5.2 Experiment Results

	6 Conclusion
	Acknowledgments
	References

