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Inferring hidden structure from noisy observations is a problem

addressed by Bayesian statistical learning, which aims to

identify optimal models of the process that generated the

observations given assumptions that constrain the space of

potential solutions. Animals and machines face similar “model-

selection” problems to infer latent properties and predict future

states of the world. Here we review recent attempts to explain

how intelligent agents address these challenges and how their

solutions relate to Bayesian principles. We focus on how

constraints on available information and resources affect

inference and propose a general framework that uses benefit

versus accuracy and accuracy versus cost curves to assess

optimality under these constraints.
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Introduction
We continuously gather noisy and incomplete informa-

tion to make inferences about past, present, and future

states of the world. These on-line inference processes are

typically challenged by limited information, time, and

resources. Classical Bayesian approaches can provide

optimal solutions to inference problems under constraints

on accessible information but typically require unlimited

time and computational resources [1]. As a result, ques-

tions remain regarding the applicability of Bayesian prin-

ciples for understanding inference in the brain, or for

building intelligent machines capable of solving real-

world inference problems.

Here we first review predictions of Bayesian theory given

different constraints on the availability of relevant infor-

mation. We then discuss recent studies that aimed to define

inference optimality under additional time, memory, and

computational constraints. We conclude by suggesting that
www.sciencedirect.com 
the effectiveness of strategies under real-world constraints

can be assessed by maximizing the benefit/cost ratio, where

realistic benefit versus cost curves can be defined by

combining two separate components, corresponding to

benefit versus accuracy and accuracy versus cost curves.

We argue that this approach can, in principle, be used to:

(1) characterize the large variation in cost and complexity of

inference strategies used for different tasks and conditions,

and (2) explain why individuals sometimes choose infer-

ence strategies that are seemingly sub-optimal compared to

Bayesian solutions.

Constraints on accessible information
Animals face the fundamental problem of inferring the

model that best explains noisy evidence, given informa-

tion from a priori beliefs and ongoing observations. Both

of these kinds of information can be limiting. For exam-

ple, prior knowledge may or not specify the functional

form of the process that generated the observations.

Likewise, sampling of the environment may be con-

strained by how much and what kind of data can be

gathered. Bayesian theory predicts how these constraints

affect the speed of learning and the complexity of the

learned model. Below we explain these predictions and

compare them with animal behavior in three scenarios: (1)

the underlying generative process is known, leaving

uncertainty only about its parameters; (2) the underlying

process is unknown but lies within a specified hypothesis

space of processes; (3) there is no prior knowledge of the

hypothesis space for the generative process.

Uncertainty about model parameters

When the functional form of the model is known, Bayes-

ian methods seek to infer the optimal parameter values by

maximizing the posterior distribution of the parameters u
given the observed data x (where u and x can be vectors).

This distribution is obtained through Bayes’ rule: p(u|
x) / p(x|u)p(u), where p(x|u) is the likelihood of the data x
in the model parameterized by u, and p(u) reflects a priori

expectations about the parameter values and further

constrains the hypothesis space.

Strong sampling, weak sampling, and the “size principle”:
In general, as more data are observed, the Bayesian

posterior converges to the likelihood (and departs from

the prior). If sampling is “strong”, i.e., if samples are

drawn independently at random from the model to infer,

this convergence occurs exponentially fast in the number

of samples. Consider a special case in which the different

parameters u index categories such that each u describes a

probability distribution, p(x|u), that is nonzero in a subset

xu of the sample space. The elements of xu are then
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examples of the category, and it is possible that the xu
overlap or intersect. In this setting, if examples are drawn

independently at random from a given underlying cate-

gory (strong sampling), the likelihood of seeing examples

under that category is inversely proportional to the num-

ber of items contained in that category. As a result, the

Bayesian posterior concentrates exponentially quickly in

the number of observed examples on the smallest and

most specific category from which the examples could be

drawn. This effect, known as the “size principle”, has

been proposed to explain the striking human ability to

learn categories from a few examples [2–5]. In contrast, if

sampling is “weak”, the relation between the sample

distribution and the true distribution of items in the

category is not known, because of which all categories

compatible with observed samples will be equally likely.

In this case, the posterior probability does not concentrate

on the most specific category. Human categorization

sharpens with increasing data but at variable speeds

and generally not as fast as the size principle would

prescribe. This result has been interpreted in terms of

different assumptions that people make about how obser-

vations are generated, usually compatible with a mix of

strong and weak sampling [3–5].

Hierarchical Bayesian Models: Other sampling effects are

evident in more complex problems addressed by Hierar-

chical Bayesian Models (HBMs) [6,7]. HBMs solve infer-

ence problems in which the prior probability is split on

multiple levels: typically, each level defines the probabil-

ity of certain parameters conditional on other parameters,

whose probability is defined at the immediately higher

level. The distribution at the top level can be thought of

as an “innate prior”. Thus, these models represent

increasingly abstract knowledge, for example about clas-

ses of categories, along a hierarchy, and can learn at

multiple levels of abstraction simultaneously [8]. This

property has made HBMs successful as models of lan-

guage learning [3,8–12], conceptual learning [7,13��,14�],
reinforcement learning [15], and adaptive inference of

dynamic internal states [16–19]. HBMs make quantita-

tive predictions about how the speed of learning structure

in the data at different levels of abstraction is determined

by both the sampling process and the structure of the

data. For example, abstract knowledge can be acquired

faster than specific knowledge: (1) when sampling inter-

leaves examples of different categories [6,13��]; (2) if

independent, random sampling results in a skewed dis-

tribution of categories, because the incidence of low

frequency categories supports inference of the existence

of novel categories [13��]; and (3) if the features defining a

category have little variance among the items of the

category [20��]. These kinds of sampling constraints are

also likely to play critical roles in inference problems in

which there is hierarchical or complex structure in the

temporal sequences of observations, for which both

Bayesian and other solutions require sampling over
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potentially many different timescales that provide rele-

vant information about volatility of the environment

[16,17,21–24,25�,26–28].

Uncertainty about the model form in a constrained

hypothesis space

When the functional form of the model generating the

observed data is unknown, but the set of plausible models

is constrained, Bayesian theory can again be used to select

the appropriate model form. In this case, the posterior for

a certain model form is defined by integrating over the

manifold of all the model probability distributions that

have the same functional form f: p( f|x) / p( f)
R
dup(x|u, f)p

(u|f). Assuming a uniform prior over all distributions

(called Jeffreys’ prior), the log-posterior can be expressed

asymptotically as a sum of terms of decreasing importance

with increasing number N of data points: the leading-

order term (OðNÞ) is the log-likelihood of the data under

the optimal model and represents fitting accuracy, and

the lower-order terms (OðlogNÞ and Oð1Þ) correspond to a

measure of statistical simplicity of the model family,

which is important to prevent overfitting [33,34]. These

competing quantities produce tradeoffs between the

model complexity and fitting accuracy in Bayesian model

selection as the number of sampled observations changes.

Bias-variance tradeoffs as a balance between fitting accu-
racy and complexity: The asymptotic expansion of the

Bayesian posterior formalizes the bias-variance trade-off,

such that simple models tend to underfit the data and thus

yield biased results with low variance across resamplings

from the true model, whereas complex models tend to fit

the data but overfit the noise and thus yield lower bias but

higher variance (Figure 1a,b,c). The optimal model fam-

ily, which can maximally generalize to new data sampled

from the true generative process, typically has interme-

diate statistical complexity. The tradeoff between fitting

accuracy and complexity is sensitive to amount of data.

When the amount of data is small, complexity and accu-

racy compete on an equal basis in model selection. With

increasing amounts of data, model accuracy dominates

model selection, driving the inference of more complex

models that better explain structure in the data. Recent

studies on perception [35] and human inference in simple

sensorimotor (curve-fitting) tasks [29,30] have shown,

among models of different complexities and equivalent

fitting accuracy, people prefer the simplest option, which

makes fewer assumptions about the generative process

and generalizes better. However, as more data accumu-

late individuals tend to infer more complex models, as

expected from principles of Bayesian inference [36].

Complex model selection: Even if the set of plausible

models or hypothesis space is known, it can be highly

complex, with many correlated hypotheses (i.e., partially

overlapping model families in the parameter space) and

non-uniform prior densities. Under these conditions,
www.sciencedirect.com
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Figure 1

Trade-offs in inference with limited information, time, and computational resources. Top panels: The bias-variance trade-off. (a) A curve-

fitting task that requires an inference about the hidden curve (red dashed line) that is most likely to generate the data points (blue dots) with

Gaussian noise [29,30]. (b) Under limited data, increasing the degree of the fitting polynomial (and hence the statistical complexity of the solution)

decreases errors due to bias (underfitting) but increases errors due to variance (overfitting). The total generalization error is minimized at

intermediate complexity. (c) Three example solutions of increasing statistical complexity (yellow to pink); intermediate is optimal in this case.

Middle panels: An example of speed-accuracy trade-off in behaviour. (d) A random-dot motion task that requires an inference about the

www.sciencedirect.com Current Opinion in Behavioral Sciences 2019, 29:117–126
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consistent Bayesian model selection requires that the

different priors match over the shared structure of the

models. However, this constraint can lead to an interfer-

ence effect on model selection given by the particular

hypothesis space that is considered: for a fixed generative

process, if a model is preferred to another one within a

given hypothesis space, this preference is not guaranteed

to be preserved when the same models are embedded in a

different hypothesis space [37]. It would be interesting to

understand if and how these effects relate to interference,

measurement-order, and other contextual effects found in

psychology [38–43].

Uncertainty about the hypothesis space

In real-world statistical-inference problems, there may be

so much uncertainty about which hypotheses should be

considered that identifying a set of options that is likely to

contain the true generative model is not feasible [44].

Ideally, the goal of model selection in these cases is to find

a model within a given hypothesis space that is as simple

as possible and yet comes close to the true data-generat-

ing distribution, with closeness quantified in this tradeoff

by the log-likelihood of the observed data [33]. In this

setting, we are not looking for the true generative model

but simply the best choice in the set that is feasible to

consider.

Ecological rationality – simple though biased models
work better: Real-world problems in which the optimal

model cannot be found because relevant information

about the structure of the environment is lacking are

the focus of “ecological rationality,” which aims to deter-

mine which models or strategies are better than others

and in which environments [45–52]. In general, these

studies have highlighted a “less-is-more” effect, whereby

simple fast-and-frugal heuristics or experience-based

intuition, which may have evolved to meet recurrent

needs in animal evolution, outperform complex statistical

models that require more computations, evidence, and

assumptions [48,49,52,53,47]. This effect is consistent

with expectation from Bayesian theory [33] and can also

be interpreted as a consequence of the bias-variance

trade-off. Specifically, when uncertainty is high because

of an underconstrained hypothesis space or because of

excessive noise or instability of the environment, subjects

often opt for simple strategies that are inflexible (high

bias) but marginally affected by noise (low variance).

These simple strategies can match, or in some cases

surpass, the performance of more complex strategies that
(Figure 1 Legend Continued) dominant direction of motion of stochastic vi

increased by increasing the time to sequentially process information (accum

solutions showing increased accuracy but longer decision times as the pre-

process (black dashed line) increases (yellow to pink). Bottom panels: An e

(g) A pattern-recognition task that requires the identification of characters e

“anytime” algorithm that is governed by a trade-off between accuracy and 

running time increases, the algorithm localizes (red rectangles) more and m
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minimize bias at the expense of higher variance [54��,48].
The simple strategies may then form building blocks for

more complex and adaptable strategies that are needed

only under particular conditions, such as when the envi-

ronment is moderately unstable [55��,46,56].

Constraints on resources
Bayesian inference often involves complex manipulations

of probabilities requiring a long time to perform, exten-

sive memory, and/or substantial investment of computa-

tional resources [57,58,7,59]. In practice, however,

computational resources are limited and inferences must

be made quickly to be useful. Thus, recent work has

sought to understand Bayesian optimality in the presence

of resource and time constraints.

Inference with limited time

Animals: Even when sufficient information for optimal

Bayesian inference is available in the environment or

from memory, the brain needs time to extract and process

this information, implying a speed-accuracy trade-off

(Figure 1d,e,f) [60–67]. For the kinds of two-alternative

forced-choice (TAFC) tasks used commonly to study

perception, memory, and value-based decision-making,

the optimal trade-off that maximizes expected accuracy

for a given processing time is implemented by the drift-

diffusion model (DDM). The DDM selects the alterna-

tive with the highest Bayesian posterior given the por-

tion of the evidence that can be processed or accumu-

lated in the available time [68]. These computations can

be thought of as Bayesian inference constrained by

limited time for sequential information processing,

and are consistent with both behavioural and neural

responses in these tasks [62,63,64,66,69�,70]. The opti-

mal speed-accuracy trade-off implemented by the DDM

can also be seen, using a physics perspective, in terms of

a variational principle that trades off a negative “energy”

(representing performance gains) against an information-

theoretic distance between the prior and the posterior

probability distributions (representing information-pro-

cessing costs) over the possible options. This interpre-

tation is part of a new statistical theory of bounded,

rational decision-making [71].

Machines: Trade-offs between accuracy and computa-

tional speed are also prominent in machine-learning

applications, as exemplified by “Anytime” algorithms

that are designed to generate increasingly accurate solu-

tions to specific problems the longer they run (Figure 1g,
sual dots [31]. (e) The percentage of correct responses can be

ulation time) about the direction of motion of the dots. (f) Example

defined bound on the total evidence to integrate in the decision

xample of speed-accuracy trade-off in machines (adapted from [32]).

mbedded in a scene image. (h) This task can be solved by an

computational time to process information in the image. (i) As the

ore characters (yellow to pink).
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h,i) [58,72]. Anytime algorithms can be interrupted at any

time and still produce a valid solution, which gives them

the flexibility to solve inference and other decision-mak-

ing tasks under variable time constraints. They are also

well suited to complex problems in which exact solutions

are often hard to find and require substantial computa-

tional resources and time. Recent examples include the

problem of real-time, efficient distribution of power [73];

large-scale optimal web service composition [74]; ranked

information retrieval [75]; approximate resolution in lim-

ited time of NP-hard problems, such as the identification

of common patterns in strings of data [76] and the

problem of heterogeneous multirobot coordination [77–

79]; the SLAM (simultaneous localization and mapping)

problem for robot navigation [80]; the related motion-

planning problem [81]; and pattern recognition [32] and

classification [82]. It would be interesting to understand

whether such algorithms have a neural or cognitive

realization.

Inference with limited computation and memory

Animals: Even without a constraint on processing time,

the optimal Bayesian solution might be unachievable

because of limitations of computational resources and

memory capacity. This idea has led researchers to seek

alternative algorithms that the brain might use to solve

statistical inference tasks subject to resource constraints.

This problem has been studied in some detail in the

context of inference in dynamic environments, where

latent states, like the source of an uncertain reward,

change in time with unknown and possibly time-varying

volatility. When the latent states drift continuously in

time, they can be inferred with limited memory and

computational costs using an algorithm that is derived

from a variational-Bayesian approximation of the poste-

rior distribution of the states in a hierarchical Bayesian

model [16,17]. This algorithm implements Markovian

equations with dynamic learning rates that weigh predic-

tion errors based on the amount of uncertainty in the

observations [16,17]. These equations closely resemble

classical reinforcement-learning heuristics and might

therefore be implementable in the brain [19,18]. Several

approximate Bayesian algorithms have also been pro-

posed to explain how the brain might infer latent states

that do not drift but undergo sudden change points.

These algorithms include particle filters, which reduce

the computational and memory costs by approximating

the Bayesian posterior using a small set of Monte Carlo

samples that is updated as new observations are made

[22,83–88]; approximate Bayesian models in which the

memory load is reduced by forgetting or exponentially

discounting past information [55��,24,89,90,91,92]; low-

dimensional approximations of Bayesian models that can

infer dynamic discrete-valued states and could be imple-

mented by neural networks with plausible plasticity rules

[25�]; integrate-and-fire neuron models [28] and leaky

evidence-accumulation models [27] that can infer
www.sciencedirect.com 
dynamic binary states. All of these models approximate

optimal solutions with different levels of accuracy and

different computational costs and, in many tasks and

conditions, match human behaviour more closely than

exact Bayesian models [89–91,83–85,87,88]. Ongoing

work is assessing how some of these solutions, and the

cognitive operations that they represent, are related to

one another, the quantitative form of the cost-accuracy

trade-off that emerges from them, and how this trade-off

can be optimized in different environments [55��].

Machines: Trade-offs between accuracy and computa-

tional costs are also studied in machine learning. For

example, in the field of deep neural networks (DNNs),

there is a growing demand for efficient machine learning

in devices with limited memory and computational power

[93�,94–100]. These trade-offs have been characterized in

terms of different performance metrics, including: (1)

“information density,” or the accuracy-per-parameter

ratio that takes into account architectural complexity

(the parameters used) but not computational complexity

(the operations performed) [101]; (2) “NetScore,” which

gauges accuracy relative to both architectural and compu-

tational complexity [102]; and (3) predictive accuracy per

input compression, and its distance to the “information-

bottleneck” theoretical limit, which defines the maxi-

mum predictive accuracy that can be achieved for any

given level of compression of the input [103–105]. These

and other metrics are being used to compare DNNs and

elucidate the specific cost-accuracy trade-offs that they

must navigate. Large scale comparisons of DNNs for

object detection [106�] and image classification [101

,93�] have shown, for instance, that different DNNs lie

at different points of a specific monotonic trade-off

between accuracy and computational complexity: as

the amount of computation increases, accuracy also

increases but at progressively smaller rates. This phe-

nomenon also applies to the theoretical information-bot-

tleneck limit, which predicts diminishing returns in per-

formance with increasing complexity of input encoding

[104��]. Identification of upper bounds on accuracy given

different constraints on memory and computational costs

and comparison of these bounds with current DNN

performance can be useful to guide selection of the

DNNs that best match the constraints of each application

[101,102,107] and to develop better architectures and

training algorithms [103].

What is optimal in optimal inference?
Classically, optimal Bayesian inference balances prior

knowledge and ongoing observations to identify the

model with maximum posterior probability. We have

argued that inference in the real world is beset by con-

straints on available information, time, and computational

resources. In this context, optimality must be defined in

terms of a tradeoff that balances the accuracy or benefit of

the inference against an appropriate cost. Concretely, we
Current Opinion in Behavioral Sciences 2019, 29:117–126
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might say that an inference procedure is optimal if it

maximizes benefit per unit cost, in which the benefit is

some monotonically increasing function of accuracy. An

example of this kind of objective is benefit per unit time.

In fact, in some cases optimization of this objective is

straightforward to implement by adjusting the amount of

evidence that is integrated in the decision process (the

decision threshold in the DDM and similar models) and

can help account for reward-driven decision-making

behaviors [66,67,61,62,68,70,108].

We propose a generalization of this approach that decom-

poses the benefit/cost curve into two components (Figure 2

and [55��]). The first component describes the benefit,

perhaps the reward obtained, as a function of accuracy.

This function generally increases monotonically with
Figure 2

Different Benefit vs. Accuracy (top) and Accuracy vs. Cost (middle) cur

accuracy. The optimum is defined as the maximum of the Benefit/Cost rati

monotonically as a function of the Accuracy, and Accuracy increases mono

means that Accuracy vanishes if Cost is less than this minimum. We consid

concave, (c) sigmoid, and (e), a common scenario in which there is little Be

attained above this threshold, while Accuracy is a concave function of Cost

Accuracy is a concave function of Cost, then doubling the Cost gives less t

diminishing returns (different blue lines) give optimal solutions with widely d
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accuracy but can take many different forms that reflect

the goals or needs of the decision-maker, the task condi-

tions, and other factors [109,85]. The second component

describes accuracy as a function of costs, which can include

the time, memory, and computational resources needed to

process information [55��,60]. This function is also gener-

ally monotonically increasing (e.g., investing more

resources yields more accurate solutions in TAFC tasks,

dynamic-state inference, and machine-learning applica-

tions). Optimizing benefit per cost in this setting will not

generally lead to the solution that maximizesbenefit, which

is the target of classical optimization approaches. For

example, consider scenarios in which benefit increases

monotonically with accuracy of the inference procedure,

and accuracy increases monotonically with the cost of

carrying out the inference procedure. Also recall that a
ves yield optimal solutions that vary widely in cost and

o (red markers). We consider cases where Benefit increases

tonically as a function of Cost. There is minimum operating cost, which

er four general scenarios for the two functions: (a) convex, (b)

nefit below a threshold Accuracy and maximal Benefit is quickly

. Concave functions encode a law of diminishing returns — e.g., if

han double the return in Accuracy. In this scenario, different rates of

ifferent costs (different red markers) [55��].
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typical inference engine (whether a brain or computer) has

a fixed resting-state cost to maintain the computational

machinery. Below this threshold cost, accuracy will vanish.

Here we analyze several scenarios of this kind.

First consider a setting in which benefit (B) is propor-

tional to accuracy (A) so that B = aA, while accuracy is a

linear function of cost (C) above a threshold (t) so that

A = b(C � t), and vanishes when C < t. So if C < t, the

ratio B/C vanishes. But for C > t, B/C = ab(C � t)/C = ab
(1 � t/C) which is maximized at the largest cost, or equiv-

alently at the highest benefit. Thus, if benefit grows

linearly with accuracy, and accuracy grows linearly with

cost over a threshold, benefit/cost is maximized by simply

maximizing the benefit, as expected in traditional opti-

mization approaches. Next consider a setting (Figure 2,

column a) in which benefit is a convex (super-linear)

function of accuracy, while accuracy is a convex function

of cost above a threshold. Here doubling the cost more

than doubles the accuracy, which in turn more than

doubles the benefit. These relationships imply that ben-

efit/cost is again maximized when benefit is maximized,

in this case at the highest cost.

More realistically, consider scenarios (Figure 2, column b)

in which benefit is a concave (sub-linear) function of

accuracy, while accuracy is a concave function of cost

above a threshold. Concavity here implies a law of dimin-

ishing returns [55��,101,110]: doubling the cost over

threshold yields less than double the accuracy, which

in turn gives less than double the benefit. In this setting,

the benefit/cost is maximized at an intermediate cost and

thus at less than maximal accuracy and benefit (red dots in

Figure 2, column B). Columns c and d of Figure 2

demonstrate the same result for a saturating (sigmoidal)

benefit-accuracy curve with both sigmoidal and concave

accuracy-cost curves. In fact, this tradeoff appears very

generally in scenarios in which there is a threshold cost

and a subsequent law of diminishing returns, for example

in energy-efficient information transmission [110] in

which information/energy is maximized at some interme-

diate information rate.

These results suggest that when animals use strategies

that do not maximize accuracy or other benefits, they may

actually be rationally trading off benefits against costs that

reflect constraints on time and computational resources.
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