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Abstract
We prove sub-convex bounds on the fourth moment of Hecke–Laplace eigenforms
on S3. As a corollary, we get a Burgess-type sub-convex bound on the sup-norm of
an individual eigenform. This constitutes an improvement over what is achievable
through employing the Iwaniec–Sarnak amplifier.

Mathematics Subject Classification 11F72 (11F27, 58G25)

1 Introduction

Let X be a compactRiemannianmanifold and denote by� the correspondingLaplace–
Beltrami operator acting on functions on X . Given an eigenfunction φ of � with
eigenvalue −λ (i.e. �φ + λφ = 0), it is a classical question to bound the sup-norm of
φ. In general (see for example [21]), one has the bound

‖φ‖∞ ≤ CX · (1 + λ)
dim X−1

4 ‖φ‖2, (1.1)

for some constant CX , which depends only on X . In this generality, one cannot do
better as equality is attained for the spheres Sn . The main obstruction being that on

the spheres the multiplicity mλ of an eigenvalue λ is large. In fact, as large as λ
n−1
2 ,

which combined with the lower bound (see for example [20])

mλ ≤ vol(X) sup
�φ+λφ=0

‖φ‖2∞
‖φ‖22

,
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shows that (1.1) is sharp. In contrast, for negatively curved Riemannian surfaces the
multiplicities are expected to be small and it is conjectured in [19] that there one should
have ‖φ‖∞ �ε (1 + λ)ε . Here and hereafter, we shall adopt Vinogradov’s natation,
i.e. an expression F �ε G shall mean for every sufficiently small ε > 0 we have
|F | ≤ CεG for some constant Cε , which may depend on ε, on the whole domain on
which the expression makes sense unless stated otherwise. However, even in this case,
not much beyond the bound in (1.1) is known. Only an extra factor of log(2 + λ) has

been saved over (1.1), i.e. the sup-norm is bounded by (1+ λ)
1
4 / log(2+ λ), which is

a consequence of the work of Bérard [1]. In a breakthrough paper [14], Iwaniec and
Sarnak have demonstrated a new method to bound the sup-norm of certain arithmetic
surfaces of negative curvature. They achieved the bound

‖φ‖∞ �ε (1 + λ)
5
24+ε (1.2)

forHecke–Laplace eigenformsφ. This constitutes a power saving over the bound (1.1).
Their method has been adopted by many in numerous other contexts. In particular, in
relation to our result, we shall mention Vanderkam [23], who extended their argument
to the positively curved surface S2, and Blomer–Michel [3,4], who not only considered
the eigenvalue, but also the volume aspect of the sup-norm of certain arithmetic d-fold
copies of S2 and S3, however they left the eigenvalue aspect of S3 for future work,
which has not appeared so far.

Before we state our results, we shall introduce some notation. We shall identify a
point x = (x1, x2, x3, x4) on S3 with the quaternion x = x1 ·1+ x2 · i + x3 · j + x4 · k.
This identifies S3 with B1(R), the subspace of the quaternions with norm 1. Here, we
denoted by B the Hamilton quaternion algebra. We denote by x = x1 ·1− x2 · i − x3 ·
j − x4 · k the conjugate of x and by tr(x) = x + x, nr(x) = xx = xx the reduced
trace and reduced norm of x, respectively.

Similar to [15], we may define Hecke operators on L2(S3) by

(TN f )(x) = 1

8

∑

m∈B(Z)
nr(m)=N

f

(
m√
N
x
)

.

These Hecke operators are self-adjoint, commute with each other, and commute with
the Laplace operator and thus can be simultaneously diagonalised. Furthermore, the
Hecke operators are multiplicative, i.e. they satisfy TM ◦ TN = TMN for (M, N ) = 1,
and satisfy Tpα+1 = Tpα ◦ Tp − pTpα−1 for p an odd prime and α ∈ N. These facts
may be deduced from, say, Dickson’s work [8] similar to [15, Lemma 2.3.] or from the
fact that the order B(Z) has class number 1 (see [6]), which means we may identify
a quaternion of reduced norm N with a unit and an integral left ideal of norm N ,
together with local computations and a local to global principal for ideals [9].

We call a simultaneous eigenform of all the Hecke operators as well as the
Laplace operator a Hecke–Laplace eigenform. For a set of eigenvalues λ =
{λ(1), λ(3), λ(5), . . . } of the odd Hecke operators, we denote by Vλ the common
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Sup-norm of Hecke–Laplace eigenforms on S3 545

eigenspace, i.e. φ ∈ Vλ ⇔ ∀N ∈ N, N odd : TNφ = λ(N )φ. We are now able to
state our theorem.

Theorem 1 Let {φ j } be an orthonormal basis of Hecke–Laplace eigenforms of the
(−n(n + 2))-Laplace eigenspace on S3. Then, we have

sup
x∈S3

∑

λ
λ(1)=1

⎛

⎝
∑

φ j∈Vλ

|φ j (x)|2
⎞

⎠
2

�ε n3+ε .

One immediately gets the following two corollaries.

Corollary 2 Let {φ j } be an orthonormal basis of Hecke–Laplace eigenforms of the
(−n(n + 2))-Laplace eigenspace on S3. Then, we have

sup
x∈S3

∑′
j
|φ j (x)|4 �ε n3+ε .

Here, the sum over j is restricted to those Hecke–Laplace eigenforms with eigenvalue
1 for the Hecke operator T1.

Corollary 3 For a Hecke–Laplace eigenform φ on S3 with T1φ = φ, we have

‖φ‖∞ �ε (1 + λ)
3
8+ε‖φ‖2.

A few remarks are in order. Theorem 1 is sharp by Cauchy–Schwarz and the pre-
trace formula (2.1) as there are about n values of λ such that #{φ j ∈ Vλ} > 0.
Corollary 2, although not optimal, marks a significant improvement over the trivial
bound. Indeed, it marks the halfway point between the trivial bound n4 and the lower
bound of n2. One might speculate whether the fourth moment can be as small as n2+ε .
Corollary 3 marks a Burgess-type sub-convexity bound for the sup-norm. In particular
it constitutes an improvement over what is achievable through employing the amplifier
of Iwaniec–Sarnak [14] as the latter would only yield an exponent of 5

12 .
The idea behind Theorem 1 is rather simple. We take the pre-trace formula (2.1),

attach a theta series to both sides, and use Parseval. In order to get to the left hand side
of the inequality of Theorem 1, we invoke a lower bound of the Petersson norm of an
arithmetically normalised newform due to Hoffstein–Lockhart [10]. The upper bound
follows from a lattice point counting argument. Our argument may, in some sense, be
seen as a realisation of a remark given in [14]. They remark that their result can be
improved to the same qualitative bound as given here (Corollary 3) if one has a good
lower bound on

∑

m≤N

|λ(m)|2.

To the best of the author’s knowledge, this has only been achieved for the Eisenstein
series, see [12,24], and dihedralMaass forms [11]. In our approach, we circumnavigate
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546 R. S. Steiner

this issue by replacing the above sum with the residue at s = 1 of the Rankin–Selberg
convolution, which, here, is proportional to the Petersson norm of the corresponding
theta series. Additionally, we shall point out a fundamental difference in the two
methods. Their argument only gives a bound on a single form whereas our argument
yields a bound on the fourth moment over a whole family.

There is potential to improve upon Corollary 2 by also considering the Hecke oper-
ators acting on the right. Furthermore, it appears that this idea of using the theta lift to
double the moment is a fairly general one and can be used to tackle various (sup-)norm
problems, subject to being able to deal with the geometric side. In upcoming work
with I. Khayutin, we shall extend the technique to holomorphic forms on arithmetic
hyperbolic surfaces. Additionally, as the author retrospectively has found, this idea
can and has been used by Nelson [16–18] as a starting point for estimating/evaluating
the Quantum Variance.

2 Proof

As in the theorem, we shall denote by {φ j } an orthonormal basis of Hecke–Laplace
eigenforms of the (−n(n + 2))-Laplace eigenspace, where n ∈ N. We have the fol-
lowing pre-trace formula on S3

1

n + 1

∑

j

φ j (x)φ j ( y) = Un
( 1
2 tr(x y)

)
, (2.1)

where Un is the n-th Chebyshev polynomial of the second kind, given by

Un(cos(θ)) = sin((n + 1)θ)

sin(θ)
. (2.2)

This may be easily deduced from the fact, that 1
n+1Un(cos(θ)) is the unique (nor-

malised) zonal spherical function of degree n (cf. [22, Eq. (6.26)]). We may restrict
ourselves now to even integers n as otherwise (2.1) shows that T1 identically vanishes
as Un is an odd function for n odd. We shall now consider the following theta series
for z in the upper half-plane H:

Fn(x, y; z) =
∑

m∈B(Z)

nr(m)
n
2Un

(
1

2
√
nr(m)

tr(mx y)
)
e(nr(m)z), (2.3)

�̃ j (x; z) =
∑

m∈B(Z)

nr(m)
n
2 φ j

(
mx√
nr(m)

)
e(nr(m)z),

= 8φ j (x)� j (z). (2.4)

where
� j (z) =

∑

N≥1

λ j (N )N
n
2 e (Nz) . (2.5)
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We shall suppress the dependence on x, y in Fn and write Fn(z) = Fn(x, y; z) for
short. It follows from [13, Ch. 10] that for fixed x, y both Fn and �̃ j are cusp forms
on 	0(4) of weight n + 2 and trivial multiplier system. Hence, the same holds for
� j . A bit more is true. Gn(z) = Fn(

z
2 ) is a cusp form for the theta subgroup 	θ =

{γ ∈ SL2(Z)|γ ≡
(
1 0
0 1

)
or

(
0 1
1 0

)
mod(2)} of weight n + 2 and the multiplier

system υθ which takes on the value 1 or −1 depending whether γ ≡
(
1 0
0 1

)
mod(2)

or not. The same is true for �̃ j and � j . For later use, we shall also require the Fourier
expansion of Gn(z) at the cusp 1. It is given by

(
Gn|n+2

(
1 −1
1 0

))
(z)= −

∑

m∈B(Z)+ξ

nr(m)
n
2Un

(
1

2
√
nr(m)

tr(mx y)
)
e
( 1
2nr(m)z

)
,

(2.6)
where ξ = 1

2 (1 + i + j + k). Furthermore, � j (z) are Hecke eigenforms due to the
multiplicative nature of its Fourier coefficients. The pre-trace formula (2.1) in junction
with (2.4) implies

8

n + 1

∑

j

φ j (x)φ j ( y)� j (z) = Fn(z). (2.7)

We set x = y and wish to compute ‖ n+1
8 Fn‖2 in two ways. For this endeavour we

require an orthonormal basis of Hecke eigenforms of the space of cusp forms on	0(4)
of weight n + 2. Such a basis has been computed by Blomer–Milićević [5]1:

⋃

l|4

⋃

h∈B(l)

⎧
⎨

⎩hd(z) =
∑

e|d
ξh,d(e) · h|n+2

(√
e 0
0 1/

√
e

) ∣∣∣∣d| 4l

⎫
⎬

⎭ .

Here, B(l) denotes the set of geometrically2 normalised new forms h of level l with
positive first Fourier coefficient ĥ(1) ∈ R

+. Furthermore, ξh,d(e) is some rather com-
plicated arithmetic function, but we shall only require the bound

|ξh,d(e)| �ε dε . (2.8)

By Atkin–Lehner theory, each � j corresponds to some newform h of level l|4. Let
λh denote the set of the odd Hecke eigenvalues of h. For each j such that φ j ∈ Vλh ,
we have an equality

� j (z) =
∑

d| 4l
η j,dhd(z). (2.9)

1 Corrections can be found at http://www.uni-math.gwdg.de/blomer/corrections.pdf.
2 With respect to the Petersson norm 〈 f , g〉 = ∫

	0(4)\H f (z)g(z)yndxdy
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We are now able to compute ‖ n+1
8 Fn‖2 using its spectral expansion (2.7). Upon recall-

ing x = y, we find it to equal

∑

l|4

∑

h∈B(l)

∥∥∥∥∥∥

∑

φ j∈Vλh

|φ j (x)|2� j

∥∥∥∥∥∥

2

=
∑

l|4

∑

h∈B(l)

∑

d| 4l

∣∣∣∣∣∣

∑

φ j∈Vλh

|φ j (x)|2η j,d

∣∣∣∣∣∣

2

≥
∑

l|4

∑

h∈B(l)

∣∣∣∣∣∣∣

∑

φ j∈Vλh

|φ j (x)|2
∑

d| 4l
η j,dξh,d(1)

∣∣∣∣∣∣∣

2

∑

d| 4l
|ξh,d(1)|2

=
∑

l|4

∑

h∈B(l)

⎛

⎝
∑

φ j∈Vλh

|φ j (x)|2
⎞

⎠
2

|̂h(1)|2
∑

d| 4l
|ξh,d(1)|2

�ε (4π)−n	(n + 2)n−ε
∑

λ
λ(1)=1

⎛

⎝
∑

φ j∈Vλ

|φ j (x)|2
⎞

⎠
2

.

(2.10)

In the above deduction, we have usedCauchy–Schwarz, the equality of the first Fourier
coefficient in (2.9), i.e. ĥ(1)

∑
d| 4l η j,dξh,d(1) = 1, (2.8), and the Hoffstein–Lockhart

[10] upper bound on |̂h(1)|2. It remains to bound the Petersson norm of Fn geometri-
cally. The following proposition suffices to conclude Theorem 1.

Proposition 1 Let n > 0 be an even integer. Then, we have

‖Fn‖2 �ε (4π)−n	(n + 2) · n1+ε .

This estimate has already appeared in the author’s thesis [22] in a different context,
but for the purpose of accessibility we shall reproduce the proof here. We shall require
two propositions from the geometry of numbers.

Proposition 2 (Minkowski’s second Theorem) Let K ⊆ R
n be a closed convex 0-

symmetric set of positive volume. Let � ⊂ R
n be a lattice and further let λ1 ≤ λ2 ≤

· · · ≤ λn be the successive minima of K on �. Then, we have

2n

n! vol(R
n/�) ≤ λ1λ2 · · · λnvol(K) ≤ 2nvol(Rn/�).
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Proposition 3 LetK ⊆ R
n be a closed convex 0-symmetric set of positive volume. Let

� ⊂ R
n be a lattice and further let λ1 ≤ λ2 ≤ · · · ≤ λn be the successive minima of

K on �. Then, we have

|K ∩ �| ≤
n∏

i=1

(
1 + 2i

λi

)
.

Proof See [2, Prop. 2.1]. ��
Proof of Proposition 1 We have

∫

	0(4)\H
|Fn(z)|2yn+2 dxdy

y2
= 2−n−2

∫

	0(4)\H
|Fn(z)|2(2y)n+2 dxdy

y2

= 2−n−2
∫

	(2)\H
|Fn( z2 )|2yn+2 dxdy

y2

= 2−n−1
∫

	θ\H
|Gn(z)|2yn+2 dxdy

y2
.

We further bound the latter integral by

∫ ∞
√
3
2

∫ 2

0
|Gn(z)|2yndxdy +

∫ ∞
√
3
2

∫ 1

0

∣∣∣∣

(
Gn|n+2

(
1 −1
1 0

))
(z)

∣∣∣∣
2

yndxdy = I1 + I2, say.

We shall only deal with I1 as the same lattice point counting argument may also be
applied to I2 due to the very nature of the Fourier expansion of Gn at the cusp 1, see
(2.6). We insert the Fourier expansion (2.3) and integrate over x . We find

I1 =
∫ ∞

√
3
2

∞∑

k=1

kne−2πky

⎛

⎜⎜⎝
∑

m∈B(Z)
nr(m)=k

Un

(
1

2
√
nr(m)

tr (m)

)
⎞

⎟⎟⎠

2

yndy

≤
∫ ∞

√
3
2

∞∑

k=1

kne−2πky

⎛

⎜⎜⎝
∑

m∈B(Z)
nr(m)=k

min

⎧
⎨

⎩n + 1,

√
nr(m)√

m2
2 + m2

3 + m2
4

⎫
⎬

⎭

⎞

⎟⎟⎠

2

yndy,

where we have made use of the boundUn(x) ≤ min{n+1, (1− x2)− 1
2 }, which is easy

to read off the definition (2.2). We shall first deal with the contribution from k ≥ 10n.
In this case, we may bound the sum over k (without the factor yn) by

� n2
∑

k≥10n

kn+3e−2πky � n2
∑

k≥10n

nn+3(π y)−n−3e−ne−πky

� nn+5(πe)−n y−n−3e−10πny .
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550 R. S. Steiner

Hence, the contribution from k ≥ 10n towards I1 is bounded by

nn+5(πe)−n
∫ ∞

√
3
2

e−10πny y−3dy � nn+5(πe)−ne−10n .

This is sufficient. For k ≤ 10n, we interchange the integral and summation in I1. We
further extend the integral all the way down to 0 and find that the contribution is at
most

(2π)−n−1	(n + 1)
10n∑

k=1

1

k

⎛

⎜⎜⎝
∑

m∈B(Z)
nr(m)=k

min

⎧
⎨

⎩n + 1,

√
nr(m)√

m2
2 + m2

3 + m2
4

⎫
⎬

⎭

⎞

⎟⎟⎠

2

= (2π)−n−1	(n + 1)

(
1

10n
A(10n) +

∫ 10n

1
A(x)

dx

x2

)
, (2.11)

where

A(X) =
∑

1≤k≤X

⎛

⎜⎜⎝
∑

m∈B(Z)
nr(m)=k

min

⎧
⎨

⎩n + 1,

√
nr(m)√

m2
2 + m2

3 + m2
4

⎫
⎬

⎭

⎞

⎟⎟⎠

2

.

In order to bound A(X), we cover the quaternions m by sets C(R) with R = 2i ,
i ∈ N0. They are defined as follows

m ∈ C(R) ⇔ m2
2 + m2

3 + m2
4 ≤ nr(m)

R2 .

Fix a k and consider all points m ∈ C(R) with nr(m) = k. We have |m1| = √
k(1 +

O(R−2)). Thus, there are � 1 + k
1
2 /R2 choices for m1 and for any such choice of

m1 there are �ε 1+ k
1
2+ε/R choices for (m2,m3,m4) satisfying nr(m) = k. Hence,

we deduce

|{m ∈ B(Z)|nr(m) = k and m ∈ C(R)}| �ε

(
1 + k

1
2

R
+ k

R3

)
kε . (2.12)

We are now going to refine this estimate as k varies in an interval [M, 2M]. In this
case, we have the conditions

m2
1 ≤ 2M and m2

2 + m2
3 + m2

4 ≤ nr(m)

R2 ≤ 2M

R2 .

This defines a 0-symmetric cylinder K. By Proposition 3, the number of integral
quaternions m inside K is bounded by
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� 1

λ1
+ 1

λ1λ2
+ 1

λ1λ2λ3
+ 1

λ1λ2λ3λ4
.

Clearly, we have λ1 � M− 1
2 and λ1λ2λ3λ4 � M−2R3 by Proposition 2. We also

claim λ1λ2 � M−1R and λ1λ2λ3 � M− 3
2 R2. Let us illustrate this for λ1λ2. Let

v1, v2 be two linearly independent vectors in B(Z) for which the second successive
minima is attained. Then,Zv1+Zv2 is a latticewith co-volume at least 1. Furthermore,
we have vol(K ∩ (Rv1 + Rv2)) � MR−1, which may be deduced from a general
Pythagorean theorem [7]. Hence, by Proposition 2, we have λ1λ2 � M−1R. The

bound λ1λ2λ3 � M− 3
2 R2 follows from the same considerations. Thus, we find

|{m ∈ B(Z)|M ≤ nr(m) ≤ 2M and m ∈ C(R)}| � M
1
2 + M2

R3 . (2.13)

For our convenience, let us denote D(R) = C(R)\C(2R). From Cauchy–Schwarz, it
follows that

A(2M) − A(M) =
∑

M<k≤2M

⎛

⎜⎜⎝
∑

m∈B(Z)
nr(m)=k

min

⎧
⎨

⎩n + 1,

√
nr(m)√

m2
2 + m2

3 + m2
4

⎫
⎬

⎭

⎞

⎟⎟⎠

2

�
∑

M<k≤2M

⎛

⎝
�log2(n)�∑

i=0

μi + μ

⎞

⎠

⎛

⎜⎜⎝

�log2(n)�∑

i=0

22i

μi

⎛

⎜⎜⎝
∑

nr(m)=k
m∈D(2i )

1

⎞

⎟⎟⎠

2

+ n2

μ

⎛

⎜⎜⎝
∑

nr(m)=k
m∈C(n)

1

⎞

⎟⎟⎠

2⎞

⎟⎟⎠

(2.14)

for some positive weights μi , μ, which we shall choose in due time. Equations (2.12)
and (2.13) imply

∑

M<k≤2M

⎛

⎜⎜⎝
∑

nr(m)=k
m∈C(R)

1

⎞

⎟⎟⎠

2

�ε

(
M

1
2 + M

5
2

R4 + M3

R6

)
Mε .

Hence, for M � n, (2.14) is further bounded by

�ε

⎛

⎝
�log2(n)�∑

i=0

μi + μ

⎞

⎠

⎛

⎜⎝
� 1
4 log2(M)�∑

i=0

22i

μi

M3+ε

26i
+

� 1
2 log2(M)�∑

i=� 1
4 log2(M)�+1

22i

μi

M
5
2+ε

24i

⎞

⎟⎠

+
⎛

⎝
�log2(n)�∑

i=0

μi + μ

⎞

⎠

⎛

⎜⎝
�log2(n)�∑

i=� 1
2 log2(M)�+1

22i

μi
M

1
2+ε + n2

μ
M

1
2+ε

⎞

⎟⎠ . (2.15)
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552 R. S. Steiner

We make the following choices for the weights: μ = n · M 1
4 and

μi =

⎧
⎪⎨

⎪⎩

M
3
2 2−2i , 0 ≤ i ≤ � 1

4 log2(M)�,
M

5
4 2−i , � 1

4 log2(M)� < i ≤ � 1
2 log2(M)�,

M
1
4 2i , � 1

2 log2(M)� < i ≤ �log2(n)�.

It follows that for M � n we have

A(2M) − A(M) �ε M3+ε + n2M
1
2+ε

and hence A(X) �ε X3+ε + n2X
1
2+ε for X � n which when combined with (2.11)

concludes the proposition. ��
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