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Abstract.—The common ancestor of spiders likely used silk to line burrows or make simple webs, with specialized spinning
organs and aerial webs originating with the evolution of the megadiverse “true spiders” (Araneomorphae). The base of
the araneomorph tree also concentrates the greatest number of changes in respiratory structures, a character system whose
evolution is still poorly understood, and that might be related to the evolution of silk glands. Emphasizing a dense sampling of
multiple araneomorph lineages where tracheal systems likely originated, we gathered genomic-scale data and reconstructed
a phylogeny of true spiders. This robust phylogenomic framework was used to conduct maximum likelihood and Bayesian
character evolution analyses for respiratory systems, silk glands, and aerial webs, based on a combination of original and
published data. Our results indicate that in true spiders, posterior book lungs were transformed into morphologically similar
tracheal systems six times independently, after the evolution of novel silk gland systems and the origin of aerial webs. From
these comparative data, we put forth a novel hypothesis that early-diverging web-building spiders were faced with new
energetic demands for spinning, which prompted the evolution of similar tracheal systems via convergence; we also propose
tests of predictions derived from this hypothesis.[Book lungs; discrete character evolution; respiratory systems; silk; spider
web evolution; ultraconserved elements.]

Spiders and their webs are among the most fascinating
examples of animal architecture and are at the
intersection of important questions in evolutionary
biology, such as the construction of their own niche,
the origin of key evolutionary innovations, and the
extending limits of the phenotype (Bond and Opell
1998; Blackledge et al. 2011). The common ancestor
of spiders likely used silk to line burrows or make
simple silken structures close to the substrate (Fernández
et al. 2018; Coddington et al. 2019; Hedin et al. 2019;
Opatova et al. 2019). True aerial webs, from which
spiders can hang in an inverted position, originated
with the “true spiders” or Araneomorphae. The key
innovation that allowed for the evolution of aerial
webs are specialized spinning organs; araneomorphs
developed a system of ampullate silk glands, producing
tough fibers, and piriform silk glands that produce a
cement making highly efficient anchorages (Coddington
2005; Wolff et al. 2019). Along with the spinning organs,
the posterior spider body (opisthosoma) underwent a
reorganization of the respiratory organs concomitantly
with the simplification of the circulatory system
(Huckstorf et al. 2015).

Early-diverging spider lineages have four book
lungs in consecutive pairs on the anteroventral
abdomen; of the three main spider lineages, the
Mesothelae (single family with ∼130 known species)
and Mygalomorphae (20 families, ∼3000 species) retain
this ancestral configuration, while most araneomorphs
(96 families, ∼48,500 species) have transformed the

posterior book lungs into tracheae, or lost them
altogether (see Ramírez 2000; Schmitz 2013; Fig. 1).
When the posterior book lungs transformed into
tracheae they also migrated posteriorly, close to the silk
spinning structures. Only three species-poor lineages of
araneomorphs retain the ancestral configuration of four
book lungs (Hypochilidae, Gradungulidae, and some
Austrochilidae, 29 species in total).

The origin and function of spider tracheae have
long puzzled both taxonomists and physiologists (Levi
1967; Schmitz 2013). Ontogenetically, tracheae arise
in various ways as modifications of the book lungs
and adjacent apodemes (Purcell 1909; Ramírez 2000,
2014). Morphologically, they usually consist of four
tubes that can be either short and simple or large
and highly branched (Fig. 1). Physiological studies
have found that extensive tracheal systems passing to
the anterior body compartment (the prosoma), where
locomotory functions are concentrated, contribute to
aerobic metabolism during periods of high activity
(Schmitz 2005), or help muscular action to monitor the
web (Opell 1987). However, most spiders, including
some of the most diverse spider families, spanning
a broad range of body sizes and ecologies, have
a small tracheal system limited to the opisthosoma
(Supplementary Fig. S18 available on Dryad). The
function of these small tracheal systems is still a mystery;
it has been shown that blocking these tracheae has no
impact on locomotory metabolism or performance, nor
in CO2 release (Schmitz and Perry 2002; Schmitz 2005).
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FIGURE 1. Respiratory structures of selected spider taxa. a) Liphistius yamasakii (Mesothelae, Liphistiidae), b) Hickmania troglodytes
(Araneomorphae, Austrochilidae), c) Kukulcania hibernalis (Araneomorphae, Filistatidae), d) Austrochilus melon (Araneomorphae, Austrochilidae),
e) Archoleptoneta schusteri (Araneomorphae, Leptonetidae, Archoleptonetinae), f) Dysdera crocata (Araneomorphae, Synspermiata, Dysderidae),
inset to posterior branch of lateral trachea, g) Polybetes pythagoricus (Araneomorphae, Entelegynae, Sparassidae). * = apodeme; TD = transverse
duct.

Recent phylogenies from genomic-scale data imply
that tracheate spiders are polyphyletic (Supplementary
Fig. S1 available on Dryad at https://doi.org/
10.5061/dryad.3bk3j9kfd), or that some lineages
reacquired book lungs from tracheae—a possibility
considered unlikely by Huckstorf et al. (2015). However,
these prior analyses lacked a dense sampling of early-
diverging araneomorphs or were limited in sequence
data. In this study, we combine a genomic-scale data
set derived from sequence capture of ultraconserved
elements (UCEs) with a dense sampling of araneomorph
lineages where tracheal systems likely originated. We
then analyze new morphological data on respiratory
systems, test the origin of silk gland systems and aerial
webs, and propose a novel hypothesis for the origin and
diversity of respiratory structures in true spiders.

MATERIALS AND METHODS

Taxon Sampling and Matrix Assembly
We used UCE sequence capture data, building upon

the results of Wood et al. (2018). Including a mesothele

and two mygalomorphs as outgroups, we assembled
an araneomorph taxon sample that emphasized early-
diverging lineages, and included many taxa never
before sampled in a molecular phylogenetic analysis
(see Supplementary Table S1 available on Dryad).
UCE loci were obtained and processed as in Hedin
et al. (2019), and multiple phylogenomic analyses were
conducted to explore impacts of analysis method,
data partitioning, and base composition biases (see
Supplementary Methods and Results available on
Dryad).

Morphology Data and Character Evolution
We scored the morphology of the respiratory system

for a subset of sampled taxa (68 of 96) covering all
major lineages. Our scorings were based on original
dissections of 40 species, supplemented with published
data (Supplementary Table S2 available on Dryad). We
explored the effect of alternative coding schemes for
multiple states and missing entries. We also scored 68
taxa for the presence of the major ampullate + piriform
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gland system, and for aerial webs (Supplementary
Table S3 available on Dryad). To distinguish aerial
webs from silken tubes or burrows (“substrate webs”),
we defined them as foraging webs from which the
spiders hang in an inverted position. Ancestral states
were estimated using maximum likelihood, with the
fit of different character evolution models compared
with the Akaike information criterion (AIC). Correlated
evolution between discrete characters was tested in
a Bayesian framework using a threshold model from
quantitative genetics (Felsenstein 2012; Revell 2014).
Additional details for all character analyses are provided
in the Supplementary Methods and Results and
Tables S2–S5 available on Dryad.

RESULTS

Voucher specimen data and relevant UCE summary
values (e.g., cleaned reads, number of contigs, etc.)
are found in Supplementary Table S1 available on
Dryad. Raw reads from our 53 original samples
have been submitted to the SRA (BioProject ID:
PRJNA610839); individual locus alignments and
tree files are available on Dryad and TreeBase
(http://purl.org/phylo/treebase/phylows/study/TB2:
S26343). The final primary matrix (534_25_noP)
included 534 loci, with a combined alignment length of
∼120,000 base pairs and 56,561 parsimony informative
sites. Phylogenetic results are in general robust to
alternative models of molecular evolution, data
partitioning scheme, and optimality criteria, and
most clades are recovered with high support (Fig. 2,
Supplementary S2–S5, S13 available on Dryad).
Our UCE phylogenies are also largely congruent
with previous phylogenomic analyses (Fernández
et al. 2018). Important taxon additions include the
hypochilid Ectatosticta, thus recovering a monophyletic
Hypochilidae, and two telemids, suggesting that this
family is sister to Scytodoidea + Pholcoidea (as in Shao
and Li 2018). Our dense sample of leptonetids suggests
that this family is diphyletic, with Archoleptonetinae
separate from Leptonetinae. This result refutes a
hypothesis of leptonetid polyphyly (Wheeler et al. 2017)
but is consistent with predictions made by Ledford and
Griswold (2010) based on morphology. In exploratory
analyses, Trogloraptor was recovered as sister to telemids
but on a very long branch. After accounting for high GC
bias (Supplementary Figs. S6–11 available on Dryad),
the position of Trogloraptor stabilized to closely match
phylotranscriptomic results (Michalik et al. 2019) and
morphological evidence (Griswold et al. 2012). The
placement resolved for Huttonia is unusual, but since it
belongs to a clade homogeneous in respiratory system
morphology, its placement did not impact character
evolution analyses. Finally, early-diverging relationships
in Entelegynae, in particular the placements of uloborids
and oecobiids, are unstable across analyses (see also
Garrison et al. 2016; Fernández et al. 2018); because all
spiders in this clade have tracheae, this uncertainty has
no impact on our main character evolution results.

Character mapping of the main architecture of
the posterior respiratory system (PRS) is robust to
the inclusion of “absences” as a fifth state or as
missing data, pruning of terminals lacking a PRS,
or coding PRS as a binary or multistate character
(Supplementary Figs. S14–S17 available on Dryad). Thus,
for simplicity, we discuss below the results of the
multistate coding including absence as a fifth state
(Fig. 3). A custom, “irreversible” evolution model that
disallows regains of book lungs from tracheae or regains
of respiratory structures is favored over equal rates,
symmetric or all-rates-different models (AIC weight
of 93%; Table 1 and Supplementary Tables S4 and S5
available on Dryad) and implies that the transformation
of book lungs into tracheal structures occurred six
times independently. These transformations are once
to a single lamella (in Filistatidae), once to a tube
plus a single leaf (in Austrochilinae), and four times
to tubular tracheae (in archoleptonetines, leptonetines,
Synspermiata, and Entelegynae + Palpimanoidea;
Fig. 3). All branches involving morphological transitions
in the respiratory system are well supported and
recovered in multiple phylogenetic analyses (Fig. 2,
Supplementary Fig. S13 available on Dryad), thus
the ancestral state reconstruction and evolutionary
model selection are robust to phylogenetic uncertainty
(Supplementary Fig. S15 available on Dryad). Complex
tracheal systems with tracheae supplying the prosoma
are mapped as at least five independent transformations
from simpler systems limited to the opisthosoma
(Supplementary Fig. S18 available on Dryad). We
detected four independent losses of the PRS, including
one in Pholcoidea (the “lost tracheae clade”), all from
simple tracheal systems limited to the opisthosoma
(three from tubular tracheae and one from lamella).
The ampullate + piriform gland system originated in
Araneomorphae, with a single loss in our data set in
the sand spider Hexophthalma (Supplementary Fig. S20
available on Dryad). The aerial web also originated
in Araneomorphae, with several subsequent reversions
to substrate web or losses (Supplementary Fig. S21
available on Dryad). We detected a significant correlation
between the ampullate + piriform system and tracheae
(highest posterior density of correlation 0.050–0.797,
mean 0.410, P = 0.925, effective sample size 319) but not
between aerial webs and tracheae.

DISCUSSION

We assembled a new genomic-scale data set
that complements previous phylogenies reconstructed
mostly using transcriptomes. The high congruence with
these prior studies and strong support for both deep
and shallow branches indicate that UCE-based sequence
capture is a good strategy when paired with dense taxon
sampling, without the stringent sampling conditions
of transcriptomes (Hedin et al. 2019; Kulkarni et al.
2020). Our results indicate that the posterior book lungs
of spiders were transformed six times into tracheal
systems after the origin of aerial webs and the evolution
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FIGURE 2. ExaBayes Bayesian inference tree of the “preferred” data set (see Supplementary Methods and Results available on Dryad), showing
main spider clades and posterior probability values (P). BS = bootstrap values from ML analysis of “preferred” data set.
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FIGURE 3. Evolution of the posterior respiratory system in araneomorph spiders. a) Schematic view of opisthosoma of exemplar taxa, showing
the respiratory system in relation to spinnerets. b) Posterior respiratory system mapped by maximum likelihood using multistate coding for the
68 terminals with available morphological data. Morphology schemes are grouped by main configurations using shaded areas. ap = apodeme;
at = atrium of book lung; bl = book lung; ltr = lateral trachea; mtr = median trachea, derived from apodeme; spn = spinnerets.
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TABLE 1. Comparison among the different models used for character reconstruction

Trait Model ER SYM IRV ARD

Posterior Log likelihood −44.66457 −40.30172 −36.12254 −34.88677
respiratory system, Parameters 1 10 7 20
multistate AIC 91.32913 100.60344 86.24507 109.77355
coding AIC weights 0.07291166 0.00070617 0.92637496 0.00000721

Web, multistate Log likelihood −50.99055 −50.26976 −48.80268 −48.51729
coding (absence Parameters 1 3 4 6
coded as an AIC 103.9811 106.5395 105.6054 109.0346
additional state) AIC weights 0.55491286 0.15440849 0.24633075 0.04434791

See Supplementary material available on Dryad for details. Preferred models according to the AIC are highlighted in bold. ER = equal rates;
SYM = symmetrical rates; IRV = irreversible model; ARD = allratesdifferent model.

of the ampullate + piriform gland system of true
spiders. Alternative reconstructions inferring one or two
reacquisitions of book lungs were not favored by our
AIC-based model selection (Supplementary Fig. S15,
Tables S4 and S5 available on Dryad); furthermore,
we regard the de novo evolution of book lungs as
less parsimonious, as their morphologically complex
structure is identical across all spiders possessing them
(Fig. 3).

Six clades converged to a similar conformation of
few tracheal tubes limited to the opisthosoma, usually
close to the spinnerets: two leptonetid clades, the
austrochilines, the common ancestor of palpimanoids
and entelegynes, the filistatines, and the common
ancestor of Synspermiata. Why have tracheae evolved
so many times within araneomorph spiders? Based on
anatomical proximity of tracheae to the anterior lateral
spinnerets and the ampullate silk glands, we hypothesize
that tracheae originated to supply the demands of the
spinning system, ultimately also linked to the evolution
of aerial webs. The outlets of the ampullate and piriform
silk glands are strategically placed in the anterior
lateral spinnerets, which are operated by a complex
musculature (Eberhard 2010), and the anchorages of silk
to substrate are made through a precise choreography
that determines their resistance (Wolff et al. 2019). The
location of silk glands, particularly the ampullate glands,
and the muscles operating the spinnerets are positioned
immediately dorsal to where the tracheae are located.
This suggests that early-diverging web-building spiders
were faced with new energetic demands for spinning,
which resulted in the evolution of similar tracheal
systems via convergence. A prediction of this hypothesis
is that blocking a simple PRS should be detrimental to
spinning performance. We are aware that the correlation
is not perfect; for example, the Pholcoidea lost their
tracheae but still build aerial webs using the ampullate
+ piriform gland system.

Our analyses also reveal at least five independent
origins of extensive tracheal systems reaching the
prosoma, all derived from systems limited to the
opisthosoma (Supplementary Fig. S18 available on
Dryad); probably many more convergences occurred
within the Entelegynae. This indicates that oxygen
supplementation for muscular activity in the prosoma
was a later development rather than the original function
of spider tracheae.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad.3bk3j9kfd.
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