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Abstract

Plant-pollinator interactions are partially driven by the expression of plant traits that signal and
attract bees to the nutritional resources within flowers. Although multiple physical and chemical
floral traits are known to influence the visitation patterns of bees, how distinct bee groups vary in
their responses to floral traits has yet to be elucidated. In this study, we used a common garden
experiment to test for morphological floral traits associated with pollen quantity at the plant
species level, and examined how the visitation patterns of taxonomically and functionally
distinct bee groups are related to flower trait characteristics of 39 wildflower species. We also
determined how floral traits influence the structure of wild bee communities visiting plants and
whether this varies among geographic localities. Our results suggest that floral area is the
primary morphological floral trait related to bee visitation of several distinct bee groups, but that
wild bee families and functionally distinct bee groups have unique responses to floral trait
expression. The composition of the wild bee communities visiting different plants was most
strongly associated with variability in floral area, flower height, and the quantity of pollen
retained in flowers. Our results inform wildflower habitat management for bees by
demonstrating that the visitation patterns of distinct bee taxa can be predicted by floral traits, and
highlight that variability in these traits should be considered when selecting plants to support

pollinators.

Key words: bees, traits, flowers, conservation, plant-insect interactions
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Introduction
Recent concern about global declines in pollinator abundance and diversity have led to increased
calls to support populations of bees in managed and natural areas (Biesmeijer et al. 2006, Potts et
al. 2010). Habitat management that increases flower availability is a common method to support
bees (Isaacs et al. 2009, Williams et al. 2015), but may disproportionately alter the visitation
frequencies of bees if plant selection for habitat management only utilizes plant species that are
visited by a subset of the bee community. The wide variation in bee visitation to different plant
species (Tuell et al. 2008, Rowe et al. 2018, Lundin et al 2018) reflects the considerable diversity
of bee phenologies, nutritional requirements, and morphological traits that allow bees to access
flower resources, as well as the composition of the bee community at the study sites. Since bee
species vary considerably in their floral preferences, identifying plants traits that influence the
visitation patterns of distinct pollinator taxa will provide insight into how plant trait composition
predicts flower visitation for distinct bee groups. Such insight will help to inform plant selection
for pollinator habitat management programs and strengthening interpretation of broader plant-
pollinator interactions in natural community contexts.

Patterns of bee visitation to flowers is often related to the floral traits that initially attract,
and then retain visitors as they collect floral resources (Conner and Rush 1996, Raguso 2008,
Stang et al. 2009, Rosa and Conner 2017). Floral area is generally considered the strongest and
most consistent predictor of bee abundance and species richness, operating from plant to
landscape scales (Conner and Rush 1995, Potts et al. 2003, Westphal et al. 2003, Tuell et al.
2008, Kennedy et al. 2013, Blaauw and Isaacs 2014, Lundin et al 2018). Furthermore, plants that
produce taller flowers may be more frequently visited by generalist bees foraging throughout a

landscape primarily utilizing visual cues to locate flower patches. Additional flower traits, such
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as flower color and scent can further aide in flower attractiveness to bees by advertising floral
rewards such as pollen and nectar (Gumbert 2000, Reverté et al. 2016, Russell et al. 2016, Bauer
et al. 2017, Raguso 2008, Junker and Parachnowitsch 2015, Hetherington-Rauth and Ramirez
2016). Visual flower traits in wildflower species can signal quantity and/or quality of pollen and
nectar resources, which have consistently been shown to influence bee visitation (Potts et al.
2003, Vaudo et al. 2016, Nicholls and Hemple de lbarra 2016, Russell et al. 2017). Importantly,
bees often forage for pollen and nectar strategically to meet dietary requirements or maximize
nutritional intake, resulting in strong preferences for plants with flower traits that signify high
levels of resources (Cnaani et al. 2006, Nicolson 2011, Vaudo et al. 2015, Somme et al. 2015,
Vaudo et al. 2016). The availability of pollen may be particularly important as it provides bees
with protein and lipids and is the primary dietary component of developing offspring (Michener
2000, Vaudo et al. 2018).

Plant species can vary greatly in their structural traits, chemistry, and timing of resource
availability (Junker and Parachnowitsch 2015, Vaudo et al. 2015). Rather than attracting
pollinators independently, multiple flower traits likely interact to affect bee visitation (Leonard
and Masek 2014). Since bee species respond uniquely to the quantity, quality, and timing of
resource availability (Bosch et al. 1997, Potts et al. 2003), plant trait variability likely influences
the composition of bee communities visiting the flowering plant community (Stang et al. 2009,
Bartomeus et al. 2013, Urban-Mead 2017). Concurrently, dissimilarity in the ecological and life
history traits of bees within a community allows many species to co-exist in the same
environment, limiting competition for plant-based resources (Bliithgen and Klein 2011). Two life
history traits of bees that may be sensitive to flower trait characteristics are body size (Greenleaf

et al. 2007) and diet specialization (Williams et al. 2010), which influence their foraging distance
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and resource selection, respectively (Ockinger et al. 2010, Williams et al. 2010, Kennedy et al.
2013). Depending on the nutritional requirements and functional/ecological constraints of
different bee species, individual species may be limited in their ability to use flowers of certain
plant species, resulting in specificity of resource selection (Bliithgen and Klein 2011, Leonhardt
and Bliithgen 2012, Bauer et al. 2017). For this reason, functionally distinct bee species may
utilize different floral trait cues to locate floral resources.

Although the relationships between flower traits and bee visitation are generally
understood, most studies assessing the effect of flower traits on visitation patterns of bees
examine these relationships by either focusing on the relationships between a relatively few
species or assessing broad patterns across many different species groups (Conner and Rush 1996,
Mitchell et al. 2004, Tuell et al 2008, Lundin et al. 2018). Furthermore, the majority of these
studies assess patterns of bee species’ visitation in situ, whereas controlled and direct
comparisons of plant species that naturally vary in their floral trait composition are rare. Lundin
et al. (2018) used a common garden experiment with single species plots to identify plant traits
that positively affect bee abundance, but this study only quantified species found in the Western
U.S. and focused solely on broad pollinator groups. A more detailed approach that identifies how
these relationships vary by taxonomically and functionally distinct bees is needed to identify the
traits of plants that should be used for habitat management projects that target particular groups
of bees or alternatively, aim to support broader bee diversity.

In this study, we identified floral traits related to one floral resource collected by
individual bees (pollen) for a set of 39 plant species and used a common garden field experiment
to examine how these plant traits influenced the visitation patterns of bees to the plants.

Specifically, we determined 1) which morphological flower traits are associated with increased
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pollen quantity at the plant species level, 2) whether the floral traits that are associated with the
visitation patterns of taxonomically and functionally distinct bees vary between bee groups, and
3) which flower traits are most important in the overall structuring of the wild bee community
collected from experimental plots. We hypothesize that the floral traits associated with visitation
by taxonomically and functionally distinct bees will vary, and that variability in flower traits will

influence the bee community.

Materials and Methods

The study was conducted at three Michigan State University research stations in
Southwest Michigan (Southwest Michigan Research and Extension Center, 42.085, -86.358),
Mid-Michigan (Clarksville Research Center, 42.870, -85.256), and Northwest Michigan
(Northwest Michigan Horticultural Research Center, 44.882, -85.674). At each site, single
species 1 m? plots were arranged in a randomized complete block design, consisting of 4 blocks
each of 52 native plant species. Due to logistical constraints, 39 species were used in analyses
(see below). Details of these sites and plant species selected are provided in Rowe et al. (2018)
and in Supplemental Table 1. For this study, we selected plant species commonly found in
prairie type habitats in Michigan, and species from a range of plant families with considerable

variability in flower morphology and timing of bloom.

Plant traits
In 2016, each plot was visited weekly to assess plant phenology. Data were collected
from plant species during their three weeks of peak bloom, determined as the three-week period

of peak flower production for each species (See Supplemental Table 1). To determine total floral
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area (cm?) in each plot, we conducted flower counts and multiplied the total number of flowers
by the area of an individual flower for each species in single species plots. For some species,
counting the total number of flowers was not feasible because of extremely high numbers of
individual floral units, so for plant species with inflorescences, we first determined the average
number of flowers per inflorescence using five representative inflorescences and multiplied by
the total number of inflorescences in that plot. To calculate floral area, we first took photos of a
single representative flower with a ruler placed adjacent to the flower(s), and determined single
flower area by converting flower images into white space (Knoll 2000) and using Adobe
Photoshop CS6 and ImagelJ software (Abramoff et al. 2004). The average area of an individual
flower was multiplied by the number of flowers for each plant species to estimate total floral area
within each plot. Chroma of field collected flowers with intact stamens were analyzed using an
S2000 fiber optic spectrometer (PX2 pulsed xenon light source, Ocean Optics, Dunedin, FL),
which is capable of determining floral reflectance in wavelengths 400—700 nm. To determine the
mean maximum flower height (cm) for each plant species, we measured the tallest flower in each
plot to the nearest cm. Chroma is broadly defined by the level of saturation of a color. For
example, flowers with a higher chroma are darker and more vibrant than flowers with low
chroma. Freshly collected petals were placed in a 7-mm diameter circular sample area for
measurement. Flower chroma was calculated using formulae modified from Endler (1990) and
used in a similar research context by Fiedler (2007).

In addition, we quantified pollen (i.e. the quantity of pollen grains produced) in freshly
open flowers of plant species. One day prior to sampling plants, clusters of flowers in each
replicate plot were covered using insect exclusion bags to prevent insect visitation. After 24

hours, exclusion bags were removed and five newly opened flowers were collected, placed in
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clear plastic tubes, and kept on ice for later processing. For plant species with very small flowers
(< 5mm diameter), partial inflorescences were placed in tubes. Pollen was isolated from 5, 10, or
20 individually sampled flowers, depending on flower size, by removing all stamens and placing
them in a 60% ethanol solution and lightly dislodging pollen from anthers using a mortar and
pestle. Samples were then filtered through a mesh screen to remove plant material, centrifuged at
5000 rpm for 1 min to pelletize pollen, and decanted to remove the ethanol solution from the
pelletized pollen sample. We then added 50 pl of a 60% ethanol solution to each sample and
lightly homogenized them. For each plant species, a 5-ul subsample of pollen mixture was
placed on a slide with fuschin gel and the number of pollen grains were counted. The resulting
value was multiplied by 10 to account for the full 50-ul sample. We did this five times for each
plant species. To extrapolate to the plot level, pollen per flower was multiplied by the total
number of flowers available in each meter square plot divided by the number of flowers used for
the 50-ul sample. Data on pollen quantity and flower chroma were only collected at the

Clarksville Research Center and applied to plant species from each site.

Bee data

At each site during the three weeks of peak bloom, all non-Apis bees were collected from flowers
during a 5-min insect sample, conducted once per week on each plot of plants that were in
flower, for a total of 15 minutes per single species plot. Samples were collected using a modified
hand-held vacuum (model: 2820GA, Bioquip products Inc, Rancho Domingo, CA) with a clear
extension tube in order to minimize the disturbance to pollinators. Honey bees (Apis mellifera L.)
were counted but not collected, as they could be identified in-field. Bee specimens collected

from plots were identified to species using published keys and revisions (Stephen 1954, LaBerge



186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

1967, 1969, 1971, 1980, 1989, Bouseman and LaBerge 1979, Coelho 2004, Packer et al. 2007,
Gibbs 2011, Gibbs et al 2013, Williams et al 2014), online keys available through
www.discoverlife.org (Droege 2016, Larkin et al 2016), and comparison to material in the A.J.
Cook Arthropod Research Collection at Michigan State University. For each bee species
collected, we classified it by its body size (small, medium, and large) and dietary specialization
(polylectic and oligolectic). We calculated mean intertegular (IT) distances of bee species
collected by measuring ITs for 3 individual female bees from each species collected and used the
following IT ranges for our classifications and analyses: small = 0.0 — 1.9mm, medium = 2.0 —
3.5mm, large = 3.5 — 7.0mm. For species without dietary specialization information, we used the
lowest taxonomic level in which this information was available (Gibbs et al. 2017). Voucher
specimens are housed at the A.J. Cook Arthropod Research Collection at Michigan State

University.

Data analysis

For each plant species assessed, we calculated plot level mean values for floral area
(cm?), height of the tallest flower (cm), flower chroma, pollen quantity, and the week of peak
bloom. Mean values were determined by combining data for each plant species across sites and
generating a single value for each plant species-trait combination assessed. Due to variable plant
establishment, short bloom periods, and/or no blooming plants, 13 of the 52 plant species
produced incomplete plant trait data at one or more sites, and therefore were excluded from our
analyses. Prior to analyses, we z-transformed numeric plant trait data to standardize each of the
variables to the same scale and normalize their distribution. This standardization allowed us to

directly compare the strength of influence of plant traits relative to one another, regardless of
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measurement scale. We used variance inflation factors (VIF) to assess the correlation between
plant trait variables, and to assess for multicollinearity between plant traits used to construct
models. We did not find high correlation between variables (see Supplemental Table 3 for VIF
scores), and therefore each measured plant trait was included in final models.

To determine the relationship between pollen quantity per plot and other measured flower
traits, we used a generalized linear model (glm, R version 3.4.0, R Core Team, 2017) with mean
pollen quantity (z-transformed) as the response variable and mean floral area, flower height,
flower chroma, and week of peak bloom, (all z-transformed) as predictor variables.

We ran generalized linear models with the mean (log x+1 transformed) number of bees
collected during 5-minute sampling periods as response variables, and mean plot-level flower
traits as predictor variables. Response variables included different groupings of collected bees:
broad (honey bees, bumble bees (Bombus spp.), and non-Bombus wild bees), individual wild bee
families (Apidae, Halictidae, and Megachilidae) and shared ecological traits (body size: small,
medium, or large; and diet specialization: polylectic and oligolectic). We also ran a similar
analysis with species richness of wild bees collected from plant species as a response variable.
Predictor variables included floral area, flower height, flower chroma, pollen quantity, and the
week of peak bloom. We ran our models independently on each bee group in order to identify the
specific plant traits that are related to the visitation frequency of species within that group.

To determine how plant traits influence the structure of bee communities, we used the
metaMDS function in vegan to construct a bi-plot with the Bray-Curtis dissimilarity matrix
based on wild bee community data collected from each site (function: rda, package: vegan,
version 1.12) (Oksaen et al. 2017). Flower trait data from each site were then fitted onto the bi-

plot in order to assess the relative influence of different plant traits on wild bee community
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structure. Permutational analysis of variance (PERMANOVA, function: adonis, package: vegan)
was used to determine which plant traits had the greatest influence on wild bee community
structure at the genus level based on environmental fitting of the measured flower traits at each
site: floral area, flower height, flower chroma, week of peak bloom, and pollen availability. Data
for this analysis were summed between repetitions of a single flowering species to eliminate zero
bias, and then analyses were conducted at each site independently to assess for site level
differences. However, we did not conduct this analysis on data from NWMHRC, due to a low
sample size of bees at this site. All statistical analyses were conducted in R (version 3.4.0, R

Core Team, 2017).

Results

A total of 3705 bees visited the 39 wildflower species planted in single-species plots at
the Southwest Michigan Research and Extension Center, the Clarksville Research Center, and
the Northwest Michigan Horticultural Research Center. Non-Bombus wild bees represented the
greatest percentage of these bees (n = 1634, 44%)), followed by honey bees (n = 1520, 41%) and
bumble bees (n =551, 15%) (Table 1). Of the wild bees collected, individuals within the
Halictidae (n = 1056) and Apidae (n = 885) families represented the majority of collected
specimen. Plant species attracted a broad range of different sized bees, and the majority of

visitors had either polylectic or oligolectic diet types (Table 1).

Relationships between pollen availability and floral traits
The abundance of pollen retained within a plant species was positively associated with floral area

(F1.34=23.42, p <0.001). However, pollen abundance was not associated with flower height
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(F134=1.22,p=0.277), flower chroma (F134 =1.51, p = 0.228), or week of peak bloom (F1,34 =

0.46, p = 0.502) (Figure 1).

Predictors of plant species attractiveness to bees

Visitation of bumble bees and non-Bombus wild bees, as well as wild bee species richness were
positively associated with floral area (bumble bees: F1.33 = 4.50, p = 0.04; non-Bombus wild
bees: F133=10.99, p =0.002; species richness: F133 = 15.54, p <0.001). However, visitation by
of honey bees was not associated with any measured flower trait (Figure 2, Table 2). Visitation
by Apidae and Halictidae were both positively associated with flora area (Apidae: F1.33 =10.26, p
= 0.003; Halictidae: F133 = 8.17, p = 0.007) whereas visitation by Megachilidae was negatively
associated with both pollen availability and week of peak bloom (pollen: Fi33 =9.43, p = 0.004;
week of bloom: Fi133=4.14, p <0.050) (Figure 3, Table 2). Visitation by small, medium and
large bees were all positively associated with floral area (small: Fi33 = 6.91, p = 0.013; medium:
Fi133=4.17, p = 0.049; large: F1.33 =4.51, p=0.041). In addition, visitation by small bees was
also associated with pollen availability (F1,33 = 4.95, p = 0.033) and visitation by medium and
large bees was positively associated with flower height (medium: F133 =4.17, p =0.035; large:
Fi133=4.95, p = 0.033). Both polylectic and oligolectic visitation frequencies were positively
related to floral area (polylectic: F133 =19.30, p <0.001; oligolectic: Fi33 =5.28, p =0.028), and
polylectic bee visitation also increased with week of bloom (F1,33 =7.53, p=0.01) whereas
oligolectic bee visitation increased with flower height (F1,.33 =16.20, p < 0.001 and chroma (F1 33

=8.79, p = 0.006) (Figure 4, Table 3).

Wild bee community response to flower traits
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The strongest influence on wild bee community structure was seen in response to variation in
plot floral area (Fi1,29 =2.93, p = 0.002), average flower height (F1,29 =2.81, p = 0.004), and pollen
availability at the plot level (F1.20=2.43, p = 0.009) (Figure 5, Table 4). In addition, variation in
flower chroma had a non-significant, but positive, association with the structure of the wild bee

community.

Discussion

Supporting a diverse assemblage of bees in human-dominated landscapes requires effective
management of plant communities that increase bee visitation frequencies. Although research
has demonstrated distinct variation in plant attractiveness to bees (Tuell et al. 2008, Rowe et al.
2018, Lundin et al. 2018), the mechanisms that influence a plant’s attractiveness to bees remains
unclear (but see Lundin et al. 2018 for a similar exploration of bee response to wildflowers in
California). By determining the flower traits associated with visitation by distinct bee groups to
plants in a common garden planting design, we fill this important information gap in two main
ways: 1) we show predictable relationships between increased bee visitation frequency and
flower traits, providing a mechanism associated with realized variability in plant attractiveness to
bees, and 2) we demonstrate that multiple plant traits relate to the structure of wild bee
communities.

First, we determined the visual floral traits associated with the availability of pollen, the
primary diet of most bee species (Michener 2000). We found a significant relationship between
floral area and the quantity of pollen retained within the flowers of plant species in common
garden plantings, where in general, plant species with greater floral area had more pollen

resource available for collection. These results are consistent with other research that has
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demonstrated similarly positive relationships between floral area and resource availability at the
flower, plant, and landscape levels (Potts et al. 2003, Hicks et al. 2016). This relationship
between floral area and pollen quantity is particularly important because it suggests that floral
area is a simple floral trait that may be used to gauge the nutritional benefit of a plant species. In
experiments that manipulate the quality and quantity of pollen resources, bees show predictable
responses in foraging behavior to optimize nutritional intake, ultimately maximizing fitness of
individual bees or colonies (Pellmyr 1988, Potts et al. 2003, Muth et al. 2016, Kriesell et al.
2017, Vaudo et al. 2018). In general, our study suggests that bees (primarily generalist foragers)
that forage to maximize resource intake may utilize floral area to select between co-blooming
plant species. In addition to pollen, nectar (quantity or quality) is a second resource collected by
foraging bees that is known to influence their visitation to flowers (Silva and Dean 2000,
Mallinger and Prasifka 2017). In this study we were unable to accurately measure nectar
availability in our experimental plant species, which may have limited our interpretation of the
importance of this trait for bee visitation. Studies that include nectar in a multi-trait approach will
be crucial to better understand the role of nectar in maximizing resource availability to foraging
bees (Pamminger et al 2019). Since we focused on natural assemblages of bees and did not
manipulate floral traits directly, future research to determine how different bee taxa respond to
manipulated floral traits such as floral area and resource quantity and quality could improve our
understanding of how floral traits interact to influence visitation of bees.

Species richness of wild bees, as well as the visitation frequencies of bumble bees and
non-Bombus wild bees were associated with floral area in single species plots, but this was not
the case for honey bees. Instead, we found no significant relationship between honey bees

visitation frequency and measured floral traits. Honey bees may have been responding more
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strongly to plant traits we were unable to measure, such as nectar quantity/quality (Seeley et al.
1991, Mallinger and Prasifka 2017), or they may have been foraging at a larger landscape scale
rather than the scale of our common garden experiment (Dornhaus et al. 2006) (i.e. making
foraging decisions on flower patches greater than 1m?). When we assessed individual wild bee
families, the positive association between floral area and bee visitation was found within Apidae
and Halictidae, and not Megachilidae, for which visitation frequency was instead negatively
related to week of peak bloom and pollen availability. Not surprisingly, we found that floral area
was associated with increased visitation frequency of bees with small, medium, and large body
sizes, as well as both polylectic and oligolectic foragers. These results support the findings of
others, which demonstrate strong associations with bee visitation and floral display (Eckhart
1991, Makino et al. 2007) and show increased bee abundance and diversity associated with
habitat patches containing higher levels of floral resource availability (Tuell et al. 2008, Blaauw
and Isaacs 2012, Williams et al. 2015). Here, we demonstrate that positive relationships between
floral area and bee visitation are significant when assessing visitation patterns to single plant
species. We found that distinct assemblages of bees respond similarly to floral area at the plant
species scale, and provide evidence that utilizing plant species that maximize floral area in
wildflower habitat may attract the greatest number of bees regardless of body size or dietary
specialization. Coupling floral area with additional flower traits known to influence bee
visitation may provide the greatest benefit to the wild bee community.

In addition to floral area, we identified unique floral traits that contribute to the visitation
frequency of specific groups of bees, while not being related to the broader classifications of
bees. For example, medium and large bees, oligolectic foragers, and bumble bees also preferred

plant species with taller flowers. Species with taller flowers may be easier to locate by bees that
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are able to fly greater distances across the foraging landscape. Visitation by oligolectic foragers
was also predicted by flower chroma, which may indicate an increasing use of floral color or
color saturation by bees with more specialized diets. In fact, the majority of oligolectic bee
species in this study foraged from flowers in the Asteraceae and showed a strong preference in
general for species with highly saturated yellow flowers. Overall, this variability in bee response
to trait expression is likely due to the differences in life histories of individual taxa, including
diverse foraging strategies, nutritional requirements, and morphological characteristics for
collecting plant-based resources (Harder 1985, Minckley and Roulston 2006, Praz et al. 2008,
Gibbs et al. 2017). Differences in which traits were predictive for more specialized groups of
bees may reflect competition for plant-based resources leading to resource partitioning, thereby
allowing more species to exist within a broader community (Bliithgen and Klein 2011, Schiestl
and Johnson 2013, Venjakob et al. 2016).

The community analyses revealed that plot floral area, flower height, and pollen quantity
are the three most important traits influencing the wild bee community structure at the genus
level. Although not significant when sites were combined, flower chroma also played an
important role at individual study locations. The fact that these traits influenced the structure of
wild bee communities suggests they are important in maintaining a diverse assemblage of bees
and may aide in buffering the community against the consequences of species loss (Bluthgen and
Klein 2011), while also promoting co-existing functionally and ecologically distinct bee species.
Since our community analyses focused on bees visiting mono-specific plantings in a general
area, similar experiments conducted on mixed wildflower species plots would identify whether
these relationships between visitation frequency and plant traits hold true in a more realistic

community context.
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Building a mechanistic understanding of the relationships between floral traits and
patterns of bee visitation will lead to better informed pollinator conservation efforts in managed
landscapes, with value for plant selection to support diverse bee communities. This is
particularly important for pollinator conservation in geographic regions that lack intensive
comparisons of plant attractiveness to bees. However, similar experiments in different
geographic regions, utilizing different flower species will allow for generalization of

relationships across geographic boundaries.
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557  Table 1 Bees sampled from 39 native wildflower species blooming at research sites in Michigan

558  during 2016

Bee classification Individuals (n) Prop. of total
Broad
Honey bees 1520 0.41
Bumble bees 551 0.15
non-Bombus wild bees 1634 0.44
Wild bee family
Apidae 885 0.41
Andrenidae 66 0.03
Halictidae 1056 0.48
Megachilidae 149 0.07
Colletidae 29 0.01
Functional group
Body size
Small 576 0.26
Medium 1060 0.49
Large 549 0.25
Diet
Polylectic 1957 0.90
Oligolectic 209 0.10
Kleptoparasitic 19 <0.01

559

560  Plant species were established as seedlings in 2014 in replicated meter square common garden
561  plantings at three locations. Functional groupings of bees do not include honey bee observations.
562 A total of 3705 bees were observed (honey bees only) or collected (all other wild bees, including
563  Bombus)

564
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572

Table 2 Results from generalized linear models to assess the influence of plot-level mean flower

traits on the log transformed abundance (log x + 1) broad bee groups and wild bee families

collected from wildflower plots during 2016. Broad pollinator groups include honey bees,

bumble bees, non-Bombus wild bees and wild bee species richness.

Pollinator group Floral area

(cm?)

Fi33 P
Broad group
Honey bees 229 0.14
Bumble bees 4.51 0.041
non-Bombus wild 11,00 0.002
Species richness 15.54 <0.001
Wild bee family
Apidae 10.26 0.003
Halicitdae 8.17 0.007
Megachilidae 0.44 0.514

Flower height
(cm)
Fi133 P
1.28  0.266
497 0.033
1.33  0.258
227  0.141
11.03 0.002
1.01  0.323
2.84  0.102

Flower
Chroma

Fi33

0.01
0.91

0.12
0.14

0.20
0.02
0.88

P Fi33

0.909
0.346

0.734
0.714

0.656
0.877
0.354

Flower traits (z-transformed)

Pollen
quantity

0.89
1.10

0.91
1.06

0.97
3.66
9.43

P

0.352
0.301

0.346
0.311

0.331
0.064
0.004

Week of peak
bloom
Fi33 P
1.77  0.193
2.65 0.113
0.74 0.398
0.23  0.632
6.47 0.016
.12 0.298
4.14 0.05

Wild bee families include Apidae, Halictidae, and Megachilidae. Colletidae and Andrenidae are

excluded from analyses due to too few specimen collected. Flower traits that were significant

(» <0.05) in individual GLM are bolded.
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Table 3 Results from generalized linear models to assess the influence of plot-level mean flower

traits on the log transformed abundance (log x + 1) of wild bees classified by body size (small,

medium, and large) and dietary specialization (polylectic and oligolectic) collected during 2016.

Flower traits (z-transformed)

Pollinator Floral area  Flower height Flower Pollen
group (cm?) (cm) Chroma quantity
Fi133 P Fi33 P Fiz3 P Fi33 P

Body size
Small 691 0.013 0.03 0.862 0.34 0.566 4.95 0.033
Medium 417 0.049 417 0.035 4.82 0.139 230 0.059
Large 451 0.041 495 0.033 1.11 0.3 1.28 0.265
Dietary
specialization
Polylectic 19.30 <0.001 3.41 0.074 0.11 0.738 1.65 0.208
Oligolectic 528 0.028 16.20 <0.001 8.79 0.006 0.90 0.349

Week of peak
bloom
Fi33 P
1.88 0.18
3.83  0.779
247 0.126
7.53 0.01
0.84 0.365

Cleptoparasitic bees are not included in analyses due to too few collected specimen. Flower traits

that were significant (p <0.05) in individual GLM are bolded.



579  Table 4 PERMANOVA results assessing the influence of plot-level mean flower traits on the
580  genus level wild bee community structure at SWMREC (Southwest Michigan Research and

581  Extension Center), CRC (Clarksville Research Center), and a combination of sites.

Flower traits (z-transformed)

Site Floral area  Flower height Flower Pollen Week of peak
(cm?) (cm) Chroma quantity bloom

SWMREC

F 2.05 3.10 1.95 1.38 1.25

P 0.026 0.001 0.040 0.187 0.246
CRC

F 2.41 1.39 2.27 2.49 1.33

P 0.013 0.218 0.016 0.010 0.215
All sites

F 2.93 2.81 1.86 2.44 1.19

P <0.002 0.004 0.062 0.009 0.285

582

583  Flower traits that were found to be significant (p <0.05) in each analysis are bolded.



584

585

586

587

588

FIGURE 1 Relationships between pollen availability on floral area (cm?), flower height (cm),

flower chroma, and week of peak bloom. Data represent the z-transformed mean values

calculated from single species plots. Significant slopes are represented by solid lines, while non-

significant slopes are represented by dashed lines
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FIGURE 2 Relationships between log (x + 1) transformed mean visitation frequencies of broad

bee groups (honey bees, bumble bees, and non-Bombus wild bees), as well as wild bee species

richness and mean z-transformed floral traits collected from 39 plant species. Significant slopes

are represented by solid lines, while non-significant slopes are represented by dashed lines.
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FIGURE 3 Relationships between log (x + 1) transformed mean visitation frequencies of bees

from wild bee families (Apidae, Halictidae, and Megachilidae) and mean z-transformed floral

traits collected from 39 plant species. Significant slopes are represented by solid lines, while

non-significant slopes are represented by dashed lines.
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FIGURE 4 Relationships between log (x + 1) transformed mean visitation frequencies of bees

from distinct functional groups (body size: small, medium, large; dietary preference: polylectic,

oligolectic) and z-transformed floral traits collected from 39 plant species. Significant slopes are

represented by solid lines, while non-significant slopes are represented by dashed lines.
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FIGURE 5 NMDS bi-plot of flower traits and the wild bee community (genera) visiting 39 plant
species established in 1m? monospecific plantings in Southwest Michigan, Mid-Michigan, and
Northwest Michigan. The length and direction of arrows represent that strength and direction of
flower trait effect on the wild bee community. Collected bee genera are represented by their

genus names.
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