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Abstract Antibodies have been shown to hinder the movement of Herpes
Simplex Virus (HSV) virions in cervicovaginal mucus (CVM), as well as other
viruses in other mucus secretions. However, it has not been possible to di-
rectly observe the mechanisms underlying this phenomenon, so the nature of
virion-antibody-mucin interactions remain poorly understood. In this work,
we analyzed thousands of virion traces from single particle tracking experi-
ments to explicate how antibodies must cooperate to immobilize virions for
relatively long time periods. First, using a clustering analysis, we observed a
clear separation between two classes of virion behavior: Freely Diffusing and
Immobilized. While the proportion of Freely Diffusing virions decreased with
antibody concentration, the magnitude of their diffusivity did not, implying an
all-or-nothing dichotomy in the pathwise effect of the antibodies. Proceeding
under the assumption that all binding events are reversible, we used a novel
switch-point detection method to conclude that there are very few, if any, state-
switches on the experimental time scale of twenty seconds. To understand this
slow state-switching, we analyzed a recently proposed continuous-time Markov
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chain model for binding kinetics and virion movement. Model analysis implied
that virion immobilization requires cooperation by multiple antibodies that
are simultaneously bound to the virion and mucin matrix, and that there is
an entanglement phenomenon that accelerates antibody-mucin binding when a
virion is immobilized. In addition to developing a widely-applicable framework
for analyzing multi-state particle behavior, this work substantially enhances
our mechanistic understanding of how antibodies can reinforce a mucus barrier
against passive invasive species.

Keywords Mucosal immunology · Particle tracking · Switching diffusion ·
Uncertainty quantification

Mathematics Subject Classification (2010) 92B05 · 62-07 · 60J70

1 Introduction

There are several mechanisms by which antibodies (Ab) produced by the
immune system can interfere with and even prevent viral infection after an
invasion. Antibodies have long been known to bind to surface epitopes on
invading virions, rendering the pathogen ineffective either by blocking the epi-
tope from binding to receptors on target cells, or signaling to other immune
cells/molecules to inactivate the virus or destroy virus-infected cells. Recent
experiments have revealed a previously under-appreciated mechanism: physi-
cal hindrance of virion motion and potentially the complete immobilization of
virions in mucus secretions that lie on the epithelium [20,11]. Specifically, the
presence of virion-binding, Immunoglobulin G (IgG) antibody, was shown to
directly decrease the mobility of the Herpes Simplex Virus (HSV) virions in
human cervicovaginal mucus (CVM) [20,17], as well as Influenza and Ebola
virus-like particles in human airway mucus [24]. An example of the effect can
be seen in Figure 1, where we display virion trajectories for two populations of
HSV virions, originally studied in Wang et al. [20]. The left and right columns
show virion movement in the presence of low and high Ab concentrations,
respectively. The degree of activity in the low Ab concentration is notably
higher.

The possibility of using IgG to hinder the motion of different viruses in
mucus provides a novel strategy for immunologists to develop methods to
prevent and/or treat viral infection [11,23]. Population-scale experimental
methods have shown that Ab are slightly less mobile in mucus than
in phosphate-buffered saline [13]. The reduced diffusivity of Ab in mucus
has been attributed to weak transient bonds between individual Ab and the
polymeric microstructure of mucus, or “mucin mesh” [13]. Meanwhile many
virions have been shown to diffuse unimpeded in mucus in the absence of
a detectable Ab concentration [13,20]. For this reason, the observation
that virion mobility in CVM is impeded in the presence of Ab (even
across the menstrual cycle) implies there must be some physico-
chemical mechanism at work [20,17].
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Fig. 1 The trajectories of HSV virions for Donor F17 at exogenous antibody concentra-
tions 0µg/mL (left) and 1.0µg/mL (right). Top Row: The displacement of HSV virions in
the x-direction. The time indicated in the horizontal axis is shifted for each path so that
t = 0 corresponds to the moment the path is first observed. Bottom Row: All two dimen-
sional HSV virion trajectories overlaid and plotted in a single frame. For all sub-figures the
trajectory frame-rates are 15 observations per second.

Recently the authors and collaborators have explored the possibility that
Ab can work in tandem with the mucin mesh to hinder diffusing virions. (See
Figure 2 for an idealized schematic of the interactions.) In theory, as a virion
diffuses through mucus, an array of Ab can accumulate on its surface. When
a sufficient number of virion-bound Ab form low affinity bonds to the mucin
mesh, the virion can become tethered and essentially trapped. This hypoth-
esis was introduced by Olmsted et al. in 2001 [13] and confirmed
by Wang et al. in 2014 [20], by Newby et al. in 2017 [11], and by
Schroeder et al. in 2018 [17]. In 2014, Chen et al. [2] introduced a stochas-
tic/deterministic hybrid model for the immobilization of Human Immunodefi-
ciency Virus (HIV) by IgG in CVM, and demonstrated the potential impact of
the tandem effect of Ab-virion binding and Ab-mucus transient binding on the
ability of viral populations to cross, enter, and pass through a thin mucosal
layer. Later, Wessler et al. [22] used numerical simulations to explore combi-
nations of Ab-virion and Ab-mucus reaction kinetics that produce an optimal
effect. Newby et al. [11] further demonstrated that very low affinity Ab-mucus
bonds optimize trapping of diffusing nanoparticles using experimental and
simulated data along with providing theoretical arguments.
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Fig. 2 A schematic depiction of the proposed immobilization process of virions, green
circles, by antibodies, blue ‘Y’s, in a mucosal medium. Virions become immobilized when
‘enough’ antibodies are bound to the virions and the mucosal fibers, gray lines. Arrows
indicate Ab interacting solely with the mucin fibers. Figure originally presented in [20].

Underlying these mathematical models is a Switching Diffusion Hypothesis :
that the chemical reactions responsible for virion (or nanoparticle) immobi-
lization are reversible and, as a consequence, virions should switch between
diffusive and immobilized states. When compared to the experimentally ob-
servable timescale of 10-20 seconds, the Ab-mucin kinetic rates are expected
to be fast while the Ab-virion kinetic rates are expected to be slow (see Table
1). It is not clear, however, whether the state-switching between diffusion and
immobilization should be on a faster or slower timescale than the observable
10-20 seconds.

In recent modeling efforts, [2,22], the effect of surface bound
Ab on the diffusivity of a virion was assumed to be incrementally
multiplicative. That is to say, there is a constant α ∈ (0, 1) such that
the diffusivity has the following state-dependent form.

Incremental Knockdown Hypothesis : D(S(t), N(t)) = αN(t)D. (1)

Here D is the diffusivity of the virion in mucus in the absence of Ab, N(t) is the
number of virion-bound Ab, and S(t) is the subset of Ab simultaneously bound
to the mucin mesh. This reduction in diffusivity is independent of S(t) because
the number of simultaneously bound Ab changes so rapidly (relative to the
number of bound Ab), the virion only feels the average effect of these changes,
which is captured by the number of bound Ab, N(t). The parameter α can
be expressed in terms of the Ab-mucin binding and unbinding rates (mon and
moff, respectively) and the effective concentration [M ] of binding sites on the
surfaces of mucin fibers. If mon[M ] and moff are very large, so that there are
many on-and-off switches per second, then an effective diffusivity arises with
a so-called “knockdown factor” α = moff/(mon[M ] +moff) [2]. In this way, we
say that the Incremental Knockdown Hypothesis follows from assuming that
the dynamics is in a Fast Switching Regime. That is to say, in this modeling
regime, one assumes that [diffusion � immobilization] switching is faster than
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the times between experimental observations and faster than what we plan
to use as a simulation time step. We depict a typical trajectory of a virion
under this hypothesis in Figure 3(a). A virion rapidly changes between the
immobilized (red) state and freely diffusing states (green). The resulting path
has a reduced effective diffusivity that is well-approximated by Equation 1, and
the virion exhibits qualitatively less movement than a virion predominately in
the freely diffusing state (seen in blue).
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Fig. 3 Top row (a)-(c): The path of a virion assuming it takes one (green trajectory) or
ten (blue trajectory) simultaneously bound Ab for immobilization. Red intervals correspond
to periods of immobilization. Bottom Row (d)-(f): The virion-Ab-mucin dynamics that
govern the movement of the simulated virion directly above it. Within each frame, the
number of bound Ab N(t) is shown by the purple trajectory and the subset of these Ab that
are simultaneously bound to the mucin fibers S(t) assuming a low threshold, T = 1, and
higher threshold, T = 10, shown by the green trajectory and blue trajectory, respectively.
The binding rate cascade factor c increases from left to right: c = 1, c = 20 and c =
200, respectively. Other model parameters used in the simulation are ([A]0, [A]exo, N∗) =
(0.2µg/mL, 0.1µg/mL, 120). The mathematical model is fully described in Section 2.4.

Recent particle tracking experiments now make it possible to analyze virion
behavior as it is modulated by various concentrations of Ab [20]. In Figure 1,
we display two populations of HSV virions diffusing in CVM with 0 µg/mL
and 1 µg/mL concentrations of exogenous HSV-binding IgG. There is quali-
tatively less virion movement in CVM with higher concentrations of Ab, but,
as we argue below using path-by-path analysis, the trajectories of individual
virions appear to resemble either that of a strictly immobilized virion or a
strictly freely diffusing virion. This absence of observable switches between
immobilized and freely diffusing states might seem to ratify the fast switch-
ing hypothesis. However, closer analysis of the freely diffusing particles shows
that the diffusivity of freely diffusing virions is essentially the same across all
exogenous Ab concentrations. This contradicts the Incremental Knockdown
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Hypothesis, which predicts the diffusivity should decrease with increasing Ab
concentration. While there are essentially no observable switches, and the diffu-
sivity of the free population is not incrementally affected by Ab concentration,
we find that the proportion of completely immobilized virions is unmistakably
increasing with Ab concentration. (See also [20].) This suggests an alterna-
tive hypothesis: we are in a Slow Switching Regime where switching takes
place fast enough (less than the incubation period of thirty minutes) so that
the experiments display different movement patterns, but slow enough (more
than twenty seconds) so that we do not see switches in the observational time
window.

In this work, we develop and implement the tools necessary for making the
preceding claims. To be specific, we use clustering analysis to partition virion
paths into a few distinct behavioral patterns. We implement a Bayesian switch-
point detection algorithm to assess the prevalence of switches in mobile virions.
We develop a Markov chain model for virion-Ab-mucin interactions for use in
our characterization of the dependence of virion motility on Ab concentration.
A critical feature of this model is the possibility that virion immobilization
requires multiple simultaneously surface bound Ab, and that a single virion-
Ab-mucin binding event might lead to a cascade of such binding events, which
would serve to enhance trapping. Using uncertainty quantification techniques
we explore the limitations of the available data, but argue there is a reasonable
parameter regime that is fully consistent with experimental observations.

2 Data Collection, Statistical Methods, and Mathematical Model

2.1 Data collection

Single particle tracking data of HSV virions was collected from seven differ-
ent CVM samples at five added doses of exogenously anti-HSV-1 IgG, (0,
0.033, 0.1, 0.333, 1.0) µg/mL with an incubation period of half an hour to one
hour. For each sample, the virions were tracked for a duration of 20 seconds.
The x-position and the y-position of all traces were observed at a time inter-
val of δ = 1/15s . For all the experiments, the tracked particles were
the HSV-1 mutant 166v, containing a VP22-GFP tegument protein.
The translation motion of the fluorescent virions was captured with
MetaMorph imaging software resulting in videos (512x512 pixels,
16-bit image depth) with temporal solution 66.7 ms and spatial res-
olution of 10nm for 20 seconds. For a more detailed description of the
collection process see the Methods section in [20].

2.2 Statistical tools for virion trajectory analysis

We used standard statistical techniques to assess whether the behavior of each
virion is consistent with the defining properties of Brownian motion (station-
arity with Gaussian independent increments) and to infer physical parameters.
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2.2.1 Test for Gaussianity and independence of increments

We used normal quantile-quantile (qqnorm) plots to qualitatively verify that
the path statistics are approximately Gaussian. The qqnorm plots for the
increment processes had approximately linear relationships for all particles
indicating the x and y increment processes for all particles could be described
as Gaussian. To construct such plots, we used the qqnorm() function
in the R programming language found in the stats library.

Noting that if a Gaussian process has uncorrelated increments then the in-
crements are independent, we tested for independence of increments by quan-
tifying the statistical significance of their correlation. Let {Ui(k) := Xi(kδ)−
Xi((k − 1)δ)}nk=1 and {Vi(k) := Yi(kδ) − Yi((k − 1)δ)}nk=1 denote the ith
particle’s x and y increment processes, respectively. For the ith particle, we
estimated the correlation between the x and y increment processes separated
h time steps apart using the sample autocorrelation function, Ai(h;U) and
Ai(h;V ) used in the R programming language. If there are n increments of
uniform duration δ then for a time lag of hδ

Ai(h;X) :=
1
n

∑n−h
k=1

(
Ui((k + h))− Ui

)(
Ui(k)− Ui

)
1
n

∑n
j=1(Ui(k)− Ui)2

, (2)

where Ui := 1
n

∑n
k=1 Ui(k) [18]. We say the ith particle’s increment processes

are anti-persistent (persistent) if both Ai(h = 1;X) and Ai(h = 1;Y ) are
below (above) the critical value for a 95% significance level and independent
otherwise.

2.2.2 Mean-Squared Displacement

The primary statistical tool for describing a population of microparticle paths
is the so-called ensemble mean-squared displacement (MSD), which we denote
〈M(t)〉. To calculate it, we first compute a pathwise MSD for each trajectory
(denotedMi(t) for the ith path) and then take an average over these functions.
If there are n steps that are uniform of duration δ, then as defined in [15],

Mi(kδ) :=
1

n− k + 1

n−k∑
j=0

∣∣Xi((j + k)δ)−Xi(jδ)
∣∣2 .

For t between the time points {kδ} we define Mi(t) by linear interpolation.
The slope of the MSD displayed on a log-log scale provides an estimate for
each particle’s diffusive exponent, ν, in the large time regime (Mi(t) ∼ Ctν).
Following standard particle tracking nomenclature, an individual path is said
to be Brownian if ν = 1, subdiffusive if ν ∈ (0, 1), and stationary if ν = 0.
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2.2.3 Effective Diffusivity

A fundamental quantity to measure for a Brownian path is its diffusivity D.
If (X(t), Y (t)) is the 2d position of the particle at time t, then its diffusivity
is defined to be D := limt→∞ E(X2(t) + Y 2(t))/4t. For a Brownian path with
n steps of uniform duration δ, the maximum likelihood estimator (MLE) for
its diffusivity has the form

Deff :=
1

4δn

n∑
j=1

(
U(jδ)2 + V (jδ)2

)
, (3)

shown in Appendix A. We refer to Deff as the path’s effective diffusivity.
We note that this effective diffusivity is only a consistent estimator for D if
the path has all the characteristics of Brownian motion, namely stationary,
independent, Gaussian increments.

However, as seen in Figure 4(a)-(c) there are many paths with anti-correlated
increments. For such a process, “diffusivity” is not well-defined. For those
paths that can be described by Brownian motion, Deff does not ac-
count for observational error. Using the method proposed by Vester-
gaard et al. [19], we found a typical variance of the localization error
to be minor (of order 0.01µm2/s) as compared to the effective dif-
fusivity (of order 1µm2/s) for such virions, see the SI Section 2 for
further details and supporting figure. Nevertheless we use Deff as a de-
scriptor for these paths because this serves the purpose to distinguish between
the particles in two different states by the clustering methods described below.

For a given collection of N particles, the ensemble effective diffusivity is
the weighted average effective diffusivity of the tracked particles in the sam-
ple, denoted 〈Deff〉. When evaluating population statistics in particle tracking
experiments, if particle paths are weighted independent of path length, then
it has been shown that there is a bias toward highly mobile particles, further
discussed in Section 2.3.1,[21]. Based on that analysis, we report the effective
diffusivity of an ensemble by taking an average weighted by path lengths. Let
Di

eff denote the effective diffusivity of ith freely diffusing virion, which has
path length ni. Then

〈Deff〉 :=

N∑
i=1

ωiD
i
eff where ωi =

ni∑N
j=1 nj

. (4)

2.2.4 Bias-corrected and accelerated percentile (BCa) confidence interval
method

We constructed confidence intervals for ensemble statistics based on the boot-
strapping BCa method due to its second order accuracy and invariance under
transformations. See [4] for the formulation of confidence intervals using this
method. We used the boot.ci() function in the R programming lan-
guage found in the in the boot library to obtain the BCa confidence
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intervals for the ensemble statistics as follows. First, we simulated
10, 000 booted samples (with replacement) from an ensemble of N tracked
particles weighted by the particle path lengths. The BCa confidence inter-
val is then the usual confidence interval constructed using this population of
(weighted) bootstrap samples.

2.3 Classification scheme for virion paths

For each donor and concentration, we employed a hierarchical clustering al-
gorithm to separate the HSV virions into distinct clusters based on a set of
pathwise statistics: x-increment ACF, y-increment ACF, and log 10 transform
of the effective diffusivity. We defined the dissimilarity measure between pairs
of virions i and j by a weighted Euclidean distance d(i, j) with weights of 1/4,
1/4, and 1/2 for the differences in Ai(1;X), Ai(1;Y ), and log 10(Deff) respec-
tively. The dissimilarity measure between clusters was set to be the average
linkage. That is to say, the dissimilarity between clusters R and Q is defined
to be

d(R,Q) =
1

|R||Q|
∑

i∈R,j∈Q
d(i, j). (5)

Hierarchical clustering is an agglomerative clustering method [8]. The algo-
rithm is initialized by setting each data point as a distinct cluster. During
each iteration, clusters are merged together to minimize the dissimilarity be-
tween all clusters. The algorithm stops when all data points are in a single
cluster. This process is depicted graphically through the dendrogram where
clusters merge at a height equal to dissimilarity between them. We obtained
the k cluster by cutting the resulting dendrogram at the uniform height yield-
ing k clusters.

Because hierarchical clustering is an unsupervised clustering method,
in which the number of clusters is not known a priori, the number
of clusters has to be chosen by the practitioner. One such method of
obtaining the number of clusters is called the elbow method. In this
approach, the within-sum-of-squares values of the clusters (WSS) is
computed and plotted for a range of cluster numbers. The WSS de-
creases with the number of clusters, and typically there is a bend or
“elbow” in the graph which guides the selection of an appropriate
number of clusters.

In all cases, there was a major drop in WSS from one to two
clusters but it was rarely clear how to specify the elbow among
k = 2, 3, 4 or 5 clusters. We chose to use k = 4 in almost all cases
because the results were consistent with our bio-physical intuition
that there might be Freely Diffusing, Immobilized, Subdiffusive, and
Outlier states. A few examples of each class are displayed in the sup-
plemental materials, Figure 1. Although we allowed for four clusters
when labeling each cluster with a biological classification, clusters
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were typically merged together as the subdiffusive and outlier class
were few in number.

2.3.1 ‘Frame-by-frame’ method to compute empirical distribution of each
cluster

It has been shown in [21] that fast moving particles are overestimated on
shorter time scales in 2d particle tracking. This bias towards the fast moving
particles arises due to individual fast particles leaving and reappearing in the
focal plane as distinct traces and to new particles entering and leaving the focal
plane throughout the duration of the experiment. To minimize overestimating
the freely diffusing population, we employed the ‘frame-by-frame’ method de-
veloped in [21] to compute the fraction of each population present in the data.
The ‘frame-by-frame’ method assigns each tracked particle a weight based on
the number of frames the particle appears in the field of view, whereas in the
conventional method each particle has the uniform weight of one. Under this
weighting system, for a sample of size N , the weighted sample proportion of
the ith state is given by

p̂i =
N∑
k=1

ωkδik for ωk =
nk∑N
k=1 ni

(6)

where δik is the Kronecker delta function.

2.4 Mathematical model for asymptotic probability of immobilization

We mathematically model the dynamics of a virion under the Switching Dif-
fusion Hypothesis by the following SDE:

dX(t) =
√

2D
(
N(t), S(t)

)
dW (t) (7)

where W (t) is standard 2d Brownian motion and the state-dependent dif-
fusivity, D(N(t), S(t)), depends on two time-dependent processes: N(t), the
number of antibodies bound to the surface of a focal virion at time t, and S(t),
the subset of these antibodies simultaneously bound to mucin binding sites at
time t. We establish a threshold parameter T. A virion is defined to be immo-
bilized if there are at least T simultaneously bound antibodies, S(t) ≥ T, and
defined to be freely diffusing if there are fewer than T simultaneously bound
antibodies, S(t) < T. Under this convention, the time-dependent diffusivity is
given by

D
(
N(t), S(t)

)
=

{
D 0 ≤ S(t) < T

0 T ≤ S(t) ≤ N(t)

where the constant D is the diffusivity of the virion in mucus in the absence of
Ab. In the following sections, we present a mathematical model that describes
the asymptotic probability of the immobilized state when exposed to varying
exogenous antibody concentrations.
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2.4.1 Model assumptions

Based on the initial population clustering analysis, there appears to a sub-
population of virions that do not interact with the antibodies. We define q to
be the probability that a given virion will interact with the Ab population.
Second, for the sake of simplicity, we assume that Ab-virion binding sites op-
erate independently from each other. However, we allow for cooperativity
among the Ab in binding to the mucosal environment. Once the virion has
T simultaneously bound Ab-mucin-virion interactions (S ≥ T ) the surface
bound antibodies might bind to the mucin fibers differently than if the virion
was freely diffusing. We parametrize this by a multiplicative change in Ab-
mucin binding rate through the introduction of the dimensionless parameter
c. If c > 1 the parameter has a cascade effect, aiding in the immobilization
process [3,6,7,9,11].

2.4.2 A Markov Chain model for virion-Ab-mucin dynamics

Let N∗ denote the number of independent Ab binding sites on the surface of
an HSV virion. Antibodies bind and unbind from these sites at rates kon and
koff, respectively, with dissociation constant kd := koff/kon.

Virion-surface-bound antibodies interact with the surrounding mucosal
medium, binding to and unbinding from mucin binding sites, at rates mon and
moff, with dissociation constant md := moff/mon. The total Ab concentration
[A] is the sum of the exogenous [A]exo and endogenous [A]0 Ab concentrations,
and the total concentration of binding sites on mucin fibers is denote [M ]. See
Table 1 for a comprehensive list of variables.

Table 1 Parameters and known values incorporated in the model. ∗ indicates that the value
has not been directly measured. The given value is chosen to be consistent with indirect
observations.

Parameter Symbol Value Reference
Cell Properties

Initial Ab concentration in CVM [A]0 Model Parameter
Concentration of Ab binding sites on mucin fibers in CVM [M] unknown ∗

mon[M ] 11.1s−1 ∗
Molecule Properties

bnAb (IgG) Diameter 0.011 µm [20]
HSV-1 Diameter ∼ 0.180 µm [20]
Number of Ab binding sites on HSV-1 N∗ Model Parameter ∗

Reaction Kinetics
Ab-mucin affinity (Knockdown Factor) α 0.9 [13]
Ab-mucin binding rate mon Unknown ∗
Ab-mucin unbinding rate moff 100s−1 ∗
Ab-virion binding rate kon 4.26e4 [M ]−1s−1 [2]
Ab-virion unbinding rate koff 2.87e-4 s−1 [2]
Change in (Ab-virion)-mucin binding rate after immobilization c Model Parameter ∗
Number of Ab bond to mucus to immobilize a virion T Model Parameter ∗

We model the the Ab-virion interactions using a continuous time Markov
Chain (CTMC) assuming linear state transitions. If a given virion has n oc-
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cupied (Ab-bound) surface binding sites at time t, then the CTMC transition
rates are given by

n
(N∗−n)kon[A]

�
nkoff

n+ 1. (8)

If there are s simultaneously bound Ab cross-linking the virion to mucin fibers
at time t and n occupied virion-surface-binding sites, then the conditional
Ab-mucin dynamics are modeled by a CTMC with state transition rates

s
(n−s)g(s)mon[M ]

�
smoff

s+ 1 (9)

for s ≤ n, where

g(s) =

{
1 s < T

c s ≥ T.
(10)

The function in Equation 10 quantifies the impact immobilization has on the
rate at which additional antibodies crosslink to the mucin fibers, i.e. the bind-
ing cascade effect, and results in a non-linear transition rate when c 6= 1. We
note that the transition (n, s) → (n − 1, s − 1) is omitted from our analysis
to facilitate with explicit likelihood calculations. This does not qualitatively
affect our results because of the time-scale separation between Ab-
virion and Ab-mucin kinetics. Since we assume that (conditioned
on number of Ab-virion bindings N) the stationary distribution of S
is achieved rapidly, the initial “error” using S = s instead of S = s−1
after an N = n→ n−1 transition does not affect long-term dynamics.

We show the impact the immobilization threshold, T , and the cascade fac-
tor, c, have on the immobilization process in Figure 3. Within each frame,
it can be seen that a higher immobilization threshold allows for longer freely
diffusion periods, while across frames a higher cascade factor leads to longer
immobilized periods. In Figure 3(d)-(f) we simulated realizations of the pro-
cesses (N(t), S(t)) for various combinations of T and c. The number of bound
antibodies, N(t), is displayed by the purple trajectory, and the number of si-
multaneously bound Ab with a low immobilization threshold, S(t) when T = 1,
and with a higher immobilization threshold, S(t) when T = 10, are shown by
the green and blue trajectory, respectively. Moving left to right, the factor
by which the Ab-mucin binding rate changes after immobilization increases,
c = 1, 20, and 200, respectively. In Figure 3(a)-(c), we show how these pro-
cesses dictate the movement of the virion. The virion with process (N(t), S(t)
when T = 1) is colored in green while (N(t), S(t) when T = 10) is colored in
blue. For both trajectories immobilized periods, S(t) ≥ T , are colored in red.

When immobilization does not affect the Ab-mucin binding rate, Figure
3(d), the process S(t) rapidly crosses the immobilization threshold (dashed
line) resulting in a virion transitioning between states faster than the exper-
imental time step, Figure 3(a), for both T = 1 and T = 10. By increasing
the cascade factor, Figure 3(e)-(f), S(t) remains above the immobilization
threshold, for observable periods. In this case, the simulated virions in Figure
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3(b)-(c) change states on the experimental time scale of twenty seconds and
longer than twenty seconds, respectively.

2.4.3 Our approximation for the stationary probability of being immobilized

We assume that the antibody-virion dynamics are slow compared to the antibody-
mucin dynamics. To approximate a virion’s long-term probability of being
immobilized, we use a product of two factors. The first is the steady-state
distribution for the number of surface-bound Ab, N(t). Then we compute
the stationary distribution for the number of simultaneously bound Ab, S(t),
conditioned on each value N(t) = n (where n ∈ {0, . . . N∗}).

We introduce the notation b(x, n, p) for the binomial probability mass func-
tion. That is, if X ∼ Binom(n, p), then P{X = x} = b(x, n, p). Our approxi-
mation to the stationary distribution of immobilization can be understood as
an average over the transitions of the fast process S(t). Let σ denote the time
a particle spends in the immobilized state, and τ the time a particle spends in
the freely diffusing state. Then our approximation takes the form

π̃([A]exo) = q

N∗∑
n=T

E(σ;T, c, n)

E(σ;T, c, n) + E(τ ;T, n)
b

(
n;N∗,

[A]0 + [A]exo

kd + ([A]0 + [A]exo)

)
(11)

where

E(σ;T, c, n) =
1

Tmoff

∑n
s=T b

(
s;n, cmon[M ]

moff+cmon[M ]

)
b
(
T ;n; cmon[M ]

moff+cmon[M ]

) ,

and E(τ ;T, c, n) = 1
(n−T+1)mon[M ]

∑T−1
s=0 b

(
s;n; mon[M ]

moff+mon[M ]

)
b
(
T − 1;n, mon[M ]

moff+mon[M ]

) .

(12)

The derivation of Equation 11 and Equation 12 rely on Markov Chain Theory
and Renewal Theory and can be found in Appendix B.

It follows from the law of total expectation and the time-scale approxi-
mation, the expected time immobilized and expected time freely diffusing are
respectively:

E(σ) =

N∗∑
n=T

E(σ;T, c, n) b
(
n;N∗,

[A]
kd+[A]

)
;

E(τ) =

N∗∑
n=T

E(τ ;T, c, n) b
(
n;N∗,

[A]
kd+[A]

)
.

(13)

We say that a parameter vector is in the Slow Switching Regime if, for
all tested exogenous Ab concentrations, the average times spent in the im-
mobilized and diffusing states are more than 20 seconds. To be precise, we
define

Θslow :=
{
θ : E(σ; [A]exo,θ) > 20 and E(τ ; [A]exo,θ) > 20 for all [A]exo ∈ [0, 1]

}
.

(14)
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2.5 Switch point detection

We develop an algorithm for detecting whether there is a single switch from
diffusion to immobilization or immobilization to diffusion. The mathematical
model presented in Section 2.4, Equation 7, assumes complete immobilization
but in fact immobilized virions exhibit spatial motion. Bernstein and Fricks in
[1] account for this spatial motion by describing the bound state as a diffusing
particle trapped in a potential well. Using an Expectation-Maximization al-
gorithm they provide an evolving probability for each particle that it is in an
immobilized or diffusing state. In contrast to the many-switch paths consid-
ered by Bernstein and Fricks, we argue in Section 3.1.2 that the virion paths
in our data set have at most one or two switches. We therefore developed and
implement a Bayesian algorithm that is designed to identify the presence of a
single switch point.

To derive a likelihood function, we extend our SDE model Equation 7 to
include a path-specific trapping potential well, similar to [1]. Our extended
model for a [diffusion → immobilization] switch is

dX(t) =

{√
2DdW(t) 0 ≤ t ≤ τ
−κ̃(X(t)−X(τ))dt+

√
2DdW(t) τ < t

(15)

X(0) = 0

and for [immobilization → diffusion], we have

dX(t) =

{
−κ̃(X(t)−X(0))dt+

√
2DdW(t) 0 ≤ t ≤ τ√

2DdW(t) τ < t
(16)

X(0) = 0

where X(t) = (X(t), Y (t))T and W(t) is 2d Brownian Motion. These SDEs
are derived from the Langevin equation for particles diffusing in a quadratic
(Hookean spring) potential well. The constant κ̃ = κ/γ where κ is the spring
constant and γ is the viscous drag experienced by the particle. Due to the
Fluctuation-Dissipation relationship, γ also appears in the diffusivity constant,
which has the form D = kBT /γ, where kB is Boltzmann’s constant and T is
the temperature of the fluid. To obtain an analytically trackable likelihood
function, we introduce simplifying assumptions that (1) the switch occurs ex-
actly at an observation time point, and (2) there is no measurement error. We
derive the likelihood function in Appendix C.

We take a Bayesian approach to jointly estimate D, κ̃, and τ under both
switching scenarios using a Gibbs sampling algorithm. If the 95% credible
region for τ is completely contained within the interval [0.1Tfinal, 0.9Tfinal]
where Tfinal is the duration of a path, then we say that path is a candidate
for switching. For both switching scenarios we estimated a false discovery rate
for this criterion by simulating freely diffusing particles and setting the false
discovery rate to the percent of simulated Brownian particles that were labeled
as candidates for switching for the given switching model, Equation 16 or 15.



Antibody-mediated immobilization of virions in mucus 15

Similarly, we estimated the power of criterion through simulation. For both
scenarios we simulated particles that switched states once, and set the power
to the fraction of paths that were candidates for switching. See Section5 for
more details on how these tests were constructed, and the results are presented
in Section 3.1.2.

2.6 Uncertainty quantification

The model given by Equation 11 depends on the parameter vector θ = (T, c,N∗, q, [A]0, kd,moff, α).
In specifying the model to HSV-IgG data, Section 2.1, we set kd = 0.8969 [10]
and α = 0.90 [13]. The Ab-mucin binding and unbinding rates have not been
directly estimated. We assume they are fast compared to the experimental
time scale and, for example, set moff = 100s−1. To assess the remaining pa-
rameters, θ = (T, c,N∗, q, [A]0) – which are are the immobilization threshold
value, the binding cascade factor, the number of sites on the surface of virions,
the virion-Ab interaction probability, and the endogenous Ab concentration –
we employed the numerical method of profile likelihoods [5,16]. We used the
numerically obtained relationships among parameters to obtain conditions on
θ such that the Switching Diffusion Hypothesis (in the Slow Switching Regime)
is consistent with the data.

In order to quantify the model’s error in predicting the immobilized frac-
tion, for each donor i, we partitioned the paths according to exogenous Ab
concentration {[A]j}5j=1, and introduced the following residual function:

χ2
i (θ) =

5∑
j=1

Nij
(π̃([A]j ;θ)− p̂ij)2

π̃([A]j ,θ)(1− π̃([A]j ;θ))
, (17)

where π̃([A]j ;θ) denotes the model evaluated at [A]j with parameters θ (as
defined in Equation 11), while Nij and p̂ij are, respectively, number of paths
observed and the fraction that are immobilized in the jth subpopulation as-
sociated with donor i. Assuming a normal approximation to the binomial
distribution, our residual function can be seen as the sum of five independent
squared normal random variables, i.e. with a χ2-distribution with 5 degrees of
freedom.

2.6.1 Numerical method of profile likelihoods to deduce parameter
identifiabilty

Because we assume normal approximation to the binomial distribution, work-
ing with a residual function is equivalent to using a likelihood function to
define confidence intervals [14,16]. For ease of notation in this section, we will
suppress the dependence on i when considering the residual function χ2(θ) for
donor i.

To discuss identifiability of our model parameters, we use the nomenclature
introduced by Raue in [16]. Our minimum residual estimator is defined to be
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θ̂ := argmin[χ2(θ)]. The likelihood-based confidence region of level α for θ is
then defined to be

Θα,df := {θ : χ2(θ)− χ2(θ̂) < χ2(α, df)}, (18)

where χ2(α, df) is the α quantile of the χ2 distribution with df degrees of
freedom. When establishing a confidence interval for one of the parameters,
we set df = 1. When establish a confidence region for multiple parameters, we
set df equal to the number of parameters [14].

A parameter θk is said to be structurally identifiable when there is a unique
minimum of χ2(θ) with respect θk, i.e., if there exists a unique θk such that

θk =
(
argminθ∈R5{χ(θ))}

)
k
.

Alternatively, θk can be unidentifiable due to the structure of the model or
because the quality and quantity of the data is insufficient in estimating θk.
For the former case, we say θk is structurally unidentifiable if the set

θmin := {θ : χ(θ) = min
ϑ∈R

χ(ϑ)}

is not unique and contains at least two elements whose θk components are
distinct. This often occurs when there is a functional relationship φ among θk
and at least one other parameter, say θj such that χ can be expressed directly
in terms of φ(θk, θj). As for the latter data-restricted type of unidentifiability,
we say θk is practically unidentifiable when a unique minimum exists of χ2(θ)
with respect θk but the likelihood based confidence interval for θ extends
infinitely in increasing and/or decreasing values of θk.

These definitions can be interpreted graphically using profile likelihoods.
For residual function χ2(θ) the profile likelihood of the k-th parameter defined
to be

χ2
PL(θk) = min

θj 6=k

[
χ2(θ)

]
. (19)

If θk is a structurally identifiable parameter then χ2
PL(θk) exceeds the threshold

∆α for both increasing and decreasing values of θk forming a deep valley
around θ̂k. If θk is structurally unidentifiable the profile likelihood is flat.
Lastly, if θk is practically unidentifiable, χ2

PL(θk) obtains a unique minimum
but does not exceed ∆α in increasing and/or decreasing values of θk, forming

a shallow valley around θ̂k.
We further investigate unidentifiable combinations of parameters by ex-

tending Equation 19 to profile parameter θj and θk simultaneously,

χ2
PL(θj , θk) := min

θi/∈{j,k}
χ2(θ). (20)

Structural relationships between the two profile parameters manifest as flat
valleys extending infinitely along the functional relationship in the contour
plots of χ2

PL(θj , θk). We note this flat valley only traces out the functional
relationship θj and θk when the dimension of the parameter space is larger
than 2.
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3 Results

3.1 Data do not support the Incremental Knockdown Hypothesis for a 20
second time frame

3.1.1 No evidence of fast switching: ensemble effective diffusivities of the free
subpopulation are the same regardless of exogenous Ab concentration

For each Donor/Ab-concentration combination, the associated sample of viri-
ons contained a clear division among the tracked particles’ MSD and ACF
behavior. We used the classification scheme described in Section 2.3 to la-
bel each tracked virion as Immobilized, Freely-Diffusing, Subdiffusive or Out-
lier. The Immobilized class was characterized by low effective diffusivity (<
10−1µm2s−1) and either anti-persistent or uncorrelated increment processes.
Meanwhile the Freely-Diffusing class had uncorrelated increment processes
and effective diffusivities larger than 0.2µm2/s. The Subdiffusive and Outlier
classifications were rare and did not appear in all samples. For this reason,
we removed these categories from the analysis but give a description of them
in the SI. In Figure 4(a)-(c), we display the results of the classification for
Donor F08 at 0, 0.1, and 1 µg/mL added anti-HSV IgG in terms of Deff and
the average of the x- and y-ACF, as defined in Section 2.2.3 and Section 2.2.1
respectively. The clear separation of groups and locations of the clusters were
qualitatively similar for the other donors (further figures included in the Sup-
plemental Information).

The pathwise MSDs for Donor F08 virions are displayed in Figure 4(d)-(f),
and we note the similarity of the Freely-Diffusing category of virions across
all three panels. The Incremental Knockdown Hypothesis would predict that
freely diffusing virions would be “slower and slower” in the presence of more
and more Ab. However, we found that the diffusivities of the Freely-Diffusing
classes are consistent across all exogenous Ab concentrations. In Figure 5 we
display this fact in two ways. In the left panel, we display the ensemble MSD
averaged over the Freely-Diffusing (green triangles) and Immobilized (red x’s)
populations for each Ab concentration. There is remarkable overlap within
each group. Moreover, in the right panel, we display the ensemble effective
diffusivity for the Freely-Diffusing class at the various exogenous Ab concen-
trations for all donors. While there is variation in the effective diffusivity, the
overlapping BCa confidence intervals indicate there is insufficient evidence to
conclude the effective diffusivity decreases with antibody concentration. (We
provide 95% weighted bootstrap confidence intervals for each estimate in the
supplementary material Figure 13).

We can express this finding in terms of a statistical test by comparing the
weighted ensemble effective diffusivity for the freely diffusing subpopulation
at the two extreme Ab concentrations. We used a one-tailed paired difference
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Fig. 4 (a)-(c): The unweighted composition of the tracked virions for Ab concentration 0,
0.1 and 1.0µg/mL, respectively for Donor F08. Each point corresponds to a tracked virion
with the given estimated diffusivity on a log 10 scale and average-ACF value. The character
of points denotes clusters prescribed by the hierarchical clustering algorithm and color of the
point denotes the class of the cluster. (d)-(f): The path-wise MSD for all the tracked virions
for Donor F08 at [A]exo = 0, 0.1, and 1.00µg/mL. The colors, green, red, and blue, denote
the final clusters, freely diffusing, immobilized, and subdiffusive, respectively. Reference line
with slope = 1, is denoted in black. (We note that the relative size of the different classes
in this figure is not reweighted by path length as it is in the population counts reported in
Figure 6.)

hypothesis test:

H0 : 〈Deff([A]1)〉 − 〈Deff([A]5)〉 = 0, HA : 〈Deff([A]1)〉 − 〈Deff([A]5)〉 > 0.
(21)

for [A]1 = 0.0µg/mL and [A]5 = 1.0µg/mL. At an α = 0.05 level of sig-
nificance, we failed to find significant evidence that the ensemble effective
diffusivity of the freely diffusing population decreased when exogenous Ab
concentration increased from zero exogenous Ab to the highest concentration
(t6 = 0.2567, p-value= 0.4030). We report the results of paired difference tests
for all other combinations of the tested exogenous Ab concentration in the
supplementary materials Table 10.

3.1.2 Little evidence of switching on the experimental time scale

We found little evidence that virions switch between states on the experimental
time scale of 20 seconds. If tracked particles were typically experiencing many
subtle switches, we expect that their computed effective diffusivities would be
diminished by a factor determined by the time spent immobilized. Moreover,
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Fig. 5 (a) Ensemble MSD of the Freely Diffusing class and the immobilized class at various
exogenous antibody concentrations represented by the green and red curves, respectively, for
Donor F08. The black line refers to the ensemble MSD of Brownian particles, slope equal to
1. (b) The estimated ensemble effective diffusivity of the free population versus exogenous
antibody concentration where the shade and point style of the curve corresponds Donor.
See supplementary materials Figure13 for the ensemble effective diffusivity with 95% BCa
confidence intervals.

because there are distinct behavioral regimes, the distribution of the increment
processes are essentially a mixture of two Gaussian distributions (one for the
Immobilized state and one for the Freely Diffusing state). This would manifest
itself as a violation of linearity in qqnorm plots, which we do not see for the
vast majority of HSV virion paths.

While the qqnorm test can identify paths that might experience switches,
they do not affirm the presence of a switch. To this end, we developed a
Bayesian method for identifying whether there is a single switch point in a
given virion path, described in the Section 2.5. We say a path of duration
Tfinal is a candidate for switching if the 95% credible region for τ was com-
pletely contained within the interval [0.1Tfinal, 0.9Tfinal]. The method was very
effective on simulated data. When we applied the method to simulated Brow-
nian motion (Freely-Diffusing), we found a 0.0119 and 0.0080 False Discovery
Rate of [diffusion→ immobilization] switches and [immobilization→ diffusion]
switches, respectively. On the other hand, 96.38% of the simulated [diffusion→
immobilization] paths were correctly identified as [diffusion→ immobilization]
switches, while 94.37% of the simulated [immobilization → diffusion] paths
were identified as [immobilization → diffusion] switches (Table 2). Under this
method, we found that 1.12% of the Freely-Diffusing class (1689 total tracked
virions) were identified as [diffusion → immobilization] switch candidates and
1.24% of the free populations were [immobilization → diffusion] switch can-
didates. We therefore concluded that state switches occurred relatively rarely
on the experimental time scale.
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Table 2 Fraction of Freely Diffusing virions that possibly switched states once by Donor.

Model Power False Discovery Rate Virion switch candidates
D → I 0.9638 0.0119 0.0112
I → D 0.9437 0.0080 0.0124

3.1.3 Fraction immobilized increases with exogenous antibody concentration

While Ab concentration did not seem to affect the behavior of virions labeled
Freely-Diffusing, it did have a significant effect on the fraction of virions that
were placed in this class. This is consistent with the findings reported in [20].
We computed the Immobilized fraction for each Donor/Ab-concentration sam-
ple using the method discussed in Section 2.3.1 and display the results in Figure
6, where each curve in the panel (b) corresponds to a different donor. While
there is heterogeneity in the fraction of Immobilized virions across donors,
there is a visible overall increase in proportion immobilized from 0 to 1 µg/mL.
This qualitative assessment is supported by statistical evidence provided by
non-overlapping BCa confidence intervals between the extreme exogenous Ab
concentrations supplementary materials Figure 12.
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Fig. 6 (a) The weighted proportion of the 4 classes for Donor F08 at the various tested
exogenous Ab concentrations. (b) Weighted proportions of Immobilized virions for each
donor. See supplementary materials Figure 12 for plots with 95% BCa confidence intervals.

For each donor, the fraction of Immobilized virions increased with Ab con-
centration in the 0 to 0.333 µg/mL range and seemed to be saturated at higher
Ab concentrations. We tested the significance of this observed trend by fitting
a negative exponential growth model with predictors: exogenous antibody con-
centration and individual effect terms relative to Donor F08. Let χk be the the
indicator function that a virion in the kth donor sample is in the immobilized
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state. Our negative exponential growth model takes the form

P (χk = 1) = (β0 + βk)− e−(α0+αexo[A]exo)+αk (22)

where αk and βk are the effect terms for the k-th donor. We found the exoge-
nous antibody concentration (αexo = 15.920, p-value< 0.001), the growth rate
due to the baseline donor (α0 = −0.8427, p-value = 0.0043), and baseline satu-
ration probability (β0 = 0.9138, p-value< 0.0001) were statistically significant
in predicting the immobilization probability, whereas the constants accounting
for deviations from the baseline due to donor sample were not significant. The
model was fit using the R command nls() with the minimization algorithm set
to Gauss-Newton’s method.

3.2 The Simple Linear Model predicts fast switching

The results from Section 3.1 provide evidence against the hypothesis that
switching between the diffusing and immobilized states is fast relative to the
experimental time scale. Our next goal was to determine whether there is
a parameter regime that predicts slow switching while simultaneously being
consistent with the exogenous Ab-dependent Immobilization data displayed in
Figure 6. This analysis depends strongly on two assumptions: (1) whether one
virion-bound Ab is sufficient to crosslink the virion to mucin, and (2) whether
Ab-mucin binding rates increase when the virion is immobilized, the so-called
cascade effect. We introduced two variables – T , the threshold number, and c,
the cascade factor – in our general model to account for these possible effects.
In recent works, it has been assumed either that T = c = 1 [2,11] or that
T = 1 and c > 1 [22]. We refer to T = c = 1 as the Simple Linear Model (SLM)
because all the CTMC transition rates are linear. By computing the expected
durations of the immobilized and diffusing states (Equation 13, derivation in
Appendix B.2), we were able to show that the data is not consistent with the
SLM, or any case where T = 1.

We say a model is consistent with the observed data for a specified donor
if there exists a parameter vector θ that is within the 95% confidence region
for the Immobilized Fraction data (denoted Θα,df , defined in Equation 18)
and also predicts expected state times larger than 20 seconds (denoted Θslow,
defined in Equation 14). In Figure 7, we demonstrate that the SLM is not
consistent with the data for Donor F08. In the left panel, we show a 2d pro-
file likelihood plot for the endogenous Ab concentration [A]0 and number of
virion surface binding sites N∗. For each ([A]0, N∗) pair, we calculated the
best fit for the remaining parameter q, the virion-Ab interaction probability,
and display the residual value by the shading (darker means better fits). The
black region represents the 95% confidence region for these two parameters.
We uniformly sampled this confidence region, Θ0.05,3, and displayed the pre-
dicted Immobilized Fraction curves for these parameter samples in panel (b)
and the Ab-concentration dependent expected state durations in panel (c).
We note that all parameter combinations in Θ0.05,3 had diffusing states that
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lasted less than 0.1 seconds for all values of [A]exo. We repeated this analysis
for all donors and in each case found that Θ0.05,3 ∩Θslow = ∅.
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Fig. 7 (a),(d) Profile likelihood contour plots (Donor F08) for χ2
PL([A]0, N∗) and

χ2
PL(c,N∗) when T = c = 1 and T = 19, respectively. Darker shades correspond to smaller

profile likelihood values and the black region corresponds to the 95% confidence regions
Θ0.05,3 and Θ0.05,5. (b),(e) Predicted Immobilized Fraction curves (gray lines) for θ sam-
pled from Θ0.05,3 and Θ0.05,5. The black curve is the prediction of the best fit in each case
for Donor F08. The observed Immobilized Fraction is shown by the purple line with tri-
angles. (c),(f) Expected duration of Immobilized (red curves) and Freely-Diffusing (green
curves) states for θ sampled from Θ0.05,3 and Θ0.05,5. When T = c = 1, frame (c), none of
predicted state times are above 20 seconds, horizontal black line. On the other hand, when
T = 19, frame (f), there are some parameter combinations that do yield slow switching.
These are marked in light blue as appropriate in Panels (d)-(f).

3.3 Threshold and binding cascade parameters allow slow switching

By allowing the immobilization process to require multiple cross-linking anti-
bodies, T > 1, and for the Ab-mucin dynamics to be state-dependent, c 6= 1,
we found both that (1) the subset of parameters that lead to slow switch-
ing is non-empty (Θslow 6= ∅), and (2) there is an overlap between slow-
switching parameters and parameters that fit the Immobilized Fraction data
well (Θ0.05,5 ∩ Θslow 6= ∅). For example, in Figure 7 panels (d)-(f) we demon-
strate this fact assuming T = 19 for Donor F08. The 2d profile likelihood plot
in panel (d) shows an inverse relationship between N∗ and the cascade factor c.
Again the black region corresponds to all (c,N∗) pairs that appear in Θ0.05,5.
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For a uniform sample of such pairs, in panel (e) we display the Immobilized
Fraction predictions, and in panel (f) the corresponding expected immobiliza-
tion and diffusion state durations. Only a small subset of Θ0.05,5 allows for
slow switches. We mark this subset in blue in all three panels. Notably, con-
ditioned on T = 19, we have that N∗ ≤ 120, which is somewhat smaller than
the typical estimate for N∗. In the next section we note that assuming higher
values for T leads to higher allowable values for N∗. This type of result holds
for all donors: for sufficiently high assumed T , the corresponding parameters
sets Θ0.05,5 and Θslow overlap.
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Fig. 8 (a) Parameter combinations of T and c that predict expected immobilized times
greater than 20s, red points, and predict expected freely-diffusing times greater than 20s,
green points, assuming N∗ = 300 and [A]0 = 0.1µg/mL . The overlapping (T, c) combina-
tions (blue points) are those combinations that satisfy slow switching condition and subset
(T, cmin) are denoted by black. (b) The minimal value of T required for our model to predict
slow switching as a function of N∗, orange curve. Given an N∗ and corresponding minimal
T pair, the minimal value of c required for our model to predict slow switching is denoted
by the brown curve. The endogenous Ab concentration is fixed at [A]0 = 0.1µg/mL.

By testing over a range of θ = (T, c,N∗, [A]0), we uncovered some rela-
tionships among the components of the parameter vectors θ that yield slow
switching Θslow. We first investigated the relationship between T and c by
fixing N∗ and [A]0. Noting that Eθ(τ) is independent of c and Eθ(σ) is an in-
creasing function in c, we calculated the minimal c required to satisfy the slow
switching condition, labeling this value cmin. Though we could not obtain an
explicit relationship between T and cmin, we found that virions with a large im-
mobilization threshold T can only satisfy the slow switching condition if there
is a corresponding large cascade effect, large cmin. To visualize this, in Figure
8(a) we display the parameter combinations of (T, c,N∗ = 300, [A]0 = 0.1)
that yield Eθ(τ) > 20 (green) and Eθ(σ) > 20 (red) for all exogenous antibody
concentrations between 0 and 1µg/mL. The overlapping region (blue points)
corresponds to θ ∈ Θslow and the combinations of interest (T, cmin) are shown
in black.
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We draw the conclusion that if N∗ = 300, then T must be at least 34
and c must be at least 63. If we increase the assumption about N∗ while
keeping [A]0 fixed, then we found that the minimal allowable T and c for slow
switching increase and decrease, respectively. We demonstrate this relationship
in Figure 8(b). For [A]0 = 0.1µg/mL, the orange (circles) curve corresponds
to the minimal T value (left y-axis) for the given N∗ (x-axis) required such
that θ ∈ Θslow where [A]0 = 0.1µg/mL. The brown (triangles) curve denotes
the minimal c value (right y axis) required for the given N∗, minimal T , and
[A]0 = 0.1µg/mL to result in expected state times longer than 20 seconds.

3.4 Model with threshold and binding cascade parameter is unidentifiable

As implied by the results in the preceding section, we found that the introduc-
tion of T > 1 and c 6= 1 resulted in issues with identifiability. That is to say,
it appears that the confidence region Θ0.05,5 is infinite even when restricted
to the subspace Θ0.05,5 ∩ Θslow. We use the Immobilized Fraction data for
Donor F08 to demonstrate this fact but provide information for each Donor
in the Supplementary Information. Throughout this section we will use the
terminology defined in Section 2.6.

Over the full parameter space Θ, the 1d profile likelihoods revealed that
all three of the parameters T , c, and N∗ are practically unidentifiable over
the range we tested. The profile likelihoods are displayed in black in Figure
9(a)-(c). When we profiled the parameters T , c, and N∗ restricted to the Slow
Switching Regime Θ0.05,5 ∩Θslow, we found T is still practically unidentifiable
over the range T ≥ 19, while c is practically unidentifiable a large range of
positive values. The number of binding sites N∗ does seem to be identifiable,
with a deep valley centered around the unique minimum at approximately
N∗ = 120. These profile likelihoods are represented in blue in Figure 9(a)-
(c). The dashed lines correspond to the 95% confidence interval boundaries
for each parameter. Since the blue curves are below the confidence interval we
can say that there exist parameter combinations in the Slow Switching Regime
that reasonably fit the Immobilized Fraction data in Figuer 9(e).

4 Discussion

We have developed mathematical models and statistical methods to analyze
the behavior of HSV virions diffusing in CVM in the presence of various con-
centrations of cross-linking Ab. With a few exceptions, we found that particle
paths can be partitioned into two basic categories: Freely Diffusing and Im-
mobilized. While the fraction of Immobilized virions increases with Ab con-
centration, we found that the mobility of the Freely Diffusing class is not
Ab-concentration dependent.

Because we expect all the individual bonds to be reversible, virions should
switch between the Freely Diffusing and Immobilized states. Previously, it had
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Fig. 9 (a)- (c) The 1d profile likelihoods for the parameters: immobilization threshold
T , cascade factor c, and number of Ab binding sites on the virion N∗, respectively over
all tested parameter combinations (black curves) and when restricted to the slow switching
regime (blue curves). The 95% confidence interval for each parameter consists of those
parameter values with profile likelihood values below the dashed line.

been hypothesized that such switches are rapid with respect to the experimen-
tal time scale, but our analysis contradicts that assumption. This raises the
question of whether or not it is possible for the basic kinetic model to produce
“slow-switching” paths where switches occur on a time scale much larger than
the experimental time window. We found that this is possible if the model
allows for a lower bound on the number of Ab necessary to immobilize a
virion and assuming a “cascade effect” in Ab-mucin binding that encourages
entanglement.

Introducing these extra features leads to a fundamental issue with uniden-
tifiability in the statistical analysis. We can make claims like “the minimum
number of antibodies needed to immobilize a virion must be greater than 20
or so”, but we cannot be more specific. In order to do so, we would need to
have access to time series that are much longer than what is currently exper-
imentally feasible.

While we have shown that it is possible for reversible kinetics to be con-
sistent with the path data, it might also be possible to explain the data with
a model that assume all binding events are irreversible. Unfortunately the
available data cannot distinguish between the two models. One possible reso-
lution is to conduct experiments that explicitly control for the time between
the introduction of Ab to the virion population and the observation of virion
trajectories. Based on our model, in which we assume the immobilization pro-
cess is reversible prior to the system reaching stationarity, switching should
be more common when the number of antibodies bound to surface epitopes is
low. Therefore, starting the tracking immediately enhances the probability of
observing state switches before any long-lasting immobilization events occur.

On the other hand, observing virions at different time points long after Ab
introduction will help determine whether or not the system reaches a station-
ary distribution. If so, there should be substantial information in analyzing
how (or if) that stationary distribution depends on the Ab concentration, and
the rate at which that stationary distribution is achieved.
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From a biological point of view, this uncertainty about the true
time scale of state switching prevents conclusive answers for the type
of model presented by Chen et al. []. Namely, in order to characterize
the percentage of virions that can pass through a mucosal layer
within two hours, we must know whether state switching takes place
on the order of minutes, days or longer. The analysis in this work
simply served to eliminate the possibility of switching on a time scale
of milliseconds or seconds, which was the standing assumption.

The statistical methods and mathematical model introduced here apply to
a broad class of biological systems that are composed of distinct subpopula-
tions. Our classification scheme based on path-by-path analysis detects sub-
population dynamics that can be masked when considering only overall ensem-
ble behavior. Clustering and then analyzing subpopulation ensemble statistics
provides insight on the way the proportion and dynamics of these subpopula-
tion change in response to the environmental factors. The model proposed in
Section 2.4, can be modified to describe the general scenario when nanopar-
ticles work to entrap a diffusing pathogen by anchoring the pathogen to the
surrounding environment.

A Derivation of the MLE for D

From the defining properties of Brownian motion, the likelihood function of 2d Brownian
motion defined by dX(t) =

√
2DdW(t) has form

L(D;u, v) =
( 1

4πδD

)n
exp

(
−

n∑
k=1

(
X(kδ)−X((k − 1)δ)

)2
4Dδ

)

× exp

(
−

n∑
k=1

(
Y (kδ)− Y ((k − 1)δ)

)2
4Dδ

)
. (23)

In terms of the increment process, U(kδ) and V (kδ), the loglikelihood is

`(D) = −n(log(4πδ) + log(D))−
1

4Dδ

n∑
k=1

(
U(kδ)2 + V (kδ)2

)
. (24)

Solving the likelihood equation d
dD

`(D) = 0, the ML estimator for D is given by

D̂MLE =
1

4δn

n∑
k=1

(
U(kδ)2 + V (kδ)2

)
. (25)

B Mathematical Model in Section 2.4

We arrive at our approximation to the probability of immobilization Equation 11 presented
in Section 2.4 by averaging over the transitions of the number of antibodies simultaneously
bound to the virion, S(t). To do this, we consider a simplified model in which the Ab-mucin
binding rate is the same for both an immobilized virion and freely diffusing virion. That is
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the function defined in Equation 10 is constant, g(s) ≡ c. In this case, let S(t)|n,c denote
the Markov chain with transition rates:

s
(n−s)cmon[M ]

�
smoff

s+ 1. (26)

First, we derive the stationary distribution for the number of bound antibodies, N(t), and
the conditional number of simultaneously bound antibodies assuming g(s) ≡ c, S(t)|n,c.
Then we compute the expected duration of the Immobilized state and the Freely-Diffusing
state of a virion from those quantities assuming g(s) ≡ c. Finally, we obtain Equation 11
using the results of the previous two steps.

B.1 Stationary distribution of the two processes N(t) and S(t)|n;c

We model the two processes N(t) and S(t)|n;c as CTMC with transition rates given by
Equation 8 and Equation 26, respectively. Because they are irreducible Markov chains with
a finite state space, there exists a unique stationary distribution, and convergence is expo-
nential. Under the assumption that the Ab-binding sites on the surface of a virion operate
independently, the process N(t) follows a binomial distribution with N∗ trials and a time
dependent success probability. Evoking a classical result from Renewal Theory, the steady
state success probability is given by the long run fraction of being in the bound state, so
that

lim
t→∞

N(t) ∼ Binom

(
konA

koff + konA
,N∗

)
. (27)

By assuming g(s) ≡ c, each antibody bound to the virion interacts with the mucin
fibers independently, so that S(t)|n;c is a binomial random variable with n trials and time
dependent success probability. It follows from the same reasoning as above, that

lim
t→∞

S(t)|n;c ∼ Binom

(
cmonM

moff + cmonM
,n

)
(28)

is the unique stationary distribution.

B.2 Expected duration of the Freely-Diffusing and Immobilized states

We derive the expected duration of the Freely-Diffusing state, τ , and Immobilized states,
σ, of a virion by considering the simplified model when the number of simultaneous bound
antibodies has transition rates Equation 26.

We introduce the following notation τT ;c and σT ;c denote the expected time the process
Sn;c spends in the freely diffusing state and immobilized state, respectively. The expected
duration of the Freely-Diffusing state, Sn;c(t) < T , is simply the expected hitting time of
state T , given Sn;c starts with T − 1 simultaneously bound antibodies. By solving a system
of linear equations for the vector of expecting hitting times of state T , see [12], yields

E(Sn;c(t) = T |Sn;c(0) = T−1) = 1

(n−T+1)mon[M ]b
(
T−1;n,

monM
moff+mon[M ]

) T−1∑
s=0

b
(
s;n;

mon[M ]
moff+mon[M ]

)
.

(29)
Similarly, the expected duration of the Immobilized state, Sn;c(t) ≥ T , is the expected
hitting time of state T − 1 given Sn;c starts in state T . By solving a system of linear
equations for the vector of expecting hitting times of state T − 1,

E(Sn;c(t) = T − 1|Sn;c(0) = T ) = 1

Tmoffb
(
T ;n,

mon[M ]
moff+mon[M ]

) n∑
s=T

b
(
s;n,

mon[M ]
moff+mon[M ]

)
.

(30)
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We observe that the transition rates of a Freely Diffusiving virion are the same as a virion
modeled by the simplified transition rates given by Equation 26, specifically for c = 1. The
transition rates of an immobilized virion are the same as a virion modeled by the simplified
transition rates Equation 26. Hence, the following equalities hold

E(σ;T, c, n) = E(σT ;c;T, c, n) and E(τ ;T, c, n) = E(τT ;1;T, 1, n).

Explicitly, the duration of the Freely-diffusing state and the Immobilized state of a virion
are given by

E(τT ;c;T, c, n)= 1
(n−T+1)monM

( ∑T−1
s=0

(
n
s

)(
monM

moff+monM

)s( moff
moff+monM

)n−s(
n

T−1

)(
monM

moff+monM

)T−1( moff
moff+monM

)n−T+1

)
(31)

E(σT ;c;T, c, n)= 1
Tmoff

(∑n
s=T

(
n
s

)(
cmonM

moff+cmonM

)s( moff
moff+cmonM

)n−s(
n
T

)(
cmonM

moff+cmonM

)T ( moff
moff+cmonM

)n−T
)
, (32)

respectively.

B.3 Asymptotic probability of number of bound antibodies

We are now ready to derive our time-scale approximation of the asymptotic probability of
immobilization function, Equation 11. By conditioning on the slow process, the antibody-
virion dynamics,

π̂(A; θ) = lim
t→∞

P{q > 0 ∩ {S(t) ≥ T}}

= P{q > 0} lim
t→∞

P{S(t) ≥ T |q > 0}

= q

N∗∑
n=T

(
lim
t→∞

P{S(t) ≥ T |N(t) = n, q > 0}
)
·
(

lim
t→∞

P{N(t) = n}
)
. (33)

An application in Renewal Theory leads to the stationary probability of immobilization for
the conditional process S(t) of the form

lim
t→∞

P{S(t) ≥ T |N(t) = n, q > 0} =
E(σ;T, c, n)

E(σ;T, c, n) + E(τ ;T, n)
. (34)

Plugging in the results from Appendix B.1 and B.2, gives Equation 11.

C Derivation of likelihoods

We derive the likelihood of Equation 15 and Equation 16 from the exact solution of the
SDEs under the assumptions that the switch point, τ , occurs at a time measurement, and
the true 2d position of the particle is X(t) = (X(t), Y (t)). We denote the time measurement
tk = kδ for k = 1, . . . n, where t0 = 0 and tn = T , and X(tk) = Xk.

For the [diffusion → immobilization] model, when t > τ the SDE is linear with additive
noise. Hence a conditional exact solution can be expressed using Duhamel’s formula,

Xk|xk−1 =

xk−1 +
√

2D(Wk −Wk−1) 0 < tk ≤ τ
xk−1e

−κ̃∆ + (1− e−κ̃δ)xτ +
√

2D
∫ tk
tk−1

e−κ̃(tk−s)dW(s) τ < tk ≤ T.

(35)
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It follows immediately from the definition of Brownian motion and from an application of
Ito’s Isometry,

Xn|xn−1 ∼
{
N(xk−1, 2δD) 0 < tk ≤ τ
N
(
ρxk−1 + (1− ρ)xτ ,

D
κ̃

(1− ρ2)
)

τ < tk ≤ T.
(36)

where ρ = e−κ̃δ . Because the solutions to SDEs satisfy the Markov Property,

L((x1, . . . ,xk)) =

( τ∏
k=1

P0,xτ (Xk|xk−1 = xk)

)( n∏
k=τ+1

P0,xτ (Xk|xk−1 = xk)

)

=
( 1

4πδD

)τ( κ̃

2πD(1− ρ2)

)n−τ
exp

(
−1

4δD

τ∑
k=1

(
(Xk −Xk−1)2 + (Yk − Yk−1)2

))

× exp

(
−κ̃

2D(1− ρ2)

n∑
k=τ+1

((
Xk − ρXk−1− (1− ρ)xτ

)2
+
(
Yk − ρYk−1− (1− ρ)yτ

)2))
.

(37)

The likelihood equation for the [immobilization→ diffusion] switching model derivation
is similar to that [diffusion → immobilization] switching model but now we assume the
immobilized particle is centered around the origin. Under the same reasoning as above

L((x1, . . . ,xn)) =

( τ∏
i=1

P0,xτ (Xk|xk−1 = xk)

)( n∏
i=τ+1

P0,xτ (Xk|xk−1 = xk)

)

=
( κ̃

2πD(1− ρ2)

)τ
exp

(
−κ̃

2D(1− ρ2)

τ∑
n=1

(
(Xk − ρXk−1)2 + (Yk − ρYk−1)2

))

×
( 1

4πδD

)n−τ
exp

(
−1

4δD

n∑
k=τ+1

((
Xk −Xk−1

)2(
Yk − Yk−1

)2))
. (38)
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1 Typical virion trajectories

We display the typical trajectories of the four different types of classified particles:
Freely Diffusing, Immobilized, Subdiffusive, and Outlier in Figure 1. The Freely
Diffusing class made up 45.5246% of the paths (1689/3707), Immobilized class
made up 53.0618% of the paths (1967/3707), Subdiffusive class made up 0.3507% of
the paths (13/3707), and the outlier class made up 1.0251% of the paths (38/3707),
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Fig. 1 (a)-(f): A typical 2d-trajectory of a Virion classified as Freely Diffusing, Immobi-
lized, Subdiffusive, Freely-Diffusing switch candidate, Outlier (Type I) and Outlier (Type 2),
respectively.
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2 Localization error and effective diffusivity

We used the method provided by Vestergaard et al. [1] (Section III.C) to esti-
mate the variance of the localization error and the diffusivity of a freely diffusing
particles for all tracked virions, under the assumption of maximal exposure time
(motion blur coefficient = 1/6). In some cases where the virion has a correlated
first-increment process (not freely diffusing), we obtained negative estimates for
both the variance of the localization error and the diffusivity using the covariance
based estimator. This was more common in the Immobilized class and the Freely
Diffusing class had strictly positive diffusivity estimates using both methods.

The empirical distribution of the localization errors are provided in Figure
2(a) for the Immobilized and Freely Diffusing class in red and green, respectively.
For those Freely Diffusing virions with positive localization error estimates, the
estimate for the diffusivity using the covariance based estimator estimator was
typical larger than the estimate for localization error by two orders of magnitude,
as depicted in Figure 2(b). In Figure 2(c), we compare the estimate for the diffu-
sivity using the maximum likelihood estimator (x-axis) and the estimator in [1],
covariance based estimator, (y-axis).
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Fig. 2 (a): The empirical density of the variance of the localization error for the Immobi-
lized (red) and Freely Diffusing (green) sub-population. (b): The diffusivity covariance based
estimator (CVE) versus the estimate for the variance of the localization error for the Freely
Diffusing class with positive estimates for the variance of the localization error on a log 10 vs.
log 10 scale. (c): The covariance based estimator (CVE) versus the maximum likelihood esti-
mator (MLE) for the diffusivity for the Immobilized (red) and Freely Diffusing (green) class.
The dashed black line denotes the line x = y.
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3 Simulations of the immobilization process

We simulate the immobilization process, depicted in Figure 3 using a Gillespie
algorithm. First, we simulate the number of number of bound Ab to the surface
of a virion, N(t). To do this, we use the transition rates given in Equation 8 to
randomly select if a bound Ab is gained or lost and randomly sample the time the
virion remains in the current state.

Then for the given value of N(t) = n, we simulate the number of simultaneously
bound Ab, S(t) for the duration of time N(t) remains in given state. Because we
assume the Ab-mucin dynamics are fast compared to Ab-virion dynamics, we
approximate S(t) by a continuous space process using the stochastic differential
equation

dS̃(t) =
(
λ(S̃(t))− µ(S̃(t))

)
dt+

√
(λ(S̃(t)) + µ(S̃(t)))dW (t) (1)

where λ(S̃(t)) =
(
N(t)− S̃(t)

)
g(S̃(t))mon[M ] (the rate of gaining a simultaneously

bound Ab) and µ(S̃(t)) = S̃(t)moff (the rate of losing a simultaneously bound
Ab). Then we use the Euler–Maruyama method to simulate the process S̃(t) for
the duration of time the number of bound Ab remains fixed.

4 Clustering Algorithm Decision

For each donor we give a table of the classification of each cluster at each tested
exogenous antibody concentration and graphically display the grouping of clusters
based on the path-wise statistics. We provide a description of each of the four
subpopulations in Table 1.

Table 1 Ensemble statistics for each of the four biological subpopulations.

Diffusing Immobilized Subdiffusive Outlier
〈Deff〉 ≥ 10−1 < 10−1 ≥ 10−1 -

A(1;X),A(1;Y ) Independent Independent Anti-persistant Anti-persistant -
Motion Brownian Hindered Brownian Stationary Subdiffusive -
Color Green Red Blue Brown

4.1 Donor F02

The dendrogram for Donor F02 was cut at a uniform height to yield four cluster for
each tested exogenous Ab concentration except for [A]exo = 1.0µg/mL, which was
cut at a uniform height to yield five clusters because one particle was separated
into its own cluster. The biological label that we assign to each cluster is reported
in Table 2. We display the clusters based on the path-wise statistics in Figure 3,
where the number corresponds to the hierarchical cluster and the color corresponds
to the biological interpretation of the cluster.
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Table 2 The classification of the clusters separated by the hierarchical clustering algorithm
described in Section 2.3. Short hand notation: I = immobilized, F = Freely Diffusing, S =
Subdiffusive, and O = Outlier. We indicate a member of a cluster was removed and classified
as Outlier by −/O.

[A]exo(µg/mL) Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
0 I I F F -

0.033 I I I F -
0.100 I I F/O F -
0.333 I I I F -
1.0 I O S/O S F
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Fig. 3 (a)-(e)A depiction of the classification system, where each point, corresponds to
a tracked virion with estimated diffusivity on a log 10 scale and average-ACF value, for Ab
concentration 0, 0.033, 0.1, 0.333, and 1.0µg/mL, respectively. The numerical value of each
point corresponds to the prescribed cluster by the hierarchical clustering algorithm and the
color of the point represents the biological class.

4.2 Donor F05

The dendrogram for Donor F05 was cut at a uniform height to yield four cluster
for each tested exogenous Ab concentration. The biological label that we assign to
each cluster is reported in Table 3. We display the clusters based on the path-wise
statistics in Figure 4, where the number corresponds to the hierarchical cluster
and the color corresponds to the biological interpretation of the cluster.
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Table 3 The classification of the clusters separated by the hierarchical clustering algorithm
described in Section 2.3. Short hand notation: I = immobilized, F = Freely Diffusing, S =
Subdiffusive, and O = Outlier. We indicate a member of a cluster was removed and classified
as Outlier by −/O.

[A]exo(µg/mL) Cluster 1 Cluster 2 Cluster 3 Cluster 4
0 I I F O
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0.333 I I I F
1.0 I I I F
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Fig. 4 (a)-(e)A depiction of the classification system, where each point, corresponds to
a tracked virion with estimated diffusivity on a log 10 scale and average-ACF value, for Ab
concentration 0, 0.033, 0.1, 0.333, and 1.0µg/mL, respectively. The numerical value of each
point corresponds to the prescribed cluster by the hierarchical clustering algorithm and the
color of the point represents the biological class.

4.3 Donor F08

The dendrogram for Donor F08 was cut at a uniform height to yield four cluster
for each tested exogenous Ab concentration. The biological label that we assign to
each cluster is reported in Table 4. We display the clusters based on the path-wise
statistics in Figure 5, where the number corresponds to the hierarchical cluster
and the color corresponds to the biological interpretation of the cluster.
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Table 4 The classification of the clusters separated by the hierarchical clustering algorithm
described in Section 2.3. Short hand notation: I = immobilized, F = Freely Diffusing, S =
Subdiffusive, and O = Outlier. We indicate a member of a cluster was removed and classified
as Outlier by −/O.

[A]exo(µg/mL) Cluster 1 Cluster 2 Cluster 3 Cluster 4
0 I F F F

0.033 I I F F
0.100 I I S F
0.333 I I F F
1.0 I I S F

Fig. 5 (a)-(e)A depiction of the classification system, where each point, corresponds to
a tracked virion with estimated diffusivity on a log 10 scale and average-ACF value, for Ab
concentration 0, 0.033, 0.1, 0.333, and 1.0µg/mL, respectively. The numerical value of each
point corresponds to the prescribed cluster by the hierarchical clustering algorithm and the
color of the point represents the biological class.

4.4 Donor F13

The dendrogram for Donor F13 was cut at a uniform height to yield four cluster for
each tested exogenous Ab concentration except for [A]exo = 1.0µg/mL, which was
cut at a uniform height to yield five clusters because one particle was separated
into its own cluster. The biological label that we assign to each cluster is reported
in Table 5. We display the clusters based on the path-wise statistics in Figure 6,
where the number corresponds to the hierarchical cluster and the color corresponds
to the biological interpretation of the cluster.

Table 5 The classification of the clusters separated by the hierarchical clustering algorithm
described in Section 2.3. Short hand notation: I = immobilized, F = Freely Diffusing, S =
Subdiffusive, and O = Outlier. We indicate a member of a cluster was removed and classified
as Outlier by −/O.

[A]exo(µg/mL) Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
0 I I S F F

0.033 I I F F F
0.100 I I O S F
0.333 I I I F/O F
1.0 I I I F F

4.5 Donor F15

The dendrogram for Donor F15 was cut at a uniform height to yield four cluster
for each tested exogenous Ab concentration. The biological label that we assign to
each cluster is reported in Table 6. We display the clusters based on the path-wise
statistics in Figure 7, where the number corresponds to the hierarchical cluster
and the color corresponds to the biological interpretation of the cluster.
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Fig. 6 (a)-(e)A depiction of the classification system, where each point, corresponds to
a tracked virion with estimated diffusivity on a log 10 scale and average-ACF value, for Ab
concentration 0, 0.033, 0.1, 0.333, and 1.0µg/mL, respectively. The numerical value of each
point corresponds to the prescribed cluster by the hierarchical clustering algorithm and the
color of the point represents the biological class.

Table 6 The classification of the clusters separated by the hierarchical clustering algorithm
described in Section 2.3. Short hand notation: I = immobilized, F = Freely Diffusing, S =
Subdiffusive, and O = Outlier. We indicate a member of a cluster was removed and classified
as Outlier by −/O.

[A]exo(µg/mL) Cluster 1 Cluster 2 Cluster 3 Cluster 4
0 I I I F

0.033 I I I F
0.100 I I F F
0.333 I I F F
1.0 I I I F

4.6 Donor F17

The dendrogram for Donor F17 was cut at a uniform height to yield four cluster
for each tested exogenous Ab concentration. The biological label that we assign to
each cluster is reported in Table 7. We display the clusters based on the path-wise
statistics in Figure 8, where the number corresponds to the hierarchical cluster
and the color corresponds to the biological interpretation of the cluster.
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Fig. 7 (a)-(e)A depiction of the classification system, where each point, corresponds to
a tracked virion with estimated diffusivity on a log 10 scale and average-ACF value, for Ab
concentration 0, 0.033, 0.1, 0.333, and 1.0µg/mL, respectively. The numerical value of each
point corresponds to the prescribed cluster by the hierarchical clustering algorithm and the
color of the point represents the biological class.

Table 7 The classification of the clusters separated by the hierarchical clustering algorithm
described in Section 2.3.. Short hand notation: I = immobilized, F = Freely Diffusing, S =
Subdiffusive, and O = Outlier. We indicate a member of a cluster was removed and classified
as Outlier by −/O.

[A]exo(µg/mL) Cluster 1 Cluster 2 Cluster 3 Cluster 4
0 I I F F

0.033 I I I F
0.100 I I F F
0.333 I I I F
1.0 I I I F

4.7 Donor F21

The dendrogram for Donor 21 was cut at a uniform height to yield four cluster
for each tested exogenous Ab concentration. The biological label that we assign to
each cluster is reported in Table 8. We display the clusters based on the path-wise
statistics in Figure 9, where the number corresponds to the hierarchical cluster
and the color corresponds to the biological interpretation of the cluster.
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Fig. 8 (a)-(e)A depiction of the classification system, where each point, corresponds to
a tracked virion with estimated diffusivity on a log 10 scale and average-ACF value, for Ab
concentration 0, 0.033, 0.1, 0.333, and 1.0µg/mL, respectively. The numerical value of each
point corresponds to the prescribed cluster by the hierarchical clustering algorithm and the
color of the point represents the biological class.

Table 8 The classification of the clusters separated by the hierarchical clustering algorithm
described in Section 2.3. Short hand notation: I = immobilized, F = Freely Diffusing, S =
Subdiffusive, and O = Outlier. We indicate a member of a cluster was removed and classified
as Outlier by −/O.

[A]exo(µg/mL) Cluster 1 Cluster 2 Cluster 3 Cluster 4
0 I I F F

0.033 I I F F
0.100 I I I F
0.333 I I F F
1.0 I I I F

5 Switch Point Detection Algorithm

5.1 Hamiltonian Monte Carlo (HMC) Sampling Algorithm

We used an HMC sampling algorithm to jointly estimate the parameters (D, κ̃, τ).
Hamiltonian Monte Carlo is a form of Markov Chain Monte Carlo sampling that
relies on Bayes Rule to sample from the joint posterior distribution of (D, κ̃, τ),

p(D, κ̃, τ |x,y)
c
= L(x,y;D, κ̃, τ)p(D, κ̃, τ) (2)

where L(x,y; (D, κ̃, τ)) is the likelihood of seeing the data given the parameters
(D, κ̃, τ) and p(D, κ̃, τ) is the prior joint distribution of (D, κ̃, τ). In our model,
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Fig. 9 (a)-(e)A depiction of the classification system, where each point, corresponds to
a tracked virion with estimated diffusivity on a log 10 scale and average-ACF value, for Ab
concentration 0, 0.033, 0.1, 0.333, and 1.0µg/mL, respectively. The numerical value of each
point corresponds to the prescribed cluster by the hierarchical clustering algorithm and the
color of the point represents the biological class.

we assume the parameters D, κ̃, and τ are independent so that the joint prior
distribution factors into the product of priors, p(D, κ̃, τ) = p(D)p(κ̃)p(τ).

The likelihood function, L(x,y;D, κ̃, τ) is a consequence of the model. For
the [diffusing → immobilized] switching scenario and [immobilized → diffusing]
switching scenario L(x,y; (D, κ̃, τ)) is given by Equation 16 and 15, respectively.

As for the priors, we placed a loosely informative prior on D

π(D) ∼ Gamma(Deff ∗ 0.1, 0.1)

and chose a discrete uniform distribution over the observation times {tn}N−1
n=1 for

the prior distribution on τ . Rather than directly sampling the parameter κ̃ , we
sampled the transform ρ = exp(−∆κ̃) and then used the inverse transformation
κ̃ = − log(ρ)/∆ to obtain posterior samples for κ̃. In doing this, we expressed our
uncertainty of the order of κ̃ by placing a lognormal prior on ρ,

π(ρ) ∼ lognormal
(
loc = log

(
0.52

√
0.52+2

)
, shape = log(1 + 2

0.52 )1/2
)
.

We note that because τ is a discrete parameter taking values in {tn}N−1
n=1

whereas D, κ̃ are continuous real-valued parameters, posterior samples of τ |D, κ̃
were first drawn from {tn}N−1

n=1 with probability

p(τ = tj |x,y, D, κ̃) =
L(x,y;D, κ̃, τ = tj)p(τ = tj)∑N
k=1 L(x,y;D, κ̃, τ = tk)p(τ = tk)

for j = 1, . . . N − 1.

(3)
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Then, we sampled D and κ̃ using the marginal posterior distribution of D and κ̃,

p(D, κ̃|x,y)
c
= p(D)p(κ̃)

N∑
k=1

L(x,y;D, κ̃, τ = tk)p(τ = tk). (4)

The HMC sampling algorithm was run using the R package rstan, and computa-
tions were done using high performance computing (HPC) resources and services
provided by Technology Services at Tulane University, New Orleans, LA.

5.2 Testing Freely Diffusing population for switch candidates

Recall, we say a path is a candidate for switching if the 95% credible region for
τ |D, κ̃ is completely contained within the interval [0.1Tfinal, 0.9Tfinal] where Tfinal

is the duration of a path. We tested if the i-th Freely Diffusing virion of path
duration Tfinal, was a [immobilization → diffusion] switching candidate using the
following procedure. Assuming the [immobilization → diffusion] switching model,
we obtained posterior samples of τ |D, κ̃ using our HMC sampling algorithm, in
which we drew 2000 posterior samples and kept the last 1000 samples for 4 dif-
ferent runs of the algorithm. The resulting 4000 posterior samples of τ |D,κ̃ were
used to construct the 95% credible interval for τ . If this interval was contained in
[0.1Tfinal, 0.9Tfinal], then we marked the virion as a candidate for [immobilization
→ diffusion] switching. We repeated this for all virions in the Freely Diffusing
diffusing subpopulation to obtain the fraction of candidate for [immobilization →
diffusion] switching. We obtained the fraction of candidate for [diffusion → immo-
bilization] switching, following the same method described in the paragraph above
but assuming the [diffusion → immobilization] switching model.

The Gaussian kernel density estimate of the posterior samples of τ within the
95% credible region for [immobilization → diffusion] switch candidates, and [dif-
fusion → immobilization] switch candidates are displayed in top Figure 10 (a) and
(b), respectively, for Donor F15. The path duration for each switch candidate is
marked by a red x. In Figure 10 (c) and (d), we display the trajectory of an [immo-
bilization → diffusion] switch candidates and [diffusion → immobilization] switch
candidate, where the start of the trajectory by the green dot and the maximum a
posteriori estimate for τ is marked by the blue star.

5.3 Estimating the false discovery rate

To estimate the false discovery rate of our switch detection test, we simulated Feely
diffusing trajectories using parameters obtained from the class of Freely Diffusing
virions in our data. To do this, the number of simulated Brownian paths was set to
the number of virions classified as Freely diffusing, 1689 virions. Let nfree and Dfree

denote all the path lengths and the effective diffusivities of the Freely Diffusing
virions, respectively. For the i-th simulated Brownian path, the path length ni was
sampled from nfree and the diffusivity constant Di was sampled from Dfree.

Using our switch point criterion, we set the false discovery rate of [Immobi-
lization → Diffusion] switches to the percent of simulated Brownian particles that
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Fig. 10 (a)-(b) Violin plots for the posterior samples of τ within the 95% credible interval
for those Freely-Diffusing virions from Donor F15 considered [immobilization → diffusion]
switch candidates, and [Diffusion→ Immobilization] switch candidate, respectively. (c)The 2d
trajectory [immobilization → diffusion] switch candidate, (tracked particle 211 for Donor F15
at [A]exo = 0.333µg/mL.) (d)The 2d trajectory [diffusion→ immobilization] switch candidate,
(tracked particle 226 for Donor F15 at [A]exo = 1.0µg/mL.) In Panels (c) and (d) the green
circle denotes the initial position of the virion and the blue star corresponds to the estimated
switch point.

were labeled as candidates for [Immobilization → Diffusion] switching for a like-
lihood function given by Equation 16. Specifically, the i-th simulated Brownian
path and [Immobilization → Diffusion] switching model, the 95% credible region
for τ was constructed using the 4000 posterior samples of τ |D,κ̃ obtained by the
last 1000 (out of 2000) posterior samples of 4 runs of our HMC algorithm. We
obtained an estimate for the false discovery rate of [Diffusion → Immobilization]
switches in the same manner but assuming a [Diffusion → Immobilization] model.

5.4 Estimating the power of the candidate switching test

In estimating the power of our test, we assumed that the switch point occurs
within the middle 80% of the path. We believe this was a reasonable assumption
because on average a Freely Diffusing virion had a path length of 80, and the
first or last eight observations would be too noisy to capture the true dynamics
of the virion. First, we created a simulated data set of 1689 [immobilization →
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diffusion] paths from the explicit solution of SDE given in Equation 15. For the
ith [immobilization → diffusion] path, the model parameters (ni, Di, κ̃i, τi) were
sampled from the summary statistics of the tracked virions:

ni ∼ Unif{nfree}, Di ∼ Unif{Dfree}, κ̃i ∼ Exp(λ = 1/500), and τi ∼ Unif{[0.1ni, 0.9ni]}.

We ran our sampling algorithm assuming the model given by Equation 16 on the
simulated [immobilization → diffusion] data. The sampling algorithm was run 4
times each for 2000 iterations where the last 1000 were kept as posterior samples.
We then set the power of our [immobilization → diffusion] switch point detect-
ing test to the percentage of them have credible regions for τ within [0.1Tfinal,
0.9Tfinal]. The test failed to detect switches in the following two cases: (1) The
switch was located near the endpoints of the interval [0.1Tfinal, 0.9Tfinal], resulting
in a credible region outside the region allowed by the test. (2) When κ̃ is approx-
imately less than 10. In this case, the immobilized state was indistinguishable
from Brownian Motion because the deterministic component of the SDE given in
Equation 16 was relatively small with respect to the random component. In Figure
11(a)-(b), we display the relative position of the change point and κ̃ for simulated
paths that were undetected by our proposed test. The trajectory of the simulated
path marked by the pink diamond is shown in Figure 11(c)-(d).

We estimated the power of [diffusion → immobilization] switch point detecting
test following the same procedure as above but assumed the model given by Equa-
tion 15. For this switching scenario, switches went undetected due to the same
reasons mentioned above.

6 Statistical Evidence for trend in proportion immobilized

In Figure 12, we display the 95% BCa confidence interval. for the observed pro-
portion immobilized for each donor. We remark that for all donors, the proportion
immobilized at the lowest tested exogenous Ab concentration (0µg/mL) and the
highest tested exogenous Ab concentration (1µg/mL) have non-overlapping con-
fidence intervals. In Table 9, we report the estimates coefficient and associated
p-values for a negative exponential growth for the observed proportion of virions
immobilized.

Table 9 Negative exponential growth coefficient estimates and associated p-values for the
observed fraction of virions immobilized.

Estimate p -value
β0 0.9138 < 0.0001
α0 -0.8427 0.0043
αexo 15.9201 < 0.0001

Estimate p -value
β1 0.0642 0.4547
β2 -0.1084 0.2123
β4 -0.0700 0.4156
β5 0.1140 0.1913
β6 0.0050 0.9534
β7 0.0347 0.6844

Estimate p -value
α1 0.2846 0.3952
α2 0.2272 0.5049
α4 0.4286 0.1852
α5 0.4385 0.1745
α6 0.1901 0.5819
α7 -0.2406 0.5763
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Fig. 11 (a)-(b) The true parameter κ̃ and the relative position of the switch point, τ , for
the simulated switching particles, [immobilization → diffusion] and [diffusion → immobilized],
respectively, whose switch point was undetected by our switching detection test. The dashed
navy vertical lines mark the tenth percentile and ninetieth percentile of the trajectory. (c)-(d)
The trajectory of a simulated switching particles marked by the pink diamond panels (a) and
(b), respectively.

7 Statistical Evidence for Effective Diffusivity

In Figure 13, we display the 95% BCa confidence interval for the ensemble effective
diffusivity for the Freely-Diffusing subpopulation. We remark that for all donors,
the ensemble effective diffusivity at the lowest tested exogenous Ab concentra-
tion (0µg/mL) and the highest tested exogenous Ab concentration (1µg/mL) have
overlapping confidence intervals. We report the results of all the paired difference
tests of the form,

H0 : 〈Deff([A]i)〉 − 〈Deff([A]j)〉 = 0, HA : 〈Deff([A]i)〉 − 〈Deff([A]j)〉 > 0. (5)

for 1 ≤ i < j ≤ 5 in Table 10.

Table 10 The t-values of all possible combination of paired-difference tests of the form
Equation 5. The critical value tα=0.05,6 = 1.943.

(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)
t-value -0.7592 0.6669 0.0879 0.2325 1.2058 1.124 1.492 -0.2887 -0.3973 0.0931
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Fig. 12 (a)-(g) For each donor, the observed proportion immobilized with 95% BCa con-
fidence interval.
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Fig. 13 (a)-(g) For each donor, the ensemble effective diffusivity of the free subpopulation
with 95% BCa confidence interval.

8 Simple Linear Model

In 11, we report the range of each parameter for each donor and whether it was
identifiable, practically unidentifiable, or structurally unidentifiable, under the as-
sumption it takes one simultaneously bound Ab to immobilize a virion (T = 1)
and the Ab-mucin binding rate is not affected by immobilization (c = 1).
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Table 11 Parameter Identifiable assuming that T = 1 and c = 1 where ID indicates a
structurally identifiable parameter and PU refers to a practically unidentifiable parameters.
The confidence interval are given for each parameter where θα=0.95,3 = 7.814728.

[A]0 (µg/mL) N∗ q min(χ2(θ))
Donor F02 ID, [0.006, 0.04] ID, [140, 560] ID, [0.89, 0.969] 5.2106
Donor F05 ID, [0.015, 0.085] ID, [60, 260] ID [0.76, 0.908] 1.6292
Donor F08 ID, [0.020, 0.115] ID, [80, 360] ID [0.86, 0.954] 0.2755
Donor F13 ID, [0.020, 0.075] ID, [50, 100] PU [0.93, 1) 15.3627
Donor F15 ID, [0.003, 0.01] ID, [310, 780] ID [0.93, .963] 4.6863
Donor F17 ID, [0.025, 0.095] ID, [80, 210] ID [0.90, .969] 3.661
Donor F21 ID, [0.035, 0.195] ID, [70, 250] ID [0.92, .989] 1.277

9 Full Model

Let θ̂ denote the numeric estimate for θ ∈ Θ and θ̂slow denote the numeric esti-
mate for θ in the restricted parameter space Θ0.05,5 ∩ Θslow. In 12, we report the
range of each parameter for each donor within Θ0.05,5 ∩Θslow and whether it was
identifiable, practically unidentifiable, or structurally unidentifiable. We display
the proportion immobilized predicted by our model assuming θ̂slow is the numeric
estimate of the parameters restricted to the subspace Θ0.05,5∩Θslow for each Donor
in Figure 14.

Table 12 The values of T , c, and N∗ that can permit θ ∈ Θ0.05,5 ∩Θslow. Lower and upper
bounds of the tested parameter range are underlined. Note that χ2(α = 0.95, 5) = 11.0705.

T c N∗ χ2(θ̂)) χ2(θ̂slow)
Donor F02 [19,60 [44.67, 104] [120,620] 0.7070 9.1772
Donor F05 [16,60] [79.43, 104] [90,370] 0.3912 4.1879
Donor F08 [17,60] [56.23, 104] [100,540] 0.1562 1.2343
Donor F13 {13} [2818.38, 104] {70} 10.0055 18.0788
Donor F15 [30,60] [44.68, 104] [250, 630] 4.2209 4.2209
Donor F17 [17,34 [281.84, 104] [100, 200] 1.6432 3.0156
Donor F21 [19,27] [103, 104] [120,170] 0.5974 8.1838
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Fig. 14 (a)-(g) For each donor the observed proportion immobilized (dashed lines), propor-

tion immobilized predicted by π̃([A]; θ̂), (solid black line), where θ̂ is the numeric estimate for

θ and the proportion immobilized predicted by π̃([A]; θ̂slow) (solid blue line)), where θ̂slow is

the numeric estimate restricted to the subspace Θ0.05,5 ∩Θslow. Note in Figure (e) θ̂slow = θ̂.
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