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ABSTRACT

Forecasts of heavy precipitation delivered by atmospheric rivers (ARs) are becoming increasingly

important for both flood control and water supply management in reservoirs across California. This study

examines the hypothesis that medium-range forecasts of heavy precipitation at the basin scale exhibit re-

current spatial biases that are driven by mesoscale and synoptic-scale features of associated AR events. This

hypothesis is tested for heavy precipitation events in the Sacramento River basin using 36 years of NCEP

medium-range reforecasts from 1984 to 2019. For each event we cluster precipitation forecast error across

western North America for lead times ranging from 1 to 15 days. Integrated vapor transport (IVT), 500-hPa

geopotential heights, and landfall characteristics of ARs are composited across clusters and lead times to

diagnose the causes of precipitation forecast biases.We investigate the temporal evolution of forecast error to

characterize its persistence across lead times, and explore the accuracy of forecasted IVT anomalies across

different domains of the North American west coast during heavy precipitation events in the Sacramento

basin. Our results identify recurrent spatial patterns of precipitation forecast error consistent with errors

of forecasted synoptic-scale features, especially at long (5–15 days) leads. Moreover, we find evidence that

forecasts of AR landfalls well outside of the latitudinal bounds of the Sacramento basin precede heavy

precipitation events within the basin. These results suggest the potential for using medium-range forecasts

of large-scale climate features across the Pacific–North American sector, rather than just local forecasts of

basin-scale precipitation, when designing forecast-informed reservoir operations.

1. Introduction

Water resources management in northern California

is uniquely challenging because regional precipitation

varies dramatically on both intra and interannual time

scales, inducing stark tradeoffs between flood risk re-

duction and water supply services provided by regional

infrastructure. The variability in precipitation is inti-

mately tied to the space–time dynamics of atmospheric

rivers (ARs), defined as long, narrow, and transient cor-

ridors of strong horizontal integrated water vapor trans-

port (IVT) that are typically associated with a low-level

jet ahead of the cold front of an extratropical cyclone

(AmericanMeteorological Society 2020). Approximately

half of the precipitation in the region is delivered by a

relatively small number of AR events during the cold

season (Dettinger et al. 2011), and so the absence of a

handful of ARs can produce annual precipitation deficits

and reductions in snowpack and subsequent streamflow

that require drawdowns of surface reservoir and ground-

water storage to meet demand (Ralph et al. 2014). In ad-

dition,ARs often deliver precipitation in the formof heavy

or extreme events (Steinschneider et al. 2016; Hecht and

Cordeira 2017), and so pose a direct threat to communities

by raising the risk of flooding, high winds, and mudslides

(Ralph et al. 2019; Waliser and Guan 2017; Konrad and

Dettinger 2017).

The dual role of ARs as the primary driver of both

water supplies and flood hazards has prompted signifi-

cant interest in their characterization (Dacre et al. 2015;

Guirguis et al. 2018; Hecht and Cordeira 2017), classi-

fication (Dettinger et al. 2018; Ralph et al. 2019), and

predictability (Baggett et al. 2017; DeFlorio et al. 2018a,b;

Lavers et al. 2016, 2017). Predictive skill at medium range

(1–14 days) and subseasonal to seasonal (S2S; 15–90 days)

time scales has become a topic of particular interest be-

cause of its relevance to water infrastructure management
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decisions, such as forecast-informed reservoir operations

(Nayaket al. 2018; Forecast InformedReservoirOperations

Steering Committee 2017). In this study we focus on char-

acterizing the spatial bias of medium-range forecasts of

heavy precipitation in the Sacramento River basin, with the

goal of developing insights for how forecast-informed res-

ervoir operations can better leverage forecasts of ARs and

associated precipitation at longer lead times.

The use of extended forecasts to inform reservoir

operations has been limited by the relatively slow in-

crease in forecast skill at long leads (approximately one

day in forecast skill per decade; Bauer et al. 2015; Alley

et al. 2019). However, in specific regions like California

where extreme events are governed by a limited number

of synoptic-scale atmospheric mechanisms (i.e., ARs),

measures of those mechanisms can yield gains in fore-

cast skill beyond the global average. Because ARs are

defined by synoptic-scale filaments of IVT, there is a

highly observable signature associated with their for-

mation and promulgation. These atmospheric features

are also explicitly resolved in forecastmodels, and so can

be more accurately predicted at longer lead times than

unresolved processes (e.g., localized convection) (Bauer

et al. 2015; Holton and Hakim 2013). Still, at long leads

(1–2 weeks), the use of large-scale atmospheric predic-

tors like IVT fields are not likely to produce accurate

forecasts of heavy precipitation at specific locations, in

part because localized features that can significantly al-

ter precipitation distributions (e.g., the Sierra barrier jet;

IVT impingement angle on the local topography) are

unlikely to be accurately predicted at those lead times

(Nardi et al. 2018; Hecht and Cordeira 2017; Ralph et al.

2016). Rather, long-lead AR forecasts are likely to be

most useful in estimating a shift in the odds of heavy

precipitation events, which could then be embedded

into risk-based operating strategies for water infra-

structure (Forecast Informed Reservoir Operations

Steering Committee 2017; Nayak et al. 2018).

For example, the ability to simply know in advance

whether or not a significant AR event is likely to

impact a given basin may be sufficient to inform certain

decisions. Nayak et al. (2018) recently showed that op-

timal, forecast-informed reservoir operations favored

reservoir levels that were far above the status quo con-

servation pool most of the year to bolster water supplies,

except when 3-day ahead forecast information sug-

gested an impending high flow event. Reservoir levels

were then drawn down to the conservation pool ahead of

the event tomake space behind the dam to capture flood

waters. This policy was effective even with a significant

degree of forecast uncertainty, because the only infor-

mation that was needed to initiate the drawdownwas the

detection of an incoming event, rather than a precise

forecast of its magnitude. If physical and environmental

ramping constraints prevent rapid changes in down-

stream releases, such a policy would likely require lon-

ger lead information (5–15 days) that would suffer

from a higher degree of uncertainty. However, given the

conservative nature of water managers (Ralph et al. 2014;

Loucks and Van-Beek 2017), there is likely a preference

to err on the side of flood risk safety, i.e., a willingness

to accept a higher number of incorrect forecasts of AR

hits that lead to unnecessary reservoir drawdowns (false

positives) in order to reduce or eliminate the number of

forecast misses that result in an inability to manage flood

waters (false negatives).

Under this asymmetric set of preferences, there are

two prominent features of AR forecasts that may

constitute ‘‘useful’’ information for water resource

management. First is the accuracy with which the lo-

cation of an AR landfall can be predicted. The posi-

tioning and strength of large-scale pressure anomalies

relate strongly to the location of landfall, raising the

potential for longer lead predictability driven by tele-

connections (Hu et al. 2017; Ralph et al. 2011; Guirguis

et al. 2018; Hecht and Cordeira 2017). For instance,

more than 70% of ARs in northern California are as-

sociated with 2 of the 15 rotated empirical orthogonal

functions (REOF) of 500-hPa height anomalies iden-

tified by Guirguis et al. (2018). Similarly, the charac-

terization of Rossby wave breaking (RWB) as either

anticyclonic (AWB) or cyclonic (CWB) has shown a

marked correlation with landfall latitude. CWB-correlated

ARs tend to landfall farther south than their AWB coun-

terparts, reflecting an important teleconnection that is also

highly correlated to ENSO (Hu et al. 2017). Other tele-

connections between AR landfall location and various

atmospheric modes show promise for ‘‘forecasts of op-

portunity,’’ including the coupled impacts of the MJO

and the QBO (Mundhenk et al. 2016, 2018; Baggett et al.

2017), as well as less predictable modes such as the PDO,

PNA, EPO, and WPO (Guirguis et al. 2019; DeFlorio

et al. 2018a; Brands et al. 2017).

The second feature of concern for water management is

the accuracy with which physical characteristics of an AR

can be resolved, such as its intensity and orientation, which

can significantly impact precipitation distributions (Ralph

et al. 2016, 2019). As above, the positioning of pressure

anomalies and RWB characteristics influence the strength

and orientation of IVT at landfall (Guirguis et al. 2018; Hu

et al. 2017), but these influences are weaker than for

landfall location. Thus, these features are more likely be

forecasted with precision at shorter (,7 days) lead times.

Regardless of lead time, water resources management

decisions need to be based onAR forecasts relevant at the

basin level. The degree of forecast resolution required will
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be highly dependent on the basin being considered and the

inherent biases in the forecasting model for that basin. If a

model tends to project precipitation or AR features with

systematic biases relative to that basin, these biases should

be incorporated into forecast-informed control rules. For

instance, release decisions tailored for conservative flood

risk management could be triggered by a longer-lead

forecast of AR landfall outside the basin of interest if

forecasts consistently show spatial biases in landfall at

that lead time. Recent studies have categorized forecast

biases in AR landfalls, but they have generally concentrated

on all AR events across large spatial scales such as the entire

NorthAmericanwest coast (Nardi et al. 2018;DeFlorio et al.

2018a). There remains a gap in our understanding of sys-

tematic errors in AR forecasts at the river basin scale, which

is of critical importance to water resource applications.

The goal of this work is to evaluate structural biases in

medium-range forecasts (1–15 days) of heavy precipitation

events and associatedARcharacteristics, with an emphasis

on their implications for forecast-informed water man-

agement. In particular, we address the following research

questions: 1) What spatial patterns of error exist in pre-

cipitation forecasts across western North America during

heavy precipitation events in the Sacramento River basin?

2)Howdo these patterns correspond to systematic forecast

biases in synoptic and mesoscale features of ARs? 3) How

persistent are these error structures and how do they

evolve through forecast lead times? and 4) How does the

selection of landfall domain influence the utility of forecast

information? To answer these questions, we identify spa-

tial clusters of precipitation forecast error from a 36-yr

hindcast using the NCEP Global Ensemble Forecast

System Reforecast (GEFS/R). These clusters are used to

highlight synoptic-scale features that can help diagnose the

causes ofmajor patterns of precipitation forecast error.We

investigate the temporal evolution of error clusters to

characterize their persistence across forecast lead times.

Finally, we assess the accuracy of forecasted IVT anoma-

lies across different domains of the North American west

coast during heavy precipitation events in the Sacramento

basin, in order to explore whether forecast-informedwater

management could utilize a broader set of forecast infor-

mation that extends beyond forecasts of climate directly

over the basin of interest.We concludewith a discussion of

future research needed to assimilate systematic forecast

errors into more robust forecast-informed operating poli-

cies for water resources infrastructure.

2. Data and methods

a. Data

Precipitation in the Sacramento basin was gathered

from the 18 3 18GPCC Full Data Daily Product V.2018

and First Guess Daily datasets (Schamm et al. 2013,

2015) within the geographical region bounded by 388–
428N and 1208–1238W. This region is approximately

135 000 km2 and corresponds to 12 different 18 grid cells

(Fig. 1) (USGS 2013). The Full Data Daily Product

is based on up to 35 000 stations per month and

undergoes a full quality control before distribution

(Schneider et al. 2016). GPCC’s First Guess Daily

Product uses approximately 7000 stations per month

that have automated quality control features and a

simplified interpolation scheme. These data are avail-

able near real time at the expense of some additional

gauge-measurement and sampling error (Schamm et al.

2014; Schneider et al. 2018). For our study, the Full

Data product was used from 1 December 1984 to

31 December 2016 with the First Guess product filling

the remaining period through 31 March 2019. In the

period of overlap between the Full Data and First

Guess daily products (2009–16), we found the errors

between them to be minimal, with a mean (standard

deviation) of 20.098mm (3.85mm) across western

North America.

We also collected GPCC data for a broader region of

western North America that spans 308–628N and is

bounded in the west by the coastline and in the east by a

transect that runs between 1148 and 1288W (see yellow

region in Fig. 1). These data were used to examine

precipitation forecast errors across a broader geo-

graphic region during heavy precipitation events in

the Sacramento basin, and extend far enough inland to

cover regions most often impacted by landfalling ARs

(Rutz et al. 2015).

We opted to use the coarse-resolution GPCC prod-

ucts because their spatial and temporal extent allows us

to examine forecasted precipitation errors across most

of western North America and during extreme precipi-

tation years like the cold season of 2016/17. Moreover,

the coarse resolution of the available reforecast data

negates many of the benefits of higher-resolution obser-

vations for our particular application. However, we did

compare the GPCC estimates to the higher-resolution

(0.06258) data of Livneh et al. (2015b) in the region

(308–538N, 1158–1258W) and time periods (1984–2013)

where the two data products overlap. We found the

errors to be relatively small, with a mean (standard

deviation) of 20.33mm (3.49mm) across the region.

Reforecast data were retrieved from theNCEPGEFS/R

version 2 reforecast dataset (NOAA/NCEP 2013). These

18 3 18 reforecasts are based on an 11-member ensemble

and are catalogued daily from 1December 1984 to present.

We collected the following variables: accumulated precip-

itation, u wind, y wind, specific humidity, and geopotential

height. TheNCEP reforecasts are based on a single version
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of the model initialized at 0000 UTC on each day in the

reforecast period, which lends itself to categorization

of bias and error since incremental changes to the

model are not a confounding factor (Hamill et al. 2013).

We utilized both the control and ensemble mean refor-

ecast data in this study. The control was used in our pri-

mary analysis to better understand patterns of forecast

bias and error structures in a single forecast trace and to

avoid excessive smoothing in synoptic features across

ensemble members. However, patterns of forecast error

from the control were also confirmed using data from the

ensemble mean across all analyses.

Reanalysis data were retrieved from the NCEP

Reanalysis-2 (NOAA/NCEP 2002; Kanamitsu et al.

2002) archive at a 2.58 3 2.58 resolution for all variables

(u wind, y wind, relative humidity, temperature, geo-

potential height) except accumulated precipitation,

which was retrieved at its native T62 Gaussian resolu-

tion. These data were chosen over other reanalysis

products because they utilize the same basic underlying

model structure as the reforecast data, although with

an earlier version of the NCEP model. Reforecast and

reanalysis values for IVT were calculated via the in-

tegration of u wind, y wind, and specific humidity

across 1000–300 hPa as detailed in Zhu and Newell

(1998). All datasets were subset for the period between

1 December 1984 and 31 March 2019 and bilinearly

interpolated to match the 18 GPCC dataset for pre-

cipitation analyses or the 18 NCEP reforecast dataset

for IVT and geopotential height analyses.

Finally, we used the Scripps Institution ofOceanography–

Reanalysis-1 (SIO-R1) AR catalog (Gershunov et al. 2017)

as our reference for the location and timing of landfalling

AR events. To identify ARs, this catalog first identifies

grid cells with absolute IVT . 250kgm21 s21 and inte-

grated water vapor (IWV) . 15mm, and then identifies

landfalling AR objects based on contiguous grid cells

that cross the western coastline of North America and

exhibit a length of at least 1500 km and a persistence

of at least 18 h. The SIO-R1 AR catalog was partic-

ularly useful for this study because it includes tab-

ular maximum IVT at landfall locations that can

FIG. 1. Overview of study area. The yellow overlay indicates spatial extent of analyzed

precipitation data; the dark blue box shows grid cells used to approximate the Sacramento

River basin with light gray lines in inset showing individual 18 grid cells. Black dashed boxes

along coast are ‘‘landfall’’ grid cells, and the red dashed box shows landfall region used to

calculated IVT metrics for the Sacramento basin.
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be compared against similar information from the

reforecasts.

b. Characterization of heavy precipitation events

Webegan the analysis by identifying historic occurrences

of heavy precipitation in the Sacramento basin, defined as

any date where precipitation rose above the 95th percentile

of cold season [October–April (ONDJFMA)] events with

accumulations greater than 1mm for any grid cell in the

basin (Hoerling et al. 2016). The final event tally was

then filtered to remove duplicate events between grid

cells. For multiday events, we identified all clusters of

two or more consecutive heavy precipitation days, re-

tained the first day of that cluster, and disregarded the

remaining days. This focused our analysis on forecast

skill at the start of heavy precipitation events. Of the

resultant 295 events, two were manually removed due

to missing data (3 December 2014, 26 February 2018)

and seven events were removed for erroneous data

(6 October 2010, 15 December 2011, 24 January 2013,

20 February 2013, 7 December 2013, 28 January 2015,

3 January 2019). The erroneous events were removed

based on visual analysis that revealed either unrealisti-

cally high precipitation or distinct disagreement between

the GPCC and Livneh gridded data. The final set of 286

heavy precipitation days contain all of the 49 ‘‘extreme

daily precipitation’’ events found in Ralph et al. (2016),

and only 24 of the 286 events were not associated

(61 day) with an AR event somewhere along western

North America, as classified in the SIO-R1 dataset

produced by Gershunov et al. (2017). For consistency,

we compared heavy precipitation events assigned by

GPCC to those assigned by the Livneh dataset in

the same time period and found .85% commonality

between the two catalogues.

c. Cluster analysis

For each heavy precipitation day, we calculated forecast

error (i.e., differences between GPCC and control refor-

ecast precipitation) for all 250 GPCC grid cells across

western North America (see yellow region in Fig. 1).

These forecast errors were produced separately for lead

times between 1 and 15 days, although we focus pri-

marily on lead times of 1, 5, 10, and 15 days. When

comparing the observed and reforecast precipitation, we

synchronized the GPCC dataset (based on daily obser-

vations recorded at midnight local time) to the NCEP

reforecasts (based on UTC) at a 0600 UTC reference.

This equates to a 2-h error in precipitation recording

times between the two datasets, which was deemed ac-

ceptable for the purposes of this study. Additionally, since

the NCEP reforecasts are only initialized at 0000 UTC,

the forecast lead time includes an additional 6-h lag

(i.e., a 1-day forecast is actually a 30-h forecast; a 2-day

forecast is a 54-h forecast). However, we continue

to refer to forecast lead times by day (i.e., 1-day lead,

2-day lead, etc.).

For each lead time, the 286 heavy precipitation dates

were clustered using a K-means algorithm based on the

first 50 principal components (PCs) of the 286 3 250

forecast error matrix, which accounted for 79%–89% of

the variance depending on forecast lead. PCs were used

instead of raw error across all 250 grid cells to reduce

data dimensionality and mitigate the influence of highly

variable grid cells (Hannachi et al. 2007; Wilks 2011).

The number of clusters to use was selected using scree

plots of the ratio of between and total sum of squared

errors. For most lead times there were only marginal

gains in explained variance with more than four clusters.

Therefore, four clusters were used for all forecast lead

times for consistency.

Precipitation forecast errors were then composited

over all events in each cluster for a given lead time. We

expanded the spatial domain for composite maps to in-

clude the Alaskan coastline to illustrate precipitation

error patterns across the entire northeastern Pacific

coast. However, grid cells along the Alaskan coast were

not used in the clustering process because of the high

uncertainty for observed precipitation in that region

(Sun et al. 2018). Errors in each cluster that differed

significantly from 0mm (95% confidence level) were

highlighted based on the Wilcoxon signed-rank test

(Wilks 2011) corrected for test multiplicity using a false

discovery rate (FDR)procedure (Wilks 2016). Precipitation

error composites were also recreated for two additional

cases to help interpret the results: 1) composites were

made based on the clusters identified using the GPCC

and control reforecast data, but usingNCEPReanalysis-

2 precipitation in place of GPCC precipitation to create

the composite maps, and 2) composites were made

based on new clusters identified using the GPCC data

and the ensemble mean (rather than control) reforecast

data. These analyses were used to determine 1) whether

precipitation error patterns were driven by local errors

in model precipitation or larger-scale forecast errors of

synoptic-scale climate drivers and 2) whether patterns of

precipitation forecast error differed significant between a

single forecast trace and the ensemble mean.

d. Synoptic-scale error patterns

We examined associated features of forecasted and

reanalysis IVT and geopotential height to analyze synoptic

conditions related to the precipitation error patterns in

each cluster and lead time.Again, reforecast and reanalysis

data were synchronized at the 0600 UTC time reference

to match the GPCC precipitation. Three components of
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IVT error were assessed, including errors in magnitude,

direction, and landfall location.

IVT magnitude errors were composited by cluster

for grid cells across the Pacific–North American sector

and were calculated as the difference in standardized

anomalies of IVT magnitude between the reforecast

and reanalysis data. Statistically significant forecast errors

were highlighted using the same procedure as for precipi-

tation. Standardized anomalies were based on localized

monthly means and standard deviations for each

product across the study period, and were used to help

highlight IVT errors in northern latitudes that have

lower absolute values due to colder temperatures.

Further, anomalies in the reforecast data were calcu-

lated separately for each forecast lead time due to

biases that are prominent in the ensemble mean IVT

data (Fig. S1 in the online supplemental material). For

consistency, this method was applied to all reforecast

anomaly calculations.

Errors in IVT magnitude and direction near the

Sacramento basin were calculated based on differences

in reforecast and reanalysis IVT averaged over a geo-

graphic area to the west of the basin over the Pacific (red

box in Fig. 1). We examined the distribution of both

types of error within each cluster. The statistical signif-

icance of differences in the mean of these characteristics

was tested using a paired t test. Errors in landfall loca-

tion across all of western North America were calcu-

lated based on the difference in latitude between the

reforecast and reanalysis projection of maximum IVT

magnitude in a set of 41 grid cells along the coast (see

black grids in Fig. 1).

Finally, 500-hPa geopotential height anomalies were

calculated in the samemanner as IVT anomalies. Height

anomalies were composited for both the reforecast and

reanalysis data for each cluster.

e. Evolution of forecast error

To understand the persistence of forecast error pat-

terns, we analyzed how the spatial pattern of precipi-

tation errors evolved across lead times. We focused on

event clusters at a 15-day lead and tracked error com-

posites for these same event clusters at 10-, 5-, and 1-day

lead times. For example, suppose N of the 286 events

were grouped into Cluster 1 at a 15-day lead. For these

sameN events, we composited the precipitation error at

each of the other lead times. These composites will

differ from those for Cluster 1 at other lead times found

using the method of section 2c, since they were defined

by errors at those leads. Using this procedure, we as-

sessed the degree to which events associated with a

particular spatial error pattern at a 15-day lead contin-

ued to exhibit that pattern at shorter lead times.

f. Anomalous IVT landfall fraction

In the final analysis, we assessed the fraction of days

having a landfalling IVT anomaly over a high threshold

(1 standard deviation above the mean) across four spa-

tial domains that span different lengths of the western

North American coastline. These domains included

Northern California (388–428N), California–Oregon–

Washington (CA–OR–WA; 338–498N), CA–OR–WA

and approximately half of the British Columbian coast

(338–558N), and the entire study area including coastal

Alaska (208–608N). If any grid cell in the domain had an

IVT anomaly over the specified threshold for a given

day, that day was considered to have a positive occur-

rence of anomalously high landfalling IVT. The fraction

of landfall occurrences was calculated for each of the

four domains using both reforecast data at 1–15-day lead

times and reanalysis data. Moreover, we assessed this

fraction only for heavy precipitation days in the Sacramento

basin, as well as across all days in ONDJFMA in the

1984–2019 timespan excluding the heavy precipitation

events. The goal of this analysis was to investigate how

different spatial domains could be used to extract useful

forecast information about elevated IVT with relevance

for heavy precipitation events in the Sacramento basin,

while accounting for known spatial biases in AR land-

falls and controlling for the climatology of landfalls in

the cold season months.

3. Results

a. Regional AR effects

Prior to assessing patterns of forecast error, we illus-

trate the spatial extent of AR driven precipitation across

the region associatedwith differentAR landfall locations.

Figure 2 shows composites of standardized anomalies of

GPCC precipitation for all landfalling AR events over

the cold season (ONDJFMA) between 1984 and 2019

centered at latitudes 32.58, 358, 37.58, and 408N. AR

landfalls are based on the SIO-R1 AR archive devel-

oped in Gershunov et al. (2017).

Landfalls outside of these latitudes produce insignifi-

cant precipitation in the Sacramento basin, besides mi-

nor precipitation in the northwest of the basin for AR

landfalls at 42.58N (not shown). There is significant

precipitation within the basin when ARs make landfall

between 32.58 and 408N. Mean precipitation across the

basin varies between 9.2 and 13mm, although these

values can be much higher locally in the mountainous

regions and can extend over multiple days during per-

sistent events. Landfalls centered at 358N produce the

most substantial precipitation over the Sacramento basin,

while those centered at 32.58 and 408N produce the least.
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Precipitation tends to be concentrated at or to the north

of the latitude of landfall, with smaller precipitation ac-

cumulations to the south. The spatial pattern and mag-

nitude of precipitation in Fig. 2 show the relatively strong

effect of southwesterly AR events that typically strike

south and central California versus the somewhat weaker

effect of more zonally oriented ARs that are character-

istic of northern California landfalls. This finding aligns

well with those in previous studies (Nardi et al. 2018; Hu

et al. 2017; Kim et al. 2017).

b. Cluster analysis

Patterns of precipitation forecast error for lead times

of 1, 5, 10, and 15 days are shown in Fig. 3. Detailed

results for each lead time are discussed sequentially in

Figs. 4–7 . Where possible, the clusters are arranged so

that spatial patterns of precipitation forecast error are

qualitatively similar across lead times (i.e., Cluster 1 at a

1-day lead has a similar pattern of forecast error as

Cluster 1 at 5-, 10-, and 15-day leads). However, cluster

patterns across lead times do not always align, as each

cluster is developed independently for each lead time.

These discrepancies are noted below. Still, there are

many similarities in error patterns across lead times,

suggesting that similar processes govern major patterns

of forecast error at medium-range time scales.

Cluster 1 generally has the highest number of events

and shows a relatively low degree of precipitation error

at a 1-day lead in bothmagnitude (small underpredictions)

and spatial bias (localized error around the Sacramento

basin) (Fig. 3). The magnitude and extent of under-

prediction error is larger at longer lead times.

At short lead times (1 and 5 days), Cluster 2 exhibits

overpredictions across much of the Pacific Northwest

and southern British Columbia, with underpredictions

along the coast. Cluster 3 in the same timeframe

exhibits a regional underprediction that extends along

most of the U.S. coastline and is particularly prominent

along the Coastal and Sierra Nevada ranges of California,

with overpredictions to the north in British Columbia. At

long lead times (10 and 15 days), Clusters 2 and 3 both

exhibit a north/south dipole in precipitation error, with

underpredictions centered around the Sacramento basin

and overpredictions to the north. These two clusters

differ primarily based on the latitude and extent of the

dipole centers.

For lead times of 1, 5, and 10 days, Cluster 4 exhibits a

precipitation overprediction centered near the south-

eastern corner of the basin that extends to the northeast,

with an opposing underprediction that extends north

along the coast fromNorthern California toWashington

and southern British Columbia. However, at a 15-day

lead, Cluster 4 exhibits a spatial pattern unlike the other

lead times, with underpredictions acrossmost of California

and little systematic error elsewhere.

We also assessed the consistency of the clusters in

Fig. 3 after removing systematic forecast bias separately

for each lead time. Forecast bias for each grid cell and

lead time was calculated in three different ways, in-

cluding basing the bias on forecasts over all cold season

days, all cold season days with greater than 1mm of

precipitation, and only the 286 heavy precipitation days

identified in this study. In all cases, the spatial patterns of

forecast error based on the debiased data were very

similar to those patterns seen in Fig. 3 (see Figs. S2–S4),

suggesting that the spatial error patterns are not deter-

mined by localized forecast biases.

1) 1-DAY FORECAST LEAD

Unsurprisingly, forecasts of synoptic-scale fields (IVT

magnitude, 500-hPa heights) at a 1-day lead time are very

accurate (Fig. 4). In the region directly west of the

Sacramento basin (red box in Fig. 1), there are no

significant errors in IVT magnitude and errors in the

FIG. 2. Precipitation anomalies associated with landfalling ARs between 1984 and 2019 at latitudes of 32.58, 358, 37.58, and 408N. The

solid black box indicates the study region, and the dashed red box is the landfall grid as per the SIO-R1 AR database. The black contour

line shows extent of anomaly. 1 standard deviation and orange contour shows anomalies. 1.5 standard deviation. Mean anomaly and

total precipitation in the study region are indicated in the bottom left of each plot.
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average angle of IVT near the study basin are minimal

with the exception of Cluster 4. With respect to precipi-

tation, Cluster 1 contains over 40% of the events and

represents the most accurate forecasts across lead times,

with relatively small precipitation errors over the basin.

However, average precipitation errors in the other clus-

ters are substantial, with as great as 31% average over-

prediction in Cluster 2 and 228% underprediction in

Cluster 3. Average errors over the Sacramento basin in

Cluster 4 are smaller (9%), but this cluster also displays a

spatially expansive error pattern that extends beyond the

basin and penetrates into eastern California and Nevada.

Precipitation errors across all clusters do not appear

to be driven by prediction error in large-scale circulation

or the overall magnitude of IVT. Rather, precipitation

errors are more likely to be attributable to either the

inability of the forecast model to 1) accurately resolve

subgrid microphysics or orographic enhancement of

precipitation (Livneh et al. 2015a; Holton and Hakim

2013), or 2) predict more nuanced attributes of IVT or

other localized dynamics (e.g., the Sierra barrier jet). To

assess whether subgrid-scale parameterizations are re-

sponsible for the large precipitation errors shown in

Fig. 4, we reexamine the forecast errors for the same

FIG. 3. NCEP GEFS v2 reforecast vs GPCC precipitation error cluster composites at 1-, 5-, 10-, and 15-day lead times with red (green)

colors indicating model underpredictions (overpredictions). The number in the upper-right corner of each plot shows the average error

[(average forecast 2 average observed precipitation)/average observed precipitation] across the Sacramento basin, with negative

(positive) errors in red (green).
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FIG. 4. 1-day forecast lead. (row 1)As in Fig. 3. (row 2) Composite error between forecast and observed IVT anomalies. (row 3) Contour

of observed (solid black) vs forecast (dashed orange) 500-hPa geopotential height anomaly composite (units of standard anomaly). (row 4)

Landfalling IVTmagnitude/direction for individual cluster events forecasted (pink) and observed (gray) with cluster average indicated by

solid red (black) for forecasted (observed); histogram in the upper-right corner show errors between forecasted and observed direction,

and the red line is zero error. Significant differences (p, 0.05) in magnitude, direction, or both are indicated by1, *, and ** in upper-right

corner, respectively. (row 5) Histogram of latitude error between forecasted and observed landfalling IVT maxima. The dashed red line

indicates zero error, and the orange arrow shows mean miss distance.
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FIG. 5. As in Fig. 4, but for 5-day forecast lead.
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FIG. 6. As in Fig. 4, but for 10-day forecast lead.
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FIG. 7. As in Fig. 4, but for 15-day forecast lead.
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events but against NCEP Reanalysis-2 precipitation

rather than GPCC precipitation (Fig. S5). By replacing

GPCC observations with Reanalysis-2 precipitation, we

can better control for errors from subgrid processes,

which are similar in the reforecast and reanalysis data-

sets (Kanamitsu et al. 2002; Hamill et al. 2011, 2013).

Interestingly, the patterns of precipitation error in Fig. 4

are very similar to those between the reforecast and

reanalysis precipitation, although there are fewer un-

derpredictions along the Pacific Coastal Range when

using the reanalysis precipitation. This suggests that

subgrid processes are not the driving factor behind some

of the larger spatial patterns of precipitation error in

Fig. 4, besides perhaps in some coastal areas linked to

poorly represented orographic effects.

Instead, most of the precipitation errors appear to be

linked to relatively minor differences in the orientation

of IVT or other localized dynamics poorly resolved

by the model. For instance, Cluster 4 has the deepest

500-hPa low centered on the Northern California coast-

line, supporting a southwest to northeast flow along the

axis of the precipitation overpredictions. However, the

more zonal orientation of the observed IVT as compared

to the reforecast (Fig. 4, row 4, p , 0.05) may explain the

overpredicted precipitation along the Sierra Nevada.

Clusters 2 and 3 show distinctly different precipitation

error while having comparable upper level structure

and IVT patterns. The only prominent difference is a

stronger northward bias in maximum IVT in Cluster 3

(Fig. 4, row 5). Together, these seemingly small varia-

tions produce very different outcomes in basin precipi-

tation. These results suggest that even at a 1-day lead,

precipitation error patterns can be very sensitive to local

dynamics, even when large-scale attributes of these

features are forecasted accurately.

2) 5-DAY FORECAST LEAD

At a 5-day lead, forecasts of height anomalies and

IVT remain relatively accurate. The precipitation error

clusters and number of events at a 5-day lead are similar

to the 1-day lead, although all of the error patterns are

deeper, especially Cluster 1. Also, Cluster 3 exhibits a

clear north/south dipole error pattern that was not as

evident at a 1-day lead.

In Cluster 1, a significant IVT underprediction is ap-

parent over southern California and Nevada with a

commensurate underprediction in basin precipitation.

The depth of the low is also less than observed, which

may explain the IVT underprediction. Though the IVT

near the Sacramento basin is more meridional than the

observed (p , 0.05), it is also underpredicted in mag-

nitude (p , 0.1), which may be contributing to the

precipitation underprediction.

Cluster 2 exhibits positive precipitation anomalies in

the Pacific Northwest. A small northward bias in the

midlevel trough could be the cause of these precipitation

errors, but forecasted IVT shows no significant differ-

ences from observations. In addition, some of the pre-

cipitation forecast error may be related to errors in

subgrid-scale processes, since the error pattern changes

sign near the Sacramento basin and along the Pacific

Coastal Range when errors are composited using re-

analysis precipitation (Fig. S5).

In contrast, Cluster 3 shows a distinct dipole of pre-

cipitation underpredictions centered over the study re-

gion and overpredictions centered near the middle of

the British Columbian coast, and this pattern does not

change with reanalysis precipitation (Fig. S5). This

spatial error pattern is supported by the spatial pattern

in IVT error and the .58 bias in landfalling IVT loca-

tion. The underprediction of IVT magnitude west of the

Sacramento basin is statistically significant at the p, 0.1

level, although not at the p , 0.05 level. Forecasts of

500-hPa heights are biased to the northwest and are

consistent with the errors in IVT.

Cluster 4 precipitation errors are very similar to those

at a 1-day lead. Slightly more organized patterns of IVT

error are apparent, particularly along the California

coast, and there is a slight eastward bias in the forecasted

heights. Overall though, precipitation errors still appear

somewhat disconnected from errors in the larger-scale

circulation.

3) 10-DAY FORECAST LEAD

At a 10-day lead, precipitation forecast errors are

broader and more intense, although the spatial patterns

of error are very similar to those for 5-day lead times. In

Cluster 1, underpredictions of precipitation intensity

around the Sacramento basin coincide with a trough that

is forecasted in a similar location to the observations but

is weaker in magnitude. Forecasted IVT landfall loca-

tion also exhibits a high degree of variability, and the

IVT magnitude south of the basin is weaker than the

observations.

In Cluster 2, a more distinct dipole in precipitation

and IVT error is observed than that at a 5-day lead.

Similarly, a stronger IVT error dipole is seen for Cluster

3, albeit the dipole is located farther north compared to

Cluster 2. A northwest displacement in the forecasted

location of the midlevel trough appears to be the pri-

mary driver for both dipole patterns, and the degree of

this displacement explains the spatial differences in IVT

and precipitation error between the two clusters.

Finally, Cluster 4 displays a pattern similar to that ob-

served at a 5-day lead, but with underpredictions expand-

ing north along the coast and farther into the basin.
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Also similar to the 5-day pattern, the IVT errors

weakly align with the precipitation errors and now ap-

pear driven in part by an eastward bias in the forecast

low. However, IVT errors still remain insignificant and

do not emerge as a clear driver of the spatial pattern in

precipitation forecast error.

4) 15-DAY FORECAST LEAD

The error structures in Clusters 1–3 at a 15-day lead

are spatially similar but deeper and broader than those

at a 10-day lead. For Cluster 1, underpredictions of

precipitation extend fromCalifornia to British Columbia,

but there is a clearer overprediction along the coast of

Alaska that was only weakly observed at a 5- and 10-day

lead. In Clusters 2 and 3, the dipole error patterns are

driven by northwest errors in the forecasted location of

the trough, which are again similar to the 10-day lead but

with even greater displacement. These errors align well

with significant biases in IVT magnitude, direction, and

the latitude of maximum IVT landfall.

Unlike the other clusters, Cluster 4 at a 15-day lead

does not have a consistent error pattern with the events

grouped into Cluster 4 at shorter lead times. Rather, this

cluster, which accounts for approximately 40%of events

(127/286), has a spatial pattern of precipitation error

that is rather concentrated around the Sacramento ba-

sin. Notably, the forecasted low under this cluster and

the IVT south of the basin are relatively weak, while the

variance of latitudinal error in IVT landfall is the largest

of any cluster at any lead time. These results suggest that

Cluster 4 at a 15-day lead may be averaging over a wide

range of events that are not distinctly similar in their

error patterns, with the effect of smoothing and damp-

ening signals in the IVT and height fields. Since all

events were defined such that the Sacramento basin was

experiencing heavy precipitation, the only signal that is

not canceled out after averaging is an underprediction in

IVT and precipitation around the basin.

5) ENSEMBLE MEAN VERSUS CONTROL FORECAST

A similar analysis to that in Figs. 3–7 and Fig. S5 was

conducted for the ensemble mean forecast and is shown

in Figs. S6–S11. The results between the ensemble mean

and the control are very similar, although features of the

IVT and height field composites aremore finely resolved

in the control forecast results because of smoothing

effects under the ensemble mean. In addition, the

ensemble mean exhibits a somewhat different pat-

tern for Cluster 4, particularly at the 10-day lead

time, where the ensemble mean shows an under-

prediction for the basin while the control shows a split

underprediction/overprediction pattern. Still, these

results suggest that many of the basic forecast error

patterns found for one member of an ensemble can re-

flect the patterns of error found in the ensemble mean.

c. Evolution of forecast error

Figure 8 shows the persistence of spatial error patterns

across lead times when events remain in the same cluster

to which they were assigned at a 15-day lead. From a

15- to 10-day lead, the strong underprediction along the

U.S. West Coast through British Columbia remains co-

herent in Cluster 1. A similar result is seen for Cluster 4.

For Clusters 2 and 3, the dipole structures in precipita-

tion error are still apparent at a 10-day lead but are

weaker. At a 5-day lead, the spatial patterns in Clusters

1, 2, and 4 defined at the 15-day lead are still visible but

are extremely weak, and the spatial error pattern in

Cluster 3 is no longer distinguishable. At a 1-day lead,

there is no relation between the error composites de-

fined at the 15-day lead, and basin-average precipitation

error falls dramatically (21.5%, 20.9%, 3.3%, 0.3%).

These results suggest that forecast errors at a 15-day lead

timemay persist to a 10-day lead to some degree, but not

to shorter lead times.

d. Anomalous IVT landfall occurrence frequency

Figure 9 depicts the fraction of days exhibiting anoma-

lously high landfalling IVT across four spatial domains,

where any occurrence of IVT over a standard deviation of

1.0 across the landfalling grid cells in that domain

yields a positive signal. These fractions are shown for the

reanalysis and reforecasts (both control and ensemble

mean) at 1–15-day lead times, and are calculated sepa-

rately for heavy precipitation days and nonheavy pre-

cipitation days in the Sacramento basin. For a particular

lead time and forecast product (control or ensemble

mean), a high fraction of events for the heavy precipi-

tation days and a low fraction of events for nonheavy

precipitation days (i.e., climatology) suggests that the

forecasts are able to detect high IVT activity somewhere

in the domain with relevance to heavy precipitation

events in the Sacramento basin, while excluding high

IVT events that are not associated with heavy pre-

cipitation in the basin. That is, large differences in the

fractions for heavy and nonheavy precipitation days

suggest a larger signal to noise ratio in the forecasted

IVT. The results for the reanalysis provide the observed

fractions, and so can be used as target values against

which to compare the reforecast results. We note that

the results in Fig. 9 are similar if we change the threshold

for anomalously high IVT (see Fig. S12).

Several insights emerge fromFig. 9. First, for all domains

and for both the control (Fig. 9, row 2) and the ensemble

mean (Fig. 9, row 3), the forecast signal degrades with lead

time. That is, a lower fraction of high IVT events over the
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climatological rate is detected at longer lead times.

Second, the differences between the control and the

ensemble mean reforecast are substantial. The control

forecast produces a much weaker signal during the

heavy precipitation events versus nonheavy precipita-

tion events across all spatial domains. Even in the case

of the strongest signal to noise ratio associated with the

CA–OR–WA domain and a 1-day lead, there is only a

20% gain in signal above the climatological rate of high

IVT events (around 32%) for the control forecast. The

ensemble mean detects a much higher fraction of

high IVT events (78%) for the same domain and lead

time, which is close to the reanalysis rate. In general,

the ensemble mean forecast maintains a higher signal

to noise ratio for longer leads, regardless of domain.

Finally, the signal to noise ratio depends strongly on

the domain over which high IVT events are tracked,

particularly for the ensemble mean. If the domain is too

small (e.g., Northern California only), forecasted events

of high IVT that impact the basin are oftenmissed. If the

domain is too large (e.g., the entire North American

west coast), most of the high IVT events associated with

heavy precipitation in the Sacramento basin are cap-

tured at all lead times, but so are a large majority of high

IVT events that are not associated with heavy precipi-

tation in the basin. That is, there are a very large number

FIG. 8. NCEP GEFS v2 reforecast vs GPCC precipitation error cluster composites at 15-, 10-, 5-, and 1-day lead times based on clusters

at a 15-day lead.
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of false positives if the domain is too large. Signal to

noise appears largest when the domain spans the U.S.

West Coast (Fig. 9, column 2). Here, for leads between

1 and 10 days, there is a significant increase in the rate of

high IVT events for heavy precipitation days compared

to the smaller Northern California domain, but a more

modest rise in the rate of false positives associated with

nonheavy precipitation days. This result is very consis-

tent with the patterns of forecast bias for lead times of

5 and 10 days (Figs. 5 and 6, Cluster 2), which showed

considerable latitudinal error in AR landfall location

that could be captured if high IVT was tracked in the

Pacific Northwest.

4. Discussion and conclusions

In this study we identified recurrent spatial biases in

medium-range forecasts of precipitation across western

North America during heavy precipitation events in the

Sacramento River basin. At 1-day leads and to a lesser

extent at 5-day leads, many of the forecasts are quite

accurate, and those that exhibit substantial error are

more closely related to the inability to resolve localized

dynamics and subgrid processes. However, at longer

leads, a set of clear and spatially distinct error patterns

are evident that are stronger at longer lead times and

closely mirror spatial patterns of IVT forecast error,

which are in turn consistent with spatial biases in fore-

casted features of large-scale circulation. In particular,

there is a tendency for the models to forecast AR

landfall too far to the north, leading to overpredicted

precipitation and IVT in the Pacific Northwest, British

Columbia, and even Alaska. The implication is that

forecasts of significant precipitation or IVT north of the

Sacramento basin at long leads may be associated with

elevated risk of heavy precipitation within the basin.

Where large-scale error patterns fail to explain patterns

of forecasted precipitation error, mesoscale errors in

landfalling IVT (e.g., IVT orientation) can help to rec-

oncile these differences.

The patterns of forecast error suggest that large-scale

forecasts of circulation or features of IVT could be used

to improve forecast-informed water resources manage-

ment. While patterns of forecast error do not tend to

persist from longer to shorter lead times (Fig. 8), similar

spatial patterns of error are observed independently at

FIG. 9. Anomalous IVT landfall fraction plots based on NCEPGEFS v2 reforecast and NCEPReanalysis-2. (row 1) Visual depiction of

landfall domain; yellow grid cells depict all landfall grids with blue highlighted grids and dashed red box showing the area of consideration.

(rows 2–3) Blue (gray) lines show fraction of days that IVT was over 1 standard deviation in the indicated domain for reforecast (re-

analysis) data. The solid lines depict the fraction occurring during the heavy precipitation days while the dashed lines depict the fraction

occurring across all days excluding the heavy precipitation days in the ONDJFMA periods from 1984 to 2019. Row 2 is based on the

control reforecast whereas row 3 is based on the ensemble mean reforecast.

1420 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

D
ow

nloaded from
 http://journals.am

etsoc.org/jhm
/article-pdf/21/7/1405/4961065/jhm

d190226.pdf by guest on 10 July 2020



lead times between 5 and 15 days. This suggests the

possibility of creating probabilistic estimates of risk for

heavy precipitation events in the Sacramento basin

conditional on a forecast at a particular lead. As shown

in Fig. 9, the spatial domain over which forecast infor-

mation is analyzed could be used tailor these probabi-

listic estimates. If the domain is too small then many

events aremissed, whereas if the domain is too large, the

signal is saturated by climatological noise. For the

Sacramento basin, an expanded domain that extends

across the U.S. coastline appears to provide a good

balance of hits and false positives, although this choice

will strongly depend on the risk tolerance and prefer-

ences of watermanagers.Moreover, the enhanced signal

apparent in the ensemble mean versus the control fur-

ther supports the use of multimember ensembles to

provide better forecast information. While this study

was limited to a single model, future work will explore

howmultimodel ensembles can be used to further improve

the selection of forecast information for forecast-informed

reservoir operations, for instance by using emerging input

variable selection procedures (Giuliani et al. 2015; Denaro

et al. 2017; Herman and Giuliani 2018).

Importantly, this study did not directly address fore-

cast error in other fields relevant to streamflow, which is

the primary hydrologic driver of surface water systems

in California. For instance, streamflow can be strongly

influenced by storm duration and anomalously high

temperatures and snowmelt, both factors which are

strongly impacted by ARs but were not considered here

(Guan et al. 2016; Lamjiri et al. 2017; Gonzales et al.

2019). Future work will consider how forecast errors in

these fields also relate to patterns of forecast error in

synoptic-scale features of associated ARs.

Finally, it is worthwhile to note that although some

of the spatial signatures of forecast error seen at 5- and

10-day lead times are still present at a 15-day lead, the

most common type of forecast error at a 15-day exhibits

significant variability in large-scale circulation and the

location ofAR landfalls (see Fig. 7, Cluster 4). Therefore,

while 15-day lead forecasts may provide some informa-

tion for management, the utility of this information is

likely limited. However, our results suggest that forecast

information at large spatial scales and lead times of less

than 10 days has real potential to inform water manage-

ment decisions, and this may prove to be a sufficient lead

time for key actions like reservoir release adjustments

needed for flood risk reduction.
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