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Statistical Estimation of Malware Detection Metrics
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Abstract— The accurate measurement of security metrics is a
critical research problem, because an improper or inaccurate
measurement process can ruin the uvsefulness of the metrics.
This is a highly challenging problem, particularly when the
ground truth is unknown or noisy. In this paper., we measure
five malware detection metrics in the absence of ground truth,
which is a realistic setting that imposes many technical challenges.
The ultimate goal is to develop principled, automated methods
for measuring these metrics at the maximum accuracy possible.
The problem natorally calls for investigations into statistical
estimators by casting the measurement problem as a statistical
estimation problem. We propose statistical estimators for these
five malware detection metrics. By investigating the statistical
properties of these estimators, we characierize when the esti-
mators are accurate, and what adjustments can be made 1o
improve them under what circomstances. We use synthetic data
with known ground truth to validate these statistical estimators,
Then, we employ these estimators to measure five metrics with
respect to a large data set collected from VirusTotal.

Index Terms—Malware detection, security metrics, security
measurement, ground truth, estimation, statistical estimators.

I. INTRODUCTION

HE importance of security metrics has been well appre-
ciated, despite the slow progress towards the ultimate
goal. However, the measurement of security metrics is little
understood. This fact may be attributed to the deceptive
simplicity of the problem that one may get at a first glance.
Under the premise that the ground truth is known (e.g., which
files are malicious or benign), it is indeed straightforward to
obtain the values of security metrics.
However, in practice, we often encounter situations in which
the ground truth is ecither unknown or noisy. The lack of
ground truth has been recognized as a tough hurdle that
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prevents security metrics from being measured accurately.
For example, machine leaming (or data mining) based cyber
defense approaches often need to train defense models from
datasets with known ground truth. In order to obtain the
ground truth, two approaches have been widely used. The
first approach relies on the manual examination by human
experts. However, this approach is not scalable because limited
numbers of human experts often need to examine a much
larger number of objects. This approach is also error-prone
due to the cognitive limitations in dealing with a large work-
load and/or inherent judgment errors. The second approach
depends on third-party information, such as a list of blacklisted
websites [1], [2]. However, the third-party information may be
outdated, as evidenced by the practice that researchers would
have to vet such information by some means [3], [4]. Indeed,
this approach only defers the problem to the third party and
thus does not resolve the fundamental issue,

As a comsequence, it has become a popular practice to derive
a pretended ground truth by conducting some Kinds of voting
by a set of sources (e.g., detectors). However, the validity and
reliability of this rule-of-thumb practice is little understood.
This is particularly true in the context of malware detection,
where a set of files (or objects) are labeled by multiple
malware detectors [5]-[7].

Kantchelian ef al. [8] appear to be the first to investigate this
problem. Specifically, they investigate both unsupervised and
supervised learning approaches to the aggregation of the labels
given by multiple malware detectors into a single one. The
setting in their unsupervised learning approach is similar to the
one considered in the present paper. They propose using the
naive Bayes method and treat the unknown ground truth labels
as hidden variables, using the Expectation-Maximization (EM)
approach [9], [10] to estimate the metrics (e.g., false positive
probabilities), and using the estimated metrics to infer the
hidden ground truth labels. Their work [8] makes the following
assumptions: (i) a detector has the same false positive prob-
ability with respect to any benign file and the same false
negative probability with respect to any malicious file; (ii) the
detectors label samples independent of each other; (iii) the
fraction of malicious samples is centered around 0.5; and
(iv) the detectors have low false positive probabilities and high
false negative probabilities. Note that assumptions (iii) and (iv)
are imposed by their choice of prior distributions, which is a
necessary step in any Bayesian statistical analysis (i.e., these
two assumptions are inherent (o the approach they adopt). In
the present paper, we initiate the investigation of the problem
with a different approach, which only makes two of those four
assumplions, namely assumptions (i) and (ii).
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A. Key Contribution

We make the following contributions in this work:

1) We bring up the research problem of measuring security

meltrics in the absence of ground truth. We propose
formulating the measurement of security metrics as a
statistical estimation problem. As a first step towards
ultimately tackling this problem, we investigate the
measurement of malware detection metrics in the setting
where each file is examined by multiple malware detec-
tion tools (or defectors for short), which may have
different capabilities in detecting malware. This is the
de facto practice introduced by VirusTotal [11].
In order to solve the statistical estimation problem
with heterogeneous malware delectors, we propose a
statistical methodology with three steps: (i) design
naive estimators to estimate security metrics in ques-
tiom; (ii) investigate the statistical properties of these
estimators, including their asymptotic distributions and
bias; and (iii) design adjusted estimators while charac-
terizing their applications.

2} In order to demonstrate the usefulness of the method-

ology, we propose statistical estimators for measuring
the following malware detection metrics: (i) the
percentage of malicious files in a population; (ii) the
false positive probability of a malware detector;
(iii) the false negative probability of a malware detector;
and (iv) the trustworthiness of a malware detector
defined by a pair of metrics, including the Bayesian
detection probability (i.e., the probability that a file is
malicious when a detector detects it as malicious) and
the negative predictive probability (i.e., the probability
that a file is benign when a detector detects it as benign).
Using a large, real dataset provided by VirusTotal,
we measure these metrics corresponding to the simple
method of majority voting by malware detectors.
The following findings are identified in this paper: (i)
A defender should use as many detectors as possible as
long as these detectors do more good than harm (i.e.,
their false positive and false negative probabilities are
smaller than 0.5). (ii) A defender can use a few (e.g., 5)
“very good” detectors (i.e., their false positive and false
negative probabilities are smaller than 0.1). However,
our analysis of the real dataset shows that none of the
detectors, including popular ones, satisfies this condi-
tion. {iii) Given a relatively small number of detectors
whose qualities (ie., false positive and false negative
probabilities) are not known, a defender should use
adjusted estimators rather than naive estimators.

This paper is structured as follows. Section Il describes
the statistical estimation problem. Section TIT presents statis-
tical estimators for the realistic setting of heterogeneous
detectors and validates these estimators using synthetic data
with known ground truth. Section IV discusses how the
methodology is applied to analyze a real-world dataset.
Section V discusses several important issues, including real-
world implications and limitation of the present smdy.
Section VI reviews related work. Section VII concludes
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the paper and discusses open fumre research problems.
For better readability, we defer proofs of theorems and
some algorithm details to the Appendix. The code that was
used to produce the experimental results is available at
https://github.com/Chenutsa/trustworthiness,

Notations: We summarize the notations as follows:

« [I: The indicator function

« Pr: The probability function

o mi: The number of files (or objects) in an experiment

« n: The number of {malware) detectors in an experiment

» Ty, Ty: The index sets of the benign and malicious files
among the m files (|Tp| = mo. |T1] = m1), respectively

+ m1: The fraction of malicious files (my = mq/m)

= -7 For a parameter (e.g., &), and "respectively represents
its naive and adjusted estimators (i.e., ) and 7)

o d;: The unknown, true label (i.e., ground truth) of the i-
th file (or file i): a; = U means benign and a; = 1 means
malicious

o X;;: The label assigned to the i-th file by the j-th
detector (or detector j)

« ¥;: The vated label of the i-th file by the n detectors

. f. n'lzt The asymptotic mean and variance of

» Pyj. P—j: The false positive and false negative probabil-
ities of the j-th detector, respectively.

o §yj,g_;: The trustworthiness of the j-th detector; g4 ;
is known as precision or Bayesian detection probability,
while g_; is known as negative predictive probability.

* Pak: The probability the veted label of a file is b under
the condition that the file’s unknown, Irie label is a.

o Z'“"): The indicator variable that the i-th file has a voted
fﬂt';'l’f @ and a label & assigned by the j-th detector

® Peab ;2 The probability that a file has a voted label a and
a label b assigned by the j-th detector under the condition
that the file's unknown, true label is ¢

® Ueab s "f',ab, ;¢ The mean and variance of the number of
files, each of which has a true label c, a voted label a,
and a label b assigned by the j-th detector

* e abati,j- The co-variance between (i) the random vari-

able representing the number of files, each of which has a

true label c, a voted label a. and a label b assigned by the

J-th detector, and (ii) the random variable representing

the number of files, each of which has a ftrue label c,

a voted label a', and a label &' assigned by the j-th

detector

II. PROBLEM STATEMENT AND A GENERIC
CHARACTERIZATION

A. Problem Statement

Suppose there are n malware detectors, called derectors
for short, and there are m unlabeled files (or objects).
In the context of malware detection, detectors label files as
benign or malicious. Let a; be the unknown, frue label (ie.,
ground truth) of the i-th file, with a; = 0 indicating a benign
file and a; = 1 indicating a malicious file. Let
In={l=i=m:q; =0} and T, ={l =i=m:a; =1}
denote the set of the indices of the ground-truth benign and
malicious files, respectively. Let mp and m denote the number
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of ground-truth benign and malicious files, respectively, where
mg = |[To|, my = [T1], and mq + m; = m.

Denote by X;; the label assigned to the i-th file by the j-th
detector, where X;; = 0 indicates that the /-th file is detected
by the j-th detector as benign and X;; = 1 indicates that the
i-th file is detected by the j-th detector as malicious. Denote
by Y; the voted label, namely the label assigned to the i-th
file through a voting method by the n detectors.

In this paper, we focus on majorily voting, namely that ¥;
is determined by

(1)

where () is the indicator function. Note that when

:5=l Xij = n/2, we set ¥; = 1 rather than ¥; = 0.
The treatment of setting ¥; = 0 instead is similar because
of the symmetry. As shown in Section Ill, this choice has
no significant side-effect because the estimators are accurate.
Recall that ¥; = 0 means the i-th file is treated as benign and
that ¥; = 1 means the i-th file is treated as malicious. That
is, ¥, ..., ¥ are the voting results, which are not necessarily
the same as the ground frufh a), ..., dy.

Definition 1 {Malware detection metrics): We are
ested in the following malware defection metrics.

o . This is the unknown portion of malicious files among

the m files, defined as m) = my/m = |I;|/m.

s py; and p_j;: These are the unknown false positive
probability py; and the false negative probability p_;
of the j-th (1 = j = n) detector

s gy and g_;: These refer to the trustworthiness of the
J-th {1 = j = n) detector,

Remark 1: Note that gy ; is also called positive predictive
value or precision or Bayesian detection rate, while g_; is also
called negative predictive value. These two melrics capture
the following: A defender cares about the trustworthiness of
a decision made by a detector, namely the probability that a
file ix indeed malicious {(or benign) when a detector says it
ix malicious (or benign), respectively. Metrics pyj, p_j. 44,
and ¢_; are defined in a probabilistic fashion, rather than
the popular empirical fashion (12}, [13], for two reasons: (i)
Probabilistic metrics reflect the intrinsic capabilities of the
detectors, which are invariant of the datasels in question;
whereas, empirical definitions are specific to datasets and may
vary from one dataset fo another; and (i) statistical estimators
make sense only with respect to fixed quantities (e.g., proba-
bilities), and do not work for random empirical guantities.

The research problem is to estimate the malware detection
metrics, my, Pyj. P—j. g+, and g_;, given a set of m files
and s detectors. To simplify the measurement of metrics py ;.
P—j. g+, and g_;, we make the following assumption:

Assumption 1 (Mistake Probabilities of Individual Detec-
tors): For a specific detector j, 1 = j = n, we assume

Pr(X;; = lla; = 0) is the same ¥i € Ty, (2)
Pr(X;; = Ola; = 1) is the same Yi e 1;, (3)

Eg. (2) savys that the j-th detector has the same false positive
probability when classifving any benign file as malicious.
Eg. (3) says that the j-th defector has the same false

inter-

negative probability when classifving any malicious file as
benign.

Under Assumplion 1 mentioned above, py;, p_;, g4 ; and
g—; are obtained by

Pej = Pr(Xi = 1a; =0), ¥ielp,
p_j = PI'{X;'J: =0a; =1), ¥iel,
q4j = Pria; = 1|1X3; = 1),
g_; = Pria; = 0]X; =0).

Remark 2: Assumption ! implies that benign files have the
same probability te be mislabeled by a specific detector as
malicious. Similarly, malicious files have the same probability
to be mislabeled by a specific detector as benign. This may
nat be universally true because some detectors may have a
greater capability in detecting some types of malware than
detecting other types of malware. Therefore, this assumption
needs to be further investigated in the future.

B. A Generic Characterization

For detectors j = 1,...,n with respective false positive
probabilities py; and false negative probabilities p_;, let
us look at the probability that the majority voting method
correctly labels a file when the file is indeed malicious. Define
this probability for any i, 1 =i < m, as

= n
pu:P[‘[ﬂ:llﬂ;:l}:Pf injzilﬂrl:])i {4}
i=l1
where ppy is independent of { because, under Assumption 1,
the X;;’s do not depend on the specificity of a malicious file.
Let p_mgr be the maximum false negative probability
among the n detectors, namely p_pqe = max{p_; : | <
j =n}. Then, py) can be given hy
L
n n -
P = Pr(Y = E} = Z (k)“ - P—max]kpim‘;;s (5)
k=[n/]
where ¥ is a Binomial(n, p_..) random variable and [x7] is
the ceiling function.
Similarly, let p_pin be the minimum false negative proba-
bility among the n detectors, namely p_p;, = min{p_; : 1<
j =n}. Then, py) can be given hy

pi = Z (:)“ — Ppomin) P

k=[n/1]

(6)

C. The Case of Homogeneous py ;'s and Homogeneous
p-i’s

In order to draw insights into the majority voting method,
we consider the special case of homogeneous detectors with
the same false negative probability p_, namely p_ = p_, =

...= P_p. In this case, we can obtain pq; by
"

= >

H 1
(k)tl —p )Yt
k=[n/2]

Fig. 1 demonstrates the values of pyy with varying
n and p_. The preceding discussion indicates that these
numbers provide the lower bound (i.e., p_may) and the upper
bound (i.e., p_min) for the py1"s of the majority voting method

(7
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Fig. 1. Example py; of the majority voting method with n homogeneous

deteciors of false negative probability p_.

with heterogeneous detectors of different false negative proba-
bilities. The findings are highlighted as the following insights,
while noting that similar insights can be drawn regarding pog.

Insight 1: In the special case of homogeneous p_;’s,

o the majority voting method with n = 20 “good ™ detectors
that have a small false negative probability p_ < 0.2 is
almaost perfect in detecting malware.

« the majority voting method with “fair” detectors (0.2 =
p— = 0.5) can still be almost perfect in detecting
malware, as long as the number of such detectors is large
enough fe.g., n = 50 for p_ = 0.3).

» the majority voting method with “poor” detectors (p_ =
0.5) is useless in detecting malware, no matter how many
detectors are used.

The preceding insights are equally applicable to the false

positive probability because of the symmetry in the definitions.

I11. ESTIMATORS FOR HETEROGENEOUS p4;°S AND p_;’s
A. Methodolagy

We propose the following methodology to cope with the
more realistic setting of heterogeneous py;'s and p_;'s.

= Step I: Design naive estimators of &y, pyj, p—;, g4 and
g j, respectively denoted by wy, fyj, P—j. g4 and §_;.

« Step 2: Investigate the statistical properties of these naive
estimators, especially their asymptotic distributions for
characterizing their bias (i.e., the expected difference
between the estimated value and the true value).

» Step 3: Design adjusted estimators to incorporate correc-
tions Lo their bias.

Each step of the methodology is elaborated below.

B. Designing Naive Estimators

We define the naive estimators of &y, pij, p_j, g+, and
g as:

= T IYi=1 ™Y
o= i=] ( ]= i=1 . @)
i m

" z:"l:lf[-xi_;:lﬂﬂdfizl}]

P+i = i . (9)
- ST =0)

. 2 (X =0and ¥; =1)

= i Iyi=1) ’ (10)
G+j = 2= [(Xij=1a ) an

Zf;] Xy =1) *
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. 25X =0and ¥; =0)

o 2 [{X =0 (12)

C. Investigating Statistical Properties of Naive Estimators

In order to examine the bias of the naive estimators given
by Eqs. (8)-(12), we need (o investigate their asympltotic distri-
butions. For this purpose, we make the following assumption:

Assumption 2 (Tndependence of Decisions): We assume that
the detectors independently make their decisions, namely

PI'{X;'J: =¢ and X;'f_;r=¢-f} = P'l'[X;'j =c)- PI{X;rjf=¢-r}
foralli,i' =1,....m, and j, j = 1,....n with (i, j) £
(i', j"). Note that the independence applies when two different
detectors are applied to the same file (ie., i =i and j # j')
and when the same delector is applied to wo different
files (i, i #£i' and j = j').

1) Sratistical Properties of mj: Similar to the definition
of pyy in Eg. (4) under Assumption |, we can define the
probability that the voted label of a file is & under the condition
that its unknown frue label is a as

Pat = Pr(Y; = bla; =a) for a,be (0, 1].
Ifa; =1 (i.e.. the ground truth is that the i-th file is malicious),
then the X;;'s are independent Bernoulli(l — p_;) random
variables for 1 = j < n. Hence the ¥;"s are independent and

identically distributed (IID) Bernoulli random variables with
the following probability parameter

P =Pr(§)(u = %lﬂj = ]).

Similarly, if @; = 0, the X;;'s are independent Bernoulli(py ;)
random variables and the ¥;'s are TID Bernoulli random
variables with the following probability parameter

- n
por = Pr (Exij = Elﬂ;‘ =ﬂ),
Now we present Theorem 1, with its proof deferred to
Appendix A for better readability.
Theorem I: When mp — oo and my — oo, ) asympiofi-
cally follows the Normal distribution with the following mean
and variance:

g =mpi+ 1 —=x)po,
2 mpn(l — pn)+ (1 —x)por(l — por)
m

Remark 3: Theorem 1 implies that the asymptotic bias of
estimator a1 is gy —my = m(pn — 1)+ (1 — m) po. This
bias is small in magnitude (ie., an absalute value) when the
majority voting method results in a high py and a low py,
but can be large when pyy is small or pg) is large.

2) Statistical Properties of Pyj, P—j, §4;. and §_;: Denote
by Z{i") the indicator variable (i.., a random variable) that
the voted label of the i-th file is @ and the label assigned to
the i-th file by the j-th detector is b, namely

ZEP — [(X;j=b and Y;=a) for a,bef0,1),
Intuitively, the foh}’s partition the m files into four groups: the
files with Z;") = 1, which are voted as benign but labeled
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as malicious by the j-th detector; the files with Z{m]' 1
which are voted as benign and also labeled as bcmgn by the
j-th detector; the files with ZTD} 1, which are voted as
malicious but labeled as benign by the j-th detector; and the
files with Z'F.[! = 1, which are voted as malicious and also
labeled as malicious by the j-th detector.

Under Assumption 2, we can obtain

ZV = I(X;j=1 and ¥ =0)

= I(X;j = 1}4( 3 it < {”;2]),
k=1,k=f

*

z" = 1(X;; =0 and Y;=0)
- n
=IXij =0T > Xa<3)
k=1,k=]
zi" = 1(X;;=0 and ¥;=1)

m
"
:f{XJ_f:D_}'I( Z XHEE):
k=1.k#J

11
z0 = 1(xy =1 Yi=1)

=1(X;=1)-1 z Xit
k=15

Note that for a, b < {0, 1}, we have

and

2)). (13)

1Y =a)
=J(Xjj=1land ¥; =a)+ I(X;; =0 and ¥; = a)
=z 4+ 25, and

1(X;; =b)

=JXjj=band ¥; = 1)+ I(X;; =band ¥; = 0)
b 1b
=ZJ'.[J. '+ zl] ).

Hence Eqgs. (9)-(12) can be respectively rewritten as

s = iz (14)
Pvi = > z@ﬂ]] Py Zﬂm}‘

poj = iy (15)
TEAT A

L/ " Z'['1]-|— " Z{ﬂl} (16)
- ZI—I Z':lm}

S 2y, 7 a7

where Z{" are defined in Eq. (13).

Denote by peap,; the probability that a file has a voted
label a and a label b assigned by the j-th detector under the
condition that the file’s unknown true label is ¢. That is,

Peabj =Pr(ZE" = lla; =) for a,b,ce (0,1},
If @; = 1, then the X;;'s are independent Bernoulli(1 — p_;)

random variables for 1 = j < n. According to Assmnptmn 2,
for each fixed triple (a,b, j), the Z"‘ir bs are TID

Bernoulli random variables with the probability pyap, ;.
The probabilities pr g4 ;'s are obtained by
iy = ]),

Lo, = Pf(Zm” =lla=1)

= u—p_,-)-Pr( > Xa <
k=

=1k#£j
da; = ]),

—2)

prooj = Pr(Z5" = g = 1)

n
fl
=P_J;-P[‘(* Z Xk -:E

=LEk#]
prio = Pr(Z0” = lja; = 1)
=p_;-Pr Z Xip = D=- =11,
k=1k]

Pt = PrZ0Y = g = 1)

. (n—2)
=[]—p_j]-Pl‘(lZ Xk = = a,-:]).

=1 k£j

Therefore, we obtain

Z 2{01‘1 ZZ{{K}} Z Z{HII} Z Zfll‘] .
= el icTy il
which follows a multinomial distribution with parameters
my o and  (pionj, P1o0s P PG Actually,
the components in this multinomial random vector respectively
count the numbers of malicious files belonging to the
aforementioned four groups determined by ij’b}'s

If @; = 0, the X;;"s are independent Bernoulli( py ;) random
variables for 1 = j = n. Similarly, for each fixed triple

(a,b, j), the Z{*""s are 1D Bernoulli random variables with
Sy
- n
=({1—pyj)-Pr Z Xik < 5@
" n
=(l—psj)-Pr| D Xik = S =
pon,j = Pr(Z{Y = 1]a; = 0)
(01} (01} (10) ()
(Z Zi 2 Zy 2%y s 2T )

n
(n—2)
ZPH.PT(;; Z Xk < —
pogoj = Pr(Z" = ]a; =0)
u),
po.0,; = Pr(Z}” = 1ja; = 0)
E=1,k#]
2] D)
Accordingly, we have

poolj = Prtz“’“ = lla; = 0)
1 = []) .
=1 k]
= p4j-Pr Z X =
k=1 k|
Ty iy icTy icTy



2970

which follows a multinomial distribution with parameters mg

and (poo1,j, Po,oo,j. Po.10,j, Po,11 ;). Similarly, the compo-

nents in this random vector respectively count the numbers

of benign files belonging to the four groups determined by
(k] -

AR

o X
i:mm Assumption 2, we know that the random vectors

ISP DI I

ieT) ieT) ieTy iel

{01} (0 (107 (11
2% 2 2 T
ieTy ieTh ieTy ieTy
are independent random variables. Hence, we have the
following Theorem 2, with its proof deferred to Appendix A.
Theorem 2: Fora, b, a', W, c {0, 1}, we define
Heab,j = MePeab,js
2
O ab,j = MePe.ab (1 — Peab,j),
Peabua't',j = —MePeab,jPeat’,
When mg — oo and my — oo, the following can be obtained:

and

and

1} The false positive probability estimator py; asymptot-
ically follows the Normal distribution with mean and
variance being respectively

H1,01,; + po,01,j
1,01, + #1,00,j + 20,01, + 20,00,
03 ; = dioi g ; +2did2p10100,; +dioi g

+diady, ;+2idapoon oo + diad g ;.

Hej =

where
d (1,00, + #o,00, )
1= @
(1,01, + m1,00,j + poo,j + pooo, )
(10, + oo, j)
i =

(1,01, + 1,00, + foom,j + po,00, /)%

2) The false negative probability estimator p_; asymptof-
ically follows the normal distribution with mean and
variance being respectively

p1L10,; + po,10,;
A0+ a, + poo + poa
2 _ g2 g2 2
6_; = dﬂgl..lﬂ,j + M}dﬂiﬂl.lﬂ.ll,g '|'d4ﬂ'|~1|~j

+d§ﬂ.|i 10,; + 2dadapo o, + tl’%ﬂi“‘j,

H—j =

where
M, + poan,
'd3 = F*
(00,5 + o100, + pojoj + pog,j)
0,7+ [0,
dfl — 4 J

(p1,10,; + g1, + po,10,5 + o, ;)2
3} The positive predictive value estimator 4, ; asymploti-
cally follows the Normal distribution with the following

mean and variance
E1,01,7 + B,

Uy = 5
p10n,f 1, + o0, + R0
2 2 2.2
0 ; = ejoig; t2eep001,; + €307
+f%ﬂ§',m,; + 2erezpoon, i, + E%ffuz,] 1,
where

o) = H1,01, T o0,
(1,00, + 21,01, + oo, + o1, )
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B B oo,

(r,on, + g+ oo, + pon )

4) The negative predictive value estimator §_; asymptoti-
cally follows the Normal distribution with the following
mean and variance, respeciively

1,00, + 0,00,
£1,00,j + £1,10,j + H0,00,j + #0,10,5

2 z_2 z_2
0~ ; = €30 on,; T 2e3€ap1,00,10,; + €307 19,

£ =

b_j =

+ efa&m. j + 2eseapo 00,10,; + eﬁaﬁ?‘ 10, j+
where
e — Mi0,7 + poao,;
T (oo, + g0 + o0, + o0,
1,00, + fo00,
(p1,00,5 + p1,10,5 + po,00,; + po,0,7)*
Remark 4: None of the means of the asymptotic distribu-
tions in Theorem 2 maiches the true value of the corresponding
mefric, meaning that these naive estimafors are biased and
their biases have more complicated forms than thar of 7.

£y = —

D Designing Adjusted Estimators

1) Adjusting xy to 7;: From Theorem 1, we know that the
asymptotic mean of &) is gy = 7y p11 + (1 — 1) por. By the
method of moments [14], we can set up the following equation
o oblain a new estimator of mp:

1 =mpn + (1 —x1)por. (18)
By replacing pyy and pgy with their respective estimators
and ppy, which can be obtained by the Monte Carlo method
described in Section III-D4 with p; = fy; and p_; = p_;
for j =1,...,n, we can solve Eq. (18) to obtain an adjusted
estimator of 7 as follows:

o= P (19)
£ — Pl
which has the bias removed. The adjusted estimator 7, is then
used o compute
iy = [mmry] and g =m — g,

where [x] is the rounding function (i.e., it returns a rounded
integer of x). The estimators 71, M and mp will be used in
the estimator adjustments of pe;, p_;. gyj, and g_;.

2) Adjusting p,; and p_; Respectively to py; and p_;:
The adjustments of fy; and p_; follow the same principle
as, but are more complicated than, the adjustment of 7
because 7 ; and p_; are related to all of the other estimators,
We adjust one estimator j at a time.

For adjusting py; and p_;, we define the following condi-
tional probabilities that are conditioned on a; = 1 and a; = (:

n
EI|j=Pl‘ Z Xjk{{ﬂ_z]ﬂ;=1 .
k=1 k#]
n
EI‘JJ=P1' Z Xip = ai=1],
k=1 k#]
. (n—2)
fj =Pr Z Xik = ai=0],
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a,-:ﬂ

]
=P > _X:k f:;—l
k=1,k+)

For a fixed detector j, these conditional probabilities are in
regard to the other (n — 1) detectors. Under the condition
that a; = 1 (i.e., the ground truth is that file i is malicious),
ay; is the probability that no more than (s — 2)/2 detectors
other than j detect file i as malicious; az; is the probability
that no more than n/2 detectors other than j detect file
i as malicious. Correspondingly, f1; and f2; are condition
probabilities under the condition that a; = (. We stress that
these conditional probabilities are independent of i because,
under Assumption 1, these probabilities are the same for amy
i. These conditional probabilities can be estimated by their
Monte Carlo estimators ay, j and ﬂ;,j, where i = 1,2 with
P+t = Py and p_yp = p_y fork # j. By Theorem 2, we can
set up the following
P
B i (1 — p_ja; +mopyif;

1 (1—p_j)a1j +aity p_jGaj+iiopsjfrj+io(1—py )y’
P-j

it p—j(1 — daj) + (1 — pyi)(1 = faj)
(-'ﬁl.iﬂ—jfl — ;) gl — p_j)(1 —dayj) ) '
+aitg(1 — pyj)(1 = f2j) + o py (1 — frj)
Some algebraic manipulation reduces these equations to the
following linear equations of p; and p_;:

_ : b
dpl —dz P by
where
an = fﬁﬂf"lj[] Pyt ’ﬁﬂr‘&?-ﬂi"'f*
dyjy = rﬁ|&[jl:] - .f‘+_,i} +f&]&2jﬁ+jv
az = rig(1 — fa)(1 — p_j) +io(1 — fi)j_j,

axn = mi(l —ay)(1 — p_j)+m(l —ai;)p-j,
by = tofajpyj —midn (1 — pyi),
by = sitg(1 — Br)(1 — p_j) — sty (1 — @1;)pj.
The adjusted estimators for py; and p_; are then the solution
(i, p—j) to Eq. (20).
3) Adjusting §4; and §_; Respectively to §+; and §_;:
Note that the positive and negative predictive values gy ; and

g ; are related to the false positive and negative probabilities
P4y and p_; through 7y as

m(l—pj)
P = 21
T =+ 0—mps,’ @b
I — )1 — py s
q_j _ { I]J( P+.I’-} {'22)

(== —p)+mp_j
Given the adjusted estimators 7y, py; and fp_;, we can
compute the adjusted estimators for g ; and g_; as

. (1l — p_j)

- — 23
i Tl —p_j)+ =T py; (23
g, = (I —m)(1 — pyj) 24)

C(—a)( - Pyt mpo

Algorithm 1 Monte  Carlo

Computation  of
Pr (ELL Xij = M) for Some Integer M

1: Input: A sequence of probabilities {p;, j=1,....n}, N =
10, Q00
: Output: Pr (Z‘;=| Xi; = M) where X;; ~ Bemoulli(p;)
: setoa counter k& «— (.
- for £ = lioN do
generate (X¢1,...,Xsm) such that xg; ~ Bernoulli(p;).
if ZE=| xgj = M then
k—k+1.
end if
: end for
- Output £/N as the final result.

R

4) Monte Carlo Computation of PI[Z_’};; Xij = M)
Note that Pr (ZL] Xij = M is the probability that the total
number of detectors that say that the i-th file is malicious is no
greater than M, where M is a given parameter. The calculation
of the adjusted estimators requires one Lo estimate probabilities
involving the sum of some of the X;;’s, such as the probability
estimators gy, Pio, @15, @27, i, and f2;. Although the X;;'s
are independent Bernoulli random variables, the parameters
of their distributions are different because the detectors’ false
positive probabilities and/or false negative probabilities can be
different from each other (e.g., py; # pyjr where j # j').
This means that the sum of these variables does nor follow
any standard distribution. Tn this section, we describe a Monte
Carlo method for evaluating probabilities involving such a
form of variables. Without loss of generality, we present an
algorithm for computing Pr (ZE=1 Xij = M) for any M.
The computation of the other probabilities involving the sum
of some X;;’s is similar.

E. Numerical Experimenis

Here we present numerical experiments by using synthetic
data with known ground truth to examine the accuracy of the
estimators mentioned above. We consider two settings of false
positive probabilities py;’s and false negative probabilities
p—;'s: slight heterogeneity and true heterogeneity.

1) Experiments With Slightly Heterogencous pL;’s and
p—;'s: In the first set of numerical experiments, we consider
n = 5,10, 15, 25, 35 detectors, whose py;'s and p_;'s are
slightly heterogeneous, by choosing them uniformly from the
range [e, e +0.1], where e = 0,0.1,0.2, ..., 0.7. We fix m =
50, 000 and &y = 0.2 in this set of numerical experiments.

For each fixed pair of parameters (n, €), we generate 1, 000
samples as follows (see Algorithm 2 in Appendix B for
details). We first randomly generate a set of p;'s and p_;’s,
each of size n, from the Uniformie, ¢ + 0.1) distribution.
We then generate 1,000 data samples for each pair (a, €).
To make the results comparable across the samples, we use
the same py;°s and p_;°s to generate the 1,000 data samples.
Within each sample, we randomly generate the ground truth
labels for the 50,000 files with exactly 50, 000 = (.2 = 10, 000
malicious files and 50, (00 — 10, 000 = 40, 000 benign files.
Then, the labels are assigned by the detectors and the voted
labels are generated as in Section ITI-E1.
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Fig. 2. Average biases (over the 1,000 data samples) of the estimators of &y, p ;.44 in the numerical experiments with slightly heterogenecus p. ;'s and
P— ;s respectively chosen from the ranges as indicated (Section 11I-E1), where j £ [1,n] and |bias] represents the absolute value of biss. (1) |bias| of .
(b) |bias| of pyj. (c) |bias| of gy ;. (d) |bias| of #). (e) |bias| of psj. (D) |bias| of §4 ;.

Fig. 2 plots the biases of the naive and adjusted estimators
respectively for my, py; and g4 ;. and shows that the naive and
adjusted estimations are approximately the same. The results
of the estimators for p_; and g_; are similar and thus omitted.
We draw the following insights.

Insight 2: In the case of slightly heterogeneous pi;'s and

;'8
g ..J a small namber (e.g., n = 3) of “very good" detectors

(ie, pij < 0.1 and p_; =< 0.1) can make the bigses of
naive and adjusted estimators close to zero, meaning that
majority voting is almost perfect in detecting malware.

o a large number (e.g., n = 13) of “good” detectors (iLe.,
01 = py; = 02 and 0.1 = p_; = 0.2) can make the
biases of both the nagive and adjusted estimators close to
zero, meaning that majority voling is almost perfect in
detecting malware.,

o a larger number (e.g., n = 33) of “fair” detectors (Le.,
02 = prj = 05 and 02 = p_; = 0.5) make the
biases of both the naive and adjusted estimators close
to zero, meaning that majority voting is almost perfect
in detecting malware. Moreover, the adjusted estimators
have lower biases, or are more accurate, than their
corresponding naive estimaiors.

« when the detectors are “poor” {ie, py; = 0.5 and
P—j = 0.3), neither the naive estimators nor the adjusted
estimators are reliable because their biases are high.

2} Experiments With Truly Heterogeneous py ;s and p_; s:
In the second set of numerical experiments, we consider
m = 100,000 files with a ground-truth portion of mali-
cious files my = 0.58579, which is chosen according to the
my derived from a preliminary analysis of the real dataset.
We also generate synthetic data according to the adjusted

estimators derived from the preliminary analysis. The prelim-
inary analysis is not reported here, but its results are very
similar to the analysis reported in Section 1V. The intent
is to make the synthetic data mimic the real data, but for
the synthetic data we know the ground truth. Since the real
dataset contains 47 detectors, we consider n = 47 simulated
detectors. To accommodate heterogeneity, we choose po;
from the range of (0.000617,0.256) and p_; from the range
of (0.00238, 0.998), where J e [1,47]. To see the impact of
“poor™ detectors whose p_;’s are greater than or equal to 0.5,
we consider 8 “poor” detectors whose p_;’s are respectively
0.515, 0.606, 0.648, 0.718, 0.732, 0.828, 0.921, and 0.998.
We rank the n = 47 simulated detectors according to their
p—;'s in the decreasing order, which leads to a fixed list of
simulated detectors named 1,2, ...,47.

In order to see the impact of the number of detectors
that are used in the majority voting method, we consider a
sequence of experiments that respectively use the first ¥ =
5,15,25, 35,47 detectors on the list of the 47 simulated
detectors. This means, for example, that simulated detector
43 will be encountered only when we consider xk = n =
47 detectors, butl detector 33 will be encountered when we
consider k = 35 = n = 47 and v = n = 47 detectors.
For a fixed & = {5, 15, 25, 35, 47}, we use these x detectors’
pyi’sand p_;'s to generate N = 1, 000 data samples. Within
each sample, we randomly generate the ground truth labels for
m = 100, (00 files with exactly 100, 000 = 0.58579 = 58, 579
malicious files and 100, 000 — 58, 579 = 41, 421 benign files.
Then each detector is applied to these m files. When the true
label of a file is 1 (malicious), the label assigned by the j-th
detector is randomly generated according to the Bernoulli (1 —
p—;) distribution. When the true label of a file is 0 (benign),
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Fig, 3. Relative ahsolute bias (RABs, in %) of portion estimators of
mulicious files (7] = 0.538579) obtained in numerical experiments with truly
heterogeneous po;'s and p_;"s (Section II-E2).

the label assigned by the j-th detector is randomly gener-
ated according to the Bernoulli (py;) distribution. Once all
the n detectors are applied to all the files, the voted label
for a file is determined according to the majority voling
method.

In this setting, the values of each metric can vary over a
wide range. This makes a direct comparison of their biases
less revealing since the scale of the bias depends on the scale
of the true metric value. Therefore, for ease of comparison
we define the following Relative Absalute Bigs (RAB) for the
J-th estimator, 1 = j = n:

RAB(/)
|average bias of the estimator over all the samples|
a true value of the parameter being estimated

(25)
which measures how accurate the estimator is relative Lo the
true parameter value.

Table T summarizes the RABs of the other estimators for
detectors j = 3, 13, 23, 33, 43 as examples. Fig. 3 summarizes
the RABs of the m estimators. It is worth mentioning that the
RABs for the false positive probabilities (p,;) of detectors
3 and 13 are high. This is because they have really small p ;,
namely pyz = 0.000617 and py 3 = 0.00938. Although the
scales of the biases are small, they are relatively large because
the actual true values are very small. Overall, we can draw the
following insight from Fig. 3 and Table 1.

Insight 3: In the case of truly heterogeneous py;'s and
P-j’s,

» majority voling can be ruined by the presence of a

significant number of “poor” detectors.

« bath the naive estimators and the adjusted estimators can
be accurate when the number of detectors is large. For
example, when n = 47 detectors, the RABs of the two
sets af estimators are the same, implying that majority
voting achieves perfect accuracy and there i5 no room
for further improvement over the adjusted estimalors.

o when using n < 47 detectors, most RABs of the adjusted
estimators are substantially lower than the RABs of the
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naive estimators, implying that the adjusted estimators
can indeed achieve a better accuracy.

IV, APPLICATION
A Dataset

Our dataset consists of 10,738,585 files collecied from
VirusTotal in 2015, involving 62 malware detectors in total.
Since some files are not analyzed by every detector, we omit
the detectors that labeled less than 100,000 files. Among the
remaining detectors, TrendMicro and TrendMicro-HouseCall
are apparently from the same vendor (i.e., TrendMicro) and
McAfee and McAfee-GW-Edition are apparently from the
same vendor (i.e., McAfee). Because two detectors from
the same vendor would use some common technology (i.e.,
not independent of each other) and our statistical estima-
tors assume that the detectors are independent of each
other, we eliminate TrendMicro-HouseCall and McAfee-GW-
Edition. Then, we further eliminate the files that are not
labeled by all of the remaining detectors. As a result, we have
9428997 files that are labeled by 47 malware delectors,
leading to a matrix X;; with 9,428,997 rows and 47 columns.
These files correspond to 5 months in 2015: 3,760,291 (May),
2,430,201 (June), 344,067 (July), 1,918,299 (November), and
976,139 (December). This prompts us to analyze the entire
dataset as a whole and analyze the corresponding 5 smaller
datasets individually as well.

B. Experimental Design

For the entire dataset and each of the 5 datasets, we consider
the following sequence of experiments with ditferent sets of
detectors, which conduct the majority voling in each case,

o Fxperiment I: We consider n = 4 handpicked detectors,
namely Kaspersky, McAtee, Microsoft, and Symantec,
because they are widely used in the real world.

o Fxperiment 2: In addition to the preceding 4 detectors,
we randomly select 6 of the remaining detectors, leading
to i = 10 detectors in the experiment.

o FExperiment 3: In addition to the preceding 10 detectors,
we randomly select 10 of the remaining detectors, leading
to i = 20 detectors in the experiment.

o FExperiment 4: In addition to the preceding 20 detectors,
we randomly select 10 of the remaining detectors, leading
to s = 30 detectors in the experiment.

« Experiment 5: In addition to the preceding 30 detectors,
we randomly select 10 of the remaining detectors, leading
to # = 40 detectors in the experiment.

« FExperiment 6. We consider all of the n = 47 detectors.

C. Estimating Metrics Py, P, G4, 4—;

Fig. 4 plots the estimation of py;, p_;, gy, q—; for each
of the 47 detectors with respect to the entire (ie. “All")
and July datasets. Due to space limitations, we omit the
May, June, and November datasets because they exhibit a
phenomenon similar to the entire dataset as plotted in Fig. 4a,
and we omit the December dataset because it exhibils a
phenomenon similar to the July dataset as plotted in Fig. 4b.
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TABLE I

RELATIVE ABSOLUTE Bias (RARS, IN %) OF THE ESTIMATORS OF Prjs P—js4jsG—j

i OBTAINED IN NUMERICAL EXPERIMENTS WITH TRULY

HETEROGENECQUS P+ 'S AND p_ —J 'S (SECTION III-E2). NOTE THAT DETECTOR j IS EN’CGLNTFHFD ONLY WHEN k = j BECAUSE FOR AN
EXPERIMENT WITH PARAMETER k£, ONLY THE FIRST & (k <= n) DETECTORS PARTICIPATE IN VOTING

K || RAB(f:;) | RAB(p;) " RAB(p-;) | RAB(p-;) U RAB(g+;) | RAB(gy;) || RAB(g-;) | RAB(g-;)
Detector j = 3 (pyz = D.ODDGIT, p_3 = 0.828, g5 = 0.D9747, g_5 = 0.46047)
5 || 14535 15022 73,367 58.003 HO.238 93187 116.44 11631
15 || 10814 10442 13.829 24348 57.131 52.283 91.456 #1.263
25 || 2891.2 1700} 20269 0.73005 H.OR2T 47222 20.906 89356
a5 || 36312 20026 0.1949 0.23764 0.097835 0.001765 0.31401 0.034455
47 || 10004 10.004 0.14966 0.14966 0.023665 | 0.023663 0077347 | 0077347
Detector 7 = 13 (praa = 000938, p_yz = 0339, gz = 0.99007, g—13 = 0L.GTIRT)
15 || 32779 3100.8 46.217 29.1 68505 61.417 41.754 36.909
25 || 96478 496.87 b.5R12 294 12.133 3.5893 11.74 4.7638
s || 8877 36354 0.49269 0.19468 0.094029 0.035434 0.3934 0.13086
47 | 21952 21952 1.6503 1.6503 0013516 | 0.013516 || 032851 0.52851
Detector 7 = 23 (pigzy = 00,0952, p_zs = (.126, gys = 0.92849, g_35 = 0.83546)
25 || 13657 742280 13.804 4.2669 14.676 6981 54536 20588
35 [ 3.0858 1.2075 027853 [.635963 0.282 010541 0.03217 0097677
47 || 1.2355 1.2355 0.70389 0.70389 0.080952 0.080952 0.09464 0.09464
Detector j = 33 (pas = 0.19, p_gz = 0.044, gogz = 087678, g_33 = 0.92860)
35 || 29361 1.2875 1.9487 2.6073 047275 0.1948 0.13101 0.19516
47 || 1.7409 1.7409 22299 22299 0.20125 0.20125 0.13066 0.13066
Detector | = 43 (praz = 0227, p_qa = 00173, graz = D.8506, g_g3 = 0.965032)
47 | 03570 | 0.3570 || 3.8895 | 3.8895 || 0.059732 | 0.059732 | 0.12257 | 0.12257
We make the following observations. First, corresponding o« b, "Fadidfua'se (WS 20 UU L s et N |
the entire dataset, none of the detectors is very good (ie., false 3 '_h-,- "M." .r'_' _" 3 “lr*:.mlt ! ! . g
positive and false negative probabilities are both smaller than =& ™ [ =« =1 ™ :{ 2 g ii' e
0.1). Therefore, 8 detectors whose false negative probabilities ; E b . _' I . I LN fg gl
are greater than 0.5. More specifically, corresponding to the  * :i wapnete -;ﬂ-.a::‘ S e v _.._-": J:‘, L
entire (thus, the May, June, and November) datasets, namely e A aa ey e e
Fig. 4a, we observe that the false positive probabilities of the e e
detectors, namely the red-colored py ;s and py ;'s, fall into the (@ ®
interval I_{:.1 D.:’;J. Indﬂﬂd, the Ed.jus[ﬂd minimum and maximum Fig. 4. Estimation of Pajo Pejis GtjisG—j for j € [1,47] when using the

false positive probabilities are respectively 0.0006 (for a
detector with a false negative probability of 0.8239) and
0.2756 (for a detector with a false negative probability
of 0.0086). These two examples would manifest two different
philosophies in designing detectors: trading a high false posi-
tive (negative) probability for a low false negative ({positive)
probability. Moreover, the Bayesian detection probabilities,
namely the ¢ ;'s and g, ;7s, fall into a relative small interval of
[0.8, 1]. For the July (thus, the December) datasets, a similar
phenomenon is exhibited by the Bayesian detection proba-
bilities, but not by the false positive probabilities. However,
the detectors” false negative probabilities, namely the p_;’s
and p_;'s, and negative predictive probability, namely the
g—;'s and §_;"s, vary substantially.

Figs. 5 and 6 plot the estimation of py ;. p_;. gy, §—; for
Kaspersky, McAfee, Microsoft, and Symantec, with respect to
the entire and July datasets and with respect to the sequence of
experiments of n = 4, 10, 20, 30, 40, 47 detectors mentioned
above. We omit the May, June, and Novemnber datasets because
they exhibit a phenomenon similar to the entire dataset
in Fig. 5, and we omit the December dataset because it exhibits
a phenomenon similar to the July dataset in Fig. 6. We make
the following observations.

First, malware detectors achieve different trade-offs between
their false positive probability and their false negative prob-
ability. Consider the case of n 47 detectors with the

47 detectors to the entire dam:et (a) AN {ie., the entire dataset). (h) The
Tuly dataser.

entire (thus, the May, June and November) dataset as shown
in Insight 3, we observe that the naive estimators are almost
the same as their adjusted estimators. This means that the
estimators give accurate results. Kaspersky has a false posi-
tive probability p,; = p,; = 0.18632, a false negative
probability p_; = p_; = 0.04286, a Bayesian detection
probability §o; = §4; = 0.87382 (i.e., when the Kaspersky
detector says a file is malicious, the trustworthiness of the
claim is anl},r 87.382%), and a negative predictive probability
g_j == §_; = 093370 (i.e., when the Kaspersky detector
says a file is benign, the trustworthiness of the claim is
93.370%). Notice that Kaspersky's false positive probability
Py is almost 4 times of its false negative probability p_;.
A similar phenomenon is exhibited by McAfee. On the other
hand, Symantec has a smaller false positive probability and
a larger false negative probability, namely py; = py; =
0.06956 = p_; = p_; = 0.21011. Moreover, Symantec
has a larger Bayesian detection probability §y; = §,;
0.93869, and a smaller negative predictive probability, namely
g—j = §—; = 0.76661. These observations are consistent
with n = 10, 20, 30, 40, 47 detectors, but not necessarily for
n = 4 detectors, meaning that using the 4 popular detectors for



DU et @l STATISTICAL ESTIMATION OF MALWARE DETECTION METRICS IN THE ABSENCE OF GROUND TRUTH

vef F
— - -
| Bl o e e = | 2=

=2 se=aiE
L1

— —
—— —

LLL
aid-

wE

iy

1 il
| ;':--_- — e o — - —
v i @ m W

T — — -
— . -— -— -

-
e g m i e —a

e T
n

(a)

as
[
"

(b}

Fig. 5. Estimation of p;, p

dataset. (a) Kaspersky. (h) McA (o) Microsoft. (d) Symantec.

Cepy
——py
ey
——py
Cme iy
——y
cweiy
———y

B e s e R e ) i

-

o
e L
- L

=T "
& "._._

%
e

- — =l

-3 e
—a
i

e

A
s e ecs¢e

. e ]

T .
]

&)

L

e e T U —— [T —

—

o ad Sk TS e e =

e i g e B i g oy

Bl e e S — o — — - = s o o e — - =
¥ W m _ w - @
"

(c)

[T w W W W
n

(d)

_f;-~q+;-~q_j for Kaspersky, McAfes, Microsoft, and Symantec when using n = 4, 10, 20, 30, 40, 47 detectors to the entire
BE.

R N A

[F

B o e e

-, LR

A TR "

L o By e W
b -

A iy et A P
- - . |
e -

— —————

na
11
n

il (d)

Fig. 6. Estimation of py ;. p_j, 4y, §_; for Kaspersky, McAfee. Microsoft, and Symantec when using n = 4, 10, 20, 30, 40, 47 detectors to the July dataset.

(a) Kaspersky. (b} McAfea, (c) Microsoft, (d) Symantec,

majority voting can substantially and incorrectly underestimate
the false positive probabilities of Kaspersky and McAfee.
These observations invalidate the rule-of-thumb that anti-
malware vendors often trade high false negative probabilities
off for low false positive probabilities [8].

Second, Fig. 6 shows that for the July (thus, the December)
dataset, Kaspersky and McAfee also exhibit relatively low
false negative probabilities, but very high false positive proba-
bilities (e.g., jiy; = 0.4 for Kaspersky and p,; = 0.4 for
Kaspersky py; = 0.56 for McAfee when n = 47). This
justifies that during different periods of time, the detectors’
detection capabilities can vary. When considering the entire
dataset, the variation gets weighted down because the July and
December datasets are much smaller than the datasets of
the other months. Moreover, the adjusted estimators outper-
form their respective naive estimators in most cases. This is
because the naive estimators have a large bias, as predicted
by Theorem 2 that a large false positive probability p, ;
introduces a significant bias into the estimators,

D. Estimating the Fraction of Malicious Files )

Fig. 7 plots 71 and 7; (the y-axis) with respect to the
number n of detectors (the xr-axis). We make the following
observations. First, the fractions of malicious files in the
5 monthly datasets are different. Moreover, the ) of the entire
dataset (i.e., the lines corresponding to “All" in Figure 7) is a
weighted average of the 7y"s of the monthly datasets, based
on the definition of ) in Eq. (8). Note that this linear relation
does not hold for the adjusted estimators.

Second, for the entire dataset and the May, June, and
November datasets, 7 is almost identical to x;, meaning
that they can be used as reliable estimators of the ground
truth 1. However, for the July and December datasets, there
is a significant difference between mp and &, meaning that
@1 is a more accurate estimation of the ground truth 7. Note
that Eq. (19) indicates that the difference between 7; and
@) is determined by pg; and pyy. The discrepancy between

o1 1
e O - L [ o = 7 paay)
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Fig. 7. Plos of & (dotted lines) and &y (dashed lines) with different
datasets, where “all”™ means the entire dataset and two lines of the same color
corresponds to the same dataset,

71 and & for the July and December datasets is caused by,
as shown in Section IV-C, the fact that pyp is large and
P11 = 1 for these two months. In contrast, for the entire
dataset and the other three months, the discrepancy is small
because ppy = 0 and pyy = 1. It is also interesting (o note that
despite the discrepancy between 7 and 7; for the July and
December datasets, the discrepancy for the entire datasel is
almost negligible because the July and December datasets are
substantially smaller than the three other months.

Third, Insight 3 implies that when the number of detectors
is sufficiently large, the estimated value is almost the ground
truth value. This means that for the entire dataset, we have
mp = 0.58580. Nevertheless, Fig. 7 exhibits
a drop of both 71 and &y when n = 20. Our retrospective
investigation shows that 5 of the 10 detectors that are newly
added to Experiment 3 have medium-to-high false nepatives,
namely 0.998, 0.733, 0.447, 0.363, and 0.296 after rounding
to 3 decimals. As a consequence, the voting result of these
20 detectors generates a lot more benign labels than the
voting result of the 10 detectors in Experiment 2. Nevertheless,
as more detectors are used, the converging trend of the

Jr1%?-i'|—
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estimators resumes. This further confirms the robustness of
the majority voling method.

E. Insighis

First, we observe that =1 = &) = &) = 0.57413 when
n = 47 detectors are used, and that the quite inaccurate
m; = (L6358R is obtained when only using the 4 popular
detectors (i.e., Kaspersky, McAfee, Microsoft, and Symantec).
The same phenomenon is observed by the other estimators as
well. For example, the false positive probability of Kaspersky
in the case of using 47 detectors is p;; = 0.18686, which
can be treated as the ground truth value; whereas, it is p,; =
0.05763 when only using the 4 popular detectors only. This
leads to:

Insight 4: The defender should wse as many defeciors as
possible, rather than using a few popular detectors.

This insight justifies the service paradigm of VirusTotal.

Second, once Pyj, p_;j. j = 1,...,n, are available,
the probability py and the probability ppg can be respectively
estimated using the Monte Carlo method in Section 111-D4 as

i
. n
fun = Pr jE_IX,-I- > E|a,- =11, where

-

X ~ Bernoulli(1 — p_;),

n
. n
Pop = Pr ZIX,';' < Elai =0, where
i=
Xij ~ Bernoulli(l — py;).
These two probabilities can also be combined to compute
Pr(Y; = a;) = &1 pn + (1 — 1) poo, (26)
which is the estimated average probability that the voted label
of a file matches its true label. For example, in our application,
when all the 47 detectors are used, we have py = 1 and ppo =
1 by using the Monte Carlo method with N = 5, 000, 000 (i.e.,
the voted label of a file is indeed its true label). This leads to:
Insight 5: When the number of detectors are sufficiently
large fe.g., n = 47), the estimated metrics can be used (o
further compute the probability that the voted label marches
the corresponding true label according to Eg. (26).

V. DISCUSSION
A. Real-World Implications

The insights mentioned above highlight some real-world
application scenarios. Insights 1-3 indicate (i} how many “very
good” (ie, py < 0.1 and p_ < O.1), “good” (ie. 0.1 =
P+ =02and 0.1 = p_ <= 0.2), or “fair” (i.e., 02 = p. =05
and 0.2 = p_ = (1.5) detectors are needed in order to achieve
almost perfect malware detection, and (ii) the use of “poor”
(ie, pp = 05 or p_ = 0.5) detectors can critically hurt
the malware detection capability (i.e., such detectors should
be avoided). For example, even if the detectors are “very
good,” at least 5 detectors are needed. However, we showed in
Section IV that none of the 47 detectors is “very good.” These
insights also imply that the economic benefit of developing a
smaller number of high quality detectors (i.e., “good” or “very
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good™) may need to be reconsidered when the cost of lowering
their false positive and false negative probabilities may not be
lincarly proportional to the gain in their detection capability.
In summary, we have:

Insight 6 If the detectors have (almost) idenfical p,;
and (almaost) identical p_;, then 5 “very good” detectors can
lead to (almost) perfect voting results. If the detectors have
slightly different p's and slightly different p_;’s, 5 “very
good™ detectors and 15 “good” detectors can lead to (almost)
perfect vating results. It is better o remove “poor” detectors
in order fo achieve more trustworthy resulis and then follow
the guidelines in the identical and slighily heterogeneous cases
to achieve trustworthy results.

B. Further Comparison With [8]

As mentioned in the Introduction, Kantchelian ef al. [8]
investigate both unsupervised and supervised learning
approaches to the aggregation of the labels given by multiple
malware detectors into a single one. The setting in their unsu-
pervised learning approach is similar to the one considered
in the present paper. However, they make 4 assumptions.
In contrast, we only make 2 (of the 4) assumptions, which
is made possible because we use a different approach. To
be specific, [B] uses a Bayesian approach, in which all
of the model parameters are considered as random quan-
tities following certain distributions. ln order to estimate
a parameter (i.e., the mode of the parameter’s distribution,
namely the point having the highest probability), one needs to
specify a prior distribution for the parameter, which essentially
forces one to make further assumptions about the parameter.
If the true parameter matches the assumed prior distribution,
the Bayesian approach works well; otherwise, the Bayesian
approach may fail to converge or it converges to some
absurd estimator. Due to this reason, they have to assume the
following prior distributions of the parameters: 7; is around
0.5; and both true positive and false positive probabilities are
low. In contrast, we lake a Frequentist approach, in which
the model parameters are not considered to be random. The
estimator of a parameter is generally the optimizer of an
objective function, representing the probability of seeing the
data that has been observed. As such, no prior distributions
on these parameters need to be assumed.

Now we present a numerical comparison between the esti-
mators of [8] and ours. We apply their method to the synthetic
data in the first experiment in Section III-E1 with =y = 0.2,
e = 01,04 and n = 5,15, 35. That is, the false positive
probabilities py; and the false negative probabilities p_;
of the n detectors are randomly selected from the interval
[e,¢ + 0.1]. Recall that a bias is defined as an average
deviation of an estimator from the true value of the parameter
in question, meaning that the bias can be positive or negative
depending on which value is greater. For ease of comparison,
we consider the absolute value of the bias, called absolute
bias, which is denoted by |bias|. The closer the absolule bias
of an estimator is to zero, the more accurate the estimator.

Fig. & plots the comparison between the absolute biases
of their estimators and the absolute biases of our estimators,
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Assumption 1 is violated). (a) |Bias] of &y (b) |Bias| of py ;. {c) [Bias] of g5 ;.

while noting that they do not have resulls on g ; and g_;.
We observe that when € = 0.1, all of the detectors have
Pyj and p_; between 0.1 and 0.2, We also observe that the
absolute biases of both their estimators and ours are very close
to O {i.e, < 0.01). Therefore, both their estimators and ours
are accurate when py; and p_; are sufficiently small (i.e.,
0.1 = pyj,p_j =02}

When € = 0.4, all of the detectors are fair ones with
Paj. p—j € (0.4, 0.5), which violates the low p; assumption
made in [8]. For every fixed n except for n 10, their
method becomes erratic for estimating at least one of the three
parameters. For example, when n = 5, their estimator for
p—; has an absolute bias over 0.5; when n = 15 or 25, their
estimator for 7 has absolute biases around 0.6; when n = 35,
their estimator for xp has an absolute bias of about 0.8, and
their estimator for p,; has an absolute bias close to 0.5, The
only stable case for their method is for n = 10, in which case
the estimator for py; has a slightly smaller absolute bias than
that of our adjusted estimator: still, our estimators for 7y and
P—; have slightly smaller absolute biases than theirs. On the
other hand, our estimators have consistently small biases for
all the cases. In summary, our estimators have lower absolute
biases than theirs in most cases. Even when our estimators
have slightly larger absolute biases than theirs, the differences
are all small.

We draw the following conclusion. The estimators in [8] are
very sensitive to the assumption that all detectors have low
false positive probabilitics. When this assumption is violated,
their estimators can become erratic and completely unreliable.
On the other hand, our estimators are robust even when the
detectors have high false positive probabilities.

C. Are Our Estimators Sensitive to Assumption 17

Assumption 1 is made in both [8] and the present paper.
This assumption is needed for the theoretical derivation to
be sound. The assumption says that a detector has the same
false positive probability when classifying any benign file;
and it has the same false negative probability when classi-
fying any malicious file. This assumption can be relaxed by,
as shown in Section IV, dividing the files according to their
time-stamps, which is reasonable because the false positive
and false negative probabilities indeed vary with the smaller
datasets.

Now we explore whether Assumption 1 is absolutely neces-
sary or not. We conduct experiments to see how sensitive our
estimators are to the assumption. For this purpose, we first
generale p;'s and p_;'s according to the first experiment in
Section IMT-El1 with @1 = 0.25, ¢ = 0,0.1,0.2,0.3,0.4 and
n =3, 10, 15,25, 35, However, when generating the label of
an individual file ¢ with respect to detector j, we use a false
positive probability and a false negative probability randomly
generated from the uniform distribution over [y ;—d, py;+4d]
and [p_; — 4, p_; + 4], respectively. That is, we make the
file-wise false positive and false negative probabilities vary
in the range of 24. When the resulting probabilities are too
close to O or 1, meaning that the probability interval would
fall out of [0, 1], we truncate them to smaller intervals that are
respectively centered at py; and p_; while fitting into [0, 1].
We then apply our estimators to the resulting dataset. If the
biases of the estimators corresponding to the perturbed data
are not significantly different from the biases of the estimators
corresponding to the unperturbed data, we can claim that the
estimators are not sensitive to Assumplion 1.



We conduct simulations with 4 = 0,01, 0.02, 0,03, 0.04,
0.05, 0.1, 0.15, 0.2, The larger the 4, the bigger the devia-
tion from the estimators of the unperturbed data. Therefore,
we only report the results for § = 0.2 here in Fig. 9. Note that
d = 0 corresponds to the case of unperturbed data. We observe
that the largest difference between the biases corresponding
to the perturbed data and the biases corresponding to the
unperturbed data is observed for 7y and 4, ; when n = 15 and
the ranges of py; and p_; are [0.3,0.4] or [0.4, 0.5]. When
Pyj and p_; are in these ranges, their perturbed versions at
each file can take any values from a range of width 0.4 by our
data generation method. However, even the largest difference
between the biases is smaller than 0.05, while the true value
is m; = 0.2 and the range of the true values of g4; is also
between (0.2 and 1. This implies that the difference shows
a high tolerance against the assumption, concluding that our
estimators are not sensitive to Assumption 1.

D. Limitations

Our study has the following limitations. First, we need
to validate, weaken, or eliminate the assumptions. Assump-
tion 1 says that an individual detector has the same capability
in detecting all types of malware. However, some malware
detectors may be particularly better at detecting some types
of malware than others [5], [8]. Assumption 2 assumes that
all detectors make their decisions independent of each other.
This may not be universally true because Android malware
detectors appear to have a weak correlation [15].

Second, we were able to quantify the bias of ., but not
able to quantify the bias of estimators pyj, f_j. §+;. and §_;
completely. Fully quantifying the biases of these estimators is
a challenging task, but deserves a full investigation.

Third, we investigaled the unweighted voting method.
In practice, some detectors may be known to perform better
than others. Therefore, one can investigate a weighted majority
voling method.

VI. RELATED WORK

In addition to the most closely related prior work [8],
we briefly review less related prior studies. Gu el al. [16]
investigate alert fusion methods in the context of intrusion
detection systems, called the fusion of decisions based on the
alerts of multiple detectors, while assuming that the detectors
are independent of each other. By considering the associated
cost, they use the Neyman-Pearson detection theory and the
Likelihood Ratio Test (LRT) [17] to identify the optimal
fusion that incurs the minimum cost. However, they assume
that the false positive probability p,; and false negative
probability p_; of the j-th detector are given (e.g., computed
from the known ground truth [16]). Their study and ours
are complementary to each other in the following sense: Our
work is to accurately estimate parameters (including p. ; and
P— ;) without knowing the ground truth; in contrast, their work
assumes that py; and p_; are given.

There are smdies for dealing with inconsistent labels
in the context of crowd-sourced labeling [10], [18]-[21].
However, these studies assume that some portions of the
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ground truth {e.g., the value of a; for some i’s, py; for
j=1,...,n 00 p_; for j = 1,...,n when putting in the
terminology of the present paper) are known. In contrast, these
metrics are exactly what we aim to estimate.

Sebastian ef al. [22] investigate how to automatically clas-
sify malware samples into different families. This problem is
different from the one we study because of the following:
Malware detectors can be seen as having two tasks: (i) decide
whether a sample is a malware or not; and (ii) if the sample
is a malware, to which malware family it belongs. We study
problem (i), while not assuming the ground truth is known;
they study problem (i), while assuming that a sample that is
detected as malware is indeed malware (i.e., the ground truth
is known).

Hurier et al. [23] define a set of meltrics to characterize
the discrepancy between malware detectors while treating the
voting result as the ground truth, namely the problem (i)
mentioned above. Tn contrast, we differentiate the voting result
from the ground truth, and aim to quantify the distance
between the voting result and the unknown ground truth.

VIl. CoNCLUSION

We motivated and formulated the measurement of malware
detection metrics in the absence of ground truth as a staristical
estimation problem. We presented a statistical methodology
to tackle this problem by designing naive estimators and
adjusted estimators. We validated these estimators based on
numerical experiments of synthetic data with known ground
truth. We learned useful insights in terms of the accuracy (or
usefulness) of these estimators in various parameter regimes.
We applied these estimators to analyze a real datasel.

We also discussed the three limitations of the present study
and correspondingly derived the following future research
directions: (i) eliminating or weakening the assumptions; (ii)
quantifying the bias of adjusted estimators; and (iii) developing
an oplimally weighted voling mechanism.

APPENDIX A
PrOOFS OF THE THEOREMS

Theorem 1: Note that 37, ¥; = X, 0 ¥i + X,;q, Vi
The ¥;'s in 3.7 ¥; are 1ID Bernoulli{py;) random vari-
ables. Therefore, we have Er-,_J] ¥Y; ~ Binomial(m, M.
When m; — oo, this distribution can be approx-
imated by Normal(mjpyy, mipnfl — pur)).  Similarly,
ZEEL. ¥; ~ Binomial(mpn, poi), which can be approximated
by Normal(mg po1, mopo (1 — pm)).

Note that 3 ;.7 ¥i and 3,7, ¥; are independent of each
other by our Assumption 2. Hence their sum 3, ¥; asymp-
totically follows the Normal distribution with mean my py +
mopp and variance mipii(l — pu) + mopoi(l — por).
Therefore, the asymptotic distribution for 7 is
mipn ;mupm — mipu + (1 — m)por,

mypr(l— pr) 4+ mopm(l — po)
7

Hi =

of =

m
mppnll — pyd+ 00 —x)pol —Pm)‘
M
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Algorithm 2 Data Generation for Simulation of Detectors
With Slightly Heterogeneous False Positive and Negative

Probabilities
INPUT: the number of detectors i, the lower bound € of the

probability range, m = 50, 000, ry = 0.2, N = 1, 000.

OUTPUT: N datasets, each containing the m x n matrix

X of detector assigned labels, the size-n wvector of voted

labels Y, the true malicious portion ) and the true metrics

g-:_;ﬁp—ij-l-qu-Lj, j=1,....n with py;.p_; € (e.e +

1: m <— 50, 000

2@y« 0.2

3my ——mx

4 for j=1ton do

5. generate py; and p_; such that py; ~ Uniform(e, e +
0.1) and p_; ~ Uniform(e, € + 0.1)

6 gij—m(l—p_j))/(m(—p_j}+ (1 —m)pyj)

7 g—j — (1 —a )1 = pyj)/ (1 —mM 1l — pyj)+mip—j)

& end for

o for £ =11t N do

10:  sample sty indices from {1,2, ..., m} to form the index

set 1.
1: fori=11twmdo
12: it i T, then
13: a; < 1.
14 else
15: a; 1.
16: end if
17:  end for
18 for j=1toado
19: fori=11omdo
it a; = 1 then
21 generate X;; such that X;; ~ Bernoulli(1 — p_;).
2 else
23 generate X;; such that X;; ~ Bernoulli{py ).
24 end if
25 end for
- end for
27: fori=1tom do
28: if ZE=I Xij = g then
29: ¥i — 1.
30k else
3: ¥i < 0.
3 end ir
33:  end for
34: end for

3s: Output N data sets as the final result.

This completes the proof.

Theorem 2: We prove the result for estimator py ;. By the
multivariate normal approximation to a multinomial distribu-
tion, we have

{01) (00) (100 (11)
PRSI I I 4
el H= 8 =8 i€l

TR Ny, 1)),

o1 00 10 11
DIESRD I DI I
iely ieTy ieTy ieTy
approx
~ Nipoj. Loj),

where for ¢ € [0, 1}, pg; = (He,01,5s 26,0055 He10,55 fe,11,5)

and
Jf,m,j Peol00,j  Peol 10, Pe0l,ll,]
s . _ | Peoron o2 0, i P00 Peoilj
“ PedlI0g  Pe00l0 T Pelol,j
Pepol1,j  Pe00ll,;  Pe10,11,] “.3,11,}
Let
_ (01} (00) (100 {11y
=2z 2" >z, 2z,
ieT) ieT) ieT) iel)
{o1) (00) (10) (n
2.2, 2220, 2250, 30 2
i€y iely iely ieTy

According to Assumption 2, the two random vector compo-
nents of Z are independent of each other. Hence we have

;0
ARt 9 N((P«];,#uﬂ,( &; Eﬂi))'

For a veclor X = (X, x2, ..., xg), consider function g(x} =
(x1 + xs)/(x1 + x2 + x5 + xg). Then pi; = g(Z). There-
fore, using the multivariate delta method to g, ; yields the
asymptotic distribution in the first part of the theorem. This
completes the proot of the result for estimator p ;. Proofs for
the other estimators are similar and thus omitted.

APPENDIX B
ALGORITHM FOR GENERATING THE SYNTHETIC DATA

See Algorithm 2.
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