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Stable Carbenes, Nitrenes, Phosphinidenes,

and Borylenes: Past and Future

Michele Soleilhavoup’* and Guy Bertrand'*

The different modes of stabilization for carbenes are briefly dis-
cussed in the context of the discovery of their first stable represen-
tatives. Largely because a diversity of stable carbenes are available
today, their use has spanned across the chemical sciences,
including medicinal and material applications. Much less is known
about the isolobal group 15 cousins of carbenes, namely nitrenes
and phosphinidenes, given that only one example of each has
been isolated. The difficulties associated with their applications
are discussed, and possible solutions are presented. As for group
13 element carbenoids, two types are considered: (1) mono(Lewis
base)-stabilized borylenes that have been recently isolated and
(2) borylenes, the only carbenoids discussed in this article that
have eluded the synthetic skills of investigators. This Perspective
describes potentially attainable targets, such as monocoordinated
aminocarbanions, aminocarbynes, and aminocarbocations, which
feature a carbon atom with six, five, and four valence electrons,
respectively.

The octet rule, one of the fundamental principles of organic chemistry, dates back to
Mendeleev at the end of the 19" century and Abbeg, Lewis, and Langmuir at the
beginning of the 20" century.” Scientists love challenging rules, and one can argue
that this motivated Gomberg to prepare the first stable radical, a species in which a
carbon atom has only seven valence electrons. Similarly, Curtius and Staudinger
attempted to synthesize carbenes, compounds in which a carbon atom features a
six-valence-electron shell. In agreement with the octet rule, they found that
carbenes were only transient intermediates but were involved in several important
chemical transformations. Then, for many years, the quest for stable carbenes
became an unreasonable target until the isolation of a distillable (phosphino)(silyl)
carbene (1)in 1988 and a crystalline imidazol-2-ylidene (2) in 1991° (Figure 1). Inter-
estingly, the mode of stabilization for singlet carbenes 1 and 2 is totally different. In
agreement with Pauling’s prediction,” our group believed that a w-donor and a
T-acceptor substituent (a push-pull mesomeric substitution pattern) was necessary
to decrease both the Lewis acidity and basicity of the carbene center of 1. However,
the isolation of Arduengo’s carbene 2, which features two m-donor substituents
(a push-push mesomeric substitution pattern), showed that the instability of singlet
carbenes was mainly due to their Lewis acid character, although one could argue
that the amino groups have an inductive pull effect, decreasing the basicity of the
lone pair.” During the next decade, after the discovery of 1 and 2, it was believed
that two electronic active substituents were required to allow for the isolation of

1% century, we showed that a single

carbenes. However, at the beginning of the 2
m-donor phosphino® or amino’:? substituent, as exemplified by 3, was enough to
extend the lifetime of carbenes to weeks, provided that the other substituent was

sufficiently bulky.

The Bigger Picture
Challenges and opportunities:

e Further development of
carbenes to enable new and
important chemical
transformations and translation
into medicinal and material
chemistry applications.

e Stable nitrenes,
phosphinidenes, (Lewis base)-
stabilized borylenes, and their
applications remain
underdeveloped.

e Free borylenes have still eluded
the synthetic skills of
investigators, and species
featuring a carbon atom with
six, five, or four valence
electrons should be exciting
and attainable targets.
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Figure 1. Stable Group 14 Carbenoids and Selected Complexes

13

Some of the first isolated carbenes (1-3), catalytically active complexes (4 and 5), an organocatalyst (6), some of the most popular carbenes (7-11), an

efficient blue emitter for OLEDs (12), and the first stable silylene (13).

Very often in chemistry, when a novel type of compound is discovered, it is first
considered a laboratory curiosity, and it sometimes takes decades for the first appli-
cations to appear. For example, phosphorus ylides were first synthesized in 1894 by
Michaelis and Gimborn, but it was only in 1953 that Wittig and Geissler reported the
so-called Wittig reaction, which was soon after used by BASF for the synthesis of
vitamin A. This is not the case for carbenes given that already in 1995, Herrmann
et al. reported that the palladium complex 4 bearing imidazol-2-ylidenes, similar
to 2 as ancillary ligands, promoted the Mizoroki-Heck reaction.” After this discovery,
transition-metal complexes bearing carbenes—such as 2 and their saturated

version, i.e., imidazolin-2-y|idene,1O

the so-called N-heterocyclic carbenes
(NHCs)—have been used for a variety of catalytic chemical transformations,’’ the
most recognizable of which is the Grubbs second-generation olefin metathesis
catalyst 5."% In parallel, the 1,2,4-triazolin-5 ylidene 6, reported by Enders,’® has
proven to be an excellent organocatalyst on its own, in line with the pioneering

work by Breslow on the thiazolydene-catalyzed benzoin condensation.'

Nowadays, aside from the carbenes mentioned above, a myriad of stable carbenes
with distinct steric and electronic properties are available. Arguably, the most pop-
ular are the cyclic (alkyl)(amino)carbenes (CAACs) 7,"'® N,N'-diamidocarbenes

20-22 and

(DACs) 8,"7"'® benzimidazolylidenes 9,' mesoionic carbenes 10a
10b,%*** and the cyclopropenylidene 11.%° As a consequence of this diversity, the
use of carbenes disseminated across chemical sciences at large, including medici-

nal”® and material”’ applications. Furthermore, thanks in part to carbene's
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Figure 2. Group 15 Carbenoids
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The isolated nitrene 14 and its reactivity with CO, exemplify the non-innocence of the phosphorus center. Aminonitrene 15 is an attractive target. The

isolated phosphinidene 16 behaves as an electrophile, as shown by the formation of 17, and to some extent as a transition metal given that it reacts with

CO to give 19, which undergoes ligand exchange, as shown by 17 and 18.

pronounced ability to reversibly activate enthalpically strong bonds and small
molecules,?®??
tion-metal surrogates. They can also stabilize low-coordinate main-group com-
pounds®®—3?

for the functionalization of nanoscale and bulk surfaces.’* They even enabled

there has been significant development toward their use as transi-
and organic and inorganic paramagnetic species’ and can be used

the preparation of organic light-emitting diodes (OLEDs) based on earth-

abundant metals,>>*¢

which achieve performance comparable to that of the state-
of-the-art luminescent complexes of iridium, platinum, and ruthenium. As an
example, the two-coordinate copper(l) complex 12 achieved photoluminescence ef-
ficiencies > 99% and microsecond lifetimes, which lead to an efficient blue-emitting

OLED.*’

The discovery of stable carbenes was followed by the isolation of their heavier ana-
logs, e.g., silylenes. Indeed, in 1994 Denk et al. reported the isolation of 13,?® the
design of which was clearly derived from the corresponding NHC 2. Although the
applications of silylenes are still very limited, some encouraging results were ob-

tained when they were used as ligands in transition-metal catalysis.””

Much less is known about the isolobal group 15 cousins of carbenes and silylenes,
namely nitrenes and phosphinidenes (Figure 2). In 2012, our group isolated the first
nitrene (14).“° The bonding between phosphorus and nitrogen is analogous to that
observed for metallonitrenes, which are postulated as key catalytic species in the in-
dustrial Haber-Bosch hydrogenation of N, into NH3. However, since its discovery, no
striking developments have occurred with 14. This is mainly due to the presence of
the phosphino substituent. Indeed, although nitrene 14 can activate small
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The first attempts to prepare mono(Lewis base)-stabilized borylenes (21a and 21b) and their isolated counterparts 21c and 21d (metallomimics), as

shown by their reactivity with H, and CO. The elimination of CO under irradiation from 26 leads to a transient mono(Lewis base)-stabilized borylene
(21e), which can be trapped by an isonitrile to give the bis(Lewis base)-stabilized borylene 27. The transient formation of borylenes of type 28 has been

postulated on the basis their chemical reactivity, as shown by 29.

molecules,”’ the involvement of phosphorus in the reaction, as exemplified with
CO;, might preclude the use of this nitrene in catalytic processes. We believe, how-
ever, that a stable amino nitrene, such as that derived from Dervan's scaffold (15),%?
would be a more promising candidate. The only isolated phosphinidene (16) to date
also features a bulky and strong m-donor phosphino substituent.** Of particular in-
terest, despite its phosphorus-phosphorus (PP) multiple-bond character and the
presence of a partial negative charge on the terminal phosphorus, 16 behaves as
an electrophile, as expected for an atom featuring a formal valence sextet structure.
Indeed, 16 reacts with Lewis bases, such as phosphines, and prefers the more basic
PCys over PPh3.** Importantly, phosphinidene 16 resembles a transition metal to
some extent given that it reacts with CO, giving 19, and undergoes ligand ex-
change.”> For example, 19 reacts with phosphines to afford the corresponding
adduct 17. Similarly, the latter reacts with isonitriles to give 18. It is important to
note that these ligand-exchange reactions can be performed starting from non-hin-
dered phosphinidene-CO adducts, which are readily available from the reaction of
the corresponding chlorophosphine with NaPCO."¢ Just as for nitrenes, amino-
substituted phosphinidenes would be attractive targets because they might give
the opportunity to isolate both the singlet and the triplet states of a given com-
pound, which has never been done with carbenoid species.”’*® Indeed, calculations
by Nguyen et al.”? predicted that the singlet-triplet gap for amino phosphinidenes
would be below +3 kcal/mol; in other words, the ground state would have two
degenerate orbitals.>®

As for group 13 element carbenoids, two species have to be considered: mono(Le-
wis base)-stabilized borylenes (21) and borylenes (28) (Figure 3).°" The former are
isoelectronic with carbenes with a six-electron valence shell, whereas the latter
have only a four-electron valence shell. The first attempt to isolate a compound of
type 21 was reported in 2007 by Robinson and co-workers? through reduction of
the (NHC)BBr3 adduct 20. They isolated the diborene 22, which can be regarded
as a dimer of the desired mono(Lewis base)-stabilized borylene 21a. As already
stated, carbenes and related species, featuring a sextet of electrons, need a w-donor
substituent to be isolated. Although the (NHC)aminoborylene 21b fulfilled this crite-
rion, it was not isolable because an intramolecular CH insertion gave 23.%' Because
of its electropositivity, boron was reluctant to be electron rich,> and thus more elec-
trophilic carbenes than NHCs seemed more appropriate to stabilize a compound of
type 21. Indeed, reduction of the DAC adduct of the diisopropylaminodichlorobor-
ane 24 and of the CAAC adduct of the bis(trimethylsilyl)aminodichloroborane 25 af-
forded the desired mono(Lewis base)-stabilized borylenes 21¢c and 21d.°%5° Unsur-
prisingly, both compounds feature an almost linear allenic structure (>C=B=NRy),
but their flexibility gives rise to a highly electrophilic boron center that has car-
bene-like behavior. Akin to electrophilic singlet carbenes, 21d can activate small
molecules, such as H,, and coordinate an additional ligand, such as CO; in other
words, compounds 21 are boron metallomimics.”~> Along this line, Braunschweig
et al.>” have shown that the CO ligand of 26 can be removed by photolysis to afford
the transient mono(Lewis base)-stabilized borylenes 21e, which can be trapped by
Lewis bases to afford novel bis(Lewis base)-stabilized borylenes 27.60:61
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Figure 4. The Stable Mono-substituted Carbene 30 and Future Targets 31-33

In contrast to the other carbenoids, borylenes 28 have two vacant orbitals. These
compounds are well known in the coordination sphere of transition metals, and
Braunschweig et al. have shown that these complexes display a rich chemistry.®%**
Until now, metal-free borylenes have been spectroscopically characterized only in
the gas phase or in inert matrices at very low temperatures.®* In addition, the tran-
sient formation of borylenes 28 has been postulated on the basis of their chemical

reactivity,®” as exemplified with the formation of 29.%°

In conclusion, it appears that borylenes 28 are the only carbenoids we discuss
that have eluded the synthetic skills of investigators. However, contrary to car-
benes, nitrenes, and phosphinidenes, which feature either a singlet or a triplet
ground state, all computationally studied borylenes 28 have a singlet ground
state;®’ therefore, we believe that with the right substituent, they should be
isolable. Hope for a stable borylene 28 comes from the recent isolation of the
mono-substituted carbene 30 (Figure 4), which demonstrates that a single bulky
amino substituent could single handedly tame the intrinsic tendency of carbenes
toward dimerization.®® Along this line, we believe that monocoordinated aminocar-
banions (31) could be isolated. They have six valence electrons, similar to carbenes,
and two lone pairs and a vacant orbital, like phosphinidenes 16. It might even be
possible to undress carbon even more. What about aminocarbynes (32) and amino-
carbocations (33),%” compounds in which the carbon center formally features only
five and four valence electrons, respectively? Not only are these molecules exciting
synthetic challenges, but their unique properties should also unveil new applica-
tions. As an illustration, note that carbenes can simultaneously form two sigma
bonds, whereas monocoordinated compounds could form three,’® which opens
a new mode of reactivity.
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