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Abstract— We present two data-driven methods for estimat-
ing reachable sets with probabilistic guarantees. Both methods
make use of a probabilistic formulation allowing for a formal
definition of a data-driven reachable set approximation that
is correct in a probabilistic sense. The first method recasts the
reachability problem as a binary classification problem, using a
Gaussian process classifier to represent the reachable set. The
quantified uncertainty of the Gaussian process model allows
for an adaptive approach to the selection of new sample points.
The second method uses a Monte Carlo sampling approach
to compute an interval-based approximation of the reachable
set. This method comes with a guarantee of probabilistic
correctness, and an explicit bound on the number of sample
points needed to achieve a desired accuracy and confidence.
Each method is illustrated with a numerical example.

I. INTRODUCTION

Reachable sets characterize the states to which a system
may evolve using the knowledge of where it starts, what
inputs may affect the system, and how long the system may
evolve. Computing reachable sets is a critical step in the solu-
tion to control problems involving objectives such as safety,
recurrence, and more complicated requirements expressed as
automata or temporal logic specifications. However, accurate
reachable sets are generally very expensive to compute, and
common practice is to use a tractable relaxation, such as
an overapproximation that is guaranteed to contain the true
reachable set.

In relaxing the problem, the analyst must make a trade-off
between computational tractability and accuracy of the over-
approximation. There are many reachable set overapproxima-
tion methods that lie at different points of the tractability-
accuracy spectrum. At one extreme, reachability methods
based on the Hamilton-Jacobi-Bellman equations [1], [2]
and dynamic programming [3], such as those used in the
Level Set Toolbox [4], yield reachable set approximations
that are very accurate but slow to compute. Zonotope-based
methods [5], such as those used in the CORA toolbox[6],
are faster to compute at the cost of some accuracy. At the
opposite extreme, interval reachability methods [7]–[9] give
overapproximations that require a minimum of resources to
compute and store, but due to their strict geometry they are
generally conservative.

In this paper we introduce a data-driven approach that
allows for improvements in both tractability and accuracy, at
the cost of a relaxed guarantee of correctness. The essence
of this relaxation is to place a suitable probability measure

over the initial set and the controls, and to define reachable
sets as events on the induced probability space. Then, a
sample of simulated system trajectories can be used to make
probabilistic estimates of the true reachable set. To achieve
the lowest computational complexity possible, we minimize
the number of sample trajectories while maintaining a prob-
abilistic guarantee of a given accuracy.

Probabilistic methods have been used to analyze the
reachability of stochastic systems [10]–[13] and as an ex-
ploratory tool to guide deterministic reachability analysis
[14]. Here, we investigate the probabilistic approach as a
rigorous method in its own right to analyze the reachability of
deterministic systems. Data-driven methods have also been
used as a tool for robustness analysis of uncertain control
systems [15], which allow for probabilistic verification of
robustness against various types of uncertainty. This paper
provides a similar approach to the problem of reachable set
computation.

We present two data-driven methods for computing reach-
able set approximations that make use of the probabilistic re-
laxation. The first method uses a Gaussian process classifier
(GPC) to construct a probabilistic reachable set of arbitrary
accuracy. The prediction uncertainty of the GPC allows us to
employ an active learning method [16], where we sequen-
tially select samples in order to maximize information gain.
The second method uses a Monte Carlo sampling approach to
construct an interval overapproximation of the probabilistic
reachable set. Although less accurate, this method comes
with a provable probabilistic guarantee. The two methods
are complementary: the GPC method allows for approx-
imations of higher accuracy (since it is not restricted to
interval approximations), while the Monte Carlo method can
make faster approximations. When probabilistic guarantees
are acceptable for the problem at hand, the formalism and
methods described in this paper can offer a significant
computational speedup. An additional advantage of the data-
driven approach is that it may be used in a model-free way:
we need only to be able to sample system trajectories, so
the system itself is allowed to be a black box or otherwise
inaccessible. Indeed, many high-fidelity models are either
available only in black-box form, or are too complex to
analyze with standard reachability tools.
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II. REACHABLE SETS

Suppose we have a dynamical system with state transition
function Φ(t; t0, x0, u) that maps an initial state x0 ∈ Rn
at time t0 to a unique final state at time t1, under the
influence of an input u ∈ C [t0,t1] and the system dynamics.
For example, if the system is defined as a vector ordinary
differential equation

ẋ(t) = f(x(t), u(t), t) (1)

whose solutions are well-defined and unique on the interval
[t0, t], then Φ(t; t0, x0, u) is the solution to (1) satisfying the
initial condition Φ(t0; t0, x0, u) = x0.

Now, suppose we have an initial set X0 ⊂ Rn, and an input
set U ⊂ C [t0,t1]. We would like to know all of the states to
which the system may evolve between times [t0, t1] starting
in the initial set, and subjected to any allowable input. The
set of all such states is the forward reachable set R[t0,t1]:

R[t0,t1] = {x|x = Φ(t1; t0, x0, u)

for some x0 ∈ X0, u ∈ U}. (2)

When the state transition function is invertible, we also
consider the inverse of this problem. Suppose we have a
final set set X1 ⊂ Rn, and we would like to know all of the
states that can reach X1 in the time [t0, t1]. The set of all
such states is called the backward reachable set B[t0,t1]:

B[t0,t1] = {x|Φ(t1; t0, x, u) ∈ X1 for some u ∈ U}. (3)

We may also be interested in finding the set Xe of all initial
states for which some event, characterized by h(x, t, u) = 0,
occurs at some time te ≥ t0. The set of all such states is
called the event set Et0 :

Et0 = {x|h(Φ(te; t0, x, u), te, u(te)) = 0

for some te ≥ t0, u ∈ U}. (4)

This is similar to the backwards reachable set problem,
except that te is not known a priori. Further, te will in
general not be the same for each state that leads to the event.

III. PROBABILISTIC REACHABLE SETS

To frame the data-driven approach, we consider a prob-
abilistic relaxation of the reachable set problems described
above. The methods in this paper consist of sampling initial
states and inputs, evaluating the transition function at these
sample points, and using the results to estimate the reachable
set. The state transition function may be available directly
through numerical integration of (1), through more advanced
computer simulations, or even through physical experiments.

A reachable set computed using a sample-based method
can be at best only probabilistically accurate, so we would
like a way to represent this notion as well. To formalize the
notion of sampling from X0 , we define a random variable
X0 ∼ p0 over the initial set. The probability distribution
p0 : X0 → [0, 1] is called the initial distribution, and may
be any distribution whose support is X0 . Similarly, we will
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Fig. 1. A diagram of a forward reachable set (upper graph), and its
relaxation to an ε-accurate probabilistic forward reachable set (lower graph),
and an overapproximation of the probabilistic reachable set.

define a random variable U ∼ pu over the input set, with
input distribution pu : U → [0, 1].

These two random variables, together with the state
transition function, define the family of successor random
variables Xt = Φ(t; t0, X0, U) ∼ pt for t ≥ t0. In general,
the distribution pt will be unknown, since the state transition
function is not known. The successor distribution can be
used to define a probability space whose sample space is the
state space Rn, whose events are the Borel sets of Rn, and
whose probability measure is pt. In this probability space,
the probability of an event ω corresponds to the probability
that the successor of a random initial state and input is an
element of ω. This means that the true forward reachable
set R[t0,t1] corresponds to the smallest event of probability
1. With that in mind, we define the ε-accurate reachable
sets, denoted R[t0,t1],ε as the smallest events with probability
1 − ε. A set R ⊂ Rn such that pt(R) ≥ 1 − ε is an
overapproximation of an ε-accurate reachable set, since it
must contain an ε-accurate reachable set. The relationship
between the deterministic and probabilistic cases for forward
reachable sets is shown in Figure 1.

We define a similar probabilistic formulation for back-
ward reachable sets. The only difference is that we will
choose a final random variable X1 and U , and let X0 =
Φ−1(t; t0, X1, U), where

Φ−1(t; t0, x1, u) = {x|x1 = Φ(t; t0, x, u), u ∈ U}. (5)

For event sets, we are not interested specifically in the
probabilistic behavior of Φ, but instead in the likelihood
that a given sample in an initial set will lead to the event.
Essentially, we would like to use samples to inform our
belief about the location of the event set, so it is sensible to
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adopt a Bayesian formulation for the probabilistic event set.
We employ a distribution over the initial set, p0(x), which
represents our belief that x is in the event set prior to seeing
any samples. Then the posterior distribution conditioned on
the sample trajectories represents an updated belief that the
point x belongs to the event set that takes information from
the sample trajectories into account. We call this posterior
distribution the event distribution, pe.

IV. GAUSSIAN PROCESS CLASSIFICATION (GPC) WITH
ADAPTIVE SAMPLING

The first method we present uses a Gaussian process to
construct a binary classifier to estimate the reachable set. A
point in the state space is either in the reachable set or out of
it, so determining the set of points in the reachable set has
a natural representation as a binary classification problem.

A Gaussian process g is a random variable defined over a
space of functions with the property that the joint distribution
of any finite selection of point evaluations of the function
is distributed as a joint Gaussian random variable [17].The
covariance between any two point evaluations g(x1) and
g(x2) is k(x1, x2), where k is the kernel function of the
process. This kernel defines a reproducing kernel Hilbert
space Hk, a space of square-integrable functions on Rd.
When the Gaussian process is conditioned on observations,
the mean of the conditioned process is a member of Hk.

Suppose we have a set of m sample points x(i) ∈ Rn
and labels y(i) ∈ {+1,−1}, where +1 indicates that the
point is in the reachable set. We use a Gaussian process to
construct a classifier that minimizes the regularized least-
squares classification risk, that is a function g : Rn → R
that minimizes

m∑
i=1

(
g(x(i))− y(i)

)2
+ ||g||k (6)

where || · ||k is the Hk-norm. This regularizing term ensures
that the risk has a unique minimizer in Hk. Least-squares
classification is attractive here because the mean µĝ and
variance σĝ of the Gaussian process ĝ that minimizes this
risk (and indeed finds the unique minimizer) have analytic
expressions that can be computed quickly.

To make predictions using this classifier, we select a
threshold γ ∈ (a, b), and declare that a point x is predicted to
be in the reachable set if ĝ(x) ≥ γ, and not in the reachable
set otherwise. For example, in the a = 1, b = 0 case,
γ = 0.5 is suitable. With a threshold chosen, the reachable
set estimate produced by this method is the sublevel set

R̂ = {x|µĝ(x) < γ}. (7)

To construct a data set, we select a set of sample points x(i),
and use the state transition function to assign a label y(i) to
each of the sample points based on whether or not it is in
the reachable set.

In principle, we may select the sample points in any way
we like, e.g. uniform sampling over the region of interest,
or using Latin hypercube sampling. However, since we wish
to minimize the number of transition function evaluations,

we use the GPC model of the reachable set to inform our
choice of future sample points. This kind of sampling is
called adaptive sampling, since our selection method adapts
according to the incoming data, and is an active learning
method. The use of adaptive sampling to guide the construc-
tion of a Gaussian process model is motivated by a method
from optimal experiment design known as Adaptive Kriging
[18], [19], in which a Gaussian process regression is used
to form a surrogate model for an expensive computational
model.

Since our goal is to find an accurate estimate for the
reachable set, we use adaptive sampling to select sample
points with a high probability of misclassification [20], as
the reachable set estimate is most likely to be inaccurate
near these points. With classifier threshold γ, the probability
of misclassification is

Pmisclass(x) = Φ

(
−|µĝ(x)− γ|

σĝ(x)

)
, (8)

where Φ in (8) is the cumulative distribution function of the
standard normal distribution.

When selecting a new sample point, ideally we would like
to find the point in the state space with the highest probability
of misclassification. However, this is a nonconvex and po-
tentially high-dimensional optimization problem. Instead of
searching the entire state space for a new sample, we use a
stochastic optimization approach proposed in [18] and search
over a large pool of randomly-selected candidate samples.
We calculate the probability of misclassification for each
candidate, and select the one with the highest probability
of misclassification to be the next sample. The sample pool
is selected using a Latin Hypercube, so that the candidate
samples will be evenly distributed over a compact region
of the state space. Note that this is distinct from selecting
samples directly by a Latin hypercube: after we have selected
the candidate pool, only a small number of candidate points
will be selected as sample points, and the distribution of
the selected points will be guided by the probability of
misclassification.

Example: Safe Set Estimation for Adaptive Cruise Control

Consider the Adaptive Cruise Control (ACC) scenario
depicted in Figure 3. In this scenario, a car being operated
by ACC (the follower) is driving behind another car (the
leader). The follower and leader are initially traveling with
positive velocities vF (0) and vL(0) respectively. At t = 0,
the leader begins to brake and eventually comes to a halt. If
the distance between the leader and follower becomes zero
at any t > 0, then the two cars have collided. To prevent
this, we determine what velocities and relative positions at
t = 0 give the follower enough time to prevent a collision.
We call the set of all such initial states a “safe set”.

We use the following point-mass model for the dynamics
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Fig. 2. Estimated safe set boundaries (dashed lines) for the ACC model computed with the GPC method compared with the true safe set boundary (solid
lines), which is calculated analytically. The sample locations are also shown: an ‘o’ indicates that a collision occurred, and an ‘x’ indicates that it did
not. The model parameters are set at a = 4.9, b = 1, and the initial follower velocity is fixed at vF (0) = 5. Top row: m = 50 sample points. Bottom
row: m = 200 sample points. For adaptive sampling, a candidate pool of mcandidate = 1000 samples was used in both cases. For the two sample sizes
shown, adaptive sampling is able to make the most accurate approximation of the event set out of the three sampling methods used.

Fig. 3. Diagram of the leader and follower, and the associated state
variables, in the ACC braking model. If h(te) = 0 for some te ≥ t0,
the two cars have collided.

of the two vehicles:

ḣ(t) = vL(t)− vF (t) (9)

v̇L(t) = −a− bvL(t)2 (10)

v̇F (t) = −a− bvF (t)2 (11)

where vL(t) and vF (t) are the velocities of the leader and
follower, respectively, and h(t) is the distance between the
two cars. The acceleration of each car has a constant term
from the brakes, as both cars are applying the brakes fully,
and a quadratic term from drag force.

This problem is an event set estimation problem because
the safe set we wish to determine is the complement of the
set of initial conditions x(0) =

[
h(0) vL(0) vF (0)

]T
for

which the event h(x) = h = 0 occurs.
The true event set can be derived from the exact solution

of the dynamics, and is

E = {(h, vL, vF )|h+
1

2b
log

(
1 +

b

a
v2L

)
− 1

2b
log

(
1 +

b

a
v2F

)
≥ 0}. (12)

Knowing the true event set lets us observe how well the
GPC method approximates the true event set under different
conditions.

For convenience of visualization, we hold the initial ve-
locity of the follower constant at vF (0) = 5. We restrict our
attention to a compact region of the state space, specifically

0 ≤ h ≤ 2 (13)
0 ≤ vL ≤ 5. (14)

Using sample points from this region, we construct a least-
squares GPC using a squared-exponential kernel, that is we
take

k(x1, x2) = σ exp(−(x2 − x1)TΛ(x2 − x1)), (15)

where σ and the diagonal matrix Λ = diag(`1, `2, `3) are hy-
perparameters that are selected using maximum likelihood.

To demonstrate the effectiveness of the adaptive sampling
method, we compare it to two other non-adaptive sampling
strategies: sampling uniformly at random over the region,
and sampling with a Latin hypercube over the region. To
demonstrate how the number samples affects the quality of
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the predicted event set, we form two sample sets for each of
the sampling methods, with m = 50 and m = 200 each.

For adaptive sample selection, we begin by selecting a
pool of mcandidate = 1000 candidate samples from the
region of interest using a Latin hypercube. 25 samples are
selected at random to serve as the initial set for the GPC
model, and the remaining m − 25 are selected by sequen-
tially minimizing Pmisclass. Each time 10 new samples are
collected, we recompute the optimal hyperparameters using
Maximum likelihood. Using an Intel i5 CPU, computing the
50-sample reachable set took 0.8 seconds, and computing the
200-sample reachable set took 24 seconds.

The GPC-estimated event sets are shown in Figure 2. The
true reachable set is also shown, to confirm that the estimated
reachable sets are converging to the ground truth. For both
sample sizes, the adaptive sampling method makes the most
accurate event set estimate out of each of the three methods.
By maximizing the probability of misclassification with each
new sample, the adaptive method will either select a new
sample with high prediction variance, which will be far away
from the other samples, or one whose prediction mean is
close to the threshold; that is, one close to the border.

V. MONTE CARLO INTERVAL OVERAPPROXIMATION

We now present a Monte Carlo Sampling (MCS) approach
to produce interval overapproximations of epsilon-accurate
reachable sets, that is overapproximations of the form

R̂ = [x, x] = {x|x ≤ x ≤ x, x ∈ Rn, x ∈ Rn} (16)

where ≤ is the vector inequality corresponding to the positive
orthant cone of Rn. Geometrically, the set [x, x] is an axis-
aligned hyperrectangle of dimension n whose least point is x
and whose greatest point is x. An important example of when
interval approximation is a suitable design choice is symbolic
control, where controller synthesis is carried out on a finite-
state machine abstraction that simulates the continuous-state
dynamical system [9], [21], [22]. The states of the abstraction
represent the cells of a partition of Rn, and the transitions are
derived from the intersection of the forward reachable sets
of each cell with the other cells. For high-dimensional state
spaces, the number of reachable sets that must be computed
and stored grows rapidly, so it is necessary to use a memory-
efficient approximation.

A simple method to calculate the interval approximation
is a Monte Carlo approach. For the forward reachable set
case, this would consist of the following steps:

1) take a set of m samples each from the initial distribu-
tion and input distribution, {x(i)0 }mi=1 and {u(i)}mi=1;

2) Evaluate the sample successor states x
(i)
1 =

Φ(t; t0, x
i
0, u

i);
3) Take R̂(m) as the smallest interval containing the x(i)1 .
Despite its simplicity, the Monte Carlo Sampling (MCS)

method described above is provably effective at overapproxi-
mating ε-accurate reachable sets with intervals. In particular,
the inequality (17), adapted from an example in [23] serves
as a lower bound on the number of sample points required

to ensure that the method described above produces an
overapproximation of a desired accuracy and confidence.

Theorem 1: Let ε, δ ∈ (0, 1). If

m ≥ 2n

ε
log

(
2n

δ

)
, (17)

then R̂(m) overapproximates an ε-accurate reachable set with
confidence δ, i.e. P (R[t0,t1],ε ⊂ R̂(m)) ≥ 1− δ.

A proof of this theorem is available in the extended version
of this paper [24].

The sample bound of Theorem 1 depends only on the pa-
rameters ε and δ, and the state dimension n. The system may
still have any number of unknown parameters and inputs,
but these will not affect the number of samples needed to
make a probabilistic guarantee. This is because the additional
uncertainties only affect the distribution of the reachable
random variable, and do not change its dimensionality.

Example: Robustness Analysis Of a Medical Exoskeleton
Through Forward Reachable Sets

We consider a robustness analysis problem posed in [25] to
evaluate the safety of a medical exoskeleton called a powered
lower-limb orthosis. The Orthosis and its user are modeled
as a three-link planar robot with three joints. The model has
n = 6 states, and 12 parameters which all depend on the
weight of the user. Since the weight of a user is subject to
change, all 12 parameters are uncertain.

The authors of [25] designed a finite time horizon LQR
controller to track a reference trajectory that brings the user
and orthosis from a sitting position to a standing position. To
analyze the robustness of the motion to parameter variations,
we compute an interval overapproximation of the CoM tra-
jectories under parameter changes induced by a 5% variation
in user body weight. We use the MCS method, taking
ε = 0.05 and confidence δ = 0.001. From (17), we know
that m = 2255 sample trajectories will suffice to compute
an R̂(m) that has at the desired levels of accuracy and
confidence. A single sit-to-stand simulation takes between
4 and 8 seconds on an intel i5 CPU. The entire reachable
set computation took 3 hours and 8 minutes.

The resulting interval overapproximations of the position
of the CoM and is shown in Figure 4. Specifically, we show
the overapproximation for three points in the sit-to-stand
movement; at the beginning (t = 0), in the middle (t = 1.75),
and at the end (t = 3.5) of the movement.
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