
aBBRate: Automating BBR Attack Exploration Using a Model-Based Approach

Anthony Peterson
Northeastern University

Endadul Hoque
Syracuse University

Samuel Jero
Purdue University

David Choffnes
Northeastern University

Cristina Nita-Rotaru
Northeastern University

Abstract
BBR is a new congestion control algorithm proposed by
Google that builds a model of the network path consisting
of its bottleneck bandwidth and RTT to govern its sending
rate rather than packet loss (like CUBIC and many other pop-
ular congestion control algorithms). Loss-based congestion
control has been shown to be vulnerable to acknowledgment
manipulation attacks. However, no prior work has investi-
gated how to design such attacks for BBR, nor how effective
they are in practice. In this paper we systematically analyze
the vulnerability of BBR to acknowledgement manipulation
attacks. We create the first detailed BBR finite state machine
and a novel algorithm for inferring its current BBR state at
runtime by passively observing network traffic. We then adapt
and apply a TCP fuzzer to the Linux TCP BBR v1.0 imple-
mentation. Our approach generated 30,297 attack strategies,
of which 8,859 misled BBR about actual network conditions.
From these, we identify 5 classes of attacks causing BBR
to send faster, slower or stall. We also found that BBR is
immune to acknowledgment burst, division and duplication
attacks that were previously shown to be effective against
loss-based congestion control such as TCP New Reno.

1 Introduction

BBR (Bottleneck Bandwidth and Round-trip propagation
time) is a new congestion control algorithm for TCP [24]
and QUIC [25] proposed by Google in 2016. BBR is mo-
tivated by how commonly deployed loss-based congestion
control algorithms inaccurately rely on packet loss as the pri-
mary signal for network congestion, often leaving networks
underutilized or highly congested. This inaccuracy occurs
because in today’s networks, the relationship between packet
loss and network congestion has become disjoint due to vary-
ing switch buffer sizes. Instead, BBR is model-based, as it
creates a model of the network by periodically estimating the
available bottleneck bandwidth BtlBw and round-trip propaga-
tion delay RTprop, which are used to govern the rate packets

are sent into the network and the maximum amount of data
allowed in-transit.

Prior work [29, 30, 32, 36] showed how loss-based conges-
tion control algorithms (e.g., New Reno, CUBIC) designed
for TCP are prone to acknowledgment manipulation attacks,
where an adversary exploits the semantics of acknowledg-
ments to mislead the sender (i.e., the victim) of a flow about
network congestion. These attacks are possible because TCP
headers are unencrypted and have no authentication mecha-
nism other than a random initial sequence number which may
be observed or predicted by on-path [29] or off-path [7,23,35]
attackers, respectively. While at first it may appear BBR is
less prone to such attacks, as it relies on a different conges-
tion control approach, its estimation of BtlBw and RTprop is
based on received acknowledgments. The impact of such at-
tacks can not be easily assessed from existing attacks against
loss-based congestion control, because BBR follows a differ-
ent algorithm for adjusting its sending rate. Given BBR is
implemented for TCP [8], the underlying protocol for much
of the Internet traffic, and being deployed on YouTube and
Google.com [9], studying BBR security and its vulnerability
to acknowledgment manipulation attacks is critical.

In this work, we discover and analyze acknowledgment ma-
nipulation attacks targeting the Linux TCP BBR congestion
control implementation, a popular implementation of BBR.
We use a protocol-fuzzing approach to systematically inject at
runtime maliciously modified acknowledgment packets that
target the core mechanism of BBR: the estimation of BtlBw
and RTprop. In order to achieve this, we adapt TCPWN1, a
TCP congestion control protocol fuzzer, to automatically find
vulnerabilities targeting BBR. TCPWN attack strategies are
defined by tuplets that dictate which type of acknowledgment
manipulation attack to execute when the sender is in a cer-
tain congestion control state. TCPWN uses the model of the
congestion control algorithm to map all theoretically possible
attack paths to actual attack strategies. It then uses a state infer-
ence algorithm by observing network traffic to discern when

1https://github.com/samueljero/TCPwn

1

https://github.com/samueljero/TCPwn

to inject the counterfeit acknowledgments. Since TCPWN
supports only loss-based congestion control algorithms, we
derive a finite state machine for BBR by consulting documen-
tation [9, 16, 17], presentations [10–15] and source code [8].
We additionally develop a new algorithm for inferring the
current BBR state in real-time based on network traffic alone,
and integrate it with TCPWN.

Using this approach, we automatically generated and exe-
cuted 30,297 attack strategies from both off-path and on-path
attackers, of which 8,859 caused BBR to send data at abnor-
mal rates: 14 caused a faster sending rate, 4,025 caused a
slower sending rate and 4,820 caused a stalled connection
(i.e., the flow did not complete). All of these successful at-
tacks originated from an on-path attacker with read/write
access to the flow. Attacks causing slower/stalled sending
performance could be used by an adversary to throttle other
flows—leading to poor performance for victim flows and pos-
sibly making more bandwidth available to the attacker’s flows.
Those causing faster sending performance could be used by a
destructive adversary to increase network congestion, leading
to unfairness, poor quality of service and congestion collapse.
Attacks causing stall connections are a form of denial of ser-
vice attacks difficult to detect as the connection is active and
data is being sent, but with no progress for the flow itself. We
summarize our contributions as follows:

• We derive the first state machine model for BBR and
use it to demonstrate that BBR is vulnerable to acknowl-
edgement manipulation attacks.

• We derive an algorithm for estimating the current BBR
state in real-time by observing network traffic.

• We adapt a TCP congestion control fuzzer, TCPWN, to
BBR using the our newly derived BBR state machine
and inference algorithm to automatically generate and
execute 30,297 automatically attack strategies.

• We identify 5 classes of acknowledgement manipulation
attacks from on-path attakers against BBR that cause
faster, slower and stalled sending rates. We did not find
effective attacks from off-path attackers. To the best of
our knowledge, we are the first to discover and evaluate
attacks on BBR.

• We analyze how BBR distinctly reacts to these attacks,
in comparison with other congestion control algorithms.
We also found that BBR is immune to acknowledgment
burst, division and duplication attacks that were previ-
ously shown to be effective against loss-based conges-
tion control such as TCP New Reno.

2 Vulnerability of BBR to Attacks

We now describe BBR, derive a model for it, and show how
an attacker can exploit the model to create attacks.

2.1 BBR Overview
BBR is motivated by how loss-based congestion control al-
gorithms such as CUBIC and New Reno assume packet loss
implies network congestion, which is not always the case. As
a result, sending behavior is adjusted based on signals possi-
bly unrelated to actual congestion, leading to network under
utilization and excessive queue delay (bufferbloat).

Instead of relying solely on packet loss to infer congestion,
BBR is model-based meaning congestion is inferred primarily
by two properties of the network path: its bottleneck band-
width BtlBw and round-trip propagation delay RTprop. BBR
paces its sending rate proportionally to BtlBw and aims for at
least one BDP = BtlBw × RTprop worth of data in-flight for
full utilization. At any given time, its sending rate is limited by
two factors: the congestion window cwnd, or pacing_rate
= pacing_gain × BtlBw that defines inter-packet spacing.
Pacing, first proposed by Zhang et al. [39], aims to reduce
burstiness and in some situations, offers improved fairness
and throughput [2]. BBR caps cwnd to 2 × BDP to overcome
delays in received acknowledgments, which would otherwise
cause BBR to underestimate the bottleneck bandwidth [10].
Obtaining an accurate and up-to-date model of the network
path is essential to BBR’s effectiveness, and thus is updated
on every new acknowledgement.

Algorithm 1 Delivery rate samples [17] are computed to
estimate the bottleneck bandwidth. For each new ACK, the
average ACK rate is computed between when a data segment
is sent to when an acknowledgment is explicitly received for
it. Delivery rates are capped by the send rate as data should
not arrive at the receiver faster than it is transmitted.

Input: A data segment P and a BBR connection C.
Output: The delivery rate sample

1: function COMPUTEDELIVERYRATESAMPLE(P, C)
2: data_acked = C.delivered - P.delivered
3: ack_elapsed = C.delivered_time - P.delivered_time
4: send_elapsed = P.sent_time - P.first_sent_time
5: ack_rate = data_acked / ack_elapsed
6: send_rate = data_acked / send_elapsed
7: delivery_rate = min(ack_rate, send_rate)
8: return delivery_rate
9: end function

2.2 Estimating the Network Path Model
Accurate measurements of BtlBw and RTprop are obtained
sequentially at different times and network conditions because
the network conditions required to obtain accurate measure-
ments of each parameter interfere with each others measure-
ments. At mutually exclusive times, BBR adjusts its sending
rate so the network conditions are met for each parameter.
For BtlBw, the sending rate is increased to discover available
bottleneck bandwidth while for RTprop, the congestion win-
dow is reduced to 4 packets. Note that increasing sending
rate to measure BtlBw may create queues which would create
inaccurate RTprop measurements. Decreasing the sending

2

rate to measure RTprop would not allow available bandwidth
to be discovered.

Bottleneck Bandwidth. The bottleneck bandwidth is esti-
mated by employing a max filter that retains the maximum
observed delivery rate sample over the past 10 round-trips. A
delivery rate sample is computed on each new ACK, which
is shown in Algorithm 1. Delivery rate samples represent the
average acknowledgment rate between when a data segment
is transmitted to when an acknowledgment is received for that
segment. Delivery rate samples are only computed for the
exact packet it acknowledges. This is because factors such
as delayed acknowledgment can cause delivery rates to be
overestimated. These samples are used primarily to estimate
the rate at which data is arriving at the receiver, which is
naturally capped by the bottleneck bandwidth. Delivery rate
samples only reflect the actual bottleneck bandwidth when
BBR sends at a rate that matches or exceeds capacity, which
is accomplished by periodically increasing its sending rate
25% faster than the current BtlBw.

Round-Trip Propagation Delay. BBR estimates RTprop
using a min filter that retains the minimum observed round-
trip time sample over the past 10 seconds. Round-trip samples
are measured by computing the elapsed time between when a
flight of data is sent to when it is acknowledged. Accurately
measuring the RTT presents a challenge because packets
queued in switch buffers cause increased and inaccurate RTT
samples. To overcome this, BBR drains switch queues by
periodically limiting its sending behavior. After measuring
BtlBw, it is entirely possible the bottleneck is already satu-
rated, causing queue build-up. To mitigate this, BBR sends
25% slower than the current estimated BtlBw immediately
after measuring the bottleneck link. BBR also reduces cwnd
to 4 packets every 10 seconds to update RTprop, which we
describe in the following section in greater detail.

Rate Limiting. BBR attempts to detect token-bucket po-
licers (TBPs) as they can cause data to be sent faster than the
token drain rate, leading to high packet loss. In networks with
such TBPs, it is common to see bursts of throughput before
tokens are exhausted, after which packets are dropped. Due
to BBR’s long-lived BtlBw max filter, the burst rate would
cause the estimated bottleneck bandwidth to be greater than
the token drain rate, leading to high packet loss for as long as
10 round-trips. BBR detects TBPs when there is significant
packet loss and consistent throughput, after which it paces its
sending rate to the estimated token drain rate for 48 RTTs.

2.3 A State Machine for BBR

To systematically analyze BBR, we derive a finite-state ma-
chine (FSM) for it. To the best of our knowledge no such
model has been published, so we empirically developed our
own through documentation [9,16,17], presentations [10–15]
and source code [8]. In Figure 1, we illustrate our BBR FSM
and describe its variables and events in Table 1.

BBR employs several similar mechanisms to traditional
congestion control algorithms, which we model in Appendix
A.3. When a flow first begins, BBR uses a mechanism to
quickly discover the available bandwidth (i.e. slow start). Af-
terwards, BBR paces its sending rate at the estimated band-
width (i.e. congestion avoidance) while simultaneously prob-
ing the network for available bandwidth and updating its net-
work path model: BtlBw and RTprop. Even though packet
loss is not at BBR’s core, BBR includes mechanisms to han-
dle such cases. Finally, BBR includes methods for detecting
and accounting for token-bucket policers, as they can allow
traffic bursts until tokens run up, making BBR to send too
quickly causing packet loss. The states of our BBR FSM are:

Startup. Similar to slow start, Startup is the first state
BBR enters and aims to quickly discover the available bottle-
neck bandwidth by doubling its sending rate on each round-
trip. Startup transitions into Drain when either cwnd reaches
ssthresh or if three consecutive delivery rate samples show
less than a 25% increases over the last, indicating the bottle-
neck bandwidth has been reached.

Drain. This state aims to drain queues that were likely
created during Startup. Those queues are reduced in a single
round-trip by sending data at ln(2)/2 ≈ 0.34 times the rate
before entering this state, after which ProbeBW is entered.

ProbeBW. Similar to congestion avoidance, ProbeBW
aims to pace the sending rate at the estimated bottleneck
bandwidth, achieve fairness, and probe for additional band-
width with low queuing delay. These are accomplished using
gain cycling where the pacing_gain cycles through a set of
eight phases: [5

/
4 , 3

/
4 , 1, 1, 1, 1, 1, 1] where each phase

lasts one RTprop. In the first phase, BBR sends 25% faster
than BtlBw to probe for additional bandwidth. In the second
phase, BBR sends 25% slower than BtlBw to drain any queues
created in the last phase and to achieve fairness with other
flows. In the remaining phases, BBR sends equal to BtlBw;
the target operating point.

ProbeRTT. The goal of this state is to obtain a recent
and accurate measurement of RTprop. Since queue delay in-
creases the measured RTprop, ProbeRTT explicitly backs off
from the network in order to drain any queues. This way, the
min RTprop filter can capture a RTprop measurement without
queues. ProbeRTT is entered if 10 seconds have elapsed since
RTprop was last updated, and lasts for 200 ms; long enough
to overlap with other flow’s ProbeRTT states such that queues
are fully drained.

Recovery. This state is entered when data has been lost and
exits once all outstanding data when Recovery was entered
has been acknowledged. Upon entry, cwnd is set to the amount
of in-flight data and resets to 2 × BDP upon exit.

Exponential Backoff. This state is entered upon a re-
transmission timeout indicating lost data due to no new ac-
knowledgments for several RTTs. The lost segment is re-
transmited with a doubled timeout time; exponentially back-
ing off from the network. Once an acknowledgment is re-

3

Startup

cwnd=bw*min_rtt*(2/ln(2))

rate=bw*min_rtt*(2/ln(2))

bw increasing

Drain

cwnd=bw*min_rtt*(2/ln(2))

rate=bw*min_rtt*(ln(2)/2)

Drain Queues

ProbeBW

cwnd = bw*min_rtt*2

rmult= [1.25,0.75,1,1,1,1,1,1]

rate=bw*min_rtt*rmult[idx]

Steady state

ProbeRTT

cwnd=4

rate=bw*min_rtt*1

Probe for min RTT

RateLimited

cwnd=est_bw*min_rtt*2

rate=est_bw*min_rtt*1

Recovery

cwnd=in_ ight*2

avoid loss during recovery

bw has not increased for 3 rounds

--

fullbw=1

rate=bw*min_rtt*(ln(2)/2)

in_ ight <=bw*min_rtt

--

cwnd=bw*min_rtt*2

idx=rand(2,7)

rate=bw*min_rtt*rmult[idx]

min_rtt_ts > 10s

save_cwnd=cwnd

cwnd=4

rate=bw*min_rtt*1

probe_ts=now()

min_rtt_ts < 10s && probe_ts > 200ms && fullbw>0 && est_bw == 0

--

cwnd=save_cwnd

idx=rand(2,7)

rate=bw*min_rtt*rmult[idx]

LostPacket

--

save_cwnd=cwnd

Update in_ ight

cwnd=in_ ight

high_water=last_sent

ACK && New

--

Update in_ ight

cwnd=in_ ight*2

ACK && New && pkt.ack >= high_water

--

cwnd=save_cwnd

ExponentialBacko

cwnd=1

loss > 50% && abs(bw-prev_bw) <= 1/8*bw && 4 rounds

--

est_bw=rate*min_rtt - drops

rate=est_b2*min_rtt

cwnd=est_bw*min_rtt*2

48 rounds

--

est_bw=0

idx=rand(2,7)

rate=est_bw*min_rtt*rmult[idx]

RTO Timeout

--

cwnd=1

fullbw=0

rto_timeout=2*rto_timeout

RTO Timeout

--

cwnd=1

rto_timeout=2*rto_timeout

ACK

--

cwnd=1

bw=0

fullbw=0

Init

--

cwnd=10

rate=10*handshake_rtt*(2/ln(2))

fullbw=0

min_rtt_ts=now()

ACK && New && MaxBW

--

cwnd=bw*min_rtt*(2/ln(2))

rate=bw*min_rtt*(2/ln(2))

ACK && New && MinRTT

--

cwnd=bw*min_rtt*(2/ln(2))

rate=bw*min_rtt*(2/ln(2))

min_rtt_ts=now()

ACK && New && MinRTT

--

cwnd=bw*min_rtt*(2/ln(2))

rate=bw*min_rtt*(ln(2)/2)

min_rtt_ts=now()

ACK && New && MaxBW

--

cwnd=bw*min_rtt*(2/ln(2))

rate=bw*min_rtt*(ln(2)/2)

ACK && New && MaxBW

--

cwnd=bw*min_rtt*2

rate=bw*min_rtt*rmult[idx]

ACK && New && MinRTT

--

cwnd=bw*min_rtt*2

rate=bw*min_rtt*rmult[idx]

min_rtt_ts=now()

min_rtt_ts > 10s

save_cwnd=cwnd

cwnd=4

rate=bw*min_rtt*1

probe_ts=now()

ACK && New && MinRTT

--

rate=bw*min_rtt*1

min_rtt_ts=now()

min_rtt_ts < 10s && probe_ts > 200ms && fullbw==0

--

cwnd=save_cwnd

rate=bw*min_rtt*(2/ln(2)) min_rtt_ts > 10s

save_cwnd=cwnd

cwnd=4

rate=bw*min_rtt*1

probe_ts=now()

min_rtt_ts < 10s && probe_ts > 200ms && est_bw > 0

--

cwnd=save_cwnd

ACK && New && MinRTT

--

cwnd=bw*min_rtt*2

rate=bw*min_rtt*1

min_rtt_ts=now()

1 round

--

idx=(idx+1)%8

rate=bw*min_rtt*rmult[idx]

RateLimited

ProbeBWDrainStartup

Recovery

Exponential
Backo

ProbeRTT

Figure 1: TCP BBR finite-state machine, see Table 1 for variable descriptions.

ceived, the current model is discarded and Startup is entered.
Rate Limited. This state is entered when a token-bucket

policer is detected on the network, as these can lead to high
amounts of packet loss. This state is entered when the packet
loss-to-delivered ratio is greater than 20%, but the throughput
remains steady. BBR sets BtlBw to the estimate token bucket
drain rate and sustains this for 48 round-trips.

3 Automated Attack Exploration in BBR

In order to systematically examine vulnerabilities of TCP
BBR implementation for the Linux kernel TCP stack [8], we
apply a TCP congestion control fuzzer, TCPWN. Below we
describe the attacker model and the changes we had to make
to TCPWN in order to apply it to BBR.

3.1 Attacker Model
We focus on manipulation attacks in the implementation of
BBR, where the attacker targets to mislead the sender’s con-
gestion control about the current network condition. These
attacks are conducted through maliciously crafted acknowl-
edgment packets, which can result in either increasing or
decreasing the throughput of the target flow(s) and in stalled
TCP connection.

We support the following acknowledgement-based mali-
cious actions: ACK duplication, ACK stepping (several ac-
knowledgments are dropped and then several let through in a
cycle), ACK bursting (acknowledgments are sent in bursts),
optimistic ACK (acknowledge highest byte, dropping dupli-
cates), delayed ACK (delay acknowledgments for a fixed
amount of time), limited ACK (prevent acknowledgment num-
bers from increasing), stretch ACK (forward only every nth

ACK. injecting off-path duplicate acknowledgments, inject-
ing off-path offset acknowledgments, and injecting off-path
incrementing acknowledgments.

In order to achieve its goals, the attacker applies an attack
strategy, which is defined as a sequence of acknowledgment-
based malicious actions and the corresponding sender states
when each action is conducted. We focus on TCP flows with
bulk data transfers because they are widespread, and the effect
of the conducted attacks is easy to measure.

We assume that the attacker is interested in causing BBR
to send faster than usual, slower, or stall, and these attacks
are meant to affect servers, clients, or the provider of a bot-
tleneck link. In the case of sending faster, the goal of the
attack can be to waste/exhaust bandwidth resources, wors-
ening performance for all other clients of the server and/or
shared bottleneck link. In the case of sending slower, the goal
is to target individual connections for performance degrada-

4

Table 1: Descriptions of variables unique to the BBR finite-state machine (left), and its events (right).
Variable Description
bw maximum measured bottleneck bandwidth.
bw_est estimated token-bucket drain rate.
fullbw boolean indicating when pipe is filled.
idx current index into rmult.
min_rtt minimum measured RTT.
min_rtt_ts timestamp min_rtt was measured.
probe_ts timestamp ProbeRTT was entered.
rate current pace data is sent.
rmult array containing the 8 pacing_gain phases.

Event Description
ACK recipient of an acknowledgment packet, representing

the highest correct byte received.
MaxBW new maximum bottleneck bandwidth is observed.
MinRTT new minimum RTT sample is observed.
New new acknowledgment received, acknowledging previ-

ously outstanding data.
LostPacket TCP packet loss event (3 duplicate ACKs).
RTO Timeout outstanding data has not been acknowledged for many

RTTs.

tion, which could selectively cause a service provider’s quality
to be poor (e.g., low resolution video streaming) and/or make
more bottleneck bandwidth available for other competing
flows. In stall attack, the goal is to disrupt communication
between endpoints indefinitely, without causing an error from
the transport layer to propagate to the application that is using
it, effectively causing a denial of service.

3.2 Modifying TCPWN for BBR
We leverage TCPWN [29], a recent open-source platform
designed to automatically find manipulation attacks in TCP
congestion control implementations. We chose TCPWN be-
cause it does not require the source code of the congestion
control implementation, and is designed specifically for TCP
congestion control implementations.

At the core, TCPWN employs a network protocol fuzzer
to find acknowledgment-based manipulation attacks against
TCP congestion control implementations. Instead of applying
random fuzzing, TCPWN guides the fuzzer using a model-
guided technique, where the model is represented as a finite
state machine (FSM) that captures the main functionality of
several TCP congestion control algorithms.

For fuzzing an actual implementation of TCP congestion
control in its native environment, TCPWN utilizes virtualiza-
tion and proxy-based attack injection. To be effective, these
attacks must be executed at the right time during execution,
and therefore TCPWN monitors network packets exchanged
to infer the current state of the sender in real-time.

While TCPWN is amenable to TCP congestion control al-
gorithms, it assumes that the algorithm is a loss-based model
based on TCP New Reno. Thus, we can not directly apply it
to BBR, as the models are substantially different. We leverage
our own BBR FSM (see Figure 1) to feed it as an input to
TCPWN to generate abstract attack strategies, each of which
specifies a vulnerable path in the FSM that the attacker can
exploit. Each transition on a vulnerable path dictates the net-
work condition that the attacker needs to trigger to mount the
desired attack.

While there are several ways to trigger the necessary net-
work conditions, TCPWN takes the abstract strategies and
converts them into concrete attack strategies consisting of
basic acknowledgement-packet-level actions (e.g., send du-

plicate ACKs). During fuzzing, the attack injector applies
these actions in particular states of the FSM. Although the
generation of attack strategies is fully automated, TCPWN
requires us to provide a manually crafted mapping between
network conditions and basic actions because the mapping
relies on domain knowledge about the underlying model (in
our case, the BBR FSM).

Another change we had to make is changing the state infer-
ence algorithm. TCPWN needs to know what is the state of
the sender in order to inject attacks in the states specified by
the attack strategy. The state inference available in TCPWN
cannot infer BBR’s states because the algorithm expects the
underlying model (i.e., FSM) to be based on TCP New Reno.
Hence, we develop a new state inference algorithm for BBR
to infer the sender’s state from network traffic alone (§ 3.3).

3.3 State Inference for BBR
We present a novel algorithm to infer the current state of the
sender in real-time by passively observing network traffic, pre-
sented for completeness in Appendix. Our algorithm operates
by computing flow metrics on each round-trip and compar-
ing metrics across intervals to determine BBR’s state. We
compute metrics on each round-trip because BBR sustains a
constant sending behavior for at least one round-trip.

When our algorithm starts, we begin a round-trip by record-
ing the first data packet’s sequence number and end when it
is acknowledged. During round-trips, we collect flow met-
rics and compute average throughput, re-transmission count,
number of data packets sent when the round completes. We
then update the inferred BBR state on each new round by
computing metrics across round-trips. For BBR, the most
revealing metric about its current state is change in average
throughput across round-trips. On each round, we compute
the throughput ratio since the last round. For example, if the
current and last rounds had average throughputs of 30 and 20
Mbit/sec respectively, then the ratio would equal 1.5.

We infer Startup if throughput has increase significantly
since the last round-trip. Drain is primarily inferred if the
current state is Startup and we notice throughput has not been
increasing. ProbeBW is inferred if 1.4 > ratio > 0.6, which
allows ProbeBW to be inferred during phases 1 and 2 of gain
cycling. We also infer ProbeBW when BBR transitions out of

5

Attacker

Victim TCP
BBR Sender

State
Inference

Background
TCP Sender

Background

TCP Receiver

Victim TCP
Receiver

Coordinator
Attack

BBR FSM

Attack
Finder

[cwnd, rate]

Results

Figure 2: TCPWN testing environment.

Drain indicated by a significant increase in throughput. We
infer ProbeRTT when we observe only 4-5 data packets in the
last round, resulting from cwnd = 4 packets to drain queues,
and exit after 10 data packets have been sent. Recovery is
inferred when re-transmitted segments have been observed
and exits when the highest data sequence (when Recovery was
entered) is acknowledged. Exponential-backoff is inferred
when the estimated RTO has elapsed since the last data packet.
Lastly, we infer RateLimited when more than 16 round-trips
have passed and there has been little variance in average
throughput.

We infer Exponential-backoff, Recovery and Drain without
waiting for a round-trip to complete, as these can be entered
at anytime during the flow.

4 Experimental Results

In this section we describe and analyze our discovered attacks
on BBR congestion control. We first describe the testing
environment used. We then describe how we analyze and
classified the attacks. Lastly, we discuss and illustrate the
discovered attack classes in detail.

4.1 Experiment Setup

Environment. Our testing environment, shown in Figure 2,
consists of four virtual machines running Ubuntu Linux 17.10
sharing a virtual dumbell network topology. We limit the bot-
tleneck bandwidth to 100Mbits/sec with a 500 packet queue
and a 10 ms. end-to-end latency between either end of the
topology. We configure the virtual network with reasonably
low latency and high bandwidth, allowing us to isolate the im-
pact of attack strategies on BBR in a “friendly” environment.

For each attack strategy, two TCP flows are instantiated,
a victim and background flow, each transferring an identical
100MB file over HTTP. The attacker is located between ei-
ther end of the topology. The victim flow uses a Linux TCP
BBR sender, whose flow is injected with attacks where the
background flow is not targeted. We use tcpdump to measure
both flow’s performance, captured between the senders and
the bottleneck. The victim flow is measured to understand the
impact of the attack, and the background flow is measured to

investigate the impact of competing flows during attack, e.g.,
to determine if there was collateral damage.

Attacks in the wild. For an attack to be effective in the
wild, an attacker will need to be able to recognize that TCP
flows are indeed using BBR and to be able to be on the path
(all the attacks we found were from on-path attackers). An
attacker can determine that TCP is using BBR for congestion
control by examining the startup phase of a target connection.
Specifically, during startup BBR doubles its send rate every
round, even with loss, until the bottleneck bandwidth estimate
is relatively stable. So an on-path attacker could drop a single
packet early in the connection startup to see if the TCP sender
exits exponential growth. If so, this is probably loss-based
congestion control, i.e. not BBR. Being on path can be accom-
plished by compromising a router along the path or inserting
ones self into the path by ARP spoofing or similar attacks.
Cross-traffic could also impede the effectiveness of the attack.
We conducted a few experiments where we varied the number
of cross-traffic flows in an attempt to gauge the impact of such
traffic on our attacks. In particular, we varied the number of
background CUBIC flows from 1 to 32 while executing each
of our attacks. We repeated each of these scenarios 10 times
and found that our attacks continue to be effective even with
this significant level of background traffic (see Table 3).

Attack strategies. We used TCPWN to execute 30,297 at-
tack strategies for manipulating BBR’s sending rate. After
each attack strategy is executed, it is classified into one of four
categories: faster, slower, stalled (data transfer did not com-
plete), and benign (no attack was detected). These categories
represent the BBR’s respectful sending rate performance. The
attack categorization algorithm is the same as the one used
in [29] and is included in Appendix B1.

Attack analysis. After all 30,297 attack strategies were
executed, 8,859 were flagged as potential attacks: 14 faster,
4,025 slower and 4,820 stalled. We initially focused on ex-
tracting the strategies that were most effective at manipulating
BBR’s sending rate in each category. To identify which attack
strategies were most effective at impacting BBR’s perfor-
mance, we grouped attack strategies in each category (ignor-
ing attack specific parameters) and sorted each by average
sending rate.

While this allowed us to understand which exact strategies
were most effective, the limitation with this method is that it
does not reveal if any subset of actions is more effective over
others. Take for instance the following attack strategy that
hypothetically affects sending rate performance:
[(StateA,Action1),(StateB,Action2),(StateC,Action3)].

While it is true that this attack strategy affects sending
rate performance, the above method does not indicate if
performing Action2 in StateB was necessary for causing it.
To find which actions were most effective, we generated all
possible attack action subset combinations for each category
and sorted them by their occurrence in the original attack
strategies. This allowed us to see which attack actions the

6

Table 2: Descriptions of discovered attack classes targeting Linux TCP BBR congestion control.
No. Attack Attacker Description Result
1 Optimistic ACK On/off-path Acknowledge the highest sent sequence number before it is received, hiding all losses. This causes an

overestimated BtlBw and for data to be send earlier/faster than otherwise.
Faster

2 Delayed ACK On-path Delay acknowledgments from reaching the sender from the receiver for a fixed amount of time, causing
BtlBw to be underestimated and data to be sent at a slower pace.

Slower

3 Repeated RTO On-path For the entire flow, prevent new data from being acknowledged causing a RTO. Optimistically acknowledge
the lost segment causing Startup to be entered. This causes substantial amounts of time to be wasted (not
sending data) during periods before each RTO.

Slower

4 RTO stall On-path Prevent new data from ever being acknowledged causing a RTO and exponential backoff to never exit. This
causes the connection to stall as no new data will ever be sent.

Stalled

5 Sequence
Number Desync

On/off-path Acknowledge the highest sent sequence number before it is received, hiding all losses causing sequence
numbers to desynchronize. Induce RTO causing exponential backoff to be entered. For each re-transmission,
the receiver replies with a lower acknowledgement number than the sender expects, causing the lost segment
to never be acknowledged and exponential backoff to never exit.

Stalled

Table 3: Avg. throughput (in Mbps) of target BBR flow during
attacks with varying numbers of CUBIC flows as cross-traffic

Background Flows
Attack 1 2 4 8 16 32
None 51.7 57.9 21.0 14.3 6.7 3.9
Attack 1 287.4 236.3 102.4 78.7 85.5 76.8
Attack 2 3.6 4.2 4.7 4.0 4.8 14.2
Attack 3 3.1 0.6 4.7 1.1 0.9 0.3
Attack 4 0.7 1.5 0.1 0.06 0.02 0.01
Attack 5 7.0 0.7 0.06 0.03 0.02 0.01

above method were most effective in each category.
For attack strategies causing faster send rates, the optimistic

acknowledgment attack appeared in 100% of the strategies.
For attack strategies causing slower send rates, executing the
delayed acknowledgment attack in ProbeBW appeared in 53%
of the strategies, while attacks causing RTOs and quickly ac-
knowledging data in exponential backoff appeared in 47% of
the strategies. As for the attack strategies causing a stalled
connection, attacks causing RTOs and preventing data from
being acknowledged in exponential backoff appeared in 89%
of the strategies. Finally, attacks that optimistically acknowl-
edged lost data appeared in 11% of the strategies.

We use time/sequence graphs (TSGs) in Figure 3 and 4 to
understand why these attacks affect BBR’s sending rate on a
per-ACK basis. In each TSG, the x-axis is time and the y-axis
is sent/acknowledged bytes from the BBR sender’s (victim’s)
point-of-view. We use TSGs to also understand how BBR
flows targeted by these attacks compare to benign flows (flows
without attacks taking place) and how they affect background
flows that share the network concurrently. Figure 5 shows the
impact of executing each attack 100 times, using a CDF of
the average send rate for the victim flow in each execution.
Note that most curves are nearly vertical, indicating that each
attack had a high probability of affecting the sending rate.

4.2 Discovered Attacks on BBR

Attack 1 – Optimistic Acknowledgments. A faster send-
ing rate is caused by optimistically acknowledging only new
data sequences sent by the sender, without sending duplicates,

Table 4: The optimistic acknowledgment attack causes BBR to in-
crease its sending rate by 25% every 8 round-trips. In this example,
this attack effectively cuts the perceived RTT of 20 ms in half.

Time (ms) Mbit/sec Time (ms) Mbit/sec
0 6.0 560 28.6
80 7.5 640 35.7
160 9.4 720 44.7
240 11.7 800 55.9
320 14.6 880 69.8
400 18.3 960 87.3
480 22.8 1040 109.1

effectively causing BBR to overestimate the bottleneck band-
width. Figure C1a shows how this attack modifies acknowl-
edgments from the receiver to mislead BBR about network
conditions. The attacker records the highest observed data
sequence number sent by the sender and modifies acknowledg-
ment numbers from the receiver such that they acknowledge
the highest sequence. If the modified acknowledgment would
send a duplicate acknowledgment, then it is dropped. This re-
sults in packet loss (indicated by duplicate acknowledgments)
to be hidden. An off-path attacker who is able to predict the
sender’s sequence number and the receiver’s acknowledgment
rate would be able to achieve the same affect on a victim flow
by maliciously injecting acknowledgments such that they ac-
knowledge new data sent by the sender.

A faster sending rate (see Figure 3a) is a byproduct of how
BBR aggressively probes for additional bandwidth by sending
25% faster than BtlBw for 1/8 RTTs. This attack causes the
acknowledgment rate to reflect the increased sending rate.
This is reflected in the delivery rate samples (see Algorithm
1) causing the estimated bottleneck bandwidth to increase by
25% as well. BBR maintains the increased sending rate for the
next 8 round-trips until it sends 25% faster again on the next
probing phase. Surprisingly, we discovered that this attack
alone does not cause the sending rate to increase. Even though
this attack caused the acknowledgment rate to increase (due to
a shortened ack_elapsed), delivery rate samples are capped
by the sending rate. It is not until BBR probes for bandwidth
when this attack becomes effective, meaning it is self-induced.
This attack also halves RTprop because data is acknowledged
sooner causing BBR to cycle through the 8 gain phases twice

7

0 10 20 30 40 50
Time (ms)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
M

eg
ab

yt
es

Victim TX
Victim ACKs

(a) Attack 1

0 200 400 600 800 1000 1200 1400
Time (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
eg

ab
yt

es

Victim TX
Victim ACKs

(b) Attack 2

0 250 500 750 1000 1250 1500 1750
Time (ms)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
eg

ab
yt

es

Victim TX
Victim ACKs
Victim ReTX

(c) Attack 3

0 200 400 600 800 1000
Time (ms)

0.0

0.5

1.0

1.5

2.0

M
eg

ab
yt

es

Victim TX
Victim ACKs
Victim ReTX

(d) Attack 4

0 100 200 300 400
Time (ms)

0.0

0.1

0.2

0.3

0.4

0.5

M
eg

ab
yt

es

Victim TX
Victim ACKs
Victim ReTX

(e) Attack 5

Figure 3: Time-sequence graphs illustrate how each attack manipulates acknowledgments to achieve a faster, slower or stalled sending rate.
The blue lines represent data being sent by TCP BBR (victim) and the green represents acknowledgments being received from the attacker.

as fast. In our testing environment, this attack caused BBR to
increase its sending rate from 6 Mbit/sec [11] to 800 Mbit/sec
in less than 2 seconds! Table 4 shows how BBR’s sending
rate exponentially grows in our testing environment.

Attack 2 – Delayed Acknowledgments. A slower sending
rate (see Figure 3b) is caused by delaying acknowledgment
packets from reaching the sender for a fixed amount of time,
causing the bottleneck bandwidth to be underestimated. In-
terestingly, this attack caused BBR’s sending rate to grow
inversely to the optimistic acknowledgments attack. Figure 6
shows how BBR’s sending rate grows in O(1

n·ln(delay)) =O(1
n)

time (derivative of logdelay n). In general, longer delays (that
do not cause the re-transmission timer to expire) caused BBR
to decrease its sending rate quicker. The amount of data sent
over time is not to be confused with the rate of change of its
sending rate, hence the derivation.

This attack causes BBR’s sending rate to sequentially de-
crease over time because when this attack first starts, the
sender experiences an initial delay in acknowledgments (equal
to the however long ACKs are delayed for) after which ac-
knowledgments arrive at their natural rate. This causes the
sender to stop sending new data until the ACKs after the de-
lay arrive. Since the attacker stops sending data, this causes
the sender to experience another delay in acknowledgment
packets after one RTT. This creates a pattern where the sender
experiences delays in acknowledgments every RTT, meaning
regardless when delivery rate samples are taken, the plateaus
in acknowledgments cause the delivery rate samples to always

be less than the current BtlBw. This implies BBR will never
increase its sending rate because as older BtlBw estimates
expire after 10 RTTs, it is replaced with the decreased delivery
rate samples due to this attack.

Surprisingly, BBR’s probing phase does not mitigate the
effect this attack has on the sending rate. One would think
that when BBR probes for bandwidth, the delivery rate sam-
ples computed during probing would be large enough to sur-
pass the decreased delivery rate samples. This would be true,
however because BBR drains queues immediately following
probing, the delivery rate samples take during probing are
still less than the current BtlBw. If BBR sent at a steady pace
for at least 1 RTT in between probing and draining, then this
attack would not result in its sending rate to decay.

Figure 6 shows how this attack is less effective on con-
gestion control that uses AIMD such as TCP New Reno. Al-
though this attack is still effective on New Reno, its sending
rate maintains a constant decreased rate rather than decaying.

It should be noted that this attack does not require TCP
header information to be modified to be effective, as packets
are only delayed. This implies QUIC [25], Google’s experi-
mental transport layer protocol that uses encrypted headers,
using BBR can be targeted by this attack.

Attack 3 – Repeated RTO. A slower sending rate is
caused by an attacker who allows small amounts of data to
be sent in between repeated re-transmission timeouts. This
causes a slower sending rate because the sender does not send
any new data until the RTO expires, and this cycle repeats

8

(a) Attack 1 (b) Attack 2 (c) Attack 3

(d) Attack 4 (e) Attack 5

Figure 4: To understand how the victim flow for each attack compares to the background flow, these time-sequence graphs illustrate each attack
is carried out during the entirety of a flow (100 MB transfer). For testing, we limit flows to 60 seconds. The orange and blue lines represent the
victim and background flow’s cumulative data transfer over time (executed concurrently). The green line represents the benign flow with no
attacks taking place (executed as a separate experiment). In attack 1, the background flow in unable to obtain bandwidth until the victim flow
completes. In attack 2, 3, 4 and 5, the background flow obtains greater bandwidth due to the victim sending slower or stalling.

0.01 0.10 1.00 10.00 100.00 1000.00
Avg. Sending Rate (Mbps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

No Attack
Attack 1
Attack 2
Attack 3
Attack 4
Attack 5

Figure 5: Each CDF represents the distribution of the avg. sending
rate for each attack class executed 100 times. The victim BBR flow
shares the network with an identical benign background CUBIC
flow.

throughout the duration of the transmission.
This attack begins by causing the sender to re-transmission

timeout, which is achieved by preventing new data from be-
ing acknowledged. There are four acknowledgment-based
manipulation actions that were found to cause this: dropping,
limiting, stretching and delaying acknowledgments. Drop-
ping acknowledgments simply consists of preventing ACKs
from being delivered to the sender. By limiting acknowledg-
ments, acknowledgment numbers are such that they equal
min(ack, limit). Stretching acknowledgments consists of
forwarding only every nth acknowledgment to the receiver.

Lastly, delaying acknowledgments (also used in attack 2) con-
sists of delaying acknowledgments from reaching the sender.

After the re-transmission timeout is achieved from one
of the above methods, the sender enters exponential backoff
and the attacker optimistically acknowledges some data and
repeats the process. The purpose here is to quickly acknowl-
edge the lost segment in order to cause BBR enter Startup.
When BBR transitions into Startup, its network path model
(BtlBw and RTprop) is discarded, meaning the model must
be rediscovered after each RTO. This attack prevents BBR
from obtaining an opportunity to send data anywhere near the
optimal operating point, resulting in decreased throughput.
Instead, data is sent in bursts with lengthy idling in between.

Figure 3c illustrates these bursts and how the connection
idles until the timeout. At 0 ms, BBR is in Startup, and the
attacker begins to drop, limit, stretch or delay ACKs. As a
result, the sender stops sending data because in_flight has
reached cwnd. When the timeout occurs around 800 ms, the
attacker optimistically acknowledges the lost segment, caus-
ing Startup to be reentered, after which the attack repeats. In
Figure 4c, the victim flow can be seen experiencing timeouts
throughout the entire flow (indicated by the red x-markers),
allowing the background flow to obtain more bandwidth.

Interestingly, the work in [29] reported a similar attack
resulted in a faster sending rate in several cases. They note

9

Figure 6: To understand how delayed ACKs affect the sending rate
of BBR and New Reno, this figure illustrates several time-sequence
graphs, each with a distinct delay time. Each line represents the
cumulative amount of data sent during the connection. Due to differ-
ent underlying techniques, delayed acknowledgments cause BBR’s
sending rate to decay over time, where New Reno maintains a rate.

how the idle periods in between timeouts is outweighed by
repeatedly entering slow start (where cwnd doubles on each
ACK). This was not the case in our work, however, most likely
due to how we induce timeouts the very instant BBR enters
Startup, resulting in less time for the sending rate to double.

Attack 4 – RTO Stall. In this attack, a stalled connection
is caused by an attacker who causes BBR to enter exponential-
backoff, and prevents it from ever exiting. The attack begins
by causing the sender to timeout by dropping, limiting, stretch-
ing or delaying acknowledgments. After the timeout and when
exponential backoff is entered, the attacker prevents any new
data from being acknowledged, by limiting or dropping ac-
knowledgments. This causes BBR to permanently remain in
exponential backoff because the re-transmitted segment will
never be acknowledged. Additionally, no new data will ever
be sent because in_flight reached cwnd, effectively stalling
the connection. The lost segment will be re-transmitted 15
times (Linux default) with a doubled timeout time in between
each re-transmit. On the 16th re-transmission, the TCP con-
nection would be torn down by the sender (at least 15 minutes,
24 seconds from the first re-transmission).

In Figure 3d, the connection stalls around 700 ms after
only sending about 2.5 MB. In Figure 4d, the background
flow is able to obtain greater bandwidth made available by the
victim stalling. It is important to note that this attack is highly
flexible as it can be applied at any time during a connection
and is not limited to a specific state or time.

Attack 5 – Sequence Number Desync. In this attack, a
stalled connection is caused by an attacker who optimistically
acknowledges lost data causing sequence numbers between
the sender and receiver to de-synchronize. This attack works
by acknowledging a lost segment (that was not actually de-
livered to the receiver). The primary reason why this attack
causes a stalled connection is because the sender is unable

to re-transmit the lost segment because it was removed from
the “re-transmission queue". The TCP write queue retains
segments until they have been acknowledged. As segments
are acknowledged, they are discarded from the queue in order
to free memory.

Next, the sender transmits the next data segments, which
will be delivered out-of-order from the receiver’s point of
view, meaning the receiver will respond by acknowledging
the highest correct data segment received so far. Since the
out-of-order segment the sender sends cannot be acknowl-
edged, it will keep being re-transmitted eventually causing
three duplicate acknowledgments to be sent by the receiver.
When this occurs, the sender will try to re-transmit the lost
segment but cannot because it has been removed from the
re-transmission queue.

In Figure 3e, the connection stalls because while the re-
ceiver sends duplicate acknowledgments (around the 0.2 MB
mark), the sender keeps re-transmitting the same segment
(around the 0.4 MB mark) due to RTOs. Since the receiver
cannot receive that segment because it is out-of-order, it can-
not acknowledge it, causing a stalled connection. In Figure
4e, the background flow can be seen slight increasing its send-
ing rate because when the victim’s connection stalled, more
bandwidth is made available, allowing the background flow to
send faster. This attack was discovered in [29] for TCP New
Reno which also resulted in a stalled connection.

Although this attack is most effective from an on-path
attacker, this attack could be achieved by an off-path attacker
who successfully learns the victim flow’s sequence number
state. If an off-path attacker successfully crafts and injects an
acknowledgment packet acknowledging a lost segment, then
a stalled connection would result.

4.3 Ineffective Attacks Against BBR

Below we describe how some previously known attacks
against congestion control were ineffective against BBR.

Acknowledgment Bursts. In this attack, the attacker accu-
mulates n acknowledgment packets from the receiver before
forwarding them to the sender in a single burst. In [29], this
attack caused New Reno to send data in bursts because TCP
is ACK-clocked meaning its sending behavior closely mim-
ics the acknowledgment behavior. In BBR, acknowledgment
bursts do not cause data to be sent in bursts because even
though the delivery rate samples computed for the first n−1
ACKs in the burst are deflated, the delivery rate sample for
the nth (last) ACK in the burst is no different than without
an attack. Figure D2a illustrates why this is the case. ACKs
1 and 2 arrive later than normal, meaning ack_elapsed is
increased, which deflates their delivery rate samples. How-
ever, ACK 3 arrives normally, even with the attack taking
place, meaning its delivery rate sample is unchanged. Since
the delivery rate samples for the first n−1 ACKs are always
less than the nth (last) ACK, the ACKs arrive at the same time

10

and larger delivery rate samples take precedence, this attack
does not impact BBR’s BtlBw estimate.

Acknowledgment Division. In this attack, a single ACK
acknowledging m bytes is divided into n valid ACKs each
acknowledging roughly m/n bytes. In [36], this attack caused
cwnd to grow n times as fast because for each ACK, cwnd
increased by one segment. Depending on how the attacker
injected the divided ACKs, this attack had no effect on BBR’s
sending rate for different reasons. If the attacker sent the
divided ACKs at the same time as the valid ACK (the ACK
being divided), then the attack would not be effective for the
exact same reason as to why the acknowledgment burst attack
did not affect BBR’s sending rate (Section 4.3). If the attacker
sent the divided ACKs at the same time as the last ACK (the
ACK before the one that is being divided), then the ACK
rate would be clamped by BBR’s current sending rate. If the
attacker performed this during BBR’s probing phase, then it
would be identical to attack 1 where the sender’s sending rate
is increased. If the attacker evenly spaced each divided ACK,
then the ACK rate of the divided ACKs would be no different
than the ACK rate without the attack.

Duplicate Acknowledgments. In this attack, n duplicate
acknowledgments are injected for every acknowledgment
packet from the receiver. In congestion control schemes such
as CUBIC and New Reno that use packet loss to detect con-
gestion, when ≥ 3 duplicate acknowledgments were injected,
Fast Recovery was entered to re-transmit the lost segment.
This caused a decreased sending rate because upon entering
Fast Recovery, the congestion window is halved causing data
to be sent at a slower rate. Although BBR is not loss-based, it
still includes a mechanism for dealing with packet loss (by de-
tecting duplicate acknowledgments) by entering a Recovery
state. The reason this attack is not effective against BBR is
because BBR does not backoff from the network upon packet
loss. Instead, BBR sets cwnd to in_flight and re-transmits
the lost segment until all outstanding data when Recovery
was entered is acknowledged.

5 Defenses

Most of our attacks rely on being able to modify acknowledge-
ment information in TCP packets. The best defense against
these attacks is to encrypt or authenticate this information.
QUIC, a new transport protocol initially developed by Google
but currently being standardized by the IETF, takes this ap-
proach. Unfortunately, adding this kind of authentication to
TCP is impractical due to backwards compatibility issues.
Similarly, prior work [39] has suggested adding a nonce to
TCP acknowledgements to prevent optimistic ACK attacks.
This suffers from similar backwards compatibility issues. Fi-
nally, some attacks, like the Delayed ACK attack, require only
the ability to delay/reorder packets and appear to be inherent
in trying to infer model parameters from delivered packets.

6 Related Work

Congestion Control Attacks. The work in [36] demonstrates
how a misbehaving receiver can undermine congestion control
making senders sent data at a faster pace without compromis-
ing reliability. It is shown how TCP is susceptible to divided,
duplicate and optimistic acknowledgment attacks.

Much work has gone into off-path attackers who have
write-only access to a flow. Sequence numbers can be pre-
dicted [5, 7, 18, 23, 33–35] to inject malicious content into a
victim’s connection. The work in [35] shows how sequence
numbers can be leaked to unprivileged, on-device malware
to coordinate with an off-path attacker, yielding connection
hijacking in under one second. The work in [5] aims for better
initial sequence number generation to make it more difficult
for off-path attackers to succeed.

Protocol Fuzzing. Program analysis by automatically gen-
erating inputs has long been used to test for security, robust-
ness and reliability. Instead of generating random inputs, the
work in [22] takes an approach by generating relevant tests
tailored to all possible source code paths. Similar approaches
have been used for network protocol analysis. MAX [32] dis-
covers attacks in network protocols however requires source
code to be annotated where vulnerabilities are likely to exist,
yielding thorough manual analysis. This motivated model-
guided testing [19, 20, 29] where a protocol’s state machine is
used to discover relevant attacks which has been applied to a
variety protocols. KiF [1], SNOOZE [4] and SNAKE [28] all
take model-guided approaches to discover relevant and effec-
tive attack strategies in network protocols. TCPWN [29] takes
a model-guided approach for discovering acknowledgement-
based manipulation attacks in TCP congestion control imple-
mentations. As discussed in Section 3, TCPWN can not be
directly applied to BBR.

7 Conclusion

We identified 5 classes of attacks from on-path attackers
that caused BBR to send data a high, slow and stalled rates.
We found that due to how BBR multiplicatively probes for
bandwidth, an attacker who optimistically acknowledges data
caused BBR to increase its sending rate by 13x in under 1
second. We showed that the combination of gain cycling and
delayed acknowledgments by an attacker caused BBR to se-
quentially decrease its sending rate. We also showed that an
attacker that prevented new data from being acknowledged
caused re-transmission timeouts and for BBR to reset and
rediscover the network path model each time. We also identi-
fied two attacks that stall data transmission: an attacker who
prevents new data from being acknowledged and an attacker
that optimistically acknowledges lost data causing sequence
numbers to desynchronize. Finally, we show how the burst,
divide and duplicate acknowledgment attacks against prior
congestion control schemes are not effective against BBR.

11

References

[1] Humberto J. Abdelnur, Radu State, and Olivier Festor.
KiF: A Stateful SIP Fuzzer. In Proceedings of the 1st
International Conference on Principles, Systems and
Applications of IP Telecommunications, pages 47–56,
New York, NY, USA, 2007. ACM.

[2] Amit Aggarwal, Stefan Savage, and Thomas Anderson.
Understanding the Performance of TCP Pacing. Pro-
ceedings - IEEE INFOCOM, 01 2000.

[3] Jong Suk Ahn, Peter B. Danzig, Zhen Liu, and Limin
Yan. Evaluation of TCP Vegas: Emulation and Experi-
ment. SIGCOMM Comput. Commun. Rev., 25(4):185–
195, October 1995.

[4] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kem-
merer, and G. Vigna. SNOOZE: Toward a stateful net-
work protocol fuzzer. In International Conference on
Information Security, pages 343–358. 2006.

[5] S. Bellovin. Defending Against Sequence Number
Attacks. https://tools.ietf.org/html/rfc1948,
1996.

[6] Lawrence S. Brakmo, Sean W. O’malley, and Larry L.
Peterson. Tcp vegas: New techniques for congestion
detection and avoidance. In In SIGCOMM, 1994.

[7] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao,
Srikanth V. Krishnamurthy, and Lisa M. Marvel. Off-
path TCP Exploits: Global Rate Limit Considered Dan-
gerous. In Proceedings of the 25th USENIX Conference
on Security Symposium, SEC’16, pages 209–225, Berke-
ley, CA, USA, 2016. USENIX Association.

[8] N. Cardwell, J. Priyaranjan, E. Dumazet, K. Yang,
D. Miller, and Y. Seung. Linux TCP BBR. https:
//git.kernel.org/pub/scm/linux/kernel/git/
davem/net-next.git/tree/net/ipv4/tcp_bbr.c,
2018.

[9] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
Congestion-Based Congestion Control. ACM Queue,
2016.

[10] Neal Cardwell, Yuchung Cheng, C. Stephen
Gunn, Soheil Hassas Yeganeh, and Van Ja-
cobson. BBR Congestion Control. https:
//www.ietf.org/proceedings/97/slides/slides-
97-iccrg-bbr-congestion-control-02.pdf,
November 2016.

[11] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR Con-
gestion Control: An Update. https://www.ietf.org/

proceedings/98/slides/slides-98-iccrg-an-
update-on-bbr-congestion-control-00.pdf,
March 2017.

[12] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, Ian Swett, Jana Iyengar,
Victor Vasiliev, and Van Jacobson. BBR Congestion
Control: IETF 100 Update: BBR in shallow buffers.
https://datatracker.ietf.org/meeting/100/
materials/slides-100-iccrg-a-quick-bbr-
update-bbr-in-shallow-buffers, November
2017.

[13] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, Ian Swett, Jana Iyen-
gar, Victor Vasiliev, and Van Jacobson. BBR
Congestion Control: IETF 99 Update. https:
//www.ietf.org/proceedings/99/slides/slides-
99-iccrg-iccrg-presentation-2-00.pdf, July
2017.

[14] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, Ian Swett, Jana Iyengar, Victor
Vasiliev, Priyaranjan Jha, Yousuk Seung, and Van
Jacobson. BBR Congestion Control Work at Google:
IETF 101 Update. https://datatracker.ietf.org/
meeting/101/materials/slides-101-iccrg-an-
update-on-bbr-work-at-google-00, March 2018.

[15] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, Ian Swett, Jana Iyengar,
Victor Vasiliev, Priyaranjan Jha, Yousuk Seung,
Kevin Yang, Matt Mathis, and Van Jacobson. BBR
Congestion Control Work at Google: IETF 101 Update.
https://datatracker.ietf.org/meeting/102/
materials/slides-102-iccrg-an-update-on-
bbr-work-at-google-00, July 2018.

[16] Neal Cardwell, Yuchung Cheng, Soheil Hassas
Yeganeh, and Van Jacobson. BBR Congestion Control.
https://tools.ietf.org/id/draft-cardwell-
iccrg-bbr-congestion-control-00.html, 2017.

[17] Neal Cardwell, Yuchung Cheng, Soheil Hassas
Yeganeh, and Van Jacobson. Delivery Rate Estimation.
https://tools.ietf.org/html/draft-cheng-
iccrg-delivery-rate-estimation-00, 2018.

[18] Weiteng Chen and Zhiyun Qian. Off-Path TCP Exploit:
How Wireless Routers Can Jeopardize Your Secrets. In
27th USENIX Security Symposium (USENIX Security
18), pages 1581–1598, Baltimore, MD, 2018. USENIX
Association.

[19] C. Cho, D. Babic, P. Poosankam, K. Chen, E. Wu, and
D. Song. MACE: Model-inference-Assisted Concolic
Exploration for Protocol and Vulnerability Discovery.
In USENIX Conference on Security, 2011.

12

https://tools.ietf.org/html/rfc1948
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/tree/net/ipv4/tcp_bbr.c
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/tree/net/ipv4/tcp_bbr.c
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/tree/net/ipv4/tcp_bbr.c
https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf
https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf
https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf
https://www.ietf.org/proceedings/98/slides/slides-98-iccrg-an-update-on-bbr-congestion-control-00.pdf
https://www.ietf.org/proceedings/98/slides/slides-98-iccrg-an-update-on-bbr-congestion-control-00.pdf
https://www.ietf.org/proceedings/98/slides/slides-98-iccrg-an-update-on-bbr-congestion-control-00.pdf
https://datatracker.ietf.org/meeting/100/materials/slides-100-iccrg-a-quick-bbr-update-bbr-in-shallow-buffers
https://datatracker.ietf.org/meeting/100/materials/slides-100-iccrg-a-quick-bbr-update-bbr-in-shallow-buffers
https://datatracker.ietf.org/meeting/100/materials/slides-100-iccrg-a-quick-bbr-update-bbr-in-shallow-buffers
https://www.ietf.org/proceedings/99/slides/slides-99-iccrg-iccrg-presentation-2-00.pdf
https://www.ietf.org/proceedings/99/slides/slides-99-iccrg-iccrg-presentation-2-00.pdf
https://www.ietf.org/proceedings/99/slides/slides-99-iccrg-iccrg-presentation-2-00.pdf
https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://datatracker.ietf.org/meeting/102/materials/slides-102-iccrg-an-update-on-bbr-work-at-google-00
https://datatracker.ietf.org/meeting/102/materials/slides-102-iccrg-an-update-on-bbr-work-at-google-00
https://datatracker.ietf.org/meeting/102/materials/slides-102-iccrg-an-update-on-bbr-work-at-google-00
https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-00.html
https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-00.html
https://tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation-00
https://tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation-00

[20] Joeri de Ruiter and Erik Poll. Protocol State Fuzzing of
TLS Implementations. In 24th USENIX Security Sym-
posium (USENIX Security 15), pages 193–206, Wash-
ington, D.C., 2015. USENIX Association.

[21] Defense Advanced Research Projects Agency. Trans-
mission Control Protocol. https://tools.ietf.org/
html/rfc793, 1981.

[22] Joe W. Duran and Simeon Ntafos. A report on ran-
dom testing. In Proceedings of the 5th International
Conference on Software Engineering, ICSE ’81, pages
179–183, Piscataway, NJ, USA, 1981. IEEE Press.

[23] Yossi Gilad and Amir Herzberg. Off-path Attacking the
Web. In Proceedings of the 6th USENIX Conference on
Offensive Technologies, WOOT’12, pages 5–5, Berkeley,
CA, USA, 2012. USENIX Association.

[24] University of Southern California Information Sci-
ences Institute. Transmission Control Protocol. https:
//tools.ietf.org/html/rfc793, 1981.

[25] J. Iyengar, Ed and Fastly and M. Thomas, Ed and
Mozilla. QUIC: A UDP-Based Multiplexed and Secure
Transport. https://tools.ietf.org/html/draft-
ietf-quic-transport-18, 2019.

[26] Van Jacobson. Congestion Avoidance and Control.
ACM SIGCOMM Computer Communication Review,
18(4):314–329, 1988.

[27] R. Jain. A delay-based approach for congestion avoid-
ance in interconnected heterogeneous computer net-
works. SIGCOMM Comput. Commun. Rev., 19(5):56–
71, October 1989.

[28] S. Jero, H. Lee, and C. Nita-Rotaru. Leveraging State
Information for Automated Attack Discovery in Trans-
port Protocol Implementations. In IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works, 2015.

[29] Samuel Jero, Endadul Hoque, David Choffnes, Alan
Mislove, and Cristina Nita-Rotaru. Automated Attack
Discovery in TCP Congestion Control Using a Model-
guided Approach. In Proc. of Network & Distributed
System Security Symposium (NDSS), 2018.

[30] Laurent Joncheray. A simple active attack against TCP.
In USENIX Security Symposium, 1995.

[31] L Kleinrock. Power and deterministic rules of thumb
for probabilistic problems in computer communications.
01 1979.

[32] Nupur Kothari, Ratul Mahajan, Todd Millstein, Ramesh
Govidan, and Madanlal Musuvathi. Finding Protocol

Manipulation Attacks. In SIGCOMM, pages 26–37,
2011.

[33] Robert T. Morris. A Weakness in the 4.2BSD Unix
TCP/IP Software, 1985.

[34] Z. Qian and Z. M. Mao. Off-path TCP Sequence Num-
ber Inference Attack - How Firewall Middleboxes Re-
duce Security. In 2012 IEEE Symposium on Security
and Privacy, pages 347–361, May 2012.

[35] Zhiyun Qian, Z. Morley Mao, and Yinglian Xie. Col-
laborative TCP sequence number inference attack: how
to crack sequence number under a second. In ACM
Conference on Computer and Communications Security,
2012.

[36] Stefan Savage, Neal Cardwell, David Wetherall, and
Tom Anderson. TCP Congestion Control with a Misbe-
having Receiver. ACM SIGCOMM Computer Commu-
nication Review, 29(5), 1999.

[37] V. Jacobsen and LBL and R. Braden and ISI.
TCP Extensions for Long-Delay Paths. https://
tools.ietf.org/html/rfc1072, October 1988.

[38] David X. Wei, Cheng Jin, Steven H. Low, and San-
jay Hegde. FAST TCP: Motivation, Architecture,
Algorithms, Performance. IEEE/ACM Trans. Netw.,
14(6):1246–1259, December 2006.

[39] Lixia Zhang, Scott Shenker, and Daivd D. Clark. Ob-
servations on the Dynamics of a Congestion Control
Algorithm: The Effects of Two-way Traffic. SIGCOMM
Comput. Commun. Rev., 21(4):133–147, August 1991.

A Background on Congestion Control

A.1 Congestion Control Overview
Congestion control determines whether to send a segment of
data based on information inferred about a network path be-
tween endpoints. A primary goal is to saturate the bottleneck
link (maintaining high utilization) while avoiding conges-
tion collapse (due to sending faster than the bottleneck link
can support). The bottleneck link is saturated when the total
amount of data in-flight equals the path’s bandwidth-delay
product (BDP) which represents the maximum amount of
in-flight data the network [31] can process without dropping
packets. A path’s BDP is dynamic and typically computed as
the product of the bottleneck link’s maximum bandwidth and
the path’s round-trip time without queue delay [37]. Conges-
tion control is also tasked with avoiding congestion collapse
and achieving fairness with other flows sharing the network.
Accomplishing these goals is challenging because networks
are unpredictable: links vary in bandwidth capacity and are

13

https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/draft-ietf-quic-transport-18
https://tools.ietf.org/html/draft-ietf-quic-transport-18
https://tools.ietf.org/html/rfc1072
https://tools.ietf.org/html/rfc1072

shared anywhere between few to millions of hosts such as the
global Internet. While several congestion control algorithms
have been developed, most adhere to the same basic principles
first described by Jacobson in 1988 [26]. Below we describe
the main goals of a congestion control algorithm.

Discovering the target sending rate. The target sending
rate is one that achieves high throughput and avoids conges-
tion. The sending rate is dictated by a per-connection variable
known as the congestion window cwnd which governs the
maximum amount of unacknowledged data allowed in-transit.
When a connection first starts, congestion control performs
slow start to quickly discover the available bandwidth of the
link. Afterwards, congestion avoidance is performed whereby
data is sent conservatively while slowly probing the network
for available bandwidth.

Inferring congestion. Congestion control must use sig-
nals from the network to infer congestion as an indicator
to “back off”, or reduce its load on the network. The most
popular paradigms have been loss-based congestion control
and delay-based congestion control. Loss-based congestion
control has dominated the Internet since its creation and uses
packet loss as signal of congestion. Packet loss occurs when
switch buffers along a network path fill to capacity and are
left with no choice but to discard, i.e., drop, incoming pack-
ets. Delay-based congestion control compares predicted and
actual round-trip time (RTT) samples to signal congestion.
These signals, be they packet loss or RTT, govern the rate at
which data is sent into the network.

Achieving fairness with competing flows. Since net-
works today are shared by several end-hosts, congestion con-
trol aims to share the limited resources of a bottleneck link
evenly across all flows. Coexisting congestion control algo-
rithms may not be fair to each other due to differing probing
and backoff mechanisms. For example, delay and loss-based
congestion control do not operate well together. Delay-based
congestion control has been shown to reduce its congestion
window much earlier than loss-based [3], resulting in unfair
bandwidth allocation. Because of this, delay-based congestion
control is not commonly used in today’s networks.

A.2 Congestion Signal

Loss-based congestion control uses two signals to detect
packet loss: re-transmission timeouts (RTOs) and duplicate
acknowledgment packets. Delay-based congestion control
leverages changes in RTT samples to infer congestion. All
methods leverage feedback from the receiver (i.e. acknowl-
edgment packets) to detect congestion.

Re-transmission timeout. RTOs ensure data delivery
when there is no feedback from the receiver. Each time a
data segment is sent, a timer starts and expires if the seg-
ment has not been acknowledged after a certain amount of
time (usually several RTTs). Each time the timer expires, the
data segment is re-transmitted and the timer restarts with a

doubled timeout time. The initial timeout time is typically
a function of RTT samples, gathered over the duration of a
connection. This event can indicate congestion so severe that
acknowledgments cannot be delivered in a sufficient amount
of time.

Duplicate acknowledgments. When an out-of-order data
segment is received, a receiver will ignore its payload and
reply acknowledging the last correctly received data byte. If
a data segment becomes lost in-transit, then the following
in-transit segments will be received out-of-order, causing the
receiver to send several duplicate acknowledgments. When a
sender receives multiple (e.g., three) duplicate acknowledg-
ments in a row, congestion is inferred. This event signifies
less severe network congestion because despite the loss of a
data packet, acknowledgments are still able to be received by
the sender.

Delayed acknowledgments. Delay-based congestion con-
trol, used by TCP Vegas [6], FAST TCP [38] and CARD [27],
takes a proactive approach for detecting congestion rather
than loss-based which takes a reactive approach after conges-
tion already occurs. The advantage of delay over loss-based
congestion control is that it detects the onset of congestion
as switch buffers grow instead of waiting until they have
filled for packet loss to occur. Delay-based congestion con-
trol infers congestion by comparing actual throughput to ex-
pected throughput. If actual throughput is significantly less
than expected throughput, then the network is inferred to be
congested.

Adapting to congestion. Congestion control adapts the
sending rate based on the above congestion signals, typically
accomplished by adjusting cwnd based on congestion severity.
The most common approach for adjusting cwnd is the additive
increase/multiplicative decrease (AIMD) scheme where cwnd
linearly increases on each new ACK to probe for available
bandwidth until a congestion event occurs, where cwnd expo-
nentially decreases to “back off” from the network. When an
RTO occurs, cwnd resets to 1 segment as this usually implies
major changes in network conditions. Upon three duplicate
acknowledgments, cwnd halves as this implies small amounts
of packet loss. Fairness is achieved because flows back off at
different times, allowing others to occupy the available band-
width. The limitation of AIMD is while it can attain its fair
share of bottleneck bandwidth, it backs off shortly after its
discovery. The AIMD scheme is a high-level approach which
varies depending on implementation.

A.3 A State Machine for Congestion Control

Acknowledgment packets. Every byte of data is associated
with a unique sequence number [21] that increments by 1
with each additional data byte. A packet containing data is
accompanied by a sequence number, which represents the
sequence of the first byte of the data. Sequence numbers allow
data segments to be easily reassembled and acknowledged by

14

receivers. Acknowledgment packets are sent from the receiver
to explicitly inform the sender about the highest correctly
received data byte thus far. They also implicitly inform the
sender about current network conditions. An acknowledgment
packet acknowledging sequence X implies all bytes up to but
not including X have been correctly received. This allows
the sender to either re-transmit lost segments or send new
data. Receivers typically send one acknowledgment packet
for every two received data packets.

Slow Start. This is the first state a connection enters and
aims to quickly discover the available bandwidth of the net-
work before congestion avoidance is entered. Since network
capacities today span several orders of magnitude, this state
performs an exponential search for the available bandwidth.
When slow start is entered, cwnd starts at 1 MSS and dou-
bles on every round-trip until either congestion is detected
or cwnd reaches the target rate, the slow start threshold, or
ssthresh. The slow start threshold defines the upper limit
for cwnd growth while in slow start, which is initially set to
the receive window, or rwnd.

Congestion Avoidance. The goal of this state is to avoid
congestion by sending data at the estimated available band-
width while slowly increasing cwnd to probe for available
bandwidth. On every round-trip, cwnd increases by 1 MSS
until congestion is detected: a RTO timeout or the recipient
of three duplicate acknowledgments.

Fast Recovery. This state is entered from any other state
when three duplicate acknowledgments are received. This
event indicates less severe congestion because while it may
indicate lost packets, it also indicates the network is at least
able transmit acknowledgments from the receiver. This state
aims to quickly recover from the lost packets by halving cwnd
and re-transmitting the last unacknowledged data segment.
Fast recovery returns to congestion avoidance once all unac-
knowledged data before fast recovery was entered has been
acknowledged.

Exponential Backoff. This state is entered when a re-
transmission timeout (RTO) expires which infers major
changes in network conditions. Re-transmission timers begin
when data segments are first sent and expire when a certain
amount of time has elapsed without the segment being ac-
knowledged (usually several RTTs). Each time an RTO time-

out expires, the segment is re-transmitted and the timer restarts
with a doubled timeout time. This results in the sender expo-
nentially backing-off from the network by allowing more time
to elapse before it re-transmits the lost segment in response
to the perceived network congestion. This repeats until an ac-
knowledgment is received after which ssthresh becomes
half of cwnd, cwnd restarts from 1 MSS and exponential-
backoff transitions into slow start.
Algorithm B1 Attack strategy categorization algorithm: 20
benign experiments are first executed to obtain a baseline
average and standard deviation. Since each strategy transfers
the same 100MB file, an strategy is categorized as a function
of its total transfer time and the baseline average and standard
deviation transfer time.

Input: Strategy execution metrics
Output: The category of the strategy

1: function CATEGORIZEATTACKSTRATEGY(s)
2: if s.Time > (s.TimeAvg+2∗TimeStddev) then
3: return SLOWER
4: else if s.Time < (TimeAvg+2∗TimeStddev) then
5: if s.SentData >= (0.7∗100MB) then
6: return FASTER
7: else
8: return STALLED
9: end if

10: else
11: return BENIGN
12: end if
13: end function

B Attack Strategy Categorization

Attack strategy categorization algorithm is shown in Algo-
rithm B1.

C Illustrations of Malicious Actions Used by
our Attacks Strategies against BBR

D Illustrations of Ineffective Attacks against
BBR

E BBR State Inference Algorithm

For completeness, we present in details the BBR state infer-
ence algorithm below.

15

sender receiverattacker

DATA 1

DATA 1
DATA 2

DATA 2

ACK 1

ACK 2 ACK 2

DATA 3
DATA 4
DATA 5
DATA 6

DATA 3
DATA 4

ACK 3

ACK 6

DATA 5
DATA 6

ACK 4

ACK 5

ACK 6

(a) Optimistic ACK:
acknowledge highest byte,

dropping duplicates.

sender receiverattacker

DATA 1

DATA 1

ACK 1

ACK 1

delay

DATA 2

DATA 2

ACK 2

ACK 2

delay

(b) Delayed ACK: delay
acknowledgments for a
fixed amount of time.

sender receiverattacker

DATA 1

DATA 1

ACK 1

RTO

DATA 2

DATA 2

ACK 2

ACK 1

ACK 1

DATA 2

DATA 2

start

(c) Limited ACK: prevent
ACK numbers from

increasing.

sender receiverattacker

DATA 1

DATA 1

DATA 2

DATA 2

DATA 3

DATA 3

DATA 4

DATA 4
ACK 1

ACK 2

ACK 3

ACK 4ACK 2

ACK 4

RTO

DATA 1

DATA 1

(d) Stretch ACKs: forward
only every nth ACK. In this

example, n = 2.

Figure C1: Time lines of acknowledgment-based manipulation actions used in our attack strategies.

sender receiverattacker

DATA 1

DATA 1
DATA 2

DATA 2
DATA 3

ACK 1
DATA 3

ACK 2

ACK 3

ACKs 1, 2 & 3

ACK 1

ACK 2

normal ACKs

bursted ACKs

(a) ACK burst: send n ACKs
in a single burst. In this

example, n = 3.

sender receiverattacker
DATA (0:1500)

ACK (1500)

DATA (0:1500)

ACK (500)

ACK (1000)

ACK (1500)
spoofed

ACKs

normal ACK

(b) Divided ACKs: ACK m
bytes using n ACKs, each
acknowledging m/n bytes.

sender receiverattacker

DATA 1

ACK 1

ACK 1

DATA 1

ACK 1

ACK 1

ACK 1spoofed

ACKs

normal ACK

(c) Duplicate ACKs: inject n
duplicate ACKs. In this

example, n = 3.

Figure D2: Time lines of acknowledgment-based manipulation actions that were previously known to be effective against TCP congestion
control, but were ineffective against BBR.

16

Algorithm E2 BBR state inference algorithm
1: function ONNEWBBRPACKET(packet)
2: newInt = CHECKINTERVAL(packet) /* a round-trip has passed */
3: if dataPackets > 0 and RTOPASSEDFORDATAPACKET() then
4: priorState = currentState
5: currentState = EXPONENTIAL_BACKOFF
6: COMPUTEINTERVALMETRICS()
7: else if retransmissions > 0 and not currentState == RECOVERY then
8: priorState = currentState
9: currentState = RECOVERY

10: /* leave recovery when high water is ACK’d */
11: highWater = highestDataSequence
12: else if currentState == RECOVERY then
13: ratio = THROUGHPUTRATIOSINCELASTROUNDTRIP()
14: if totalAcked ≥ highWater then
15: currentState = priorState /* return to previous state */
16: SETRETRANSMISSIONCOUNT(0)
17: else if newInt and priorState == STARTUP and 0.7 > ratio > 0.1 then
18: priorState = DRAIN
19: end if
20: else if currentState == PROBERTT and dataPackets > 10 then
21: currentState = priorState
22: else if newInt then
23: currentState = UPDATEBBRNEWINTERVAL()
24: else if dataPackets ≥ 10 then
25: /* check for drain on frequent basis */
26: ratio = THROUGHPUTRATIOSINCELASTROUNDTRIP()
27: if currentState == STARTUP and 0.7 > ratio > 0.1 then
28: priorState = currentState
29: return DRAIN
30: end if
31: end if
32: end function

33: function UPDATEBBRNEWINTERVAL()
34: ratio = THROUGHPUTRATIOSINCELASTROUNDTRIP()
35: dataPackets = GETDATAPACKETCOUNT()
36: nonIncrease = NONINCREASEINTERVALCOUNT()
37: if 6 > dataPackets > 3 then /* small amount of data in-flight */
38: return PROBERTT
39: else if currentState == DRAIN and ratio > 1.4 then
40: priorState = currentState
41: return PROBEBW
42: else if not currentState == PROBEBW and ratio > 1.4 then
43: priorState = currentState
44: return STARTUP
45: else if currentState == STARTUP and 0.7 > ratio > 0.1 then
46: priorState = currentState
47: return DRAIN
48: else if currentState == STARTUP and nonIncrease > 10 then
49: priorState = currentState
50: return DRAIN
51: else if intervalCount > 16 and throughputVariance < 100 then
52: priorState = currentState
53: return RATE_LIMIT
54: else if not currentState == STARTUP and 1.4 > ratio > 0.6 then
55: priorState = currentState
56: return PROBEBW
57: else
58: return currentState
59: end if
60: end function

61: function CHECKINTERVAL(packet)
62: if not inInterval and ISDATAPACKET(packet) then
63: CLEARINTERVALDATA()
64: ackMark = packet.sequenceNumber
65: inInterval = true
66: end if
67: if inInterval and packet.ackNumber ≥ ackMark then
68: inInterval = false
69: COMPUTEINTERVALMETRICS()
70: return true
71: end if
72: return false
73: end function

17

	Introduction
	Vulnerability of BBR to Attacks
	BBR Overview
	Estimating the Network Path Model
	A State Machine for BBR

	Automated Attack Exploration in BBR
	Attacker Model
	Modifying TCPwn for BBR
	State Inference for BBR

	Experimental Results
	Experiment Setup
	Discovered Attacks on BBR
	Ineffective Attacks Against BBR

	Defenses
	Related Work
	Conclusion
	Background on Congestion Control
	Congestion Control Overview
	Congestion Signal
	A State Machine for Congestion Control

	Attack Strategy Categorization
	Illustrations of Malicious Actions Used by our Attacks Strategies against BBR
	Illustrations of Ineffective Attacks against BBR
	BBR State Inference Algorithm

