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A B S T R A C T

Critical infrastructure networks are often described as (i) interdependent in nature for operability, (ii) vulnerable
against multiple natural or human-made hazards, and (iii) vital for providing the essential needs and ensuring
the functionality of societies. Developing a plan for infrastructure network resilience is enabled by the identi-
fication of the most critical components that have the largest impact on the performance interdependent net-
works, as well as on society in terms of serving its needs. In this work, we propose a component importance
measure that is driven by the social aspects of resilience, which quantifies the impact of equitable restoration
activities on components of interdependent infrastructure networks. To integrate the social expectations from
various perspectives in the restoration scheduling of interdependent infrastructure networks, we combine this
component importance measure with multiple social vulnerability measures that define different socio-economic
characteristics in a society. Finally, we implement a multi-criteria decision analysis technique to determine the
final importance ranking of the components and illustrate our approach with two critical infrastructure networks
in Shelby County, TN. To our knowledge, our proposed methodology is the first to incorporate both social equity
and social vulnerability concepts with the component importance measures of critical interdependent infra-
structure network restoration scheduling.

1. Introduction

Critical infrastructure networks, including electric power, water
distribution, gas, telecommunication, and transportation, ensure the
economic activities, healthcare, security, and overall quality of life of
society. These networks and their components, which are crucial for the
daily operations of communities, are vulnerable against multiple
stressors (e.g., natural disasters, malevolent attacks, random failures,
and system aging) that could interrupt their proper functioning. For the
last two decades, the importance of ensuring that infrastructure net-
works are secure and prepared for any unexpected threats are high-
lighted in the literature. The Report of the President’s Commission on
Critical Infrastructure Protection (1997), The Infrastructure Security
Partnership (2011), the National Infrastructure Protection Plan
(Department of Homeland Security, 2013), White House (2013) and
many other scientific reports emphasized on how important the critical
infrastructures are for society, what type of properties should they
contain, and how resilient critical infrastructures should perform in
case of disruptive events.

In the study of critical infrastructure resilience, Ahern (2011) sug-
gests that the focus of the proposed research methodologies recently
shifted from “fail-safe” to “safe-to-fail” networks. Rather than pro-
tecting reliable infrastructure networks, emphasis has shifted to pre-
paring for and developing resilient infrastructures that are designed
with the reality of possible disruptions in mind so that these networks
can ensure recovery and can achieve a certain level of performance in a
timely manner even after being subjected to inoperability (Turnquist
and Vugrin, 2013).
Planning for resilient infrastructure networks requires accounting

for their interdependent nature, as infrastructure networks often rely on
each other for operability. Two infrastructure networks are classified as
interdependent if the state of one network is correlated with or influ-
enced by the state of the other network (Rinaldi et al. 2001). For ex-
ample, the electricity generated and transported in the power network
could also be used in supplying energy to water pumps, and the water
that is pumped and transported in the water network could be used to
cool off generators in the power network. Disruptions in one network
could affects others, and the restoration of one network could be
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required for the full restoration of others.
Barker et al. (2017) note the difference between infrastructure

networks, the engineered cyber-physical systems that enable essential
“lifeline” services for society, and community networks, the inter-
connected society that such lifeline networks support (e.g., relation-
ships among people and communities). The relationship between these
networks is depicted generally in Fig. 1. Because infrastructure net-
works exist not for their own purposes but because networks of com-
munities rely upon them, it is important to understand how physical
disruptions impact communities and thus how physical infrastructure
resilience enables community resilience. Community resilience defined
as the ability of a community to successfully cope with disruptions and
to coordinate recovery activities (Rotmans et al., 2003), and it is very
much a function of the resilience of underlying infrastructure networks.
In the most recent literature, incorporating the social aspects and

impacts become a highly relevant concern in applications dealing with
(i) climate change mitigation and adaptation studies (Kontokosta and
Malik 2018, Dulal et al. 2009), (ii) critical infrastructure functionality
and protection analysis (Chen et al. 2019; France-Mensah et al.2019),
and (iii) developing and planning resilient cities (Bibri and Krogstie
2017, Cariolet et al. 2019, Marana et al. 2019, Ribeiro and Gonçalves
2019, and Zhou et al. 2019). Through these studies, both social equity
and community resilience concepts are highlighted to represent the
social concerns related to urban resilience and healthy functionality of
urban systems. More specifically, Rosenheim et al. (2017) integrated
the household characteristics with the modeling of infrastructure net-
work post-hazard resilience, Gardoni and Murphy (2018) defined sus-
tainability and resilience of interdependent infrastructure networks,
and promoted certain engineering tools for developing them which
aims to promote societal well-being. Koliou et al. (2018) suggested
extensions to existing modeling methodologies aimed at developing an
improved, integrated understanding of community resilience. Karakoc
et al. (2019) integrated social vulnerability to adapt community resi-
lience with the restoration scheduling of interdependent infrastructure
networks, Tabandeh et al. (2018) developed probabilistic models to
predict the societal impact of disruptive events and a mathematical
formulation for societal resilience analysis. Kammouh et al. (2019)
defined an indicator-based method for measuring urban community
resilience. Yang et al. (2020) developed an approach to assess pre-event
socio-technical community resilience that integrates a topological-
based evaluation, a physics-based performance simulation, and multi-
criteria decision analysis.
From another aspect of considering the societal dimension,

integrating social equity through preparedness and recovery activities
against disruptions is another critical humanitarian approach that has
also been introduced in the literature (Gralla et al. 2014, Huang et al.
2012). Especially in disaster relief efforts and humanitarian supply
chain management, social equity is addressed such that (i) the optimal
distribution of relief goods or demanded commodities to the effected
society ensures that an equitable amount of goods are provided to each
portion of the community (Davis et al. 2013, Noyan et al., 2015) or (ii)
the relief efforts and allocation of resources are reshaped based on the
varying vulnerability, expectations, and social demographics of the
different groups (Arnette and Zobel 2019, and Zolfaghari and
Peyghaleh 2015).
Different components in the infrastructure networks can have dif-

ferent impacts on its own network, as well as other interdependent
infrastructure and community networks. For example, the outage of a
particular electric power substation could adversely impact the entire
power grid, the water and telecommunications networks that require
electricity, and several populations, such as elderly, disabled, young
children, and those without economic means, which could be vulner-
able during times of disruption since they are potentially unable to
function well on their own and they lack ability to evacuate without
substantial assistance (Tierney 2006). As such, it is important to iden-
tify the critical components of the infrastructure networks to under-
stand their impacts and to effectively plan for their restoration. The
identification of critical components has been aided by component
importance measures (CIMs), long studied in the reliability engineering
literature. Particularly for networks, topology-driven CIMs rank com-
ponents by average path length (Newman et al., 2006) and network
efficiency (Nagurney and Qiang 2009), while flow-driven CIMs have
been developed for various vulnerability measures (Nicholson et al.
2016, Ouyang, 2014, Rocco et al., 2010). Several importance measures
have been developed to capture network resilience (Barker et al. 2013,
Whitson and Ramirez-Marquez 2009), including recoverability-driven
CIMs identified by their optimal repair time and their role in reducing
resilience (Fang et al. 2016). Several CIMs have been developed for
interdependent networks, including: (i) interdependent rank ordering,
which considers physical interdependency among and ranks each node
separately for multiple importance criteria (i.e., network connectivity,
flow transfer, network vulnerability, flow traversal), (ii) geographic
valued worth, which ranks geographic locations by the disruption im-
pact of that location over the multiple, geographically interdependent
networks, (iii) a CIM that ranks components in interdependent net-
works according to their synergistic consequences over the total sy-
nergistic consequences for a specific failure set (Johansson and Hassel
2010), and (iv) a CIM that evaluates network components according to
the drop in the network performance that is caused by their one-at-a-
time disruption (Wang et al. 2013).
In this study, we develop a resilience-driven CIM that combines (i)

interdependent infrastructure network restoration with (ii) impact on
the community that those infrastructure network components serve.
This is a new contribution to the literature, to the best of our knowl-
edge, in that we consider several indicators of social aspects of the re-
silience of physical infrastructures system where both types of social
equity (i.e. vertical and horizontal) and the multiple dimensions of
social vulnerability, driven by the Social Vulnerability Index (Cutter
et al. 2003), are integrated with the resilience-driven CIM. In this study,
the components of the interdependent infrastructure networks are se-
parately ranked according to those social vulnerability dimensions of
the CIM, and then these rankings are aggregated with a multi-criteria
decision analysis technique. This proposed approach provides a new
perspective on infrastructure network component importance that ties
heavily to social equity and community resilience, incorporating the
social reliance on critical infrastructure resilience for a more compre-
hensive understanding of the relationship between physical and social
urban systems.
The remainder of this paper is organized as follows. In Section 2, we

Fig. 1. Illustration of the interconnection between physical infrastructure and
community networks.
adapted from Barker et al. (2017).
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explain the methodological background that our proposed approach is
built upon, in Section 3 we introduce our mixed-integer multi-objective
resilience-driven optimization model for interdependent infrastructure
network restoration problem. In Section 4, we define the adopted
component importance measure in our study and in Section 5 the il-
lustrative example of our proposed study is included over the critical
infrastructure networks in Shelby County, TN. Finally, Section 5 is
followed by the concluding remarks of our paper.

2. Background

In this section, we discuss some literature that motivates our de-
velopment of a new approach to developing mainly community-driven
component importance measures for interdependent infrastructure
networks.

2.1. Network resilience

Network resilience is often accepted as the ability of the system to
withstand, adapt to, and recover from a disruption to reach the desired
level of performance (Obama, 2013). Many approaches have been
proposed to quantify the resilience level of a system (Hosseini et al.
2016). Such approaches calculate resilience as the normalized area
under the performance function (Bruneau et al. 2003, Cimellaro et al.
2010), as the ratio of expected degradation over network performance
(Rose 2007), and as the probability of failure recovery (Li and Lence
2007), among several others. More recently, Ouyang and Dueñas-
Osorio (2012) introduced a time-dependent resilience measure for as-
sessment and improvement for urban infrastructure systems, Ouyang
et al. (2012) developed a three-stage resilience analysis framework for
urban infrastructure systems, and Panteli et al. (2017a), Panteli et al.
(2017b) introduced a resilience trapezoid to quantify the time-depen-
dent resilience metrics to capture its dynamic nature.
In this study, we adopt the resilience paradigm proposed by Henry

and Ramirez-Marquez (2012), where resilience at a given time is
quantified as the recovery in the network performance by the restora-
tion over the performance loss due to a disruption. That is, resilience is
formulated as =t e t t( | ) Recovery( )/Loss( )j

d where e j is the disruptive
event and < <t t td f as illustrated in Fig. 2. Also depicted in Fig. 2 are
the two primary dimensions of network resilience: vulnerability, or the
magnitude of damage in network performance due to a disruption
(Jönsson et al. 2008), and recoverability, or the speed at which the
network reaches to a desired performance level (Rose 2007).
The CIM proposed in this paper is primarily motivated by the re-

coverability dimension of Fig. 2. In the last decade, the study focus is
shifted to the recovery state of the critical infrastructure networks and

planning their restoration after a disruptive event. Many approaches
have been proposed for infrastructure network restoration scheduling
from a network optimization perspective, including a mixed-integer
model developed by Nurre et al. (2012) that maximizes the cumulative
weighted network flow through recovery by assigning disrupted com-
ponents to available work crews; a dynamic path based mathematical
model by Aksu and Ozdamar (2014) that maximizes the accessibility of
the network by removing the disruption debris, and a bi-level optimi-
zation model by Vugrin et al. (2014) that provides the optimum re-
covery schedule to maximize the network flow. Sharkey et al. (2015)
proposed a mixed-integer programming that determines the disrupted
components that should be restored and assigns them to work crews
according to minimal cost of total flow, restoration, and unmet demand.
González et al. (2016) proposed an interdependent infrastructure de-
sign problem to compute the optimum recovery schedule with the
consideration of operational, budget, and resource availability con-
straints. Lastly, Almoghathawi et al. (2019) formulated a multi-objec-
tive mixed integer programming that returns the optimal restoration
schedule of disrupted components by maximizing the resilience and
minimizing the total restoration cost of the interdependent infra-
structure networks.
More recently, from a different modeling perspective, Guidotti et al.

(2016) developed a unified theoretical methodology that models in-
terdependent infrastructure networks to assess the resilience of the
system of networks with a probabilistic procedure. Panteli et al.
(2017a), Panteli et al. (2017b) proposed a sequential Monte Carlo-
based time-series simulation model to measure the resilience of power
infrastructure network as a context of system of systems. Nan and
Sansavini (2017) defined a quantitative method for assessing system
resilience that integrates a hybrid modeling approach to represent
failure behavior of infrastructure systems. Batouli and Mostafavi (2018)
created a complex system modeling framework that integrates sto-
chastic simulation for stressor effects, a dynamic modeling for infra-
structure conditions, and a decision-theoretic model of infrastructure
management to analyze the resilience of road infrastructure against sea-
level rise.
The examined approaches and many more are based on developing

a system of resilient infrastructure networks so that these systems
would be able to mitigate with the inevitable risk of disruption in a
timely manner to maintain their functioning at a certain desired level.

2.2. Social vulnerability

In defining network vulnerability in a holistic way, Mileti (1999)
focused on the impacts of the surrounding environment vulnerabilities
from three perspectives: (i) the physical environment, (ii) the

Fig. 2. Illustration of network performance, t( ), across different transition states.
adopted from Henry and Ramirez-Marquez (2012).
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constructed structures, and (iii) the served society. The first perspective
deals with the spatial characteristics of the setting of an infrastructure
network and could be quantified with spatially-explicit information (i.e.
location of the network components) (Mileti 1999) and the evacuation
potential of the study region (in arterial miles/mi2) (National Research
Council, 2006). The second perspective deals with the vulnerability of
structures, which could be quantified by housing age (National
Research Council, 2006) and the tree trimming frequency of the region
(Guikema et al. 2006). With regard to the third perspective, on un-
derstanding the vulnerability level of the served society, more human
and community characteristics are considered. For example, in terms of
the adequacy of restoration resources for a given community, some
studies considered the number of available resources (i.e., restoration
work crews and equipment, physicians and emergency responders)
(Norris et al., 2007), the shelter capacity (Tierney 2009), and the
medical capacity (Auf der Heide and Scanlon 2007), among others.
Other studies have emphasized the importance of socio-economic de-
mographics to describe the vulnerability of the served society. For ex-
ample, Norris et al. (2007) and Cutter et al. (2008) focused on racial
and ethnic inequalities in communities, Norris et al. (2007) and Morrow
(2002) focused on educational inequality, and Cutter et al. (2008)
analyzed previous disaster experience. Cutter et al. (2008) and Silver
and Andrey (2014) suggest that if the community learns from the
previous hazard event and utilizes the opportunity to improve its pre-
paredness, it is likely to increase its inherent resilience before the next
event occurs.
Social vulnerability is defined as the set of characteristics of an in-

dividual or a group that influences their capacity to anticipate, cope
with, resist, and recover from the impact of a hazard (Blaikie et al.
1994). Many take a socio-economic approach to model social vulner-
ability, as such socio-economic measures that represent the inherent
vulnerabilities of certain demographic groups where due to these dif-
ferent natures, the consequences of the same disruption over different
communities would not be same (Cutter et al. 2003, Morrow 2002,
Cutter et al. 2008, Tierney 2009). One such model is the Social Vul-
nerability Index (SoVI). Cutter et al. (2003) developed the SoVI algo-
rithm to identify the socially more vulnerable groups in society and
formulate a final aggregated index describing the cumulative effect of
individual socioeconomic characteristics. In the SoVI algorithm, the 42
distinct socio-economic characteristics are defined as social vulner-
ability variables as each one of them represent a different sub-group in
the society. Also, these variables are grouped into eleven social vul-
nerability factors and they are listed in Table 1.
According to their definition, these factors and the social vulner-

ability variables either contradict or contribute to the vulnerability of
community networks. According to Cutter et al. (2003), these socio-
economic characteristics and the communities that are as socially vul-
nerable could require more and prior restoration resources (e.g., addi-
tional communication during times of crisis, expedited restoration) to
cope with and recover from a disruption in a timely manner. Thus,
including these various expectations and differing needs of commu-
nities would guide pre-disruption preparedness plans as well as post-
disruption restoration schedules.

2.3. Social equity

The concept of equity has been divided into two categories: (i)
horizontal and (ii) vertical equity. Joseph et al. (2016) defined hor-
izontal equity as the equal treatment of equals and vertical equity as
unequal treatment of unequals. Horizontal equity could be expressed as
each individual or group in the society being able to meet their needs
since they have access to the same amount of resources separately.
Vertical equity could be expressed as providing each individual or
group in the society a varying amount of resources that is proportional
with the level of their needs and vulnerabilities.
Horizontal equity is included in the study of urban systems as Cai

(2008) studied a water delivery system from fiscal, social, economic,
and environmental aspects to identify the required policy and reforms
that ensure equal access of water among communities at all levels.
Additionally, Yan and Shih (2009) optimized the scheduling of emer-
gency railroad repair such that the relief of multiple commodities to
each location is equalized. Also, Cao et al. (2016) optimized humani-
tarian relief distribution in a service network where meeting demand is
considered for three different granularity including regional and na-
tional priorities.
For vertical equity in the study of interdependent infrastructure

networks, Thomopoulos et al. (2009) proposed a support tool to assist
decision makers in differentiating their choice of equity perspectives
and principles. Also, Manaugh and El-Geneidy (2012) developed a
transportation network methodology that allows accessibility and less
travel time for the varying socio-economic groups, Ogryczak et al.
(2014) conducted a survey study for fair optimization methodology that
is applied to the interdependent communication networks where these
equitable models provide an unequal amount of system service based
on operations-dependent relations. Additionally, Zolfaghari and
Peyghaleh (2015) proposed a two-stage stochastic programming
method for resource allocation for regional earthquake risk mitigation
where the equity consideration led to variability in mitigation ex-
penditures by geographic and structural vulnerability, Manaugh et al.
(2015) evaluated the concept of equity and its integration into trans-
portation network planning objectives and measures in terms of sa-
tisfying the various expectations of different social groups. Finally,
Arnette and Zobel (2019) developed a risk-based optimization model to
improve the disaster relief asset pre-positioning based on the varying
residual risk measure of each location.
Some works have included both horizontal and vertical equity in

urban infrastructure systems. Fauconnier (1999) conducted a review on
the theoretical and policy debates on the water and sanitation infra-
structure service privatization, where equity is defined as physical ac-
cess, economical affordability, and access to planning for services.
Doctor (1994) defined and explained the institutional arrangements in
the communication infrastructure that are needed to spread the benefits
of information technologies to all segments of the population. Ahmed
et al. (2008) focused on the comparative social equity assessment of
urban development and characteristics of the supply versus demand on
transportation infrastructure to suggest new strategies for sustainable
and equitable urban transportation systems. Thomopoulos et al. (2009)
conducted a literature review on the current practices in transportation
infrastructure with the consideration of equity and proposed a new
framework that offers additional support tool to decision makers based
on the type of equity concern they have through transportation infra-
structure network practices. Thomopoulos and Grant-Muller (2012)
proposed a method to incorporate a multi-criteria analysis and com-
posite indicator to assess the impacts of equity through the two large EU
transportation infrastructure. Mehta and Kalra (2013) analyzed some of
the initiatives taken by institutions and organizations for information
and communications technology projects to achieve social objectives
and identified the technological solutions to improve the education,
health, government and financial services of the society. Lastly,
Tahmasbi et al. (2019) integrated both horizontal and social equity

Table 1
The 11 social vulnerability factors that are pre-determined by Cutter et al.
(2003) to account for all the possible socially more vulnerable sub-groups in the
society.

Age Occupation

Density of the built environment Personal wealth
Ethnicity (Hispanic) Race (African-American)
Ethnicity (Native American) Race (Asian)
Housing stock and tenancy Single-sector economic dependence
Infrastructure dependence
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concepts into the transportation infrastructure to assess its availability
to the served community.

3. Proposed methodology

In this paper, we propose an integration of multiple social aspects
on the restoration of critical interdependent infrastructure networks to
introduce a social equity-based component importance measure that
ranks the critical components of interdependent infrastructure net-
works based on various social vulnerability dimensions. The optimi-
zation model is an extended version of the approach modified by
Karakoc et al. (2019) where the two objectives of the model are to (i)
maximize the resilience of the set of interdependent networks, and to
(ii) minimize the total cost associated with the restoration process while
accounting for the community resilience of the studied area. Ad-
ditionally, as a completely new and more comprehensive extension, we
formulate a third objective for the existing work to represent social
equity among the community. Therefore, this work includes both social
equity and social vulnerability measures with the resilience-based
component importance measure of urban infrastructure systems. While
the proposed interdependent infrastructure network restoration model
could be integrated with various methods to measure social vulner-
ability, we adopt the algorithm introduced by Cutter et al. (2013).

3.1. Notation and assumptions

In the multi-objective mixed-integer programming model that we
extend for the interdependent infrastructure network restoration pro-
blem, the following assumptions hold: (i) there is no partial disruption
in the nodes and links (hereafter, components) of the critical infra-
structure networks through the disruption phase, (ii) there is no partial
operability in the components of the critical infrastructure networks
through the restoration phase, (iii) the required restoration duration
differs for each component in the critical infrastructure networks, (iv)
the amount of demand and supply is known for the nodes in the system,
(v) the optimal amount of flow is known for each link in the system, (vi)
the fixed unmet demand penalty cost (i.e., disruption cost) is assigned
for each demand node in the networks, (vii) the varying restoration
costs are assigned for each disrupted component in the networks, (viii)
the varying unit flow cost that is proportional with the length of the
disrupted component is assigned to each link, (ix) the physical inter-
dependency allows a component to be either fully operational or not
operational based on the status of the components required for inter-
dependency, and (x) known and fixed number of restoration crews are
assigned to each network separately where each work crew can restore
a single component at a given time through the restoration process.
For the network model, =T {1, . ., } represents the available time

periods for the restoration and = …K {1, , } represents the set of inter-
dependent infrastructure networks in the system. For network k K ,
the set of nodes is represented with Nk, where the set of supply and
demand nodes are denoted by N Ns

k k and N Nd
k k, respectively, and

the set of links is represented with Lk. The sets of disrupted nodes and
disrupted links are denoted by N k and L k, respectively. bi

k represents
the maximum amount of flow from node i Ns

k to all the demand nodes
i Nd

k in network k K . sit
k represents the amount of total unmet de-

mand (i.e., slack demand) in the demand node i Nd
k in network k K

at time t T . Hence, si N it
k

d
k represents the total unsatisfied demand

in all the demand nodes in network k K at time t T . Qi
k represents

the amount of unmet demand in node i Nd
k after the disruptive event

occurs. Finally, the weight of each demand node in each critical in-
frastructure network is represented by wi

k for network k K where
=w 1k K i N i

k
d
k .

The time required for the restoration of disrupted node i N k and

disrupted link i j L( , ) k is denoted by dni
k and dlij

k, respectively, where
the various restoration durations are determined proportional to the
length and capacity of the disrupted components. uij

k denotes the un-
disrupted flow capacity of link i j L( , ) k in network k K . The oper-
ability status of the node i Nk and link i j L( , ) k in network k K at
time t T are denoted by binary variables it

k and ijt
k , respectively,

where if the component is operational at time t T , the related binary
variable takes the value 1 and otherwise takes the value 0. Rk represents
the set of available work crews with the specific skills and capabilities
for each network k K separately through the restoration schedule.
The scheduling variables for disrupted node i N k and disrupted link
i j L( , ) k in network k K at time t T are denoted by the binary
variables it

kr and ijt
kr , respectively, where if the restoration of the dis-

rupted component is completed by work crew r Rk and by time t T ,
the related binary variable takes the value 1 and otherwise takes the
value 0. Lastly, the interdependency between the networks is re-
presented by i k i k(( , ), ( , )) where it stands that in terms of func-
tionality node i N k in network k K is physically dependent to node
i Nk in network k K .
In minimizing the total cost associated with the restoration process

objective, fni
k and flij

k represent the restoration cost of disrupted node
i N k and disrupted link i j L( , ) k in network k K , respectively.
The unitary unmet demand penalty cost for demand node i Nd

k in
network k K is represented by pi

k, where unitary flow cost through
link i j L( , ) k is denoted by cij

k. The non-negative variable xijt
k re-

presents the total flow through link i j L( , ) k in network k K at time
t T . The restoration status of the disrupted node i N k and link
i j L( , ) k are denoted by binary variables zi

k and yij
k, respectively,

where if the disrupted component is restored through the restoration
process, the related binary variable takes the value 1 and otherwise
takes the value 0.

3.2. Community resilience

We integrate the community resilience perspective into our inter-
dependent infrastructure network restoration model by utilizing the
SoVI methodology, which measures the baseline characteristics of
communities that foster resilience (Cutter et al. 2010). We define a
parameter, SoVIic

k for each demand node i Nd
k in network k K for

social vulnerability variable c C, where this parameter represents an
index between 0 and 1. The value of SoVIic

k is calculated separately for
social vulnerability variable c C according to the SoVI-Lite algorithm
(Cutter et al. 2013, Evans et al. 2014) with the following steps: (i) the
percentage of population that is covered by each social vulnerability
variable is calculated for each geographic region, (ii) the percentages
are standardized into z-scores with variable mean and standard devia-
tion, and (iii) the standardized z-scores are normalized between 0 and 1
with Eq. (1). A SoVIic

k value of 1 represents node i being located in the
most socially vulnerable geographic region and likewise a value equal
of 0, the least socially vulnerable region.

z X
X X

z Xmin( )
max( ) min( )

,
(1)

We adopt an exponential formulation to assign relatively higher
importance to more socially vulnerable areas, as shown in Eq. (2) with
social vulnerability score,Vic

k , for demand node i Nd
k in network k K

for social vulnerability variable c C (Barker et al. 2018). Hence, the
increase in the social vulnerability indices in the socially more vul-
nerable regions would be penalized highly.

= × +V e i N a Z, ,ic
k a SoVI

d
kic

k
(2)

Additionally, to better represent the magnitude of affected popula-
tions, we introduce the parameter, Pi

k, which defines the human
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occupancy level of the service area of each demand node i Nd
k in

network k K as shown in Eq. (3). As such, the social vulnerability of
as well as the size of the served society is accounted for.

=P i i Npopulation of the service area served by demand node
total population of all service areas

,i
k

d
k

(3)

3.3. Interdependent infrastructure network restoration model

The previously updated optimization model by Karakoc et al. (2019)
that contains two conflicting objective functions (i) to maximize the
resilience of the set of interdependent infrastructure networks, and (ii)
to minimize the total cost associated with the restoration of these cri-
tical infrastructure networks while accounting for social vulnerability
of the impacted community. In this study we extend this work one more
step to include an additional objective (iii) to plan the recovery sche-
dule of the disrupted communities according to the vertical social
equity distribution among them, along with horizontal equity
throughout the rest of the formulation. We believe that, with this newly
proposed model which integrates a social equity-driven objective
function and overall horizontal equity aspect through the method, the
critical infrastructure resilience studies would be introduced with a
more heavily emphasized social dimension through planning of re-
covery and resilience enhancement activities.
The resilience of interdependent infrastructure networks is for-

mulated as a function of unmet demand, sit
k, for demand node i Nd

k in
each network k K through the recovery time t T . As a disruptive
event occurs, the amount of unmet demand would increase since the
system wouldn’t be able to perform in its optimum level. Hence, the
increase in the unmet demand due to disruption represents the loss in
the maximum flow (i.e., loss in system performance). Since Qi

k re-
presents the amount of unmet demand at demand node i Nd

k in net-
work k K after the disruption and before the restoration process, the
total amount of unmet demand in the network is measured as Qi N i

k
d
k .

Additionally, to represent the effect of unmet demand on different
communities, we assign the social vulnerability scoreVic

k and population
density Pi

k , to the demand node i Nd
k in network k K .

We formulate the recovery of the community-weighted infrastructure
networks as the increase in the maximum flow in the system, or the
difference in the total unmet demand before the restoration and at time t
during the restoration process. In the objective function,

Q V P s V P(( ) ( ))k K i N i
k
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ic
k
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d
k represents the total amount of

unmet demand that is restored during the time period t T in restora-
tion process. The assigned weights of social vulnerability and population
density measures are only responsible for prioritizing the restoration of
components where the actual amount of served demand is not affected
by the integration of community resilience measures. The actual sum of
the change in the amount of unmet demand in each demand node in each
time period through the restoration duration is included as
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in the objective function. That is, the amount of demand that is recovered
is represented as the difference between the amount of slack demand
after the disruption and the amount of slack at time t , as shown in Eq. (4)
during restoration. As the decrease in the amount of unmet demand in
the networks stand for an increase in the amount of total flow that is
transferred through the network, it is also suggested as an increase in the
network performance. The total performance loss is represented in the
denominator of the objective function as i N

w
Q V P( )d

k
i
k

i
k

ic
k

i
k which is the

total amount of unmet demand in the network before the restoration
begins. Thus, the ratio of the amount of recovery over the amount of
performance lost at each time period through the total available re-
storation process, is a measure of resilience where the networks are re-
covering from an inoperability in a certain time period and trying to
achieve a certain desired level of performance. This serves as the first

objective in the optimization problem.
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For the second objective, we account for three different costs asso-
ciated with the restoration process: (i) the flow cost in each link, (ii) the
restoration cost of each disrupted node and link, and (iii) the penalty
cost of unmet demand in each demand node in each interdependent
infrastructure network. The flow cost is calculated by the unitary flow
cost, cij

k, and the amount of flow, xij
k that is transmitted through link

i j L( , ) k in the network k K . The varying restoration cost of fni
k for

disrupted node i N k and flij
k for disrupted link i j L( , ) k denotes the

cost associated with the available restoration work crews and their
utilization through the restoration process. These varying restoration
costs, fni

k and flij
k are quantified by the capacity and the size of the

disrupted components in the interdependent infrastructure networks.
Lastly, pi

k for demand node i Nd
k quantifies the disruption cost, i.e. the

unmet demand penalty cost in each demand node in the infrastructure
network due to disruption. As shown in Eq. (5), we also integrate the
social vulnerability scores and population density measures in the
unmet demand penalty cost part of the cost minimization objective so
that restoration of the disrupted components that serve more socially
vulnerable groups would be prioritized.

+ + +fn z fl y c x p s V Pmin
k K i N k
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t T i j Lk
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i Nd
k

i
k

it
k

ic
k
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k

' ( , ) ' ( , ) (5)

To account for social equity, we incorporate both horizontal and
vertical equity concepts for network restoration planning. Horizontal
equity is introduced in the model by formulating two additional con-
straints which ensure that all the disrupted components must be re-
stored through the restoration period. Hence, the demand of all dis-
rupted communities is met in the system as all the components are
operational with full capacity. To account for vertical equity, a third
objective is formulated to guide the restoration process to start with
more heavily disrupted communities. To achieve this, the resilience of
each demand node i Nd

k at each time t is calculated as
t Q s t Q s

Q

( ) ( 1)( )

( )
i
k

it
k

i
k

i t
k

i
k

( 1) , and the resilience residual of each demand

node is measured by subtracting the demand node resilience at time t
from the optimal resilience level of 1. Then the total system residual
through the duration of complete restoration is minimized.
Additionally, to emphasize more heavily on the vertical equity, the
demand node residual at each time t is weighted with social vulner-
ability score,Vic

k, and population density, Pi
k , of the effected community.

The social equity-motivated objective is formulated in Eq. (6).

t Q s t Q s
Q
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d
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The constraints that are balanced for the above-explained three
objectives are as follows.
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(28)
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(30)
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k k (31)
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i N k K t T r R{0, 1}, , , ,it
kr k k (33)

The first set of constraints in Eqs. (7)–(9) represent the flow con-
servation in node i Nk. The second set of constraints in Eqs. (10)–(13)
is for the capacity control of disrupted and undisrupted components,
where Eq (10) controls the undisrupted links, Eqs. (11)–(12) control the
disrupted nodes, and Eq. (13) controls the disrupted links. Eq. (14)

represents the physical interdependency between the nodes of two in-
frastructure networks where this constraint ensures that the operability
status of the node i N k in network k K at time t T is fully de-
pendent on the status of the node i Nk in network k K at time
t T . Eqs. (15)–(25) ensure the scheduling of and assignment of the
work crews to disrupted components, where Eqs. (15)–(16) ensure work
crew assignment, Eqs. (17)–(18) ensure the operability of restored
components, Eq. (19) governs the restoration of a single component at a
specific time by a single work crew, and Eqs. (20)–(25) control the
completion of the restoration of a disrupted component by a work crew
for it to be functional. Eqs. (24)–(25) ensure that all the disrupted
components are restored. Since it is assumed that system operates with
no slack demand before a disruption, the demand of each community
would be met to support the horizontal equity motivation. Finally, Eqs.
(26)–(33) constrain the nature of the decision variables.

3.4. Component importance measure

To integrate a resilience-based component importance measure with
the community resilience perspective through the restoration sche-
duling of interdependent infrastructure networks, we utilized Optimal
Recovery Time (ORT), an extension (to multiple interdependent infra-
structure networks) of a CIM introduced by Fang et al. (2016). This CIM
is integrated into the proposed optimization model since ORT is defined
as the optimal time to recover a disrupted component such that the
resilience of the interdependent infrastructure networks is maximized
over the recovery time horizon (Almoghathawi and Barker 2017). The
ORT measure prioritizes the disrupted components, both the nodes and
links, with the higher impact on the resilience of the interdependent
infrastructure networks and schedules the restoration process accord-
ingly. With this CIM, decision makers can rank the disrupted compo-
nents according to their latest restoration completion time through the
available restoration duration. The earlier the disrupted component is
scheduled for restoration, a higher importance is assigned to it, and
thus, the critical components of the interdependent infrastructure net-
works would be scheduled for restoration, since they have a higher
impact on the resilience of the networks. The formal definition and the
mathematical formulation of the ORT component importance measure
is located below.
The ORT of a disrupted component =e E N Lk k k in network

k K is represented as Ie
ORT , as shown in Eqs. (33) and (34). In the

formulation, µet
k denotes the operability status of component e E k in

network k K at time t T . If µet
k is equal to 1, then the disrupted

component is operational at time t T and 0 otherwise.

= +I µ1 (1 )e
ORT

t T
et
k

(34)

where

=
=

=
µ

z if e is a node e i
y if e is a link e i j

, ,
, , ( , )et

k it
k

ijt
k

(35)

In this paper, we integrate the adopted CIM with the community
resilience-driven interdependent infrastructure network restoration
model. The critical components are identified and ranked for each so-
cial vulnerability measure individually by utilizing the ORT, then these
independent rankings are aggregated to form a final overall ranking of
the critical components.

3.5. Multi-criteria decision analysis technique for aggregated ranking

Multi-criteria decision analysis (MCDA) techniques are particularly
useful for aiding in selecting from one of several discrete alternatives
when several criteria are being considered (Lootsma 1999). In this
study, we utilize the Technique for Order Preferences by Similarity to
an Ideal Solution (TOPSIS), which ranks alternatives that balance
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closeness to the best solution and distance from the worst (Hwang and
Yoon 1981). Sets = = …A A e n{ | 1, , }e and = = …C C c m{ | 1, , }c denote
respectively the set of possible alternatives and criteria, respectively.
Additionally, = = … = …Y y e n c m{ | 1, , ; 1, , }ec denotes the set of perfor-
mance scores of the alternatives for each criterion. Finally,

= = …c m{ | 1, , }c denotes the set of criteria weights, where 0c
and == 1c

m
c1 such that larger value of c suggests that criterion c is

more important to the decision maker. Eq. (35) is defined to scale the
performance scores of the alternatives, as often criteria are measured on
different scales. Eq. (36) represents how the criteria weights are as-
signed to the scaled aggregation scores in TOPSIS.

= = … = …
=

r y
y

y
e n c m( ) , 1, , ; 1, ,ec

ec

e
n

ec1
2

(36)

= = … = …v y r y e n c m( ) ( ), 1, , ; 1, ,ec c ec (37)

In the next step, the positive ideal solution, +A , and the negative
ideal solution, A , are determined by the collection of most preferred
and the least preferred weighted and scaled aggregation score, vec, for
each criterion, respectively. Eqs. (37) and (38) represent the formula for
finding the PIS and NIS respectively, where +C represents the set of
benefit criteria and C represents the cost criteria.

= … =+ + + +A v y v y v y c C v y c C{ ( ), , ( )} {(max ( )| ), ( min ( )| )}m
l e n

eC
l e n

ec1

(38)

= … = +A v y v y v y c C v y c C{ ( ), , ( )} {( min ( )| ), (max ( )| )}m
l e n

ec
l e n

ec1

(39)

Next, the distance, +De , between alternative Ae and the positive ideal
solution is calculated with Euclidean distance in Eq. (39). Similarly, the
distance, De , between the same alternative, Ae and the negative ideal
solution is found in Eq. (40). Finally, the balance between positive and
negative ideal solutions is calculated with Eq. (41), where higher +Se
values suggest a higher similarity to the positive ideal solution. A
ranking of alternatives could be produced from an ordering of highest
to lowest +Se values.

= = …+
=

+D v y v y e n[ ( ) ( )] , 1, ,e c

m
ec c1

2
(40)

= = …
=

D v y v y e n[ ( ) ( )] , 1, ,e c

m
ec c1

2
(41)

=
+

= …+
+S D

D D
e n, 1, ,e

e

e e (42)

In our study, the set of alternatives, A, are the disrupted compo-
nents of the critical infrastructure networks and the set of criteria, C ,

Fig. 3. The geographic layout of power and water distribution systems in Shelby County, TN independently and interdependently, respectively.
adapted from González et al. (2016).
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are the multiple social vulnerability variables. The performance scores
of the alternatives over each criteria, vec, are the rank of the disrupted
components in the restoration schedule of interdependent infra-
structure networks that are based on each social vulnerability variable
independently.
We believe that our proposed methodology that incorporates in-

terdependent infrastructure restoration scheduling model and a com-
munity resilience-driven component importance measure with (i) social
equity and (ii) social vulnerability measures to represent an aggregated
final ranking of the system components is a new comprehensive ap-
proach that could be insightful for decision makers to reshape the pre-
event investment policies and post-event recovery strategies with a
higher humanitarian concern.

4. Illustrative example: interdependent infrastructure networks in
Shelby County, TN

In this study, we implement our community resilience-driven CIM
with data describing the interdependent infrastructure networks in
Shelby County, Tennessee, which is subject to earthquake scenarios due
to its risky geographic location in the New Madrid Seismic Zone
(González et al. 2016). We consider two physically interdependent in-
frastructure networks, water distribution and electric power networks,
the geographic layout of which is represented in Fig. 3, both in-
dependently and combined. The two infrastructure networks contain a
total of 108 nodes, including 15 demand nodes in the water network
and 9 demand nodes in the power network. From both of these inter-
dependent infrastructure networks, there are a total of 288 links and
through the restoration process. We assign six work crews separately for
each network.

4.1. Social vulnerability variables

The social vulnerability measures included in the SoVI algorithm
(Cutter et al. 2003) were collected for Shelby County, TN. Most of the
11 social vulnerability factors in Table 1 are accounted for with the
eight social vulnerability variables listed in Table 2.
To provide a high level of granularity in social vulnerability mea-

sures in Shelby County, we collect social vulnerability data at the block
group level, defined as a statistical division of census tracts that consists
of clusters of blocks that generally contain 600 to 3000 residents of the
contiguous area (US Census Bureau, 2010). In Shelby County, TN there
are 621 block groups that contain a total of 928,794 residents. Ten
block groups that contain around 4000 residents were eliminated from
the study because they lacked certain demographic information re-
quired for the social vulnerability measures. Shown in Fig. 4, a corre-
lation analysis was conducted on the eight social vulnerability variables
that are available for block groups. An initial study (Karakoc et al.
2019) and the current results suggest that certain social vulnerability
variables have a reasonably high positive correlation with each other in
our case.
As it is represented in Fig. 4, the social vulnerability variables that

are coded as “75000,” “African-American,” “Single-Female,” and
“Poverty” contain relatively high positive correlation among each other

such that the value of the correlation coefficient value is around 0.7 for
all of their pairwise combinations. These social vulnerability variables
represent the percentage of households earning under $75,000 an-
nually, the percentage of the population that is African-American, the
percentage of single-female based households, and the percentage of
households that are in poverty, respectively. To eliminate excess re-
dundancy and re-counting of certain populations due to their correlated
socio-economic characteristics, variables “75000″ and “African-Amer-
ican” were removed. Moreover, the remaining components ensure at
least one variable from each highly correlated group of variables is still
included in the study and almost all the factor groups are represented as
well. The variable “Asian” was also removed from the study since it did
not produce a significant value due to the extremely low percentage of
the population that it represents in Shelby County, TN. The final
complete list of five social vulnerability variables that are included in
this study is represented in Table 3.
To assign the social vulnerability scores,Vic

k, to the demand nodes at
the block group level, we define specific geographic regions that re-
present the coverage area of each demand node in the infrastructure
networks. We utilize the Voronoi diagram approach (Okabe et al. 2008)
to estimate the geographic boundaries of the coverage area of each
demand node. The estimated Voronoi coverage areas for each demand
node in the two critical infrastructure networks appear as the dark
boundaries in Fig. 5 and they lay on top of the block groups. The
shading of the block groups indicates the strength of social vulnerability
index, SoVIic

k, for each of the five variables, which are encoded as
“65+,” “5-,” “Hispanic,” “Single-Female,” and “Poverty.” To assign the

Table 2
The considered eight social vulnerability variables in Shelby County, TN that
are defined as the percentages by Cutter et al. (2003).

Households earning under $75,000 annually
Population under the age of 5
Population over the age of 65
Population living below the poverty line
Population that is Asian
Population that is Hispanic
Population that is African American
Single-female based households

Fig. 4. Illustration of the correlation analysis that is conducted for block group
level social vulnerability variables that are defined by Cutter et al. (2003). The
darker purple shade represents a higher positive correlation where darker or-
ange shade represents a higher negative correlation among two variables.

Table 3
The complete final list of the social vulnerability variables that are utilized in
the community resilience study of Shelby County, TN which are defined by
Cutter et al. (2003) as the percentages.

Population over the age of 65
Population under the age of 5
Population that is Hispanic
Single-female based households
Households that are in poverty
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associated social vulnerability indices to the demand nodes, we take the
average of the indices of the block groups that are located in the Vor-
onoi coverage area of each demand node. Additionally, we also assign
the associated population density values to demand nodes based on the
proportional population density of each Voronoi coverage area.
For variable c C, the value of Vic

k is scaled between zero and one,
and the social vulnerability scores are grouped in the following four
intervals: 0-0.25, 0.25-0.5, 0.5-0.75 and 0.75–1, ranging from the least
socially vulnerable to the most socially vulnerable region. The darker

the map shading, the higher the social vulnerability is illustrated. As
illustrated in Fig. 5, some block groups are especially vulnerable with
respect to some variables and not with others, suggesting that con-
sidering only one variable may not provide a sufficient perspective.
To solve the multi-objective interdependent infrastructure network

restoration problem, we utilize the ε-constraint approach (Chankong
and Haimes 2008). In our proposed method, maximizing social equity is
kept as the core objective of the model, and the resilience maximization
objective is converted into a constraint, shown in Eq.(44), as the

Fig. 5. The distribution of social vulnerability scores over the block groups in Shelby County, TN based on the population that is (a) under age five, (b) over age sixty-
five, (c) Hispanic, (d) living in poverty, and (e) living in a single-female household whereas with the darker shades, socially more vulnerable region is represented.
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resilience measure naturally ranges from 0 to 1. Also, minimizing the
total cost associated with the restoration process objective is converted
into a budget constraint as in Eq. (45) in our case, where the budget
limit, D, is determined by the decision maker.
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4.2. Disruption scenarios

In this study, we consider a single disruption scenario of a magni-
tude 7.0 earthquake, =M 7w . Were a lone earthquake scenario con-
sidered, the number of disrupted components would be fixed and the
resulting rankings would be specific just to that particular disruption.
To capture a more holistic ranking of (most of) the components, we
simulate 50 different disruptions with varying disrupted components.
In each one of these 50 different cases, the disrupted components are
determined according to a previously conducted simulation study by
González et al. (2016), and a certain disruption probability is assigned
to each component to simulate one of the 50 magnitude 7.0 earth-
quakes. Across the 50 disruptions, a total of 397 components were
disrupted, 109 of which are nodes and the remaining 288 are links.
Among these 109 of the nodes, 49 of them belong to the water network
and the remaining 60 of them belong to the power network. Among the
288 links, 142 belong to the water network and the remaining 146 from
the power network. The number of disrupted components range from
28 to 60 in the individual disruption scenario simulations. In this study,
we run the proposed restoration scheduling of interdependent infra-
structure network model for 50 disruption scenarios with varying dis-
rupted components. This step is repeated five times to reflect the op-
timal restoration scheduling for each of the five social vulnerability
variable perspectives. As such, we calculate the ORT for each variable
separately, where disrupted components with smaller restoration
completion time earn higher priority and receive smaller rank values.
As the restoration completion time of the disrupted components in-
crease, their priority decrease and the components are assigned with
higher ranking values, thus lower importance levels.
To aggregate the 50 different disruption scenarios, we develop an

aggregation index that determines the final rank of each disrupted
component. This index is calculated with the following: (i) the dis-
rupted components in each disruption scenario are ranked separately
using ORT, (ii) the ranks of each disrupted component are represented
with i

g
, where i refers to the rank of the disrupted component and g

refers to the total number of disrupted components in each scenario,
such that g [28, 60] (Kolesárová et al. 2007), and finally (iii) the i

g
values are averaged based on the number of scenarios that each com-
ponent is disrupted (Muralidharan et al. 2002; Ho et al., 2010). That is,
even though there are a total of 50 disruption scenarios, if a single
component is disrupted in only a of these scenarios, we calculate the
average based on the h, where h g, scenarios such that the random-
ness of the simulation does not influence a component’s ranking. The
aggregation index applies simple arithmetic on the ordinal data, how-
ever this practice is motivated by the literature (Kolesárová et al. 2007,
Muralidharan et al. 2002, Ho et al., 2010).

4.3. Integration of rankings with TOPSIS

Discussed previously, different network components are important

from different social vulnerability perspectives. To aggregate these
different perspectives into a comprehensive ranking of infrastructure
components that affect community resilience, we implement a multi-
criteria decision analysis technique, TOPSIS. Recall that with TOPSIS,
the set of alternatives, A, is ranked across multiple criteria, C . With the
application of TOPSIS in our study, the alternatives to be ranked consist
of the set of 397 disrupted components, and the multiple criteria consist
of the set of the five social vulnerability variables. The performance
scores of the set of alternatives under each criteria, Yec, represents the
aggregation index of the ranks of the disrupted components whose
values range from [0.017,1]. The five social vulnerability variables re-
present “costs” (e.g., values to be minimized) from an MCDA perspec-
tive. And since a better ranking is the result of a smaller aggregation
index, the positive ideal solution for each variable is its smallest ag-
gregation index.
To find the weights of each social vulnerability variable, c, we

utilize the Principle Component Analysis (PCA) technique, a widely
used approach to aggregate multiple inputs with the minimum loss of
information (Adler and Golany 2001). The PCA method explains the
variance structure of data through linear combinations of variables
(Johnson and Wichern 1982), where the dynamics of the information
exist along directions with the largest variance (Shlens 2014). Hence, it
is not uncommon to use the “percent variation in a dependent variable
explained by an independent variable” to measure the importance of
the effect of the independent one on the dependent one (Rosenthal and
Rubin 1979). Similarly, we assume that the amount of variance that is
captured by each social vulnerability variable could stand for the im-
portance of that variable relative to the others. More information about
the formulation and definition of the PCA approach can be found in
Holland (2008).
To ensure that the weight, the largest variance coverage stands for

the most important variable, is consistent with the previous steps of our
study where a lower ranking value represents a more important com-
ponent, we apply the following scaling approach: (i) calculate the in-
verse of the original weight of each social vulnerability variable found
from PCA, (ii) sum these inverse values, and (iii) scale them with the
ratio of each over their sum. As such, the newly calculated weight va-
lues are consistent with the ranking of the components based on their
importance (i.e., higher weight values suggest less important social
vulnerability variable) and have a sum that is equal to 1. The explained
scaling approach with the final criteria weights, c is formulated in Eq.
(45)–(47) where == 1c

m
c1 , and the calculated final weights of the

five social vulnerability variables are listed in Table 4.

= = …c m1 , 1, ,c
c

'

(45)

=S ,
c

c
'

(46)

= = …
S

c m, 1, ,c
c''
'

(47)

Table 4 suggests that the weights that are assigned to each social
vulnerability variable are relatively similar. Despite the PCA weights of
social vulnerability variables being close to each other, a systematic and
data-driven approach was used, allowing for a better informed decision
making process relative to random (or strictly equal) weights.

Table 4
The representation of the weights of the social vulnerability variables
that are determined by PCA method and utilized in TOPSIS algorithm.

Population that is over the age 65 0.22
Population that is under the age 5 0.22
Population that is Hispanic 0.23
Single-female parent based households 0.17
Households living under the poverty line 0.16
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4.4. Critical components of Shelby County, TN

The components that make up the top 10 rankings for each social
vulnerability variable are depicted in Fig. 6 and Fig. 7 for the water and
power networks, respectively. For the power network, we see some
variability in ranking among the components for the different social
vulnerability variables (e.g., most of the top five components have very
similar ranks for each variable), perhaps suggesting that social vul-
nerability does have a little impact restoration order for that network.
The water network, however, demonstrates more variability: there is a
wider variety of components and different types of components (i.e.,
both links and nodes) in the top ten. In both networks, the most im-
portant component according to ORT stands out across social vulner-
ability variables. Note that of the 32 components that appear across the
top 10 rankings of the two networks, only two of them are links, and as

the component rankings are aggregated based on a multi-criteria de-
cision analysis technique, the top ten components result as all nodes.
The obtained results suggest that nodes are overwhelmingly more cri-
tical from ORT and social vulnerability perspectives.
Integrating the rankings with TOPSIS results in Table 5. The in-

tegrated rankings are quite similar to Fig. 6 and Fig. 7, due in part to the
lack of variability in the individual rankings of many of the social
vulnerability variables and due to the similarity of variable weights
from Table 4. As it can be seen from the above figures, the water net-
work has relatively higher variance than power network in terms of the
ranking of the critical components under different social vulnerability
measures. This could be due to the difference in size and connectivity of
the two networks.
Therefore, as the results of our case study implies, importance of the

components differ based on the equity and social vulnerability

Fig. 6. The ranking of the subset of water network components (both nodes and links are listed) are represented independently based on each social vulnerability
variable.

Fig. 7. The ranking of the subset of the power network components (both nodes and links are listed) are represented independently based on each social vulnerability
variable.
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measures of various socioeconomic characteristics in the population
that they serve. Through the process of post-disruption restoration
planning and resource investment, our proposed approach could be
informative and supportive to the prioritization and importance as-
sessment of component-based tasks according to the community resi-
lience view of the decision maker. Also, as different importance rank-
ings of components converge through various social vulnerability
variables, this multi-criteria approach could be a different insightful
resource for a more aggregated concept of community resilience
through the planning of post-disruption activities.

5. Concluding remarks

Societies heavily rely on the critical infrastructures to ensure their
proper function. However, due to the globalization and the technolo-
gical developments of infrastructure networks (Castells 1996, Graham
2000 and Rinaldi et al. 2001), such critical networks have become more
dependent on each other. As the interdependent nature of the networks
become more common, their vulnerability to a variety of disruptive
events has increased. Further, the bi-directional relationship among
these physical networks and the surrounding community networks,
disruptions can impact the communities significantly. Thus, the re-
covery planning of interdependent infrastructure networks with the
consideration of community resilience has become more important to
study.
Understanding the relationship between the certain socio-economic

characteristics and the different components of the networks is the first
step to identifying component criticality. We study the interdependent
infrastructure networks restoration problem and the identification of
critical components in the system where we propose a multi-objective
optimization model from the community resilience perspective that (i)
maximizes the overall system resilience for a given restoration horizon,
(ii) minimizes the total cost associated with the restoration process, and
(iii) maximizes the social equity through the scheduling of restoration
process. The proposed model plans for the restoration schedule of the
interdependent infrastructure networks by prioritizing the disrupted
components that serve socially less advantageous communities based
on their social demographics and resilience levels. This approach en-
sures that the restoration process of the interdependent infrastructure
networks is motivated by social equity and community resilience per-
spectives. Additionally, the proposed model considers various social
vulnerability measures where each demand node in the critical net-
works are assigned with (i) a specific social vulnerability score for each
social vulnerability variable separately, and (ii) population density of
its related service area in order to represent the service expectations
from community perspective. In our study, the proposed approach al-
lows us to determine the critical infrastructure components according
to the planned restoration schedule with the utilization of resilience-
based component importance measure, ORT. The critical components
are ranked according to their restoration time due based on multiple

social vulnerability measures. For the results of our study, we observe
that through the restoration of two critical infrastructures in Shelby
County, the majority of the earlier periods of the restoration horizon are
reserved for the nodes of the networks as they are responsible for more
drastic increase in the system resilience both for the case of considering
each social vulnerability measure independently and together where
they are aggregated by TOPSIS algorithm. Hence, through the pre-dis-
ruption preparedness planning and the post-disruption recovery pro-
cess, the decision makers could schedule the restoration of the dis-
rupted nodes prior to the disrupted links. For the schedule of the nodes
among each other, in that case, the decision makers can base their
implementations on the relative importance of the social vulnerability
measures.
For the further work, additional resilience-based component im-

portance measures could be considered to determine and rank the cri-
tical components of the interdependent infrastructure networks.
Moreover, more critical infrastructure networks that are interdependent
in nature could be included in the study with various types of inter-
dependencies, and the community resilience perspective could be ex-
tended to incorporate with different types of interdependencies to
provide a more comprehensive study of interdependent infrastructure
network restoration and component importance measures problem.
Additionally, to address some of the limitations of the proposed study,
the future work could focus on the uncertainties in the system and in-
corporate a stochastic method to account for physical network related
parameter uncertainties. Lastly, a more dynamic approach to capture
the continuously changing state of the social vulnerability, hence social
equity measure of community could be introduced in the further stu-
dies.
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