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ABSTRACT

Forecasts of heavy precipitation delivered by atmospheric rivers (ARs) are becoming increasingly
important for both flood control and water supply management in reservoirs across California. This study
examines the hypothesis that medium-range forecasts of heavy precipitation at the basin scale exhibit re-
current spatial biases that are driven by mesoscale and synoptic-scale features of associated AR events. This
hypothesis is tested for heavy precipitation events in the Sacramento River basin using 36 years of NCEP
medium-range reforecasts from 1984 to 2019. For each event we cluster precipitation forecast error across
western North America for lead times ranging from 1 to 15 days. Integrated vapor transport (IVT), 500-hPa
geopotential heights, and landfall characteristics of ARs are composited across clusters and lead times to
diagnose the causes of precipitation forecast biases. We investigate the temporal evolution of forecast error to
characterize its persistence across lead times, and explore the accuracy of forecasted IVT anomalies across
different domains of the North American west coast during heavy precipitation events in the Sacramento
basin. Our results identify recurrent spatial patterns of precipitation forecast error consistent with errors
of forecasted synoptic-scale features, especially at long (5-15 days) leads. Moreover, we find evidence that
forecasts of AR landfalls well outside of the latitudinal bounds of the Sacramento basin precede heavy
precipitation events within the basin. These results suggest the potential for using medium-range forecasts
of large-scale climate features across the Pacific-North American sector, rather than just local forecasts of

basin-scale precipitation, when designing forecast-informed reservoir operations.

1. Introduction

Water resources management in northern California
is uniquely challenging because regional precipitation
varies dramatically on both intra and interannual time
scales, inducing stark tradeoffs between flood risk re-
duction and water supply services provided by regional
infrastructure. The variability in precipitation is inti-
mately tied to the space-time dynamics of atmospheric
rivers (ARs), defined as long, narrow, and transient cor-
ridors of strong horizontal integrated water vapor trans-
port (IVT) that are typically associated with a low-level
jet ahead of the cold front of an extratropical cyclone
(American Meteorological Society 2020). Approximately
half of the precipitation in the region is delivered by a
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relatively small number of AR events during the cold
season (Dettinger et al. 2011), and so the absence of a
handful of ARs can produce annual precipitation deficits
and reductions in snowpack and subsequent streamflow
that require drawdowns of surface reservoir and ground-
water storage to meet demand (Ralph et al. 2014). In ad-
dition, ARs often deliver precipitation in the form of heavy
or extreme events (Steinschneider et al. 2016; Hecht and
Cordeira 2017), and so pose a direct threat to communities
by raising the risk of flooding, high winds, and mudslides
(Ralph et al. 2019; Waliser and Guan 2017; Konrad and
Dettinger 2017).

The dual role of ARs as the primary driver of both
water supplies and flood hazards has prompted signifi-
cant interest in their characterization (Dacre et al. 2015;
Guirguis et al. 2018; Hecht and Cordeira 2017), classi-
fication (Dettinger et al. 2018; Ralph et al. 2019), and
predictability (Baggett et al. 2017; DeFlorio et al. 2018a,b;
Lavers et al. 2016, 2017). Predictive skill at medium range
(1-14 days) and subseasonal to seasonal (S2S; 15-90 days)
time scales has become a topic of particular interest be-
cause of its relevance to water infrastructure management
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decisions, such as forecast-informed reservoir operations
(Nayak et al. 2018; Forecast Informed Reservoir Operations
Steering Committee 2017). In this study we focus on char-
acterizing the spatial bias of medium-range forecasts of
heavy precipitation in the Sacramento River basin, with the
goal of developing insights for how forecast-informed res-
ervoir operations can better leverage forecasts of ARs and
associated precipitation at longer lead times.

The use of extended forecasts to inform reservoir
operations has been limited by the relatively slow in-
crease in forecast skill at long leads (approximately one
day in forecast skill per decade; Bauer et al. 2015; Alley
et al. 2019). However, in specific regions like California
where extreme events are governed by a limited number
of synoptic-scale atmospheric mechanisms (i.e., ARs),
measures of those mechanisms can yield gains in fore-
cast skill beyond the global average. Because ARs are
defined by synoptic-scale filaments of IVT, there is a
highly observable signature associated with their for-
mation and promulgation. These atmospheric features
are also explicitly resolved in forecast models, and so can
be more accurately predicted at longer lead times than
unresolved processes (e.g., localized convection) (Bauer
et al. 2015; Holton and Hakim 2013). Still, at long leads
(1-2 weeks), the use of large-scale atmospheric predic-
tors like IVT fields are not likely to produce accurate
forecasts of heavy precipitation at specific locations, in
part because localized features that can significantly al-
ter precipitation distributions (e.g., the Sierra barrier jet;
IVT impingement angle on the local topography) are
unlikely to be accurately predicted at those lead times
(Nardi et al. 2018; Hecht and Cordeira 2017; Ralph et al.
2016). Rather, long-lead AR forecasts are likely to be
most useful in estimating a shift in the odds of heavy
precipitation events, which could then be embedded
into risk-based operating strategies for water infra-
structure (Forecast Informed Reservoir Operations
Steering Committee 2017; Nayak et al. 2018).

For example, the ability to simply know in advance
whether or not a significant AR event is likely to
impact a given basin may be sufficient to inform certain
decisions. Nayak et al. (2018) recently showed that op-
timal, forecast-informed reservoir operations favored
reservoir levels that were far above the status quo con-
servation pool most of the year to bolster water supplies,
except when 3-day ahead forecast information sug-
gested an impending high flow event. Reservoir levels
were then drawn down to the conservation pool ahead of
the event to make space behind the dam to capture flood
waters. This policy was effective even with a significant
degree of forecast uncertainty, because the only infor-
mation that was needed to initiate the drawdown was the
detection of an incoming event, rather than a precise
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forecast of its magnitude. If physical and environmental
ramping constraints prevent rapid changes in down-
stream releases, such a policy would likely require lon-
ger lead information (5-15 days) that would suffer
from a higher degree of uncertainty. However, given the
conservative nature of water managers (Ralph et al. 2014;
Loucks and Van-Beek 2017), there is likely a preference
to err on the side of flood risk safety, i.e., a willingness
to accept a higher number of incorrect forecasts of AR
hits that lead to unnecessary reservoir drawdowns (false
positives) in order to reduce or eliminate the number of
forecast misses that result in an inability to manage flood
waters (false negatives).

Under this asymmetric set of preferences, there are
two prominent features of AR forecasts that may
constitute ‘“‘useful” information for water resource
management. First is the accuracy with which the lo-
cation of an AR landfall can be predicted. The posi-
tioning and strength of large-scale pressure anomalies
relate strongly to the location of landfall, raising the
potential for longer lead predictability driven by tele-
connections (Hu et al. 2017; Ralph et al. 2011; Guirguis
et al. 2018; Hecht and Cordeira 2017). For instance,
more than 70% of ARs in northern California are as-
sociated with 2 of the 15 rotated empirical orthogonal
functions (REOF) of 500-hPa height anomalies iden-
tified by Guirguis et al. (2018). Similarly, the charac-
terization of Rossby wave breaking (RWB) as either
anticyclonic (AWB) or cyclonic (CWB) has shown a
marked correlation with landfall latitude. CWB-correlated
ARs tend to landfall farther south than their AWB coun-
terparts, reflecting an important teleconnection that is also
highly correlated to ENSO (Hu et al. 2017). Other tele-
connections between AR landfall location and various
atmospheric modes show promise for “forecasts of op-
portunity,” including the coupled impacts of the MJO
and the QBO (Mundhenk et al. 2016, 2018; Baggett et al.
2017), as well as less predictable modes such as the PDO,
PNA, EPO, and WPO (Guirguis et al. 2019; DeFlorio
et al. 2018a; Brands et al. 2017).

The second feature of concern for water management is
the accuracy with which physical characteristics of an AR
can be resolved, such as its intensity and orientation, which
can significantly impact precipitation distributions (Ralph
et al. 2016, 2019). As above, the positioning of pressure
anomalies and RWB characteristics influence the strength
and orientation of IVT at landfall (Guirguis et al. 2018; Hu
et al. 2017), but these influences are weaker than for
landfall location. Thus, these features are more likely be
forecasted with precision at shorter (<7 days) lead times.

Regardless of lead time, water resources management
decisions need to be based on AR forecasts relevant at the
basin level. The degree of forecast resolution required will
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be highly dependent on the basin being considered and the
inherent biases in the forecasting model for that basin. If a
model tends to project precipitation or AR features with
systematic biases relative to that basin, these biases should
be incorporated into forecast-informed control rules. For
instance, release decisions tailored for conservative flood
risk management could be triggered by a longer-lead
forecast of AR landfall outside the basin of interest if
forecasts consistently show spatial biases in landfall at
that lead time. Recent studies have categorized forecast
biases in AR landfalls, but they have generally concentrated
on all AR events across large spatial scales such as the entire
North American west coast (Nardi et al. 2018; DeFlorio et al.
2018a). There remains a gap in our understanding of sys-
tematic errors in AR forecasts at the river basin scale, which
is of critical importance to water resource applications.

The goal of this work is to evaluate structural biases in
medium-range forecasts (1-15 days) of heavy precipitation
events and associated AR characteristics, with an emphasis
on their implications for forecast-informed water man-
agement. In particular, we address the following research
questions: 1) What spatial patterns of error exist in pre-
cipitation forecasts across western North America during
heavy precipitation events in the Sacramento River basin?
2) How do these patterns correspond to systematic forecast
biases in synoptic and mesoscale features of ARs? 3) How
persistent are these error structures and how do they
evolve through forecast lead times? and 4) How does the
selection of landfall domain influence the utility of forecast
information? To answer these questions, we identify spa-
tial clusters of precipitation forecast error from a 36-yr
hindcast using the NCEP Global Ensemble Forecast
System Reforecast (GEFS/R). These clusters are used to
highlight synoptic-scale features that can help diagnose the
causes of major patterns of precipitation forecast error. We
investigate the temporal evolution of error clusters to
characterize their persistence across forecast lead times.
Finally, we assess the accuracy of forecasted IVT anoma-
lies across different domains of the North American west
coast during heavy precipitation events in the Sacramento
basin, in order to explore whether forecast-informed water
management could utilize a broader set of forecast infor-
mation that extends beyond forecasts of climate directly
over the basin of interest. We conclude with a discussion of
future research needed to assimilate systematic forecast
errors into more robust forecast-informed operating poli-
cies for water resources infrastructure.

2. Data and methods
a. Data

Precipitation in the Sacramento basin was gathered
from the 1° X 1° GPCC Full Data Daily Product V.2018
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and First Guess Daily datasets (Schamm et al. 2013,
2015) within the geographical region bounded by 38°-
42°N and 120°-123°W. This region is approximately
135000 km? and corresponds to 12 different 1° grid cells
(Fig. 1) (USGS 2013). The Full Data Daily Product
is based on up to 35000 stations per month and
undergoes a full quality control before distribution
(Schneider et al. 2016). GPCC’s First Guess Daily
Product uses approximately 7000 stations per month
that have automated quality control features and a
simplified interpolation scheme. These data are avail-
able near real time at the expense of some additional
gauge-measurement and sampling error (Schamm et al.
2014; Schneider et al. 2018). For our study, the Full
Data product was used from 1 December 1984 to
31 December 2016 with the First Guess product filling
the remaining period through 31 March 2019. In the
period of overlap between the Full Data and First
Guess daily products (2009-16), we found the errors
between them to be minimal, with a mean (standard
deviation) of —0.098mm (3.85mm) across western
North America.

We also collected GPCC data for a broader region of
western North America that spans 30°-62°N and is
bounded in the west by the coastline and in the east by a
transect that runs between 114° and 128°W (see yellow
region in Fig. 1). These data were used to examine
precipitation forecast errors across a broader geo-
graphic region during heavy precipitation events in
the Sacramento basin, and extend far enough inland to
cover regions most often impacted by landfalling ARs
(Rutz et al. 2015).

We opted to use the coarse-resolution GPCC prod-
ucts because their spatial and temporal extent allows us
to examine forecasted precipitation errors across most
of western North America and during extreme precipi-
tation years like the cold season of 2016/17. Moreover,
the coarse resolution of the available reforecast data
negates many of the benefits of higher-resolution obser-
vations for our particular application. However, we did
compare the GPCC estimates to the higher-resolution
(0.0625°) data of Livneh et al. (2015b) in the region
(30°-53°N, 115°-125°W) and time periods (1984-2013)
where the two data products overlap. We found the
errors to be relatively small, with a mean (standard
deviation) of —0.33 mm (3.49 mm) across the region.

Reforecast data were retrieved from the NCEP GEFS/R
version 2 reforecast dataset (NOAA/NCEP 2013). These
1° X 1° reforecasts are based on an 11-member ensemble
and are catalogued daily from 1 December 1984 to present.
We collected the following variables: accumulated precip-
itation, u wind, v wind, specific humidity, and geopotential
height. The NCEP reforecasts are based on a single version
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FIG. 1. Overview of study area. The yellow

overlay indicates spatial extent of analyzed

precipitation data; the dark blue box shows grid cells used to approximate the Sacramento
River basin with light gray lines in inset showing individual 1° grid cells. Black dashed boxes
along coast are “‘landfall” grid cells, and the red dashed box shows landfall region used to
calculated IVT metrics for the Sacramento basin.

of the model initialized at 0000 UTC on each day in the
reforecast period, which lends itself to categorization
of bias and error since incremental changes to the
model are not a confounding factor (Hamill et al. 2013).
We utilized both the control and ensemble mean refor-
ecast data in this study. The control was used in our pri-
mary analysis to better understand patterns of forecast
bias and error structures in a single forecast trace and to
avoid excessive smoothing in synoptic features across
ensemble members. However, patterns of forecast error
from the control were also confirmed using data from the
ensemble mean across all analyses.

Reanalysis data were retrieved from the NCEP
Reanalysis-2 (NOAA/NCEP 2002; Kanamitsu et al.
2002) archive at a 2.5° X 2.5° resolution for all variables
(u wind, v wind, relative humidity, temperature, geo-
potential height) except accumulated precipitation,
which was retrieved at its native T62 Gaussian resolu-
tion. These data were chosen over other reanalysis
products because they utilize the same basic underlying
model structure as the reforecast data, although with

an earlier version of the NCEP model. Reforecast and
reanalysis values for IVT were calculated via the in-
tegration of u wind, v wind, and specific humidity
across 1000-300hPa as detailed in Zhu and Newell
(1998). All datasets were subset for the period between
1 December 1984 and 31 March 2019 and bilinearly
interpolated to match the 1° GPCC dataset for pre-
cipitation analyses or the 1° NCEP reforecast dataset
for IVT and geopotential height analyses.

Finally, we used the Scripps Institution of Oceanography—
Reanalysis-1 (SIO-R1) AR catalog (Gershunov et al. 2017)
as our reference for the location and timing of landfalling
AR events. To identify ARs, this catalog first identifies
grid cells with absolute IVT > 250kgm 's™! and inte-
grated water vapor (IWV) > 15mm, and then identifies
landfalling AR objects based on contiguous grid cells
that cross the western coastline of North America and
exhibit a length of at least 1500 km and a persistence
of at least 18 h. The SIO-R1 AR catalog was partic-
ularly useful for this study because it includes tab-
ular maximum IVT at landfall locations that can
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be compared against similar information from the
reforecasts.

b. Characterization of heavy precipitation events

We began the analysis by identifying historic occurrences
of heavy precipitation in the Sacramento basin, defined as
any date where precipitation rose above the 95th percentile
of cold season [October—April (ONDJFMA)] events with
accumulations greater than 1 mm for any grid cell in the
basin (Hoerling et al. 2016). The final event tally was
then filtered to remove duplicate events between grid
cells. For multiday events, we identified all clusters of
two or more consecutive heavy precipitation days, re-
tained the first day of that cluster, and disregarded the
remaining days. This focused our analysis on forecast
skill at the start of heavy precipitation events. Of the
resultant 295 events, two were manually removed due
to missing data (3 December 2014, 26 February 2018)
and seven events were removed for erroneous data
(6 October 2010, 15 December 2011, 24 January 2013,
20 February 2013, 7 December 2013, 28 January 2015,
3 January 2019). The erroneous events were removed
based on visual analysis that revealed either unrealisti-
cally high precipitation or distinct disagreement between
the GPCC and Livneh gridded data. The final set of 286
heavy precipitation days contain all of the 49 “extreme
daily precipitation” events found in Ralph et al. (2016),
and only 24 of the 286 events were not associated
(=1 day) with an AR event somewhere along western
North America, as classified in the SIO-R1 dataset
produced by Gershunov et al. (2017). For consistency,
we compared heavy precipitation events assigned by
GPCC to those assigned by the Livneh dataset in
the same time period and found >85% commonality
between the two catalogues.

c¢. Cluster analysis

For each heavy precipitation day, we calculated forecast
error (i.e., differences between GPCC and control refor-
ecast precipitation) for all 250 GPCC grid cells across
western North America (see yellow region in Fig. 1).
These forecast errors were produced separately for lead
times between 1 and 15 days, although we focus pri-
marily on lead times of 1, 5, 10, and 15 days. When
comparing the observed and reforecast precipitation, we
synchronized the GPCC dataset (based on daily obser-
vations recorded at midnight local time) to the NCEP
reforecasts (based on UTC) at a 0600 UTC reference.
This equates to a 2-h error in precipitation recording
times between the two datasets, which was deemed ac-
ceptable for the purposes of this study. Additionally, since
the NCEP reforecasts are only initialized at 0000 UTC,
the forecast lead time includes an additional 6-h lag
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(i.e., a 1-day forecast is actually a 30-h forecast; a 2-day
forecast is a 54-h forecast). However, we continue
to refer to forecast lead times by day (i.e., 1-day lead,
2-day lead, etc.).

For each lead time, the 286 heavy precipitation dates
were clustered using a K-means algorithm based on the
first 50 principal components (PCs) of the 286 X 250
forecast error matrix, which accounted for 79%-89% of
the variance depending on forecast lead. PCs were used
instead of raw error across all 250 grid cells to reduce
data dimensionality and mitigate the influence of highly
variable grid cells (Hannachi et al. 2007; Wilks 2011).
The number of clusters to use was selected using scree
plots of the ratio of between and total sum of squared
errors. For most lead times there were only marginal
gains in explained variance with more than four clusters.
Therefore, four clusters were used for all forecast lead
times for consistency.

Precipitation forecast errors were then composited
over all events in each cluster for a given lead time. We
expanded the spatial domain for composite maps to in-
clude the Alaskan coastline to illustrate precipitation
error patterns across the entire northeastern Pacific
coast. However, grid cells along the Alaskan coast were
not used in the clustering process because of the high
uncertainty for observed precipitation in that region
(Sun et al. 2018). Errors in each cluster that differed
significantly from Omm (95% confidence level) were
highlighted based on the Wilcoxon signed-rank test
(Wilks 2011) corrected for test multiplicity using a false
discovery rate (FDR) procedure (Wilks 2016). Precipitation
error composites were also recreated for two additional
cases to help interpret the results: 1) composites were
made based on the clusters identified using the GPCC
and control reforecast data, but using NCEP Reanalysis-
2 precipitation in place of GPCC precipitation to create
the composite maps, and 2) composites were made
based on new clusters identified using the GPCC data
and the ensemble mean (rather than control) reforecast
data. These analyses were used to determine 1) whether
precipitation error patterns were driven by local errors
in model precipitation or larger-scale forecast errors of
synoptic-scale climate drivers and 2) whether patterns of
precipitation forecast error differed significant between a
single forecast trace and the ensemble mean.

d. Synoptic-scale error patterns

We examined associated features of forecasted and
reanalysis IVT and geopotential height to analyze synoptic
conditions related to the precipitation error patterns in
each cluster and lead time. Again, reforecast and reanalysis
data were synchronized at the 0600 UTC time reference
to match the GPCC precipitation. Three components of
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IVT error were assessed, including errors in magnitude,
direction, and landfall location.

IVT magnitude errors were composited by cluster
for grid cells across the Pacific-North American sector
and were calculated as the difference in standardized
anomalies of IVT magnitude between the reforecast
and reanalysis data. Statistically significant forecast errors
were highlighted using the same procedure as for precipi-
tation. Standardized anomalies were based on localized
monthly means and standard deviations for each
product across the study period, and were used to help
highlight IVT errors in northern latitudes that have
lower absolute values due to colder temperatures.
Further, anomalies in the reforecast data were calcu-
lated separately for each forecast lead time due to
biases that are prominent in the ensemble mean IVT
data (Fig. S1in the online supplemental material). For
consistency, this method was applied to all reforecast
anomaly calculations.

Errors in IVT magnitude and direction near the
Sacramento basin were calculated based on differences
in reforecast and reanalysis IVT averaged over a geo-
graphic area to the west of the basin over the Pacific (red
box in Fig. 1). We examined the distribution of both
types of error within each cluster. The statistical signif-
icance of differences in the mean of these characteristics
was tested using a paired ¢ test. Errors in landfall loca-
tion across all of western North America were calcu-
lated based on the difference in latitude between the
reforecast and reanalysis projection of maximum IVT
magnitude in a set of 41 grid cells along the coast (see
black grids in Fig. 1).

Finally, 500-hPa geopotential height anomalies were
calculated in the same manner as IVT anomalies. Height
anomalies were composited for both the reforecast and
reanalysis data for each cluster.

e. Evolution of forecast error

To understand the persistence of forecast error pat-
terns, we analyzed how the spatial pattern of precipi-
tation errors evolved across lead times. We focused on
event clusters at a 15-day lead and tracked error com-
posites for these same event clusters at 10-, 5-, and 1-day
lead times. For example, suppose N of the 286 events
were grouped into Cluster 1 at a 15-day lead. For these
same N events, we composited the precipitation error at
each of the other lead times. These composites will
differ from those for Cluster 1 at other lead times found
using the method of section 2c, since they were defined
by errors at those leads. Using this procedure, we as-
sessed the degree to which events associated with a
particular spatial error pattern at a 15-day lead contin-
ued to exhibit that pattern at shorter lead times.
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f. Anomalous IVT landfall fraction

In the final analysis, we assessed the fraction of days
having a landfalling IVT anomaly over a high threshold
(1 standard deviation above the mean) across four spa-
tial domains that span different lengths of the western
North American coastline. These domains included
Northern California (38°-42°N), California—Oregon-—
Washington (CA-OR-WA; 33°-49°N), CA-OR-WA
and approximately half of the British Columbian coast
(33°-55°N), and the entire study area including coastal
Alaska (20°-60°N). If any grid cell in the domain had an
IVT anomaly over the specified threshold for a given
day, that day was considered to have a positive occur-
rence of anomalously high landfalling IVT. The fraction
of landfall occurrences was calculated for each of the
four domains using both reforecast data at 1-15-day lead
times and reanalysis data. Moreover, we assessed this
fraction only for heavy precipitation days in the Sacramento
basin, as well as across all days in ONDJFMA in the
1984-2019 timespan excluding the heavy precipitation
events. The goal of this analysis was to investigate how
different spatial domains could be used to extract useful
forecast information about elevated IVT with relevance
for heavy precipitation events in the Sacramento basin,
while accounting for known spatial biases in AR land-
falls and controlling for the climatology of landfalls in
the cold season months.

3. Results
a. Regional AR effects

Prior to assessing patterns of forecast error, we illus-
trate the spatial extent of AR driven precipitation across
the region associated with different AR landfall locations.
Figure 2 shows composites of standardized anomalies of
GPCC precipitation for all landfalling AR events over
the cold season (ONDJFMA) between 1984 and 2019
centered at latitudes 32.5°, 35° 37.5°, and 40°N. AR
landfalls are based on the SIO-R1 AR archive devel-
oped in Gershunov et al. (2017).

Landfalls outside of these latitudes produce insignifi-
cant precipitation in the Sacramento basin, besides mi-
nor precipitation in the northwest of the basin for AR
landfalls at 42.5°N (not shown). There is significant
precipitation within the basin when ARs make landfall
between 32.5° and 40°N. Mean precipitation across the
basin varies between 9.2 and 13mm, although these
values can be much higher locally in the mountainous
regions and can extend over multiple days during per-
sistent events. Landfalls centered at 35°N produce the
most substantial precipitation over the Sacramento basin,
while those centered at 32.5° and 40°N produce the least.
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FIG. 2. Precipitation anomalies associated with landfalling ARs between 1984 and 2019 at latitudes of 32.5°, 35°, 37.5°, and 40°N. The
solid black box indicates the study region, and the dashed red box is the landfall grid as per the SIO-R1 AR database. The black contour
line shows extent of anomaly > 1 standard deviation and orange contour shows anomalies > 1.5 standard deviation. Mean anomaly and
total precipitation in the study region are indicated in the bottom left of each plot.

Precipitation tends to be concentrated at or to the north
of the latitude of landfall, with smaller precipitation ac-
cumulations to the south. The spatial pattern and mag-
nitude of precipitation in Fig. 2 show the relatively strong
effect of southwesterly AR events that typically strike
south and central California versus the somewhat weaker
effect of more zonally oriented ARs that are character-
istic of northern California landfalls. This finding aligns
well with those in previous studies (Nardi et al. 2018; Hu
et al. 2017; Kim et al. 2017).

b. Cluster analysis

Patterns of precipitation forecast error for lead times
of 1, 5, 10, and 15 days are shown in Fig. 3. Detailed
results for each lead time are discussed sequentially in
Figs. 4-7 . Where possible, the clusters are arranged so
that spatial patterns of precipitation forecast error are
qualitatively similar across lead times (i.e., Cluster 1 at a
1-day lead has a similar pattern of forecast error as
Cluster 1 at 5-, 10-, and 15-day leads). However, cluster
patterns across lead times do not always align, as each
cluster is developed independently for each lead time.
These discrepancies are noted below. Still, there are
many similarities in error patterns across lead times,
suggesting that similar processes govern major patterns
of forecast error at medium-range time scales.

Cluster 1 generally has the highest number of events
and shows a relatively low degree of precipitation error
at a 1-day lead in both magnitude (small underpredictions)
and spatial bias (localized error around the Sacramento
basin) (Fig. 3). The magnitude and extent of under-
prediction error is larger at longer lead times.

At short lead times (1 and 5 days), Cluster 2 exhibits
overpredictions across much of the Pacific Northwest
and southern British Columbia, with underpredictions
along the coast. Cluster 3 in the same timeframe
exhibits a regional underprediction that extends along

most of the U.S. coastline and is particularly prominent
along the Coastal and Sierra Nevada ranges of California,
with overpredictions to the north in British Columbia. At
long lead times (10 and 15 days), Clusters 2 and 3 both
exhibit a north/south dipole in precipitation error, with
underpredictions centered around the Sacramento basin
and overpredictions to the north. These two clusters
differ primarily based on the latitude and extent of the
dipole centers.

For lead times of 1, 5, and 10 days, Cluster 4 exhibits a
precipitation overprediction centered near the south-
eastern corner of the basin that extends to the northeast,
with an opposing underprediction that extends north
along the coast from Northern California to Washington
and southern British Columbia. However, at a 15-day
lead, Cluster 4 exhibits a spatial pattern unlike the other
lead times, with underpredictions across most of California
and little systematic error elsewhere.

We also assessed the consistency of the clusters in
Fig. 3 after removing systematic forecast bias separately
for each lead time. Forecast bias for each grid cell and
lead time was calculated in three different ways, in-
cluding basing the bias on forecasts over all cold season
days, all cold season days with greater than 1 mm of
precipitation, and only the 286 heavy precipitation days
identified in this study. In all cases, the spatial patterns of
forecast error based on the debiased data were very
similar to those patterns seen in Fig. 3 (see Figs. S2-S4),
suggesting that the spatial error patterns are not deter-
mined by localized forecast biases.

1) 1-DAY FORECAST LEAD

Unsurprisingly, forecasts of synoptic-scale fields (IVT
magnitude, 500-hPa heights) at a 1-day lead time are very
accurate (Fig. 4). In the region directly west of the
Sacramento basin (red box in Fig. 1), there are no
significant errors in IVT magnitude and errors in the
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F1G. 3. NCEP GEFS v2 reforecast vs GPCC precipitation error cluster composites at 1-, 5-, 10-, and 15-day lead times with red (green)
colors indicating model underpredictions (overpredictions). The number in the upper-right corner of each plot shows the average error
[(average forecast — average observed precipitation)/average observed precipitation] across the Sacramento basin, with negative

(positive) errors in red (green).

average angle of IVT near the study basin are minimal
with the exception of Cluster 4. With respect to precipi-
tation, Cluster 1 contains over 40% of the events and
represents the most accurate forecasts across lead times,
with relatively small precipitation errors over the basin.
However, average precipitation errors in the other clus-
ters are substantial, with as great as 31% average over-
prediction in Cluster 2 and —28% underprediction in
Cluster 3. Average errors over the Sacramento basin in
Cluster 4 are smaller (9%), but this cluster also displays a
spatially expansive error pattern that extends beyond the
basin and penetrates into eastern California and Nevada.

Precipitation errors across all clusters do not appear
to be driven by prediction error in large-scale circulation
or the overall magnitude of IVT. Rather, precipitation
errors are more likely to be attributable to either the
inability of the forecast model to 1) accurately resolve
subgrid microphysics or orographic enhancement of
precipitation (Livneh et al. 2015a; Holton and Hakim
2013), or 2) predict more nuanced attributes of IVT or
other localized dynamics (e.g., the Sierra barrier jet). To
assess whether subgrid-scale parameterizations are re-
sponsible for the large precipitation errors shown in
Fig. 4, we reexamine the forecast errors for the same
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FIG. 4. 1-day forecast lead. (row 1) Asin Fig. 3. (row 2) Composite error between forecast and observed IVT anomalies. (row 3) Contour
of observed (solid black) vs forecast (dashed orange) 500-hPa geopotential height anomaly composite (units of standard anomaly). (row 4)
Landfalling IVT magnitude/direction for individual cluster events forecasted (pink) and observed (gray) with cluster average indicated by
solid red (black) for forecasted (observed); histogram in the upper-right corner show errors between forecasted and observed direction,
and the red line is zero error. Significant differences (p < 0.05) in magnitude, direction, or both are indicated by +, *, and ** in upper-right
corner, respectively. (row 5) Histogram of latitude error between forecasted and observed landfalling IVT maxima. The dashed red line
indicates zero error, and the orange arrow shows mean miss distance.
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F1G. 5. As in Fig. 4, but for 5-day forecast lead.
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FIG. 6. As in Fig. 4, but for 10-day forecast lead.
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FIG. 7. As in Fig. 4, but for 15-day forecast lead.
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events but against NCEP Reanalysis-2 precipitation
rather than GPCC precipitation (Fig. S5). By replacing
GPCC observations with Reanalysis-2 precipitation, we
can better control for errors from subgrid processes,
which are similar in the reforecast and reanalysis data-
sets (Kanamitsu et al. 2002; Hamill et al. 2011, 2013).
Interestingly, the patterns of precipitation error in Fig. 4
are very similar to those between the reforecast and
reanalysis precipitation, although there are fewer un-
derpredictions along the Pacific Coastal Range when
using the reanalysis precipitation. This suggests that
subgrid processes are not the driving factor behind some
of the larger spatial patterns of precipitation error in
Fig. 4, besides perhaps in some coastal areas linked to
poorly represented orographic effects.

Instead, most of the precipitation errors appear to be
linked to relatively minor differences in the orientation
of IVT or other localized dynamics poorly resolved
by the model. For instance, Cluster 4 has the deepest
500-hPa low centered on the Northern California coast-
line, supporting a southwest to northeast flow along the
axis of the precipitation overpredictions. However, the
more zonal orientation of the observed IVT as compared
to the reforecast (Fig. 4, row 4, p < 0.05) may explain the
overpredicted precipitation along the Sierra Nevada.
Clusters 2 and 3 show distinctly different precipitation
error while having comparable upper level structure
and IVT patterns. The only prominent difference is a
stronger northward bias in maximum IVT in Cluster 3
(Fig. 4, row 5). Together, these seemingly small varia-
tions produce very different outcomes in basin precipi-
tation. These results suggest that even at a 1-day lead,
precipitation error patterns can be very sensitive to local
dynamics, even when large-scale attributes of these
features are forecasted accurately.

2) 5-DAY FORECAST LEAD

At a 5-day lead, forecasts of height anomalies and
IVT remain relatively accurate. The precipitation error
clusters and number of events at a 5-day lead are similar
to the 1-day lead, although all of the error patterns are
deeper, especially Cluster 1. Also, Cluster 3 exhibits a
clear north/south dipole error pattern that was not as
evident at a 1-day lead.

In Cluster 1, a significant IVT underprediction is ap-
parent over southern California and Nevada with a
commensurate underprediction in basin precipitation.
The depth of the low is also less than observed, which
may explain the IVT underprediction. Though the IVT
near the Sacramento basin is more meridional than the
observed (p < 0.05), it is also underpredicted in mag-
nitude (p < 0.1), which may be contributing to the
precipitation underprediction.
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Cluster 2 exhibits positive precipitation anomalies in
the Pacific Northwest. A small northward bias in the
midlevel trough could be the cause of these precipitation
errors, but forecasted IVT shows no significant differ-
ences from observations. In addition, some of the pre-
cipitation forecast error may be related to errors in
subgrid-scale processes, since the error pattern changes
sign near the Sacramento basin and along the Pacific
Coastal Range when errors are composited using re-
analysis precipitation (Fig. S5).

In contrast, Cluster 3 shows a distinct dipole of pre-
cipitation underpredictions centered over the study re-
gion and overpredictions centered near the middle of
the British Columbian coast, and this pattern does not
change with reanalysis precipitation (Fig. S5). This
spatial error pattern is supported by the spatial pattern
in IVT error and the >5° bias in landfalling IVT loca-
tion. The underprediction of IVT magnitude west of the
Sacramento basin is statistically significant at the p < 0.1
level, although not at the p < 0.05 level. Forecasts of
500-hPa heights are biased to the northwest and are
consistent with the errors in IVT.

Cluster 4 precipitation errors are very similar to those
at a 1-day lead. Slightly more organized patterns of IVT
error are apparent, particularly along the California
coast, and there is a slight eastward bias in the forecasted
heights. Overall though, precipitation errors still appear
somewhat disconnected from errors in the larger-scale
circulation.

3) 10-DAY FORECAST LEAD

At a 10-day lead, precipitation forecast errors are
broader and more intense, although the spatial patterns
of error are very similar to those for 5-day lead times. In
Cluster 1, underpredictions of precipitation intensity
around the Sacramento basin coincide with a trough that
is forecasted in a similar location to the observations but
is weaker in magnitude. Forecasted IVT landfall loca-
tion also exhibits a high degree of variability, and the
IVT magnitude south of the basin is weaker than the
observations.

In Cluster 2, a more distinct dipole in precipitation
and IVT error is observed than that at a 5-day lead.
Similarly, a stronger IVT error dipole is seen for Cluster
3, albeit the dipole is located farther north compared to
Cluster 2. A northwest displacement in the forecasted
location of the midlevel trough appears to be the pri-
mary driver for both dipole patterns, and the degree of
this displacement explains the spatial differences in IVT
and precipitation error between the two clusters.

Finally, Cluster 4 displays a pattern similar to that ob-
served at a 5-day lead, but with underpredictions expand-
ing north along the coast and farther into the basin.
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Also similar to the 5-day pattern, the IVT errors
weakly align with the precipitation errors and now ap-
pear driven in part by an eastward bias in the forecast
low. However, IVT errors still remain insignificant and
do not emerge as a clear driver of the spatial pattern in
precipitation forecast error.

4) 15-DAY FORECAST LEAD

The error structures in Clusters 1-3 at a 15-day lead
are spatially similar but deeper and broader than those
at a 10-day lead. For Cluster 1, underpredictions of
precipitation extend from California to British Columbia,
but there is a clearer overprediction along the coast of
Alaska that was only weakly observed at a 5- and 10-day
lead. In Clusters 2 and 3, the dipole error patterns are
driven by northwest errors in the forecasted location of
the trough, which are again similar to the 10-day lead but
with even greater displacement. These errors align well
with significant biases in IVT magnitude, direction, and
the latitude of maximum IVT landfall.

Unlike the other clusters, Cluster 4 at a 15-day lead
does not have a consistent error pattern with the events
grouped into Cluster 4 at shorter lead times. Rather, this
cluster, which accounts for approximately 40% of events
(127/286), has a spatial pattern of precipitation error
that is rather concentrated around the Sacramento ba-
sin. Notably, the forecasted low under this cluster and
the IVT south of the basin are relatively weak, while the
variance of latitudinal error in IVT landfall is the largest
of any cluster at any lead time. These results suggest that
Cluster 4 at a 15-day lead may be averaging over a wide
range of events that are not distinctly similar in their
error patterns, with the effect of smoothing and damp-
ening signals in the IVT and height fields. Since all
events were defined such that the Sacramento basin was
experiencing heavy precipitation, the only signal that is
not canceled out after averaging is an underprediction in
IVT and precipitation around the basin.

5) ENSEMBLE MEAN VERSUS CONTROL FORECAST

A similar analysis to that in Figs. 3-7 and Fig. S5 was
conducted for the ensemble mean forecast and is shown
in Figs. S6-S11. The results between the ensemble mean
and the control are very similar, although features of the
IVT and height field composites are more finely resolved
in the control forecast results because of smoothing
effects under the ensemble mean. In addition, the
ensemble mean exhibits a somewhat different pat-
tern for Cluster 4, particularly at the 10-day lead
time, where the ensemble mean shows an under-
prediction for the basin while the control shows a split
underprediction/overprediction pattern. Still, these
results suggest that many of the basic forecast error
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patterns found for one member of an ensemble can re-
flect the patterns of error found in the ensemble mean.

c. Evolution of forecast error

Figure 8 shows the persistence of spatial error patterns
across lead times when events remain in the same cluster
to which they were assigned at a 15-day lead. From a
15- to 10-day lead, the strong underprediction along the
U.S. West Coast through British Columbia remains co-
herent in Cluster 1. A similar result is seen for Cluster 4.
For Clusters 2 and 3, the dipole structures in precipita-
tion error are still apparent at a 10-day lead but are
weaker. At a 5-day lead, the spatial patterns in Clusters
1, 2, and 4 defined at the 15-day lead are still visible but
are extremely weak, and the spatial error pattern in
Cluster 3 is no longer distinguishable. At a 1-day lead,
there is no relation between the error composites de-
fined at the 15-day lead, and basin-average precipitation
error falls dramatically (—1.5%, —0.9%, 3.3%, 0.3%).
These results suggest that forecast errors at a 15-day lead
time may persist to a 10-day lead to some degree, but not
to shorter lead times.

d. Anomalous IV'T landfall occurrence frequency

Figure 9 depicts the fraction of days exhibiting anoma-
lously high landfalling IVT across four spatial domains,
where any occurrence of IVT over a standard deviation of
1.0 across the landfalling grid cells in that domain
yields a positive signal. These fractions are shown for the
reanalysis and reforecasts (both control and ensemble
mean) at 1-15-day lead times, and are calculated sepa-
rately for heavy precipitation days and nonheavy pre-
cipitation days in the Sacramento basin. For a particular
lead time and forecast product (control or ensemble
mean), a high fraction of events for the heavy precipi-
tation days and a low fraction of events for nonheavy
precipitation days (i.e., climatology) suggests that the
forecasts are able to detect high IVT activity somewhere
in the domain with relevance to heavy precipitation
events in the Sacramento basin, while excluding high
IVT events that are not associated with heavy pre-
cipitation in the basin. That is, large differences in the
fractions for heavy and nonheavy precipitation days
suggest a larger signal to noise ratio in the forecasted
IVT. The results for the reanalysis provide the observed
fractions, and so can be used as target values against
which to compare the reforecast results. We note that
the results in Fig. 9 are similar if we change the threshold
for anomalously high IVT (see Fig. S12).

Several insights emerge from Fig. 9. First, for all domains
and for both the control (Fig. 9, row 2) and the ensemble
mean (Fig. 9, row 3), the forecast signal degrades with lead
time. That is, a lower fraction of high IVT events over the
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FIG. 8. NCEP GEFS v2 reforecast vs GPCC precipitation error cluster composites at 15-, 10-, 5-, and 1-day lead times based on clusters
at a 15-day lead.

climatological rate is detected at longer lead times.
Second, the differences between the control and the
ensemble mean reforecast are substantial. The control
forecast produces a much weaker signal during the
heavy precipitation events versus nonheavy precipita-
tion events across all spatial domains. Even in the case
of the strongest signal to noise ratio associated with the
CA-OR-WA domain and a 1-day lead, there is only a
20% gain in signal above the climatological rate of high
IVT events (around 32%) for the control forecast. The
ensemble mean detects a much higher fraction of
high IVT events (78%) for the same domain and lead
time, which is close to the reanalysis rate. In general,

the ensemble mean forecast maintains a higher signal
to noise ratio for longer leads, regardless of domain.
Finally, the signal to noise ratio depends strongly on
the domain over which high IVT events are tracked,
particularly for the ensemble mean. If the domain is too
small (e.g., Northern California only), forecasted events
of high IVT that impact the basin are often missed. If the
domain is too large (e.g., the entire North American
west coast), most of the high IVT events associated with
heavy precipitation in the Sacramento basin are cap-
tured at all lead times, but so are a large majority of high
IVT events that are not associated with heavy precipi-
tation in the basin. That is, there are a very large number
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FIG. 9. Anomalous IVT landfall fraction plots based on NCEP GEFS v2 reforecast and NCEP Reanalysis-2. (row 1) Visual depiction of

landfall domain; yellow grid cells depict all landfall grids with blue highlighted grids and dashed red box showing the area of consideration.

(rows 2-3) Blue (gray) lines show fraction of days that IVT was over 1 standard deviation in the indicated domain for reforecast (re-

analysis) data. The solid lines depict the fraction occurring during the heavy precipitation days while the dashed lines depict the fraction

occurring across all days excluding the heavy precipitation days in the ONDJFMA periods from 1984 to 2019. Row 2 is based on the

control reforecast whereas row 3 is based on the ensemble mean reforecast.

of false positives if the domain is too large. Signal to
noise appears largest when the domain spans the U.S.
West Coast (Fig. 9, column 2). Here, for leads between
1 and 10 days, there is a significant increase in the rate of
high IVT events for heavy precipitation days compared
to the smaller Northern California domain, but a more
modest rise in the rate of false positives associated with
nonheavy precipitation days. This result is very consis-
tent with the patterns of forecast bias for lead times of
5 and 10 days (Figs. 5 and 6, Cluster 2), which showed
considerable latitudinal error in AR landfall location
that could be captured if high IVT was tracked in the
Pacific Northwest.

4. Discussion and conclusions

In this study we identified recurrent spatial biases in
medium-range forecasts of precipitation across western
North America during heavy precipitation events in the
Sacramento River basin. At 1-day leads and to a lesser
extent at 5-day leads, many of the forecasts are quite
accurate, and those that exhibit substantial error are
more closely related to the inability to resolve localized

dynamics and subgrid processes. However, at longer
leads, a set of clear and spatially distinct error patterns
are evident that are stronger at longer lead times and
closely mirror spatial patterns of IVT forecast error,
which are in turn consistent with spatial biases in fore-
casted features of large-scale circulation. In particular,
there is a tendency for the models to forecast AR
landfall too far to the north, leading to overpredicted
precipitation and IVT in the Pacific Northwest, British
Columbia, and even Alaska. The implication is that
forecasts of significant precipitation or IVT north of the
Sacramento basin at long leads may be associated with
elevated risk of heavy precipitation within the basin.
Where large-scale error patterns fail to explain patterns
of forecasted precipitation error, mesoscale errors in
landfalling IVT (e.g., IVT orientation) can help to rec-
oncile these differences.

The patterns of forecast error suggest that large-scale
forecasts of circulation or features of IVT could be used
to improve forecast-informed water resources manage-
ment. While patterns of forecast error do not tend to
persist from longer to shorter lead times (Fig. 8), similar
spatial patterns of error are observed independently at
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lead times between 5 and 15 days. This suggests the
possibility of creating probabilistic estimates of risk for
heavy precipitation events in the Sacramento basin
conditional on a forecast at a particular lead. As shown
in Fig. 9, the spatial domain over which forecast infor-
mation is analyzed could be used tailor these probabi-
listic estimates. If the domain is too small then many
events are missed, whereas if the domain is too large, the
signal is saturated by climatological noise. For the
Sacramento basin, an expanded domain that extends
across the U.S. coastline appears to provide a good
balance of hits and false positives, although this choice
will strongly depend on the risk tolerance and prefer-
ences of water managers. Moreover, the enhanced signal
apparent in the ensemble mean versus the control fur-
ther supports the use of multimember ensembles to
provide better forecast information. While this study
was limited to a single model, future work will explore
how multimodel ensembles can be used to further improve
the selection of forecast information for forecast-informed
reservoir operations, for instance by using emerging input
variable selection procedures (Giuliani et al. 2015; Denaro
et al. 2017; Herman and Giuliani 2018).

Importantly, this study did not directly address fore-
cast error in other fields relevant to streamflow, which is
the primary hydrologic driver of surface water systems
in California. For instance, streamflow can be strongly
influenced by storm duration and anomalously high
temperatures and snowmelt, both factors which are
strongly impacted by ARs but were not considered here
(Guan et al. 2016; Lamjiri et al. 2017; Gonzales et al.
2019). Future work will consider how forecast errors in
these fields also relate to patterns of forecast error in
synoptic-scale features of associated ARs.

Finally, it is worthwhile to note that although some
of the spatial signatures of forecast error seen at 5- and
10-day lead times are still present at a 15-day lead, the
most common type of forecast error at a 15-day exhibits
significant variability in large-scale circulation and the
location of AR landfalls (see Fig. 7, Cluster 4). Therefore,
while 15-day lead forecasts may provide some informa-
tion for management, the utility of this information is
likely limited. However, our results suggest that forecast
information at large spatial scales and lead times of less
than 10 days has real potential to inform water manage-
ment decisions, and this may prove to be a sufficient lead
time for key actions like reservoir release adjustments
needed for flood risk reduction.
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