

Data-Driven Reachable Set Computation using Adaptive Gaussian Process Classification and Monte Carlo Methods

Alex Devonport

Electrical Engineering and Computer Sciences
University of California, Berkeley
alex.devonport@berkeley.edu

Murat Arcak

Electrical Engineering and Computer Sciences
University of California, Berkeley
arcak@berkeley.edu

Abstract—We present two data-driven methods for estimating reachable sets with probabilistic guarantees. Both methods make use of a probabilistic formulation allowing for a formal definition of a data-driven reachable set approximation that is correct in a probabilistic sense. The first method recasts the reachability problem as a binary classification problem, using a Gaussian process classifier to represent the reachable set. The quantified uncertainty of the Gaussian process model allows for an adaptive approach to the selection of new sample points. The second method uses a Monte Carlo sampling approach to compute an interval-based approximation of the reachable set. This method comes with a guarantee of probabilistic correctness, and an explicit bound on the number of sample points needed to achieve a desired accuracy and confidence. Each method is illustrated with a numerical example.

I. INTRODUCTION

Reachable sets characterize the states to which a system may evolve using the knowledge of where it starts, what inputs may affect the system, and how long the system may evolve. Computing reachable sets is a critical step in the solution to control problems involving objectives such as safety, recurrence, and more complicated requirements expressed as automata or temporal logic specifications. However, accurate reachable sets are generally very expensive to compute, and common practice is to use a tractable relaxation, such as an overapproximation that is guaranteed to contain the true reachable set.

In relaxing the problem, the analyst must make a trade-off between computational tractability and accuracy of the overapproximation. There are many reachable set overapproximation methods that lie at different points of the tractability-accuracy spectrum. At one extreme, reachability methods based on the Hamilton-Jacobi-Bellman equations [1], [2] and dynamic programming [3], such as those used in the Level Set Toolbox [4], yield reachable set approximations that are very accurate but slow to compute. Zonotope-based methods [5], such as those used in the CORA toolbox [6], are faster to compute at the cost of some accuracy. At the opposite extreme, interval reachability methods [7]–[9] give overapproximations that require a minimum of resources to compute and store, but due to their strict geometry they are generally conservative.

In this paper we introduce a *data-driven* approach that allows for improvements in both tractability and accuracy, at the cost of a relaxed guarantee of correctness. The essence of this relaxation is to place a suitable probability measure

over the initial set and the controls, and to define reachable sets as events on the induced probability space. Then, a sample of simulated system trajectories can be used to make probabilistic estimates of the true reachable set. To achieve the lowest computational complexity possible, we minimize the number of sample trajectories while maintaining a probabilistic guarantee of a given accuracy.

Probabilistic methods have been used to analyze the reachability of stochastic systems [10]–[13] and as an exploratory tool to guide deterministic reachability analysis [14]. Here, we investigate the probabilistic approach as a rigorous method in its own right to analyze the reachability of deterministic systems. Data-driven methods have also been used as a tool for robustness analysis of uncertain control systems [15], which allow for probabilistic verification of robustness against various types of uncertainty. This paper provides a similar approach to the problem of reachable set computation.

We present two data-driven methods for computing reachable set approximations that make use of the probabilistic relaxation. The first method uses a Gaussian process classifier (GPC) to construct a probabilistic reachable set of arbitrary accuracy. The prediction uncertainty of the GPC allows us to employ an *active learning* method [16], where we sequentially select samples in order to maximize information gain. The second method uses a Monte Carlo sampling approach to construct an interval overapproximation of the probabilistic reachable set. Although less accurate, this method comes with a provable probabilistic guarantee. The two methods are complementary: the GPC method allows for approximations of higher accuracy (since it is not restricted to interval approximations), while the Monte Carlo method can make faster approximations. When probabilistic guarantees are acceptable for the problem at hand, the formalism and methods described in this paper can offer a significant computational speedup. An additional advantage of the data-driven approach is that it may be used in a model-free way: we need only to be able to sample system trajectories, so the system itself is allowed to be a black box or otherwise inaccessible. Indeed, many high-fidelity models are either available only in black-box form, or are too complex to analyze with standard reachability tools.

II. REACHABLE SETS

Suppose we have a dynamical system with state transition function $\Phi(t; t_0, x_0, u)$ that maps an initial state $x_0 \in \mathbb{R}^n$ at time t_0 to a unique final state at time t_1 , under the influence of an input $u \in C^{[t_0, t_1]}$ and the system dynamics. For example, if the system is defined as a vector ordinary differential equation

$$\dot{x}(t) = f(x(t), u(t), t) \quad (1)$$

whose solutions are well-defined and unique on the interval $[t_0, t]$, then $\Phi(t; t_0, x_0, u)$ is the solution to (1) satisfying the initial condition $\Phi(t_0; t_0, x_0, u) = x_0$.

Now, suppose we have an *initial set* $\mathcal{X}_0 \subset \mathbb{R}^n$, and an *input set* $\mathcal{U} \subset C^{[t_0, t_1]}$. We would like to know all of the states to which the system may evolve between times $[t_0, t_1]$ starting in the initial set, and subjected to any allowable input. The set of all such states is the *forward reachable set* $R_{[t_0, t_1]}$:

$$R_{[t_0, t_1]} = \{x | x = \Phi(t_1; t_0, x_0, u) \text{ for some } x_0 \in \mathcal{X}_0, u \in \mathcal{U}\}. \quad (2)$$

When the state transition function is invertible, we also consider the inverse of this problem. Suppose we have a *final set* $\mathcal{X}_1 \subset \mathbb{R}^n$, and we would like to know all of the states that can reach \mathcal{X}_1 in the time $[t_0, t_1]$. The set of all such states is called the *backward reachable set* $B_{[t_0, t_1]}$:

$$B_{[t_0, t_1]} = \{x | \Phi(t_1; t_0, x, u) \in \mathcal{X}_1 \text{ for some } u \in \mathcal{U}\}. \quad (3)$$

We may also be interested in finding the set \mathcal{X}_e of all initial states for which some *event*, characterized by $h(x, t, u) = 0$, occurs at some time $t_e \geq t_0$. The set of all such states is called the *event set* E_{t_0} :

$$E_{t_0} = \{x | h(\Phi(t_e; t_0, x, u), t_e, u) = 0 \text{ for some } t_e \geq t_0, u \in \mathcal{U}\}. \quad (4)$$

This is similar to the backwards reachable set problem, except that t_e is not known *a priori*. Further, t_e will in general not be the same for each state that leads to the event.

III. PROBABILISTIC REACHABLE SETS

To frame the data-driven approach, we consider a *probabilistic relaxation* of the reachable set problems described above. The methods in this paper consist of sampling initial states and inputs, evaluating the transition function at these sample points, and using the results to estimate the reachable set. The state transition function may be available directly through numerical integration of (1), through more advanced computer simulations, or even through physical experiments.

A reachable set computed using a sample-based method can be at best only *probabilistically accurate*, so we would like a way to represent this notion as well. To formalize the notion of sampling from \mathcal{X}_0 , we define a random variable $X_0 \sim p_0$ over the initial set. The probability distribution $p_0 : \mathcal{X}_0 \rightarrow [0, 1]$ is called the *initial distribution*, and may be any distribution whose support is \mathcal{X}_0 . Similarly, we will

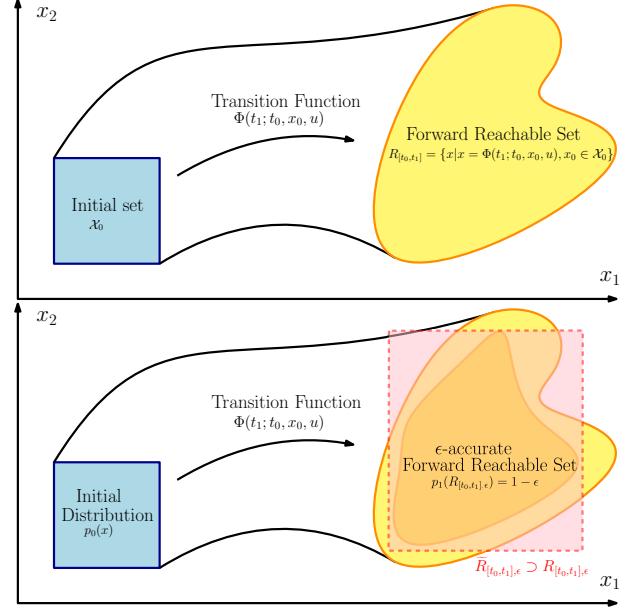


Fig. 1. A diagram of a forward reachable set (upper graph), and its relaxation to an ϵ -accurate probabilistic forward reachable set (lower graph), and an overapproximation of the probabilistic reachable set.

define a random variable $U \sim p_u$ over the input set, with *input distribution* $p_u : \mathcal{U} \rightarrow [0, 1]$.

These two random variables, together with the state transition function, define the family of *successor random variables* $X_t = \Phi(t; t_0, X_0, U) \sim p_t$ for $t \geq t_0$. In general, the distribution p_t will be unknown, since the state transition function is not known. The successor distribution can be used to define a probability space whose sample space is the state space \mathbb{R}^n , whose events are the Borel sets of \mathbb{R}^n , and whose probability measure is p_t . In this probability space, the probability of an event ω corresponds to the probability that the successor of a random initial state and input is an element of ω . This means that the true forward reachable set $R_{[t_0, t_1]}$ corresponds to the smallest event of probability 1. With that in mind, we define the ϵ -*accurate reachable sets*, denoted $R_{[t_0, t_1], \epsilon}$ as the smallest events with probability $1 - \epsilon$. A set $R \subset \mathbb{R}^n$ such that $p_t(R) \geq 1 - \epsilon$ is an *overapproximation* of an ϵ -accurate reachable set, since it must contain an ϵ -accurate reachable set. The relationship between the deterministic and probabilistic cases for forward reachable sets is shown in Figure 1.

We define a similar probabilistic formulation for backward reachable sets. The only difference is that we will choose a final random variable X_1 and U , and let $X_0 = \Phi^{-1}(t; t_0, X_1, U)$, where

$$\Phi^{-1}(t; t_0, x_1, u) = \{x | x_1 = \Phi(t; t_0, x, u), u \in \mathcal{U}\}. \quad (5)$$

For event sets, we are not interested specifically in the probabilistic behavior of Φ , but instead in the likelihood that a given sample in an initial set will lead to the event. Essentially, we would like to use samples to inform our belief about the location of the event set, so it is sensible to

adopt a Bayesian formulation for the probabilistic event set. We employ a distribution over the initial set, $p_0(x)$, which represents our belief that x is in the event set prior to seeing any samples. Then the posterior distribution conditioned on the sample trajectories represents an updated belief that the point x belongs to the event set that takes information from the sample trajectories into account. We call this posterior distribution the *event distribution*, p_e .

IV. GAUSSIAN PROCESS CLASSIFICATION (GPC) WITH ADAPTIVE SAMPLING

The first method we present uses a Gaussian process to construct a binary classifier to estimate the reachable set. A point in the state space is either in the reachable set or out of it, so determining the set of points in the reachable set has a natural representation as a binary classification problem.

A Gaussian process g is a random variable defined over a space of functions with the property that the joint distribution of any finite selection of point evaluations of the function is distributed as a joint Gaussian random variable [17]. The covariance between any two point evaluations $g(x_1)$ and $g(x_2)$ is $k(x_1, x_2)$, where k is the *kernel function* of the process. This kernel defines a *reproducing kernel Hilbert space* \mathcal{H}_k , a space of square-integrable functions on \mathbb{R}^d . When the Gaussian process is conditioned on observations, the mean of the conditioned process is a member of \mathcal{H}_k .

Suppose we have a set of m sample points $x^{(i)} \in \mathbb{R}^n$ and labels $y^{(i)} \in \{+1, -1\}$, where $+1$ indicates that the point is in the reachable set. We use a Gaussian process to construct a classifier that minimizes the *regularized least-squares classification risk*, that is a function $g : \mathbb{R}^n \rightarrow \mathbb{R}$ that minimizes

$$\sum_{i=1}^m \left(g(x^{(i)}) - y^{(i)} \right)^2 + \|g\|_k \quad (6)$$

where $\|\cdot\|_k$ is the \mathcal{H}_k -norm. This regularizing term ensures that the risk has a unique minimizer in \mathcal{H}_k . Least-squares classification is attractive here because the mean $\mu_{\hat{g}}$ and variance $\sigma_{\hat{g}}$ of the Gaussian process \hat{g} that minimizes this risk (and indeed finds the unique minimizer) have analytic expressions that can be computed quickly.

To make predictions using this classifier, we select a threshold $\gamma \in (a, b)$, and declare that a point x is predicted to be in the reachable set if $\hat{g}(x) \geq \gamma$, and not in the reachable set otherwise. For example, in the $a = 1, b = 0$ case, $\gamma = 0.5$ is suitable. With a threshold chosen, the reachable set estimate produced by this method is the sublevel set

$$\hat{R} = \{x | \mu_{\hat{g}}(x) < \gamma\}. \quad (7)$$

To construct a data set, we select a set of sample points $x^{(i)}$, and use the state transition function to assign a label $y^{(i)}$ to each of the sample points based on whether or not it is in the reachable set.

In principle, we may select the sample points in any way we like, e.g. uniform sampling over the region of interest, or using Latin hypercube sampling. However, since we wish to minimize the number of transition function evaluations,

we use the GPC model of the reachable set to inform our choice of future sample points. This kind of sampling is called *adaptive sampling*, since our selection method adapts according to the incoming data, and is an *active learning* method. The use of adaptive sampling to guide the construction of a Gaussian process model is motivated by a method from optimal experiment design known as *Adaptive Kriging* [18], [19], in which a Gaussian process regression is used to form a surrogate model for an expensive computational model.

Since our goal is to find an accurate estimate for the reachable set, we use adaptive sampling to select sample points with a high *probability of misclassification* [20], as the reachable set estimate is most likely to be inaccurate near these points. With classifier threshold γ , the probability of misclassification is

$$P_{\text{misclass}}(x) = \Phi \left(-\frac{|\mu_{\hat{g}}(x) - \gamma|}{\sigma_{\hat{g}}(x)} \right), \quad (8)$$

where Φ in (8) is the cumulative distribution function of the standard normal distribution.

When selecting a new sample point, ideally we would like to find the point in the state space with the highest probability of misclassification. However, this is a nonconvex and potentially high-dimensional optimization problem. Instead of searching the entire state space for a new sample, we use a stochastic optimization approach proposed in [18] and search over a large pool of randomly-selected *candidate samples*. We calculate the probability of misclassification for each candidate, and select the one with the highest probability of misclassification to be the next sample. The sample pool is selected using a Latin Hypercube, so that the candidate samples will be evenly distributed over a compact region of the state space. Note that this is distinct from selecting samples directly by a Latin hypercube: after we have selected the candidate pool, only a small number of candidate points will be selected as sample points, and the distribution of the selected points will be guided by the probability of misclassification.

Example: Safe Set Estimation for Adaptive Cruise Control

Consider the Adaptive Cruise Control (ACC) scenario depicted in Figure 3. In this scenario, a car being operated by ACC (the *follower*) is driving behind another car (the *leader*). The follower and leader are initially traveling with positive velocities $v_F(0)$ and $v_L(0)$ respectively. At $t = 0$, the leader begins to brake and eventually comes to a halt. If the distance between the leader and follower becomes zero at any $t > 0$, then the two cars have collided. To prevent this, we determine what velocities and relative positions at $t = 0$ give the follower enough time to prevent a collision. We call the set of all such initial states a “safe set”.

We use the following point-mass model for the dynamics

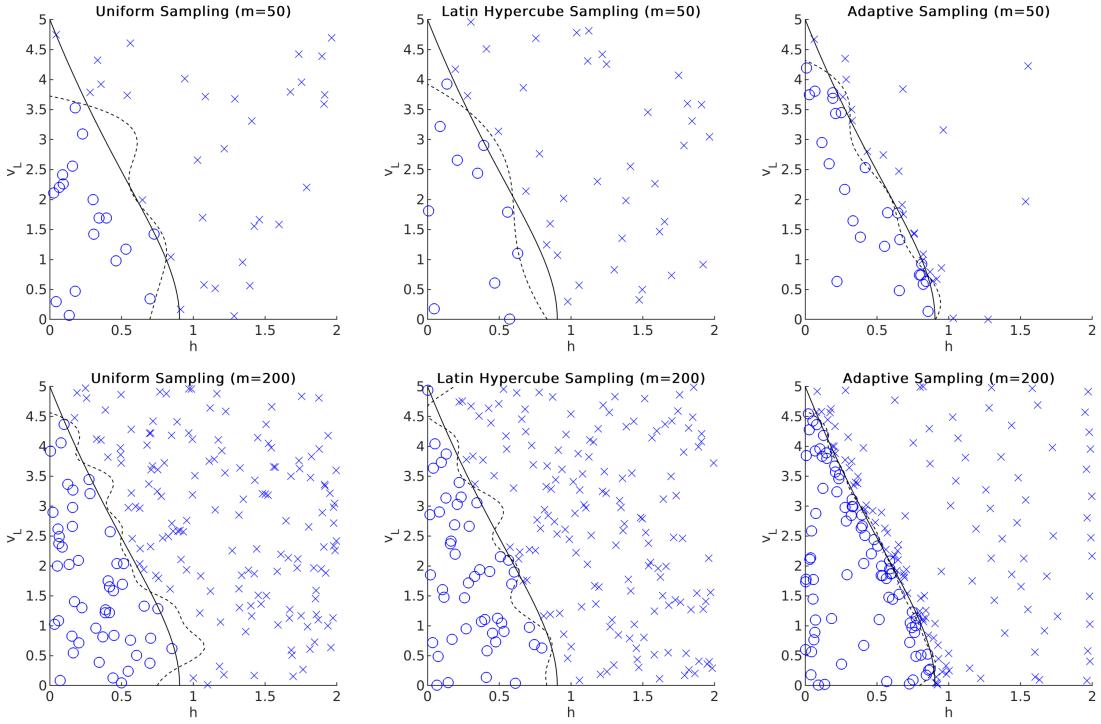


Fig. 2. Estimated safe set boundaries (dashed lines) for the ACC model computed with the GPC method compared with the true safe set boundary (solid lines), which is calculated analytically. The sample locations are also shown: an ‘o’ indicates that a collision occurred, and an ‘x’ indicates that it did not. The model parameters are set at $a = 4.9$, $b = 1$, and the initial follower velocity is fixed at $v_F(0) = 5$. Top row: $m = 50$ sample points. Bottom row: $m = 200$ sample points. For adaptive sampling, a candidate pool of $m_{\text{candidate}} = 1000$ samples was used in both cases. For the two sample sizes shown, adaptive sampling is able to make the most accurate approximation of the event set out of the three sampling methods used.

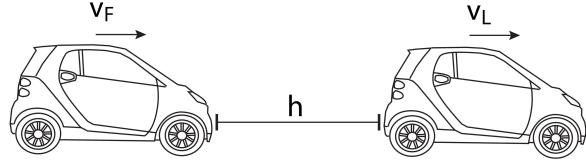


Fig. 3. Diagram of the leader and follower, and the associated state variables, in the ACC braking model. If $h(t_e) = 0$ for some $t_e \geq t_0$, the two cars have collided.

of the two vehicles:

$$\dot{h}(t) = v_L(t) - v_F(t) \quad (9)$$

$$\dot{v}_L(t) = -a - bv_L(t)^2 \quad (10)$$

$$\dot{v}_F(t) = -a - bv_F(t)^2 \quad (11)$$

where $v_L(t)$ and $v_F(t)$ are the velocities of the leader and follower, respectively, and $h(t)$ is the distance between the two cars. The acceleration of each car has a constant term from the brakes, as both cars are applying the brakes fully, and a quadratic term from drag force.

This problem is an event set estimation problem because the safe set we wish to determine is the complement of the set of initial conditions $x(0) = [h(0) \ v_L(0) \ v_F(0)]^T$ for which the event $h(x) = h = 0$ occurs.

The true event set can be derived from the exact solution of the dynamics, and is

$$E = \{(h, v_L, v_F) | h + \frac{1}{2b} \log \left(1 + \frac{b}{a} v_L^2 \right) - \frac{1}{2b} \log \left(1 + \frac{b}{a} v_F^2 \right) \geq 0\}. \quad (12)$$

Knowing the true event set lets us observe how well the GPC method approximates the true event set under different conditions.

For convenience of visualization, we hold the initial velocity of the follower constant at $v_F(0) = 5$. We restrict our attention to a compact region of the state space, specifically

$$0 \leq h \leq 2 \quad (13)$$

$$0 \leq v_L \leq 5. \quad (14)$$

Using sample points from this region, we construct a least-squares GPC using a *squared-exponential* kernel, that is we take

$$k(x_1, x_2) = \sigma \exp(-(x_2 - x_1)^T \Lambda (x_2 - x_1)), \quad (15)$$

where σ and the diagonal matrix $\Lambda = \text{diag}(\ell_1, \ell_2, \ell_3)$ are *hyperparameters* that are selected using maximum likelihood.

To demonstrate the effectiveness of the adaptive sampling method, we compare it to two other non-adaptive sampling strategies: sampling uniformly at random over the region, and sampling with a Latin hypercube over the region. To demonstrate how the number samples affects the quality of

the predicted event set, we form two sample sets for each of the sampling methods, with $m = 50$ and $m = 200$ each.

For adaptive sample selection, we begin by selecting a pool of $m_{candidate} = 1000$ candidate samples from the region of interest using a Latin hypercube. 25 samples are selected at random to serve as the initial set for the GPC model, and the remaining $m - 25$ are selected by sequentially minimizing $P_{misclass}$. Each time 10 new samples are collected, we recompute the optimal hyperparameters using Maximum likelihood. Using an Intel i5 CPU, computing the 50-sample reachable set took 0.8 seconds, and computing the 200-sample reachable set took 24 seconds.

The GPC-estimated event sets are shown in Figure 2. The true reachable set is also shown, to confirm that the estimated reachable sets are converging to the ground truth. For both sample sizes, the adaptive sampling method makes the most accurate event set estimate out of each of the three methods. By maximizing the probability of misclassification with each new sample, the adaptive method will either select a new sample with high prediction variance, which will be far away from the other samples, or one whose prediction mean is close to the threshold; that is, one close to the border.

V. MONTE CARLO INTERVAL OVERAPPROXIMATION

We now present a Monte Carlo Sampling (MCS) approach to produce *interval* overapproximations of epsilon-accurate reachable sets, that is overapproximations of the form

$$\hat{R} = [\underline{x}, \bar{x}] = \{x | \underline{x} \leq x \leq \bar{x}, \underline{x} \in \mathbb{R}^n, \bar{x} \in \mathbb{R}^n\} \quad (16)$$

where \leq is the vector inequality corresponding to the positive orthant cone of \mathbb{R}^n . Geometrically, the set $[\underline{x}, \bar{x}]$ is an axis-aligned hyperrectangle of dimension n whose least point is \underline{x} and whose greatest point is \bar{x} . An important example of when interval approximation is a suitable design choice is *symbolic control*, where controller synthesis is carried out on a finite-state machine *abstraction* that simulates the continuous-state dynamical system [9], [21], [22]. The states of the abstraction represent the cells of a partition of \mathbb{R}^n , and the transitions are derived from the intersection of the forward reachable sets of each cell with the other cells. For high-dimensional state spaces, the number of reachable sets that must be computed and stored grows rapidly, so it is necessary to use a memory-efficient approximation.

A simple method to calculate the interval approximation is a Monte Carlo approach. For the forward reachable set case, this would consist of the following steps:

- 1) take a set of m samples each from the initial distribution and input distribution, $\{x_0^{(i)}\}_{i=1}^m$ and $\{u^{(i)}\}_{i=1}^m$;
- 2) Evaluate the sample successor states $x_1^{(i)} = \Phi(t; t_0, x_0^{(i)}, u^{(i)})$;
- 3) Take $\hat{R}^{(m)}$ as the smallest interval containing the $x_1^{(i)}$.

Despite its simplicity, the Monte Carlo Sampling (MCS) method described above is provably effective at overapproximating ϵ -accurate reachable sets with intervals. In particular, the inequality (17), adapted from an example in [23] serves as a lower bound on the number of sample points required

to ensure that the method described above produces an overapproximation of a desired accuracy and confidence.

Theorem 1: Let $\epsilon, \delta \in (0, 1)$. If

$$m \geq \frac{2n}{\epsilon} \log \left(\frac{2n}{\delta} \right), \quad (17)$$

then $\hat{R}^{(m)}$ overapproximates an ϵ -accurate reachable set with confidence δ , i.e. $P(R_{[t_0, t_1], \epsilon} \subset \hat{R}^{(m)}) \geq 1 - \delta$.

A proof of this theorem is available in the extended version of this paper [24].

The sample bound of Theorem 1 depends only on the parameters ϵ and δ , and the state dimension n . The system may still have any number of unknown parameters and inputs, but these will not affect the number of samples needed to make a probabilistic guarantee. This is because the additional uncertainties only affect the distribution of the reachable random variable, and do not change its dimensionality.

Example: Robustness Analysis Of a Medical Exoskeleton Through Forward Reachable Sets

We consider a robustness analysis problem posed in [25] to evaluate the safety of a medical exoskeleton called a powered lower-limb orthosis. The Orthosis and its user are modeled as a three-link planar robot with three joints. The model has $n = 6$ states, and 12 parameters which all depend on the weight of the user. Since the weight of a user is subject to change, all 12 parameters are uncertain.

The authors of [25] designed a finite time horizon LQR controller to track a reference trajectory that brings the user and orthosis from a sitting position to a standing position. To analyze the robustness of the motion to parameter variations, we compute an interval overapproximation of the CoM trajectories under parameter changes induced by a 5% variation in user body weight. We use the MCS method, taking $\epsilon = 0.05$ and confidence $\delta = 0.001$. From (17), we know that $m = 2255$ sample trajectories will suffice to compute an $\hat{R}^{(m)}$ that has at the desired levels of accuracy and confidence. A single sit-to-stand simulation takes between 4 and 8 seconds on an intel i5 CPU. The entire reachable set computation took 3 hours and 8 minutes.

The resulting interval overapproximations of the position of the CoM and is shown in Figure 4. Specifically, we show the overapproximation for three points in the sit-to-stand movement; at the beginning ($t = 0$), in the middle ($t = 1.75$), and at the end ($t = 3.5$) of the movement.

ACKNOWLEDGMENTS

This work was supported in part by the grants ONR N00014-18-1-2209, AFOSR FA9550-18-1-0253, NSF ECCS-1906164.

REFERENCES

- [1] I. M. Mitchell and C. J. Tomlin, “Overapproximating reachable sets by hamilton-jacobi projections,” *Journal of Scientific Computing*, vol. 19, no. 1, pp. 323–346, Dec. 2003, ISSN: 1573-7691. DOI: 10.1023/A:1025364227563. [Online]. Available: <https://doi.org/10.1023/A:1025364227563>.

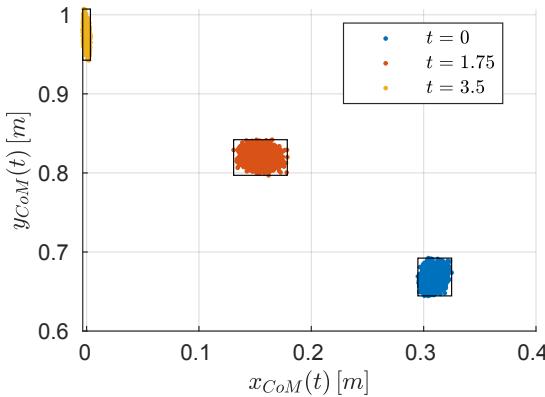


Fig. 4. Reachable set overapproximations (black boxes) of the center of mass trajectories at three time instants over sit-to-stand movement, calculated using the Monte Carlo interval overapproximation method with $\epsilon = 0.05$, $\delta = 0.001$. $m = 2255$ samples trajectories (also shown) were required to ensure the specified accuracy and confidence.

- [2] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent hamilton-jacobi formulation of reachable sets for continuous dynamic games,” *IEEE Transactions on Automatic Control*, vol. 50, no. 7, pp. 947–957, Jul. 2005, ISSN: 0018-9286. DOI: 10.1109/TAC.2005.851439.
- [3] D. Bertsekas and I. Rhodes, “On the minimax reachability of target sets and target tubes,” *Automatica*, vol. 7, no. 2, pp. 233–247, 1971, ISSN: 0005-1098. DOI: [https://doi.org/10.1016/0005-1098\(71\)90066-5](https://doi.org/10.1016/0005-1098(71)90066-5). [Online]. Available: <http://www.sciencedirect.com/science/article/pii/0005109871900665>.
- [4] I. M. Mitchell and J. A. Templeton, “A toolbox of hamilton-jacobi solvers for analysis of nondeterministic continuous and hybrid systems,” in *International Workshop on Hybrid Systems: Computation and Control*, Springer, 2005, pp. 480–494.
- [5] M. Althoff, O. Stursberg, and M. Buss, “Verification of uncertain embedded systems by computing reachable sets based on zonotopes,” *IFAC Proceedings Volumes*, vol. 41, no. 2, pp. 5125–5130, 2008.
- [6] M. Althoff, “An introduction to CORA 2015,” in *Proc. of the Workshop on Applied Verification for Continuous and Hybrid Systems*, 2015.
- [7] P.-J. Meyer, A. Devonport, and M. Arcak, “TIRA: Toolbox for interval reachability analysis,” *arXiv preprint arXiv:1902.05204*, 2019.
- [8] P.-J. Meyer and D. V. Dimarogonas, “Hierarchical decomposition of LTL synthesis problem for mixed-monotone control systems,” *arXiv preprint arXiv:1712.06014*, 2017.
- [9] T. Moor and J. Raisch, “Abstraction based supervisory controller synthesis for high order monotone continuous systems,” in *Modelling, Analysis, and Design of Hybrid Systems*, Springer, 2002, pp. 247–265.
- [10] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems,” *Automatica*, vol. 44, no. 11, pp. 2724–2734, 2008, ISSN: 0005-1098. DOI: <https://doi.org/10.1016/j.automatica.2008.03.027>. [Online]. Available: <http://www.sciencedirect.com/science/article/pii/S0005109808002677>.
- [11] M. Althoff, O. Stursberg, and M. Buss, “Stochastic reachable sets of interacting traffic participants,” in *2008 IEEE Intelligent Vehicles Symposium*, IEEE, 2008, pp. 1086–1092.
- [12] K. Margellos, P. Goulart, and J. Lygeros, “On the road between robust optimization and the scenario approach for chance constrained optimization problems,” *IEEE Transactions on Automatic Control*, vol. 59, no. 8, pp. 2258–2263, 2014.
- [13] Y. Yang, J. Zhang, K.-Q. Cai, and M. Prandini, “Multi-aircraft conflict detection and resolution based on probabilistic reach sets,” *IEEE Transactions on Control Systems Technology*, vol. 25, no. 1, pp. 309–316, 2016.
- [14] K. Margellos and J. Lygeros, “Toward 4-d trajectory management in air traffic control: A study based on monte carlo simulation and reachability analysis,” *IEEE Transactions on Control Systems Technology*, vol. 21, no. 5, pp. 1820–1833, Sep. 2013, ISSN: 1063-6536. DOI: 10.1109/TCST.2012.2220773.
- [15] R. Tempo, G. Calafio, and F. Dabbene, *Randomized algorithms for analysis and control of uncertain systems: with applications*. Springer Science & Business Media, 2012.
- [16] B. Settles, “Active learning literature survey,” University of Wisconsin-Madison Department of Computer Sciences, Tech. Rep., 2009.
- [17] C. E. Rasmussen and C. K. Williams, *Gaussian Processes for Machine Learning*. MIT Press, 2006.
- [18] B. Echard, N. Gayton, and M. Lemaire, “AK-MCS: An active learning reliability method combining kriging and monte carlo simulation,” *Structural Safety*, vol. 33, no. 2, pp. 145–154, 2011, ISSN: 0167-4730. DOI: <https://doi.org/10.1016/j.strusafe.2011.01.002>. [Online]. Available: <http://www.sciencedirect.com/science/article/pii/S0167473011000038>.
- [19] R. Schöbi, B. Sudret, and S. Marelli, “Rare event estimation using polynomial-chaos kriging,” *ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering*, vol. 3, no. 2, p. D4016002, 2017. DOI: 10.1061/AJRUA6.0000870.
- [20] J. Bect, D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez, “Sequential design of computer experiments for the estimation of a probability of failure,” *Statistics and Computing*, vol. 22, no. 3, pp. 773–793, 2012.
- [21] C. Belta, B. Yordanov, and E. Gol, *Formal Methods for Discrete-Time Dynamical Systems*. Springer, 2017.
- [22] G. Reissig, A. Weber, and M. Rungger, “Feedback refinement relations for the synthesis of symbolic controllers,” *IEEE Transactions on Automatic Control*, vol. 62, no. 4, pp. 1781–1796, Apr. 2017, ISSN: 0018-9286. DOI: 10.1109/TAC.2016.2593947.
- [23] M. Vidyasagar, *Learning and Generalisation: With Applications to Neural Networks, second edition*. Springer Science & Business Media, 2003.
- [24] A. Devonport and M. Arcak, *Data-driven reachable set computation using adaptive gaussian process classification and monte carlo methods*, 2019. arXiv: 1910.02500 [eess.SY].
- [25] O. Narvaez-Aroche, P.-J. Meyer, M. Arcak, and A. Packard, “Reachability analysis for robustness evaluation of the sit-to-stand movement for powered lower limb orthoses,” in *ASME 2018 Dynamic Systems and Control Conference*, Atlanta, GA, USA, Oct. 2018.