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Abstract

We prove sub-convex bounds on the fourth moment of Hecke—Laplace eigenforms
on S3. As a corollary, we get a Burgess-type sub-convex bound on the sup-norm of
an individual eigenform. This constitutes an improvement over what is achievable
through employing the Iwaniec—Sarnak amplifier.

Mathematics Subject Classification 11F72 (11F27, 58G25)

1 Introduction

Let X be acompact Riemannian manifold and denote by A the corresponding Laplace—
Beltrami operator acting on functions on X. Given an eigenfunction ¢ of A with
eigenvalue —A (i.e. A¢ + A¢ = 0), it is a classical question to bound the sup-norm of
¢. In general (see for example [21]), one has the bound

dim X—1
4

[Pl = Cx - (1 4+2) loll2. (1.1)

for some constant Cx, which depends only on X. In this generality, one cannot do
better as equality is attained for the spheres S”. The main obstruction being that on
the spheres the multiplicity m; of an eigenvalue X is large. In fact, as large as A%,
which combined with the lower bound (see for example [20])

2
mj < vol(X) sup ”d)”oo,
Ap+rp=0 @5
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shows that (1.1) is sharp. In contrast, for negatively curved Riemannian surfaces the
multiplicities are expected to be small and it is conjectured in [ 19] that there one should
have ||¢]lco K¢ (1 + 1)€. Here and hereafter, we shall adopt Vinogradov’s natation,
i.e. an expression ' <. G shall mean for every sufficiently small ¢ > 0 we have
|F| < C¢G for some constant C¢, which may depend on €, on the whole domain on
which the expression makes sense unless stated otherwise. However, even in this case,
not much beyond the bound in (1.1) is known. Only an extra factor of log(2 + A) has
been saved over (1.1), i.e. the sup-norm is bounded by (1 + ) %/ log(2 + A), which is
a consequence of the work of Bérard [1]. In a breakthrough paper [14], Iwaniec and
Sarnak have demonstrated a new method to bound the sup-norm of certain arithmetic
surfaces of negative curvature. They achieved the bound

Illoo Ke (14 2)TT€ (12)

for Hecke—Laplace eigenforms ¢. This constitutes a power saving over the bound (1.1).
Their method has been adopted by many in numerous other contexts. In particular, in
relation to our result, we shall mention Vanderkam [23], who extended their argument
to the positively curved surface S 2 and Blomer-Michel [3,4], who not only considered
the eigenvalue, but also the volume aspect of the sup-norm of certain arithmetic d-fold
copies of $? and S3, however they left the eigenvalue aspect of S for future work,
which has not appeared so far.

Before we state our results, we shall introduce some notation. We shall identify a
pointx = (x1, x2, X3, X4) on S3 with the quaternionx = x{-14+xp-i +x3-j+x4-k.
This identifies S* with B! (R), the subspace of the quaternions with norm 1. Here, we
denoted by B the Hamilton quaternion algebra. We denote by ¥ = xy -1 —xp-i —x3 -
J — x4 - k the conjugate of x and by tr(x) = x + X, nr(x) = xX = Xx the reduced
trace and reduced norm of x, respectively.

Similar to [15], we may define Hecke operators on L%($?) by

1 m
IvHE =z Y f(—x>.
8 nn VN

These Hecke operators are self-adjoint, commute with each other, and commute with
the Laplace operator and thus can be simultaneously diagonalised. Furthermore, the
Hecke operators are multiplicative, i.e. they satisfy Tpy o Ty = Ty y for (M, N) =1,
and satisfy Te+1 = Tpe o T)) — pTpe-1 for p an odd prime and o € N. These facts
may be deduced from, say, Dickson’s work [8] similar to [15, Lemma 2.3.] or from the
fact that the order B(Z) has class number 1 (see [6]), which means we may identify
a quaternion of reduced norm N with a unit and an integral left ideal of norm N,
together with local computations and a local to global principal for ideals [9].

We call a simultaneous eigenform of all the Hecke operators as well as the
Laplace operator a Hecke-Laplace eigenform. For a set of eigenvalues A =
{A(1), A(3), A(5), ...} of the odd Hecke operators, we denote by V) the common
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eigenspace, i.e. ¢ € Vy & VN € N, Nodd : Ty¢ = A(N)¢p. We are now able to
state our theorem.

Theorem 1 Let {¢;} be an orthonormal basis of Hecke—Laplace eigenforms of the
(—n(n + 2))-Laplace eigenspace on S3. Then, we have

2

sup » [ Y 1@ | <en’te

rest A \gjen

One immediately gets the following two corollaries.

Corollary 2 Let {¢;} be an orthonormal basis of Hecke—Laplace eigenforms of the
(—n(n + 2))-Laplace eigenspace on S3. Then, we have

/
sup D 1 (o)l e n®*e.

xe$3

Here, the sum over j is restricted to those Hecke—Laplace eigenforms with eigenvalue
1 for the Hecke operator Ty.

Corollary 3 For a Hecke—Laplace eigenform ¢ on 3 with Ty = ¢, we have

3
[Plloo e (1+1)87¢]l2.

A few remarks are in order. Theorem 1 is sharp by Cauchy—Schwarz and the pre-
trace formula (2.1) as there are about n values of A such that #{¢; € VA} > 0.
Corollary 2, although not optimal, marks a significant improvement over the trivial
bound. Indeed, it marks the halfway point between the trivial bound n* and the lower
bound of n2. One might speculate whether the fourth moment can be as small as n>+¢.
Corollary 3 marks a Burgess-type sub-convexity bound for the sup-norm. In particular
it constitutes an improvement over what is achievable through employing the amplifier
of Iwaniec—Sarnak [14] as the latter would only yield an exponent of %

The idea behind Theorem 1 is rather simple. We take the pre-trace formula (2.1),
attach a theta series to both sides, and use Parseval. In order to get to the left hand side
of the inequality of Theorem 1, we invoke a lower bound of the Petersson norm of an
arithmetically normalised newform due to Hoffstein—Lockhart [10]. The upper bound
follows from a lattice point counting argument. Our argument may, in some sense, be
seen as a realisation of a remark given in [14]. They remark that their result can be
improved to the same qualitative bound as given here (Corollary 3) if one has a good
lower bound on

> )P

m<N

To the best of the author’s knowledge, this has only been achieved for the Eisenstein
series, see [12,24], and dihedral Maass forms [11]. In our approach, we circumnavigate
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this issue by replacing the above sum with the residue at s = 1 of the Rankin—Selberg
convolution, which, here, is proportional to the Petersson norm of the corresponding
theta series. Additionally, we shall point out a fundamental difference in the two
methods. Their argument only gives a bound on a single form whereas our argument
yields a bound on the fourth moment over a whole family.

There is potential to improve upon Corollary 2 by also considering the Hecke oper-
ators acting on the right. Furthermore, it appears that this idea of using the theta lift to
double the moment is a fairly general one and can be used to tackle various (sup-)norm
problems, subject to being able to deal with the geometric side. In upcoming work
with I. Khayutin, we shall extend the technique to holomorphic forms on arithmetic
hyperbolic surfaces. Additionally, as the author retrospectively has found, this idea
can and has been used by Nelson [16—18] as a starting point for estimating/evaluating
the Quantum Variance.

2 Proof

As in the theorem, we shall denote by {¢;} an orthonormal basis of Hecke-Laplace
eigenforms of the (—n(n + 2))-Laplace eigenspace, where n € N. We have the fol-
lowing pre-trace formula on §3

1 _
il Z¢j(x)¢j(y) = U, (3tr(xY)), 2.1)
J

where U, is the n-th Chebyshev polynomial of the second kind, given by

sin((n + 1))

Up(cos(9)) = Sin(@)

2.2)

This may be easily deduced from the fact, that ﬁU,, (cos(0)) is the unique (nor-
malised) zonal spherical function of degree n (cf. [22, Eq. (6.26)]). We may restrict
ourselves now to even integers n as otherwise (2.1) shows that 77 identically vanishes
as Uy, is an odd function for n odd. We shall now consider the following theta series
for z in the upper half-plane H:

n 1
F.(x,y;2) = Z nr(m)2U, <—tr(mxi)> e(nr(m)z), 2.3)
meB(Z) 24/nr(m)
~ n mx
Dj(x:z)= Y  nr(m)ig, (—> e(nr(m)z),
' meB(Z) / nr(m)
=8¢;(x)®;(2). 2.4)
where
®j(z) =Y Aj(N)NZe(Nz). (2.5)
N>1
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We shall suppress the dependence on x, y in F, and write F,,(z) = F,(x, y; z) for
short. It follows from [13, Ch. 10] that for fixed x, y both F,, and ) j are cusp forms
on I'g(4) of weight n + 2 and trivial multiplier system. Hence, the same holds for
®;. A bit more is true. G,(z) = F,(5) is a cusp form for the theta subgroup I'y =

{y € SLo(@D)|y = (é (1)) or <(1) (1)> mod(2)} of weight n 4+ 2 and the multiplier

system vy which takes on the value 1 or —1 depending whether y = < é (1)> mod(2)

or not. The same is true for ® j and @ ;. For later use, we shall also require the Fourier
expansion of G,(z) at the cusp 1. It is given by

1 -1 _ n 1 — 1
<G,,|n+2 (1 0 )) (2)=— Z nr(m)2U, (Tmtr(mxy)> e (znr(m)z),

meB(Z)+§ ]
(2.6)

where & = %(1 + i + j + k). Furthermore, ®;(z) are Hecke eigenforms due to the
multiplicative nature of its Fourier coefficients. The pre-trace formula (2.1) in junction
with (2.4) implies

8 —
mz%(x)%(y)q)j(z) = Fu(2). 2.7
j

We set x = y and wish to compute || %Fn % in two ways. For this endeavour we
require an orthonormal basis of Hecke eigenforms of the space of cusp forms on I'g(4)
of weight n + 2. Such a basis has been computed by Blomer—Mili¢evié [5]':

U U (@ =) &na@-hlu (*f I/Oﬁ) ‘dl%‘

114 heB() eld

Here, B(l) denotes the set of ge/czmetrically2 normalised new forms & of level / with
positive first Fourier coefficient #(1) € R*. Furthermore, & 4(e) is some rather com-
plicated arithmetic function, but we shall only require the bound

|En.a(e)| e d€. (2.8)

By Atkin-Lehner theory, each ®; corresponds to some newform £ of level /|4. Let
Ay, denote the set of the odd Hecke eigenvalues of &. For each j such that ¢; € Vy,,
we have an equality

D;(2) =Y nj.aha(2). 2.9)

di$

I Corrections can be found at http://www.uni-math.gwdg.de/blomer/corrections.pdf.

2 With respect to the Petersson norm {f, g) = fF0(4)\]I-11 f(@g@)y"dxdy
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We are now able to compute || % F,|? using its spectral expansion (2.7). Upon recall-
ing x = y, we find it to equal

2

XY wiwre]| =33 Y Y P

114 heBW) ||¢jeva, 114 heBQ) a4 |97eW,

> 16D njatna(l)

¢i€Wy, it

>
- %h;g%,) > lana(I?

di4

> el
=Y Y

114 heB() (1) Z 1&n,a(D]?

di4

2

> @) " T+2n7¢ Y | Y g

A eV,
(D=1 ichh

(2.10)

In the above deduction, we have used Cauchy—Schwarz, the equality of the first Fourier
coefficient in (2.9), i.e. h(1) Zdl% nj.aén,.a(1) =1, (2.8), and the Hoffstein—Lockhart

[10] upper bound on |ﬁ(1) |2. It remains to bound the Petersson norm of F,, geometri-
cally. The following proposition suffices to conclude Theorem 1.

Proposition 1 Let n > 0 be an even integer. Then, we have
IFall? <e (4m)"T(n 42) - n'*e.

This estimate has already appeared in the author’s thesis [22] in a different context,
but for the purpose of accessibility we shall reproduce the proof here. We shall require
two propositions from the geometry of numbers.

Proposition 2 (Minkowski’s second Theorem) Let I C R”" be a closed convex 0O-
symmetric set of positive volume. Let A C R”" be a lattice and further let b| < Ay <
-+« < Ay be the successive minima of KC on A. Then, we have

n

2
—'VOI(R”/A) < ApAg - Apvol(K) < 2"vol(R"/A).
n!
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Proposition 3 Let L C R” be a closed convex O-symmetric set of positive volume. Let
A C R”" be a lattice and further let Ay < Ay < --- < A, be the successive minima of
K on A. Then, we have

n .
2i
KNA| < 1+4—).
=[] (1+3)
i=1
Proof See [2, Prop. 2.1]. O

Proof of Proposition 1 We have

dxdy L dxdy
[ m@pEE— [ Repe RSy
To(4)\H y To(4)\H y

e dxdy
=27 2/ P3Py 2=
F\H y

Ty\H yz

We further bound the latter integral by

oo p2 [e'e) 1
2.n 1 -1
/\? /O |Gn(2)|7y dXdy+f? /(; (Gn|n+2 <1 0 >> (2)

We shall only deal with Z; as the same lattice point counting argument may also be
applied to Z; due to the very nature of the Fourier expansion of G, at the cusp 1, see
(2.6). We insert the Fourier expansion (2.3) and integrate over x. We find

2
y'dxdy = T + I, say.

2
DIl D S e
Il = k"e_ Ky Un <—tr (m)> yndy
s R meB(Z) 2/nr(m)
nr(m)=k
2
0o 00
A/ nrim
< ane—any Z min {n + 1, # y'dy,
_ meB(Z) m5 +m3 + mj
nr(m)=k

where we have made use of the bound U, (x) < min{n+1, (1 — xz)_% }, which is easy
to read off the definition (2.2). We shall first deal with the contribution from & > 10x.
In this case, we may bound the sum over k (without the factor y”) by

< n2 Z kn+3e—2nky < n2 Z nn+3(ny)—n—3€—ne—nky
k>10n k>10n

& nn+5 (ne)—ny—n—3e—10nny'
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Hence, the contribution from k£ > 10n towards Z; is bounded by
+5 * o 3 +5 10
n —n - nny —3 n —n n
n""(me) /J2§ e y idy «n""(me) "e

This is sufficient. For k < 10n, we interchange the integral and summation in Z;. We
further extend the integral all the way down to O and find that the contribution is at
most

2
| \- )
Q)" r(n+1)z Z min {n + 1,
2 2 2
k= 1 meB(Z) m5 +m3 + my
nr(m)=k
1 10n dx
=Qo) " T+ 1) (—A(lOn)+ A(x) = (2.11)

where

a0 =S| Y min{nt1, 22 vnr(m)

I<k<X \ meB(Z) m5 +m3 + my
nr(m)=k

In order to bound A(X), we cover the quaternions m by sets C(R) with R = 2,
i € Np. They are defined as follows

nr(m)
R2

m e C(R) & m3+m3 +m? <

Fix a k and consider all points m € C(R) with nr(m) = k. We have |m| = Vi1 +
O(R™2)). Thus, there are < 1 + k%/R2 choices for m and for any such choice of
m1 there are <, 1+ k%"’é/R choices for (my, m3, my) satisfying nr(m) = k. Hence,
we deduce

l{m € B(Z)|nr(m) = k and m € C(R)}| <« (1 + kR ;‘3) kE. (2.12)

We are now going to refine this estimate as k varies in an interval [M, 2M]. In this
case, we have the conditions
2 5 5 5, _nr(m) 2M

This defines a 0-symmetric cylinder /C. By Proposition 3, the number of integral
quaternions m inside /C is bounded by
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1 1 1 1
< m * A1A2 * A1A2A3 * AiAaAzhg

Clearly, we have A1 > M’% and A A2A3ha > M 2R3 by Proposition 2. We also

claim AjA2 > M~'R and Ajhohs > M_%Rz. Let us illustrate this for AjA,. Let
v1, v2 be two linearly independent vectors in B(Z) for which the second successive
minima is attained. Then, Zvy 4 Zv; is a lattice with co-volume at least 1. Furthermore,
we have vol(C N (Rvy + Rwy)) <« MR, which may be deduced from a general
Pythagorean theorem [7]. Hence, by Proposition 2, we have A1ir > M —1R. The

bound A1A2h3 > M -3 R? follows from the same considerations. Thus, we find

MZ
lim € B(Z)|M < nr(m) <2M andm € C(R)}| < M? + w5 (2.13)

For our convenience, let us denote D(R) = C(R)\C(2R). From Cauchy—Schwarz, it
follows that

Aemy - Ao =Y. 3" min {n—l—l, vnr(m)

M<k<2M | meB(2) m3 +m3 + m?

nr(m)=k
2 2
Liog, (m)] loga ) i 2
< Y Y umitn o= Y ]+~ Y
M<k=2M \  i=0 izo M\ nr(m=k P\ =k
meD(2) meC(n)
(2.14)

for some positive weights 1;, 1, which we shall choose in due time. Equations (2.12)
and (2.13) imply

2

LM MP L
Z Zl L M2+ o+ o5 | ME

M<k<2M \ nr(m)=k
meC(R)

Hence, for M « n, (2.14) is further bounded by

Llogy ()] L logs (M) 220 e L3 log> (M) 22 gpie
| X mtn > w260 + > w24
i=0 i=0 ! i=| L 1og, (M) )41
L4 log, (M) |+
Llog, (n)] o) o 2
+ > wi+n > Somate g pate | (2.15)
, i 5
=0

i=|1logy(M)]+1
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We make the following choices for the weights: u =n - M 1 and

M327% 0 <i<|llog,(M)],
wi={M327,  [Logy(M)] <i < | Llogy(M)],

Mi2,  [Llog,(M)] <i < [logy(m)].

It follows that for M < n we have

AQM) — AM) <o M3+ 4 n>M3+e

and hence A(X) < X3¢ +n?X %€ for X « n which when combined with 2.11)
concludes the proposition. O
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