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ARTICLE INFO ABSTRACT

Keywords: We aimed to understand the diversification history of jumping spiders in the Habronattus tarsalis species com-
Biogeography plex, with particular emphasis on how history in this system might illuminate biogeographic patterns and
Ephemeral speciation processes in deserts of the western United States. Desert populations of H. tarsalis are now confined to highly
Introgression

discontinuous oasis-like habitats, but these habitats would have been periodically more connected during
multiple pluvial periods of the Pleistocene. We estimated divergence times using relaxed molecular clock ana-
lyses of published transcriptome datasets. Geographic patterns of diversification history were assessed using
phylogenetic and cluster analyses of original sequence capture, RADSeq and morphological data. Clock analyses
of multiple replicate transcriptome datasets suggest mid- to late-Pleistocene divergence dates within the H.
tarsalis group complex. Coalescent and concatenated phylogenetic analyses indicate four early-diverging
lineages (H. mustaciata, H. ophrys, and H. tarsalis from the Lahontan and Owens drainage basins), with remaining
samples separated into larger clades from the Mojave desert, and western populations from the California
Floristic Province of California and northern Baja California. Focusing on desert populations, there is a strong
correspondence between RAD lineages and modern and/or paleodrainages, mirrored more finely in STRUCTURE
and machine learning results. Non-metric multidimensional scaling analysis reveals strong congruence between
morphological clusters and genetic lineages, whether the latter represent previously described species or H.
tarsalis RAD lineages. Here we have uncovered a system that adds to our regional biogeographic knowledge in
unique ways, using multiple types of evidence in a broadly-distributed terrestrial taxon. At the same time, we
have discovered rapid evolution of both novel morphological forms and diverging genetic lineages. The hier-
archical nature of variation in the H. tarsalis complex, the minute range sizes of many forms, the high likelihood
that geographic distributions have shrunk and expanded through time, and signs of introgression all align with
an ephemeral speciation model.

Pleistocene
Saline Valley
Sexual selection

“We are now convening deep below the surface level on an ancient taxa, this xeric harshness is a relatively recent ecological and evolu-
inland sea.” tionary phenomenon, as large pluvial lakes connected by extensive ri-
Hubbs and Miller (1948) parian corridors occupied these same regions during various phases of

the late Pliocene and Pleistocene. In the Death Valley region, the
massive late-Pleistocene Lake Manly was fed by riparian connections
from the east (Amargosa drainage), west (Owens drainage), and south
(Mojave drainage; Fig. 1). Further north in the Great Basin, the La-
hontan and Bonneville basins were at times filled with expansive in-
terconnected pluvial lakes, with multiple drainages feeding into basins
without outlets. Profoundly isolated basins also occur in the central
Great Basin, occupied by Pleistocene pluvial lakes without connections

1. Introduction

Low elevation desert habitats of the western United States represent
some of the harshest modern terrestrial environments on Earth. For
example, average high air temperatures in Death Valley often exceed
37 °C for multiple summer months, while precipitation is essentially
non-existent for over half the year (Roof and Callagan, 2003). For some
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Fig. 1. Map of the western United States showing prominent Pleistocene lakes and paleodrainages as discussed in text. Geographic position and pluvial extents for
Lahontan and Bonneville basins only illustrate general geographic position. Timeframe represents a non-specific high-water period from the late Pleistocene, with
Lake Russell draining southwards. Modified from several sources (e.g., Knott et al., 2008; Reheis et al., 2014).

to surrounding basins, as evidenced by a lack of native fishes. Hubbs
and Miller (1948) referred to these as “sterile basins”. Pleistocene lakes
and riparian corridors also existed in the Mojave Desert southeast of the
Mojave River, but their spatial extent never matched their northern
counterparts (Fig. 1; reviewed in Reheis et al., 2014).

For desert animals associated with water or associated riparian
habitats, it is expected that historical bouts of isolation and con-
nectedness, modern-day extreme isolation, and the potential for selec-
tive differences within and across basins will leave an evolutionary
footprint (Hubbs and Miller, 1948; Echelle, 2008). The region is a
natural continental lab for the study of potentially island-like evolu-
tionary dynamics. Moreover, the extensive backdrop of climatic and
geological evidence regarding timing and geographic context of hy-
drologic connectedness makes this region particularly attractive (e.g.,
Reheis et al., 2002a, b; Smith et al., 2002; Knott et al., 2008; Van Dam
and Matzke, 2016). Many studies have corroborated hypotheses that
populations from a single paleodrainage basin should share evolu-
tionary history, and show divergence from populations found in sepa-
rate basins (e.g., Chen et al., 2007; Echelle, 2008). Studies have also
found evidence for divergence across isolated populations within a
single paleodrainage (e.g., Williams and Wilde, 1981; Hershler et al.,

2013; Houston et al., 2015; Campbell and Piller, 2017), and evidence
for “sterile basins” (isolated both historically and currently) harboring
populations with uniquely high levels of evolutionary divergence
(Myers, 1942). Finally, some evolutionary patterns have provided evi-
dence for historical connections that lack strong or congruent geologic
or climatic evidence (Echelle, 2008; Crews and Gillespie, 2014).
Aquatic animals (e.g., fishes, springsnails, amphipods, and aquatic
insects) are best represented in the studies referenced above, with only
a handful of studies on terrestrial taxa more indirectly reliant upon
water sources and connections (e.g., voles in riparian vegetation,
Conroy et al., 2016; Krohn et al., 2018; Saltonia spiders on salt flats,
Crews and Gillespie, 2014). Here we explore evolutionary divergence
associated with paleodrainage connections in a terrestrial system with
several unique and notable features. The jumping spider species Hab-
ronattus tarsalis is widespread in the western United States, and is
particularly “widespread” in regional deserts, with a geographic dis-
tribution that extends from the lower Colorado desert northwards to the
northern Great Basin (Fig. 2). In these desert habitats H. tarsalis is most-
often associated with desert saltgrass (Distichlis spicata) found along
intermittent riparian corridors or associated with desert springs (Foldi,
2006; personal observations), in an otherwise inhospitable desert
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Fig. 2. Map of sampled specimens from the H. tarsalis complex. Habronattus tarsalis geographic lineages are named and colored reflecting RADSeq results (see Fig. 5).
Other described species indicated by letters (o = H. ophrys, m = H. mustaciata, k = H. kawini, g = H. gigas). Locations for specific H. tarsalis populations discussed in

text (Pt. Reyes, Soda Spring Valley, and Fish Lake Valley) are highlighted.

landscape. The species has never been collected from modern desert
pinyon-juniper woodlands (that were more extensive during glacial
periods of the Pleistocene), suggesting that at least in regional deserts,
the species is strictly riparian-associated.

In addition to having a larger geographic distribution than pre-
viously studied terrestrial taxa, H. tarsalis is remarkably geographically
variable in male morphology across this range (Fig. 3; Foldi, 2006). In
this sense, H. tarsalis represents a potential microcosm of a more gen-
eral evolutionary pattern in the hyperdiverse genus Habronattus. This
genus includes over 100 species (Griswold, 1987; Maddison and Hedin,

2003; Leduc-Robert and Maddison, 2018), despite an estimated crown
age of less than five million years (Bodner and Maddison, 2012). Many
Habronattus species show extensive geographic variation in male mor-
phology, likely explained by strong sexual selection on male courtship
morphology and behavior, and perhaps also fueled by introgressive
hybridization (Maddison and McMahon, 2000; Blackburn and
Maddison, 2014). A well-studied example is H. pugillis; this species is
distributed as a geographic patchwork of adjacent montane “sky-island”
populations which exhibit conspicuous differences in male display
morphology, with evidence for strong sexual selection overwhelming
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Mojave

H. kawini

Fig. 3. Images of representative male specimens for primary H. tarsalis lineages and described species from the H. tarsalis complex. Specimens as follows (left to right,
top to bottom): LAHONTAN (HA1606, Alvord Hot Springs), OWENS (HA1594, Sodaville), Saline Valley (HA1539), Amargosa (HA1525, Ash Meadows), Virgin
(HA0792, Crystal Springs), Panamint Valley (G3058), Mojave (G2169, Bryman), Colorado (HA1647, Salton Sea), BAJA (HA1320, El Socorrito), Central Valley
(HA1454, Lake Isabella), swCA (HA1569, Big Island), PtReyes (G3033), Santa Barbara Island (HA1621), H. ophrys (HA0398, Lyons), H. kawini (HA0764, Pine Valley),
H. mustaciata (HA1461, San Lucas). Symbols follow genetic linages as in Fig. 2. Images not to scale. More detailed collection information for all specimens provided in

Appendix B.

historical gene flow (Maddison and McMahon, 2000; Masta and
Maddison, 2002). We view H. tarsalis as a potential inverted “sky-is-
land” desert oasis analog, representing a powerful system to study
evolutionary divergence because both morphology and genomic di-
vergence can be used together to test Pleistocene-age evolutionary
hypotheses.

Here we study H. tarsalis and relatives using a combination of
subgenomic and morphological data for a geographically broad sample

of locations. We include multiple samples from each of the Lahontan,
Owens, Mojave and Colorado River systems (Fig. 2), and predict evo-
lutionary divergence across these separated drainages and paleo-
drainages. Also, we include samples from currently and historically
isolated basins (Saline Valley, Soda Spring Valley), and predict unique
divergence in these populations. To place our H. tarsalis sample into a
broader context, and to test the monophyly of this species, we also
include genetic and morphological data for the other four described
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species in the H. tarsalis subgroup (H. mustaciata, H. ophrys, H. kawini,
and H. gigas).

2. Methods
2.1. Divergence time analyses of published transcriptome data

In an analysis including a broad sample of jumping spiders, Bodner
and Maddison (2012) used a relaxed molecular clock and multiple
fossils to estimate the divergence time of the most recent common
ancestor (tMRCA) of Evarcha and Habronattus at 19.6 Ma, and the
tMRCA of Pellenes peninsularis plus derived Habronattus at 4.8 Ma. Using
BEAST v1.10.4 (Suchard et al., 2018), we used these two secondary
calibrations to estimate divergence times for H. tarsalis subgroup taxa.
We acknowledge the weaknesses in a secondary calibration approach
(e.g., Schenk, 2016), but Habronattus currently lacks a relevant fossil
record for direct fossil-based calibration.

From the primary transcriptome locus set (n = 1877) of Leduc-Robert
and Maddison (2018) we filtered for loci with complete taxon coverage,
also removing seven loci with one or more sequences less than 50% of the
total alignment length (n = 585). We removed 13 Habronattus taxa from
all matrices, leaving a relevant streamlined taxon sample that included
Evarcha, Pellenes canadensis, and 20 Habronattus species including H.
ophrys and H. tarsalis (from Yuma, AZ) of the H. tarsalis subgroup. From
the 22X585 locus set we then randomly subsampled 75 loci for BEAST
analyses, replicating this subsampling five times without replacement. For
each locus subsample we generated XML files using unlinked site models
(GTR + 1), with linked clock (lognormal uncorrelated relaxed clock) and
tree (speciation: calibrated Yule process) models. We used normal priors
on two tMRCA nodes of interest (as above), Gamma priors for ucld.mean
and yule.birthRate (shape = 0.001, scale = 1000), and left all other priors
as default. BEAST analyses were run for 40 million generations, producing
ESS values exceeding 200 for relevant likelihood values (Rambaut et al.,
2014). Excluding the first quartile of trees as burn-in, maximum clade
credibility trees were generated using TreeAnnotator (Rambaut and
Drummond, 2010).

2.2. Molecular taxon sampling

Two original DNA sequence datasets were generated, including more
slowly-evolving data derived from target capture of ultraconserved ele-
ment (UCE) loci, and more variable RADSeq data. UCE data were collected
for 10 of 11 described species in the H. americanus group (Griswold, 1987;
Maddison and Hedin, 2003; Leduc-Robert and Maddison, 2018), including
all five described species in the H. tarsalis subgroup and several H. tarsalis
geographic populations (Appendix A). The RADSeq sample included more
total individuals but less taxonomic breadth, focusing specifically on the
H. tarsalis subgroup, using two H. americanus subgroup samples as out-
groups. RADSeq H. tarsalis specimens were collected from localities
spanning the known range, including desert, California Floristic Province,
California Channel island, and Hawaiian populations (Fig. 2, Appendix A).
Habronattus tarsalis populations are known from the White and Virgin
drainages of southern Nevada, but no known records exist north of these
regions (e.g., Bonneville Basin, Fig. 1). For specimens preserved in 100%
EtOH at —80 °C, genomic DNA was extracted from the posterior half of
the cephalothorax plus four legs (if available) using a Qiagen DNeasy
Blood and Tissue Kit (Qiagen, Valencia, CA), and quantified using a Qubit
2.0 fluorometer.

2.3. UCE data collection, matrix assembly and analysis

We used the MYbaits Arachnida 1.1 K version 1 kit (Arbor
Biosciences; Faircloth, 2017) to capture UCE loci, using standard
methods of library preparation and sequencing (Starrett et al., 2017;
Hedin et al., 2019). Sequence reads were assembled using VELVET
(Zerbino and Birney, 2008) at default settings, then processed using
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puyLuce (Faircloth, 2016). Assembled contigs were matched to probes
using relatively high minimum coverage and minimum identity values
(80). UCE loci were aligned with MAFFT (Katoh and Standley, 2013)
and trimmed with GBLocks (Castresana, 2000; Talavera and Castresana,
2007) using liberal settings (- b1 0.5, —-b2 0.5, -b3 10, —-b4 8). Hedin
et al. (2019) showed that the baits of the original arachnid UCE pro-
beset target exons — more liberal cBLocks settings result in alignments
that capture as much flanking intron data as possible, important for a
recently diverged group such as the H. tarsalis complex. puyLuce align-
ments with over 50% sample occupancy were imported into Geneious
11.0.4 (Biomatters), where all individual alignments were examined —
one UCE alignment with multiple divergent sequences (likely paralogs)
was discarded from further analysis.

Maximum likelihood analyses were conducted using IQ-TREE software
(Nguyen et al., 2015) where all loci in the concatenated UCE matrix were
treated as a single partition, and a best-fit model was automatically chosen
by ModelFinder. Support was assessed via 1000 ultrafast bootstrap re-
plicates (Hoang et al., 2018), with a nearest neighbor interchange search
(-bnni) to reduce the risk of overestimating branch support. An
SVDQuartets analysis (Chifman and Kubatko, 2014, 2015) was conducted
on the concatenated matrix using PAUP* 4.0a (Swofford, 2002), with
exhaustive quartets sampling and 1000 bootstrap replicates.

2.4. RADSeq data collection and analysis

A ddRADSeq library was prepared using the Burns et al. (2017)
protocol, modified from Peterson et al. (2012). The restriction enzymes
Sphl and MluCI were used, as this combination resulted in the highest
number of shared loci for H. tarsalis in a pilot study of enzyme com-
binations (Burns et al., 2017). A library pool including 96 samples was
sequenced with an Illumina NextSeq500 under the mid output 1x150bp
single-end protocol at the UC Riverside IIGB Genomics Core facility.
RADSeq data were demultiplexed, quality filtered, and denovo as-
sembled using ipyrad v. 0.7.30 (Eaton and Overcast, 2016), with the
following settings adjusted from default: max_Indels_locus = 4, trim_-
loci = 5 from 3’ end, clust_threshold = 0.90 (within and across).

For phylogenomic analyses we assembled RAD alignments with a
minimum of 4 (min4), 10 (min10) and 20 (min20) samples (e.g., see
Eaton et al., 2017; MacGuigan and Near, 2018). Maximum likelihood
analyses were conducted on concatenated min4, min10 and min20 RAD
matrices using IQ-TREE as above. Also, we used a phylogenetic in-
variants analysis (Lake, 1987; Chifman and Kubatko, 2015) to infer
quartet trees and a species tree using tetrad v0.7.30, part of the ipyr-
ad.analysis toolkit. We used a minl0 SNP matrix, excluding seven
samples that returned fewer than 200 loci per sample, sampling all
quartets with 100 bootstrap replicates.

Focusing only on 37 desert H. tarsalis samples (HA1520 removed be-
cause of too few loci), we re-ran ipyrad as above, but at min18. This
analysis resulted in a matrix including 696 unlinked SNPs, for which we
conducted STRUCTURE 2.3.4 (Pritchard et al., 2000) runs using an ad-
mixture model with uncorrelated allele frequencies. All other priors were
left as default. STRUCTURE analyses were replicated four times for in-
dividual K values ranging from 2 to 10, each run including 200,000
generations with the first 20,000 generations removed as burnin. Data
were summarized using CLUMPAK (Kopelman et al., 2015), with a best-fit
K chosen utilizing the prob (K) method of Pritchard et al. (2000).

Using the desert-only min18 unlinked SNPs file as above, we con-
ducted unsupervised machine learning using Variational Autoencoders
(Kingma and Welling, 2013; Derkarabetian et al., 2019). VAE was im-
plemented utilizing the Keras python deep learning library (https://
keras.io; Chollet, 2015) and the TensorFlow machine learning frame-
work (www.tensorflow.org; Abadi et al., 2016). SNP matrices were
converted to one-hot encoding with nucleotides transformed into four
binary variables unique to each nucleotide, including ambiguities
(Derkarabetian et al., 2019). The one-hot encoded SNP data were used
to infer the distribution of latent variables, given as a normal
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Description of morphological characters and character states.

Swirling inward hairs above AMEs (0 = reduced; 1 = slight; 2 = elaborated (e.g., Lahontan); 3 = more conspicuous erect hairs posteriorly (e.g., mustaciata);

Color/nature of clypeal scales (0 = uniform covering of fine dark scales, without markings (as in gigas); 1 = minute spatulate scales, some irridescent, pointing
upwards and medially (as in kawini); 2 = linear, pale, upward-facing scales, without conspicuous markings; 3 = uniform, dark, slightly spatulate scales, longer
overhanging dorsal cheliceral edge (as in Colorado); 4 = as state 3, but light scales; 5 = iridescent inwards and upwards scales with mottled cuticle beneath,

obvious transverse band; 6 = similar to state 5, but with white band below ALEs; 7 = mottled orange and white spatulate scales (as in Sodaville); 8 = distinct

Chelicerae pigmentation (0 = pale; 1 = pale with black markings on distal end; 2 = pale with black markings on distal or outer margins; 3 = black)

Cheliceral covering (0 = fine dark clypeal scales extending onto proximal base of chelicerae (as in gigas); 1 = long white hairs basally, sweeping inwards, then
extending distally on midline (exposing shiny black chelicerae); 2 = thin, sparse basal pale hairs; 3 = thin, sparse basal pale hairs but with median and lateral
extensions distally; 4 = pale and sparse throughout; 5 = concentration of dark then light hairs basally; 6 = salt & pepper basally, long lateral hairs; 7 = one long
white medial hair pencil (northern mustaciata); 8 = white scale covering with distal, lateral opening, exposing black cuticle (southern mustaciata); 9 = scattered
hair covering; 10 = basal covering with conspicuous orange scales; 11 = white whispy hairs, denser distally, exposing medial bulbous chelicerae; 12 = dark then
light hairs, extending > half cheliceral length; 13 = paired bundles of long hairs, like rabbit tails; 14 = basal dark scales forming inward-facing “devils horns”)

(1)BBC9 Median white stripe between AME (0 = absent; 1 = spot; 2 = stripe projects posteriorly)
(2)H1
4 = elaborated as crest; 5 = elaborated as divided crest)
(3)BBC5 Extensive white setae between AMEs and ALEs (0 = absent; 1 = intermediate; 2 = dense (e.g., Amargosa))
(4)BBC8 Scales below AER forming distinct lighter transverse band (0 = absent; 1 = present only under AMEs; 2 = spans entire length of AER)
(5)BBC4 Anterior facial profile (0 = typical; 1 = moderate lateral expansion; 2 = extreme lateral expansion (=mustache))
(6)H2 Mustache color (0 = typical; 1 = brightly colored (e.g., Saline))
(7)H3
oblong shape, darker medially, lighter laterally; 9 = multiple transverse light and dark bands, plus dark blotches)
(8)BBC3
(9)BBC10
(10)H4 Shape of chelicerae (0 = linear, 1 = distal swelling; 2 = triangular; 3 = swollen proximally; 4 = bowed outwards)
(11)G135 Palpal patella with anterolateral expansion (0 = absent; 1 = present)
(12)H5 Distal median cymbium (0 = mostly light, 1 = mostly dark; 2 = mixed)
(13)H6 Extent of median cymbium white patch (0 = typical, 1 = more extensive)
(14)H7 Palpal patella silver band (0 = typical, 1 = light)
(15)H8 Palpal femur color (0 = typical; 1 = noticeably black)
(16)H9 Strength of L2 retrolateral femur fringe (0 = weak, 1 = strong)
(17)BBC14 Setae on L1 femur (0 = drab; 1 = at least some orange and/or green)
(18)H10 Strength of L1 retrolateral femur fringe (0 = weak, 1 = strong)
(19)H11 Strength of L1 prolateral femur fringe (0 = weak, 1 = median; 2 = strong)
(20)H12 Nature of spatulate scales on femur I (0 = typical, 1 = more extensive)
(21)H13 Distal leg I fringes (e.g., patella, metatarsus) (0 = weak, 1 = median; 2 = strong)
(22)H14 Extent of black pigmentation on distal tarsus I (0 = half or 3/4s; 1 = entire)
(23)H15 Black pigmentation on distal tarsus I (0 = ventral and dorsal; 1 = white scales dorsally)
(24)H16 Overall body size (0 = typical, 1 = island giant)

distribution with a mean (u) and standard deviation (0); the decoder
was then used to map the latent distribution to a reconstruction of the
one-hot encoded data, visualized in two dimensions. Analyses were
replicated five times, and we used lowest loss values (discarding the
first 50% of values as burnin) to choose an optimal solution.

2.5. Morphological analysis

Seventy-three male specimens from the H. tarsalis subgroup (Appendix
B) were scored for 24 discrete morphological characters (Table 1). We
included all described species in the H. tarsalis subgroup, and a geo-
graphically comprehensive sample of H. tarsalis locations, including all
primary desert drainages and paleodrainages (Lahontan, Owens, Death
Valley, Mojave, and Colorado River systems). Most samples were also
included in RAD genetic analyses, except for morphology-only specimens
from Pt. Reyes, CA (Fig. 2). We scored characters from the face and pro-
lateral surfaces of the first and second legs, features that males present to
females during visual courtship displays (e.g., Maddison and McMahon,
2000; Elias et al., 2012). Each character consisted of at least two different
character states, treated as multi-state and unordered. Almost all scorings
were based on specimens also used in genomic analysis and preserved in
100% EtOH (Appendix B); the high-percentage EtOH served to preserve
color important for four scored characters. Specimens were imaged using a
Canon 5D Mark II with a 65 mm lens at 3X magnification, with multiple
images combined into a composite image using Method C (pyramid) in
HELICON FOCUS. Digital images of almost all scored specimens are de-
posited at the Symbiota Collections of Arthropods Network (Appendix B;
https://scan-bugs.org/portal/).

Using the VEGAN R package (Oksanen et al., 2015), we calculated
Bray-Curtis distances from all specimens and desert-only morphological
matrices. From these we conducted a two-dimensional ordination of
distance matrices using non-metric multidimensional scaling (NMDS),
with random starts called using the metaMDS function.

3. Results
3.1. Divergence time analyses

BEAST tree topologies from all five subsample runs are consistent
with the generic-level phylogenomic results of Leduc-Robert and
Maddison (2018), including the positioning of P. canadensis with early-
diverging Habronattus (AAT clade), but separate from derived Habro-
nattus (Fig. 4). Evidence suggests that P. canadensis is related to P. pe-
ninsularis in the subgenus Pellenatus (Maddison, 2017), so the secondary
calibration date used here remains valid. All five subsample BEAST
runs, using independent datasets each comprised of ~100,000 bp
(Fig. 4 inset), indicate mean tMRCA dates for H. ophrys and H. tarsalis of
approximately 0.46-0.6 Ma with 95% HPD intervals between 0.25 and
1.8 Ma (Fig. 4). We note also the results of Leduc-Robert and Maddison
(2018), who suggested possible introgression between H. ophrys and H.
americanus subgroup members, and between H. tarsalis and H. aestus. To
the extent that this introgression is impacting the transcriptome data
analyzed, this would tend to pull estimated H. ophrys plus H. tarsalis
tMRCA dates towards the present (i.e., leading us to underestimate di-
vergence times; Leaché et al., 2013; Wen and Nakhleh, 2018). Overall,
although we acknowledge the many sources of potential error in the
divergence analyses conducted, estimated dates are consistent with
mid- to late-Pleistocene diversification within the H. tarsalis subgroup.

3.2. UCE data

A 50% occupancy matrix for 41 samples included 264 UCE loci and
1684 parsimony informative sites, with an average alignment length of
approximately 420 basepairs (111,357 total). Raw reads have been sub-
mitted to the Short Read Archive (BioProject ID: PRJNA588246), and
locus alignments are available at doi.org/https://doi.org/10.5061/dryad.
q2bvq83fg. UCE phylogenies were rooted using H. tuberculatus plus H.
aestus, as both taxa have previously been hypothesized as relatively early-
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diverging within the H. americanus group (Griswold, 1987; Leduc-Robert
and Maddison, 2018; Fig. 4). IQ-TREE resolves H. americanus and H. tar-
salis subgroups as reciprocally monophyletic with strong support (Sup-
plemental Fig. S1A). Within the H. tarsalis subgroup four early-diverging
lineages are recovered, including H. ophrys, H. mustaciata, and “LAHON-
TAN” and “OWENS” populations of H. tarsalis (Supplemental Fig. S1A). All
other geographic populations of H. tarsalis, plus H. gigas and H. kawini,
occur in a more derived but poorly-supported clade. Within this derived
clade only three groups are strongly supported (we note that ultrafast
bootstrap values should be interpreted as one would posterior probabilities
(Hoang et al., 2018)), including H. gigas, three H. tarsalis populations from
a MOJAVE + lineage, and a Central Valley lineage. A WESTERN group, as
found in RADSeq results (Fig. 5), is not resolved with the UCE data.
SVDQuartets results mirror those from IQ-TREE in the separation of early-
diverging lineages from all others (Supplemental Fig. S1B).

3.3. RADSeq data

After removing 13 samples that returned low raw read counts, the
remaining 83 samples included between 126 and 944,000 ipyrad clusters
(at mindepth_statistical = 6, clust_threshold = 0.90). min4, min10 and
min20 matrices included 27,388 (3,648,477 bp), 6932 (67,388 bp) and
1665 loci (220764 bp), respectively. Raw reads have been submitted to the
Short Read Archive (BioProject ID: PRINA588237), and data matrices are
available at doi.org/https://doi.org/10.5061/dryad.q2bvq83fg.

IQ-Tree results from different min_sample matrices are consistent in
the recovery of over ten primary H. tarsalis geographic lineages, almost
all strongly supported (bp > 95) in at least two of three analyses
(Fig. 5). Primary lineage interrelationships are also generally consistent
across different min_sample analyses, at least among H. tarsalis lineages
and other described species. Relationships within lineages vary in some
instances (Fig. 5, Supplemental Figs. S2 and S3), and the min20 matrix
recovers different early-diverging relationships (Fig. 5). Tetrad results
are congruent in overall lineage structuring and relationships, although
support values are generally lower throughout (Supplemental Fig. S4).

Below we focus on congruent phylogenetic patterns, and emphasize
where concatenated versus coalescent analyses differ. Four early-diverging
lineages include H. mustaciata, H. ophrys (not included in tetrad analysis),
LAHONTAN H. tarsalis, and OWENS H. tarsalis. Although these overall
patterns are congruent with UCE results, one note of caution is that our

RADSeq outgroup sample is very limited, not allowing for formal tests for
introgression between H. tarsalis and H. americanus subgroup members, as
hypothesized by Leduc-Robert and Maddison (2018). It is possible that the
phylogenetic placement of early-diverging H. tarsalis subgroup RADSeq
lineages reflects introgression of divergent alleles from the H. americanus
subgroup (e.g., Eaton et al., 2015), and future studies should be designed
to test this hypothesis.

Remaining RADSeq lineages are separated into two well-supported
geographic clades, with multiple desert populations from the greater
Mojave desert region (MOJAVE + lineage), and WESTERN populations
from the California Floristic Province of California and northern Baja
California, including samples from the Channel and Hawaiian Islands
(Figs. 2, 5, S4). Samples of H. kawini are nested within the WESTERN
lineage, and H. kawini is not recovered as monophyletic. Geo-
graphically, the MOJAVE + lineage is mostly distributed east of the
high “central spine” of the region (including the Peninsular, Transverse,
and Sierra Nevada mountain ranges), while WESTERN lineages are
mostly found west of this central spine (Fig. 2).

Focusing on desert H. tarsalis populations, there is a strong corre-
spondence between genetic RAD lineages and geography / paleo-
drainages. Members of the LAHONTAN lineage, including Mono Lake
specimens, are distributed in the Lahontan basin (Figs. 1, 2, 5). Mem-
bers of the OWENS lineage, including a population from Sodaville
(Soda Spring Valley), are found in the Owens River drainage (Figs. 1, 2,
5). Finally, members of the MOJAVE + lineage occur in six geographic
sub-lineages, each corresponding either to a now-isolated deep valley
(Saline Valley, Panamint Valley), or to a drainage basin (Amargosa
River, Virgin River (including White River), Mojave River, Colorado
River; Figs. 1, 2, 5). Specimens from the latter three drainages are in-
termixed on the tetrad consensus tree (Fig. S4). One upper Mojave River
sample is apparently genetically misplaced, a result likely explained by
introgression from western populations (see Discussion).

Utilizing the prob (K) method of Pritchard et al. (2000), STRUCTURE
results for desert-only samples suggest five genetic clusters (K = 5) gen-
erally following phylogenetic patterns, particularly those from quartets
analysis. These clusters include LAHONTAN, OWENS, Saline Valley,
Amargosa River, and remaining samples of the MOJAVE+ lineage
(Fig. 6A). One individual from Mono Lake (LAHONTAN lineage) shows
possible evidence for admixture with the OWENS lineage, discussed below
in the context of the complex drainage history of this area. VAE machine
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Fig. 5. RADSeq maximum likelihood IQ-TREE tree, from min4 concatenated matrix. Ultrafast bootstrap values less than 95 not shown. Upper right inset - alternative
topology for early-diverging lineages from min20 matrix. Lineage names as discussed in text. Arrows point to discordant sample from upper Mojave River (Bryman).

learning results are similar to STRUCTURE results, with the possibly ad-
mixed Mono Lake sample intermediate between LAHONTAN and OWENS
clusters (Fig. 6B). Saline Valley and Amargosa samples form distinct VAE
clusters, and other MOJAVE + specimens form smaller clusters that co-
incide with drainage basins or isolated valleys. One Virgin River sample
(HA_0792) is distinct in VAE space, and shows possible evidence for ge-
netic admixture in STRUCTURE analyses (Fig. 6A).

3.4. Morphology

NMDS analyses based on 73 scored specimens reveal a strong con-
gruence between morphological clusters and genetic lineages (Fig. 7),
whether the latter represent previously described species or H. tarsalis RAD
lineages. In analyses including specimens from the entire complex, this

congruence holds true for all but the OWENS lineage, which includes the
morphologically divergent Sodaville population (Figs. 3, 7A). Analyses of
desert-only samples result in clusters similar to RAD phylogenetic clades
(Fig. 5) and RAD genetic clusters (Fig. 6). Distinct morphological clusters
correspond to LAHONTAN, OWENS, Saline, Amargosa, Virgin, and Pa-
namint genetic lineages. Specimens from the lower Colorado and the
Mojave are morphologically similar (Fig. 7B), mirroring their genetic si-
milarity (Figs. 5 and 6). This kinship suggests a possible historical con-
nection between the Mojave and Colorado River basins via Bristol, Cadiz,
and Danby Basins (Fig. 1). Bryman specimens from the upper Mojave are
morphologically like Mojave and Colorado specimens (Figs. 3, 7B), but are
genetically placed with H. kawini and swCA H. tarsalis (Figs. 5, S4), again
consistent with introgression as discussed below.
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4. Discussion
4.1. Biogeographic patterns

Aquatic habitats of western North American deserts that are pro-
foundly isolated today were intermittently connected during cyclic
high-water times of the late Pliocene and Pleistocene. In this sense,
modern isolation veils a deeper connectedness, and patterns of expected
population kinship and connectivity can be predicted from paleocli-
matic and geologic data. Of course, these latter data are themselves

imperfect, and strong biological data can be used to help test and re-
solve contentious geologic hypotheses.

The study of biogeographic patterns and correlations with pluvial
pasts has a rich research history in the region, particularly for aquatic
taxa. But no single biological system is expected to provide universal
biogeographic insight, and studies of riparian-associated terrestrial taxa
potentially add special value, but are currently scarce. Moreover, al-
most all previous molecular-based tests of hydrologic hypotheses and
predictions, including data on both timing and phylogenetic patterns,
are based only on mitochondrial evidence. One exception, Amargosa
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species and H. tarsalis RADSeq lineages, and (B) desert-dwelling H. tarsalis
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voles, reveals very different nuclear versus mitochondrial patterns
(Conroy et al., 2016; Krohn et al., 2018), cautioning against over-in-
terpretation of existing mitochondrial-only datasets which have often
failed to find strong congruence between biological patterns and past
hydrological connections/predictions (e.g., Van Dam and Matzke,
2016). Here we have uncovered a species complex that adds to our
regional knowledge of desert biogeography in unique ways, because of
the multiple types of evidence utilized (including nDNA and mor-
phology) and because the taxon is terrestrial and relatively broadly
distributed in the region.

Habronattus tarsalis includes a LAHONTAN lineage, supported by
both genetic and morphological data, with a geographic distribution
that corresponds closely to the LAHONTAN paleobasin (Figs. 1 and 2).
Although the fauna of the region is clearly understudied, endemism in
the LAHONTAN basin is apparently uncommon in terrestrial taxa (but
see Wilson and Pitts, 2012), as most phylogeographic studies that we
are aware of indicate recent range expansion from southern to northern
latitudes (e.g., Jezkova et al., 2015). The LAHONTAN basin includes
modern east-flowing rivers that drain from the eastern Sierra Nevada,
and west-flowing rivers draining from eastern and northeastern Ne-
vada. RADSeq data reveal sub-lineages that follow these drainages, for
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example sampled sites along the discontinuous modern Humboldt River
(Figs. 2 and 5), but our current sample is sparse.

Samples of H. tarsalis from Mono Lake are phylogenetic members of
the LAHONTAN lineage, despite the fact that modern Mono Lake is
connected (discontinuously) southwards, to the Owens River basin
(Fig. 1). However, the pluvial Lake Russell (=modern Mono Lake) had
drainage connections northwards to the LAHONTAN basin before
1.3 Ma and possibly as late as 0.76 Ma (Reheis et al., 2002a, 2014). The
observation that one Mono Lake H. tarsalis specimen is potentially ge-
netically admixed with OWENS lineages (Fig. 6) may indicate evidence
for secondary contact between original (northern) and more recently
arrived (southern) lineages, as has also been suggested for tui chub
fishes (Chen et al., 2007). Large genetic samples from modern Mono
Lake and surroundings might be useful in further testing these drainage
switching hypotheses.

Multiple times during the Pleistocene, drainages fed a massive Lake
Lahontan with a lake level near 1400 m (Reheis, 1999; Reheis et al.,
2002b), connecting many basins that are highly disconnected today.
One geologically tenuous connection was from the southern Lahontan
(southeast of Walker Lake) to basins including Lake Columbus-Rennie
(Reheis et al., 2002b), including the modern Soda Spring Valley
(Fig. 2). We did not find evidence for this connection in the RAD data,
which instead place Sodaville specimens in the OWENS lineage (Figs. 5,
6, S4), although the Sodaville population is morphologically distinct
(Figs. 2 and 7). The genetic data thus indicate a phylogeographic con-
nection southwards, perhaps to also include Fish Lake and Deep Springs
valleys. Both snail (Liu and Hershler, 2007; Hershler and Liu, 2008a)
and vole (Conroy et al., 2016) samples from the latter are allied with
Owens River populations, and we predict the same affinity for the Deep
Springs valley population of H. tarsalis, which has never been sampled
but surely exists.

The Saline Valley is one of the most isolated valleys in western
North America, with current low passes into the valley at high eleva-
tions (~1500 m). This valley is thought to have formed via rifting
3.0-1.8 Ma (Burchfiel et al., 1987; Oswald and Wesnousky, 2002), and
there is no evidence for direct aquatic connections with either the ad-
jacent Death or Panamint Valleys during the Pleistocene. Few genetic
studies of riparian-associated taxa have included samples from this
valley. Amargosa voles from the Saline Valley are now extinct, and
were not included in recent genetic studies (Conroy et al., 2016; Krohn
et al., 2018). In springsnails, Saline Valley specimens are kin to distant
southern populations, likely a result of bird dispersal (Liu et al., 2003;
Hershler and Liu, 2008b). In H. tarsalis, specimens from Saline Valley
are highly distinctive both genetically and morphologically (Figs. 3,
5-7), perhaps indicative of species status (further discussed below); this
special population with an exceedingly small geographic distribution
deserves further study and conservation attention.

The Owens River drainage is part of a larger Death Valley paleo-
drainage system (Fig. 1), with many studies indicating Pleistocene Lake
Manly as an endpoint for paleorivers that flowed from the northwest
(Owens), northeast (Amargosa), and the south (Mojave), although not
necessarily during the same time interval. The late-Pleistocene Owens
in particular is known to have flowed south then eastwards, sequen-
tially connecting China Lake, Lake Searles, Panamint Valley then Death
Valley (Jayko et al., 2008; Knott et al., 2008; Fig. 1). From this well-
known history, a genetic prediction would be a Panamint < > Owens
kinship, perhaps as part of a larger Death Valley lineage. In H. tarsalis
we instead found an OWENS lineage, supported by both genetic and
morphological data, separate from the remaining Death Valley system,
including Panamint Valley. Some researchers have found an Owens
lineage separate from greater Death Valley lineages (e.g., including
Amargosa) in aquatic taxa (e.g., Echelle, 2008; Hershler and Liu,
2008a), while others have found a late-Pleistocene Owens to Amargosa
connection (Saglam et al., 2016).

Of the remaining Death Valley system lineages (not including
Owens), the H. tarsalis Amargosa genetic lineage appears distinct. This
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special divergence is mirrored in many other taxa from this now highly-
discontinuous drainage, including Saltonia spiders (Crews and Gillespie,
2014), Amargosa voles (Krohn et al., 2018), the iconic Devil’s hole
pupfish (Echelle, 2008; Saglam et al., 2016), springsnails (Hershler and
Liu, 2008b; Hershler et al., 2013), and others. This divergence may
reflect tenuous connections with other paleodrainages during the early
to mid-Pleistocene (e.g., see Fig. 18, Knott et al., 2008). Studies of other
taxa have also revealed divergence across populations within this dis-
continuous drainage (e.g., Liu et al., 2003; Hershler and Liu, 2008a).
Although not tested here with genetic data, the H. tarsalis morpholo-
gical data do suggest internal divergence (Fig. 7B), and detailed genetic
sampling along the Amargosa would be insightful. Paleo-reconstruc-
tions of the upper Amargosa generally do not indicate extensive pluvial
lakes, perhaps indicating more persistent levels of habitat fragmenta-
tion over deep time.

Although not a focus of this paper, biogeographic patterns for po-
pulations west of the high elevation spine of California are similarly
informative. Our data indicate that the California Channel Islands, in-
cluding Isla Guadalupe from central Baja, have been colonized four
separate times by members of the H. tarsalis complex (Figs. 2, 5, S4).
Southern islands, including Santa Barbara, San Clemente, and Isla
Guadalupe each house endemic populations that are uniquely divergent
both genetically and morphologically (Figs. 3, 5-7). Conversely, the
northern Channel Islands, the disjunct Pt. Reyes population, and the
Hawaiian Islands all show limited divergence from southern California
mainland populations, as suggested by RADSeq data and/or mor-
phology (Figs. 3, 5, 7). Natural dispersal to the northern Channel Is-
lands is likely, but as argued by other authors (Prészynski, 2002), re-
cent human transport to the Hawaiian Islands is most parsimonious.

4.2. Divergence in Habronattus

Habronattus includes a large number of species having evolved in a
relatively short period of time, illustrating the potential for rapid diversi-
fication at the level of species. But this rapid evolution applies also to what
is currently considered as geographic variation within species, including
morphologically divergent sky island populations of H. pugillis (Maddison
and McMahon, 2000; Masta and Maddison, 2002), divergent montane
morphological forms of H. americanus (Blackburn and Maddison, 2014),
and distinct ecological forms of H. ustulatus (Hedin and Lowder, 2009).
Other examples of putative geographic variation were discussed by
Griswold (1987), but have yet to be formally studied. For both the inter-
and intraspecific divergences discussed above, a combination of geo-
graphic isolation, strong sexual selection on male morphology and beha-
vior, and occasional gene flow across population and species boundaries is
hypothesized to fuel rapid diversification (Maddison and McMahon, 2000;
Hedin and Lowder, 2009; Leduc-Robert and Maddison, 2018).

Here we have revealed a similar example of rapid evolution of both
novel morphological forms and diverging genetic lineages. We em-
phasize the term “diverging” here, acknowledging that most of our
presented analyses presume a branching (phylogenetic) pattern of di-
vergence, but that at the same time, the lineages discovered (including
described species) could be connected by varying degrees of present
and historical gene flow. While we do not view the entire complex as
phylogeographic, with divergence explained by isolation by distance,
many parts of the complex almost certainly agree with such a dynamic
(e.g., MOJAVE + lineage, not including Saline Valley and Amargosa
River, etc.). But to the extent that the described species are unique and
have evolved under a mostly divergent history, then phylogenetic
analyses and resultant interpretations are justified. Also, the finding of
similar patterns of north < > south divergence on either side of a
central montane spine is consistent with divergence and not isolation by
distance. As noted below in the Conclusions, and several other places in
this manuscript, what is ultimately needed here is more fine-grained
geographic sampling, including more individuals per collection loca-
tion.
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In the context of estimated mid- to late-Pleistocene divergence times
(Fig. 4), the extent of phenotypic diversity discovered is noteworthy.
Our data indeed suggest that male courtship morphology is sometimes
evolving as fast or faster than rapidly-evolving RAD data, for example,
the finding of different morphological clusters (Virgin, Panamint, Mo-
jave & Colorado; Fig. 7B) within a single inferred STRUCTURE cluster
(Fig. 6A). The H. tarsalis subgroup also presents a situation where dif-
ferent nuclear genetic lineages (including some previously described
species) correspond rather closely with morphological units. This con-
gruence contrasts slightly with prior studies of Habronattus geographic
variation. In Arizona sky island H. pugillis, mitochondrial clades are not
strictly congruent with range-specific morphological groups, explained
by incomplete lineage sorting of mitochondrial haplotypes (Masta,
2000). Conversely, single nuclear genetic clusters within montane H.
americanus contain multiple divergent morphological forms (Blackburn
and Maddison, 2014), suggesting active divergence with gene flow in
this recently-diverged group (Fig. 4).

The montane spine of California acts as strong biogeographic bar-
rier, with essentially all lineages confined to either side of this barrier.
One exception includes the Bryman population along the Mojave River,
downstream of eastern populations of H. kawini along the upper Mojave
(Fig. 2). These eastern H. kawini are the only known populations of this
species east of the montane crest. Introgression appears to be occurring
along the upper Mojave where these divergent lineages meet, as also
found in fishes (Hubbs and Miller, 1943). Bryman specimens display a
Mojave morphology (Figs. 3, 7B) but are phylogenetically nested within
a RAD lineage that includes H. kawini (Figs. 5, S4). Blackburn and
Maddison (2014) showed recent nuclear gene flow across phenotypi-
cally divergent populations of H. americanus. These authors argued that
this phenotypic divergence is likely maintained by sexual selection on
male morphologies presented to females during courtship, and tenta-
tively suggested genome-wide genetic divergence underlying this phe-
notypic divergence. In the case of the Bryman population, the mismatch
between genome-wide RADSeq data versus phenotypes might instead
be more consistent with smaller genomic “islands of divergence” (Feder
et al., 2012), but more data are needed to test this hypothesis.

Introgression is also possibly evidenced by the phylogenetic place-
ment of some or all H. kawini specimens, which are morphologically
distinct from swCA H. tarsalis (Figs. 3, 7B), but fall within the larger
swCA RAD lineage (Figs. 5, S4). Habronattus kawini and H. tarsalis are
largely parapatric in southern California and northern Baja, with H.
kawini found at higher elevations than adjacent H. tarsalis populations,
and we have seen specimens from intermediate elevations (Lake of the
Woods, 4000 ft elevation) labeled by Griswold as “H. tarsalis X H. ka-
wini?”. Another possible area of introgression is found at the terminus
of the Owens drainage, where a member of the Central Valley lineage is
found east of the dividing crest (at Little Lake; Figs. 2 and 5). In all of
the cases discussed above, introgression might be occurring pre-
dominantly along linear riparian corridors, allowing interaction be-
tween western versus eastern lineages, or low- versus high-elevation
lineages. The geographic linearity of these interactions may facilitate
and simplify more detailed studies of introgression processes.

The data presented here have possible taxonomic implications.
Accepted at face value, phylogenetic results reveal four described spe-
cies nested within a highly variable H. tarsalis (Fig. 5). Even if H.
mustaciata and H. ophrys fall phylogenetically outside of H. tarsalis
(Fig. 5 inset, S4), H. gigas and H. kawini are still nested inside. All five
species in this complex were originally described based on diagnostic
morphologies, although Griswold (1987) noted the challenges of the
possibly “paraphyletic entity” that is H. tarsalis. Our more compre-
hensive data indicates that the complex indeed includes a series of
mostly allopatric lineages which are both genetically and morphologi-
cally distinct to varying degrees. Under many (most?) species concepts,
these lineages would constitute species, but the challenge of neatly
delimiting species in Habronattus is undeniable. Novel geographic
forms, traditionally treated as intraspecific variants, appear to evolve
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rapidly (e.g., Blackburn and Maddison, 2014); but in the same system,
gene flow across species boundaries is apparent even across clearly
distant and morphologically distinct species (Maddison and Hedin,
2003; Leduc-Robert and Maddison, 2018).

The H. tarsalis complex, and Habronattus more generally, may well
match properties of the ephemeral speciation model (Rosenblum et al.,
2012). Under this model, speciation is common and rapid, but most new
species do not persist over deeper evolutionary time. The lack of species
persistence might relate to extinction of small populations, or to re-
ticulation and reabsorption from other species, both amplified in geo-
graphic regions where environmental conditions have drastically changed
through time. The hierarchical nature of variation in the H. tarsalis com-
plex (nested morphological and genetic lineages), the extremely small
range sizes of many forms (e.g., Saline Valley, Soda Spring Valley, Santa
Barbara Island, etc.), the high likelihood that geographic distributions
have shrunk and expanded through time, and signs of introgression all
align with an ephemeral speciation model. Regarding desert populations
in particular, Smith et al. (2002) discussed a similar model for Great Basin
fishes, arguing that isolated populations in desert basins arise frequently,
but then have a higher likelihood of extinction than speciation. Finally, the
model predicts an uneven distribution of geographic variants (“incipient
forms”) within species, with some species containing many, while others
contain few (Fig. 1B, Rosenblum et al., 2012). This prediction matches
empirical observations across Habronattus, as many widespread species in
fact lack pronounced geographic variation. Overall, we propose the H.
tarsalis complex as a system in which to understand the demographic
processes of isolation and persistence, both key parameters in speciation
research (Harvey et al., 2019), in a simplified, island-like continental
setting. For desert H. tarsalis in particular, measurements of population
size are highly tractable (potentially estimated from the extent of available
habitat), and geologic data help bolster estimates of timing and spatial
context of population isolation (and thus population persistence).

5. Conclusions

Here we have discovered a rather compelling species complex for
additional studies of regional phylogeographic history and island-like
speciation dynamics. Our current sample of desert populations barely
scratches the surface, with capacity in all geographic areas and drai-
nages to increase the spatial density of sampling. This is true for all
primary basins discussed herein (Lahontan, Owens, Amargosa, Mojave,
etc.), but might also extend to areas where H. tarsalis populations are
currently unknown, but possibly exist (e.g., Bonneville basin, etc.). We
expect that increased sampling, combined with modern genetic
methods, will provide enhanced geographic resolution and ability to
further test specific Pleistocene-age biogeographic hypotheses.

Hubbs and Miller (1948) were captivated by the Great Basin, envi-
sioned as an area of exceedingly rapid fish speciation since isolation after
the last glacial maximum. Although this timing paradigm has been ques-
tioned (again reflecting mostly mitochondrial datasets; e.g., Smith et al.,
2002), the idea of active evolutionary divergence in now isolated basins or
along discontinuous modern drainages remains the same. Desert popula-
tions in the H. tarsalis complex present an obvious arena for evolutionary
divergence because the formation of discrete populations through isolation
(over space and through time) is universally present, and because rapid
character evolution relevant to reproductive closure is overlaid upon this
isolation. In this sense, emphasis on whether or not the isolated and di-
verging populations represent species versus distinct populations some-
what misses the point. Active and rapid divergence (and sometimes re-
ticulation) is happening, the processes are there to study.
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