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ABSTRACT

While planets are commonly discovered around main-sequence stars, the processes leading to their formation are still far from being
understood. Current planet population synthesis models, which aim to describe the planet formation process from the protoplanetary
disk phase to the time exoplanets are observed, rely on prescriptions for the underlying properties of protoplanetary disks where
planets form and evolve. The recent development in measuring disk masses and disk-star interaction properties, i.e., mass accretion
rates, in large samples of young stellar objects demand a more careful comparison between the models and the data. We performed
an initial critical assessment of the assumptions made by planet synthesis population models by looking at the relation between mass
accretion rates and disk masses in the models and in the currently available data. We find that the currently used disk models predict
mass accretion rate in line with what is measured, but with a much lower spread of values than observed. This difference is mainly
because the models have a smaller spread of viscous timescales than what is needed to reproduce the observations. We also find an
overabundance of weakly accreting disks in the models where giant planets have formed with respect to observations of typical disks.
We suggest that either fewer giant planets have formed in reality or that the prescription for planet accretion predicts accretion on the
planets that is too high. Finally, the comparison of the properties of transition disks with large cavities confirms that in many of these
objects the observed accretion rates are higher than those predicted by the models. On the other hand, PDS70, a transition disk with
two detected giant planets in the cavity, shows mass accretion rates well in line with model predictions.
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1. Introduction

While it is now well accepted that exoplanetary systems are
ubiquitous, we are still debating how to explain their forma-
tion and their diversity. In particular, one of the major short-
comings in this quest is to describe correctly the properties of
protoplanetary disks, the site where planets form, in the current
models of planet formation (e.g., Morbidelli & Raymond 2016,
for a review).

In the last decade, a big effort has been put into population
synthesis models to describe what kind of exoplanetary systems
are produced given some assumptions on the disk morphology
and evolution, on the formation of planets, and on the accre-
tion of material on planetesimals (e.g., Benz et al. 2014, for a
review). Both the properties of disks at the time of the formation
of planets and the exact process governing the growth of dust
from small grains to pebbles, and from planetesimals to plane-
tary cores, are still flawed by several unknowns.

In this work we attempt an initial comparison between the
assumed disk structure in current planet population synthesis
models (Mordasini et al. 2012) with available observations of
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some of the key disk parameters, in particular the disk mass
(Mdisk) and mass accretion rate onto the star (Ṁacc). Such a com-
parison is the first step to validate the assumptions made by the
models, on the one hand, and to identify where current models
must be revised, on the other hand.

2. Observational data

To date, the complete disk-bearing population of young
stars in two star-forming regions with age ∼1–3 Myr, Lupus
and Chamaeleon I, have been observed both with optical
spectroscopy with the Very Large Telecope (VLT) X-shooter
instrument and with the Atacama Large Millimeter and submil-
limeter Array (ALMA). These instruments currently represent
the best means to measure Ṁacc and Mdisk. Indeed, combining
the X-shooter data analyzed by Alcalá et al. (2014, 2017) and the
ALMA data by Ansdell et al. (2016) for the targets in the Lupus
complex, Manara et al. (2016a) showed that there is a correlation
between Ṁacc and Mdisk, when the latter is obtained by convert-
ing the continuum flux into dust mass. Similarly, Mulders et al.
(2017) confirmed the Ṁacc−Mdisk correlation by combining the
X-shooter data analyzed by Manara et al. (2016b, 2017) with the
ALMA data analyzed by Pascucci et al. (2016).
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In the following, these two data sets are used as a prime
comparison set for the planet population synthesis model disk
parameters. We assume that the total disk mass, Mdisk, is equal
to 100 times the disk dust mass, which is measured by con-
verting the observed continuum flux assuming the opacity κν =
2.3 cm2 g−1 · (ν/230 GHz)0.4 (Andrews et al. 2013)1 and a disk
temperature of 20 K (Ansdell et al. 2016; Pascucci et al. 2016;
Pinilla et al. 2018). As in Manara et al. (2018), Mdisk is rescaled
to the Gaia data release 2 (DR2; Gaia Collaboration 2016, 2018)
distances for the individual stars, and Ṁacc is also recalculated
after rescaling the accretion luminosity and stellar luminosity to
the Gaia DR2 distances (see Tables A.1 and A.2).

We performed a fit of the combined sample of data in
Chamaeleon I and Lupus using these revised values. Following
Manara et al. (2016a) and Mulders et al. (2017), the fit is per-
formed using linmix2 (Kelly 2007) on the objects with detected
disks and measured Ṁacc. The best fit relation is log Ṁacc =
(0.9 ± 0.1) · log Mdisk − (6.5 ± 0.4) with a correlation coeffi-
cient r = 0.6 and a dispersion of 0.9 dex that is slightly more
dispersed and steeper than previously reported, but still within
uncertainties.

To increase the sample of disks with dust cavities resolved by
ALMA, the so-called transition disks, we used the compilation
by Pinilla et al. (2018) and included PDS70 (Keppler et al. 2019;
Haffert et al. 2019). The list of objects considered in this work
are reported in Table A.3, where Ṁacc and Mdisk are also rescaled
to the Gaia DR2 distances.

3. Comparison with models for planet formation
synthesis

As described by Mordasini et al. (2009, 2012), the Bern planet
population synthesis models are based on the core accre-
tion paradigm for planet formation, coupled to a model of
disk evolution and tidal migration of the planets (Alibert et al.
2005). In particular, the disk evolution model (described
in Benz et al. 2014) relies on solving the viscous evolution
equation (Lynden-Bell & Pringle 1974), parameterized by an
α-parameter of 2 × 10−3, coupled with a prescription for exter-
nal far-ultraviolet photo-evaporation (Matsuyama et al. 2003)
with a mass loss rate randomly sampled to disperse the disk
according to a typical disk lifetime (Haisch et al. 2001), and
internal extreme-ultraviolet radiation (Clarke et al. 2001), which
is responsible for opening a gap in the disk when Ṁacc .
10−11 M� yr−1, plus mass removal because of accretion by grow-
ing planets. In the models the initial disk mass distribution is
taken from Tychoniec et al. (2018) and has a mean value 30 MJup
and a dispersion of ∼0.2 dex. The initial radii distribution is
set using the relation between disk mass and disk characteristic
radius (Rc) described by Andrews et al. (2010), assuming this is
valid for the initial disk masses. We note, however, that this rela-
tion is based on many disks showing substructures, which are
known to be the largest (Long et al. 2019), and on evolved disks,
whose sizes could not reflect the initial size distribution, but
could be the effect of radial drift in the disk (e.g., Rosotti et al.
2019). The models discussed in this work assume central stars
with a mass of 1 M�. This assumption is only relevant for the
following discussion as a second order correction. Indeed, it
is known that the disk mass depends on the stellar mass (e.g.,
Ansdell et al. 2016; Pascucci et al. 2016), but the disk masses

1 Only the values of Mdisk from Ansdell et al. (2016) have to be
rescaled to this different opacity.
2 https://github.com/jmeyers314/linmix

Fig. 1. Mass accretion rate vs. disk mass predicted by 2 Myr old disk
models used in planetary synthesis population models (orange filled cir-
cles). A, B, and C show the three main loci described in the text.

covered by models reproduce the full range of observed disk
masses for disks around a large range of stellar mass. The infor-
mation on the mass of the central star enters only indirectly in
the values of the viscosity (ν) used in the models. Indeed, this
parameter is expressed as ν = αcsH, where cs is the sound speed
and H the scale height of the disk; the latter two parameters
are obtained by solving for the vertical structure equilibrium
due to viscous heating and stellar irradiation as described by
Chiang & Goldreich (1997). Similarly, a dependence of the mass
loss rate from photo-evaporation with stellar mass is expected
(e.g., Owen et al. 2011), but as a second order effect.

In the following, we use the snapshot of the models at t =
2 Myr for a comparison with the data. The models we consid-
ered start with 100 seeds of planetary systems, which is the most
consistent value with planet detections with Kepler and HARPS
(Mulders et al. 2019). The age at which the models are evalu-
ated is chosen to be in line with typical estimates for the ages
of the Chamaeleon I and Lupus regions, which are considered to
be ∼1−3 Myr old. At this age, .10% of the modeled disks have
masses below the numerical minimum density, i.e., they have
dissipated.

The distribution of Ṁacc and Mdisk for the models (Fig. 1)
presents three main loci. First (A), ∼65% of the model points
are located along a major Ṁacc−Mdisk sequence, almost paral-
lel to lines of constant Mdisk/Ṁacc, and between the lines of
Ṁacc−Mdisk = 1 Myr and 10 Myr. Second (B), ∼5% of the points
are found at Mdisk . 10−4 M� and Ṁacc . 10−11 M� yr−1, to the
bottom left of the plot. Third (C), ∼20% of the points are located
at 10−3 M� . Mdisk . 10−1 M� and at Ṁacc lower than the typi-
cal values found in models in the same Mdisk range. These three
main loci are easily understood as: (A) the main location where
disks in the models spend their lifetime; (B) the locus of the disks
in which internal photo-evaporation has overcome the effect of
viscous evolution, has stopped accretion, and is rapidly dissi-
pating the disks; and (C) the locus where giant planet formation
has taken place, respectively. We note that the photo-evaporation
prescription used in the models is directly responsible for the
number of objects present in locus (B) and for the values of
Mdisk and Ṁacc, where the separation between loci (A) and (B)
is visible. A more vigorous mass loss rate, such as that produced
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Fig. 2. Mass accretion rate vs. disk mass for the models (filled circles)
and for the observed population of disks in the Lupus (blue symbols)
and Chamaeleon I (red symbols) regions. Squares are used for disks
with measured disk mass and mass accretion rates; squares with arrow
report upper limits on the disk mass; downward facing triangles report
dubious accretors, i.e., objects with mass accretion rates compatible
with chromospheric emission; and the transition disks are highlighted
with a circle around the symbol. The red line indicates the best fit. The
models are colored for the number of giant planets (Mplanet > 300 M⊕)
in the system: orange for no giant planets, cyan for one giant planet,
gray for two giant planets, and brown for three giant planets.

by X-ray photo-evaporation (e.g., Picogna et al. 2019), would
change the shape of the locus (B) and would accelerate the disk
dispersal. Thus, a more vigorous mass loss rate would increase
the fraction of models in locus (B). In the disk models in locus
(C), a large percentage of the disk accretion flow ends up on the
accreting planets instead of the star. Indeed, the models in which
at least one giant planet – defined as having Mplanet > 1 MJup
– are highlighted in Fig. 2 and are located in locus (C), repre-
sent ∼75% of the models in this locus. As expected, we find the
accreting giant planets in massive disk with low or no accretion
(e.g., Williams & Cieza 2011; Rosotti et al. 2017).

The comparison between the data and the models of Fig. 2
shows that the model parameters have some similarities to the
observations. In particular, the main locus (A) of the Ṁacc−Mdisk
values of the models is in line with the data. Most notably, in
the disk mass range from 10−4−10−2 M� the upper bound of the
locus of the models follows very well the best fit of the obser-
vations, whereas at Mdisk & 10−2 M� the models in the main
group (A) tend to bend to slightly lower Ṁacc. Moreover, the
typical values of Ṁacc are within the observed values for the
Chamaeleon I and Lupus regions.

However, a number of significant differences are present.
The dispersion of Ṁacc at any Mdisk of the main locus of
the models (∼0.3 dex) is much smaller than that of the data
(∼0.9 dex). This is partially because the models shown in this
work are not convolved with the typical observational uncer-
tainties (.0.4 dex). However, the discrepancy is larger than this
effect. This discrepancy is in line with the results of Lodato et al.
(2017) and Mulders et al. (2017), who postulated a large spread
of model parameters, in particular of the viscous timescale
and/or α, and a long viscous timescale on the order of ∼1 Myr to
reproduce the observed spread. More specifically, Mulders et al.
(2017) require that the values of α are distributed around a

typical value of 10−3 with a dispersion of 2 dex to reproduce the
observations in contrast to the single value assumed in the mod-
els. The single value of α however still connects to a dispersion
in viscous timescales (tν) since the initial disk radii present a dis-
tribution of values. Indeed, tν ∝ R3/2

0 (2 − γ)−2α−1(H/R)−2
0 , thus

we can assume a value of γ = 1.5, H/R = 0.1, and α = 2×10−3 to
derive the viscous timescales of the models. This distribution has
a spread of .0.5 dex, smaller than the spread of ∼1 dex needed
by Lodato et al. (2017) to reproduce the observed Mdisk−Ṁacc.
The values of Ṁacc for the main locus of the models are then
within the typical observed values, but are systematically below
the median of the distribution, i.e., the best fit. This fact is related
to the assumed value of α and to the other disk initial parameters.
A higher value of α increases the predicted Ṁacc, but implies a
shorter timescale of the disks.

Finally, almost no overlap is present between the observed
data and the model points in the (B) photo-evaporative and (C)
giant planet forming disk regions. On the one hand, the fact that
we do not observe the photo-evaporative disks is easily explain-
able. These disks are predicted to have low mass, at Mdisk val-
ues where ALMA surveys are incomplete and dominated by
upper limits (e.g., Ansdell et al. 2016; Pascucci et al. 2016), and
the lifetime of these disks is expected to be very short, i.e.,
∼105 yr (e.g., Ercolano & Pascucci 2017). Furthermore, the val-
ues of Ṁacc reported by the models for these disks are well below
the lowest values detectable from spectra of accreting young
stars (e.g., Manara et al. 2013). These predicted disks could be
Class III, i.e., diskless, young stellar objects.

On the other hand, it is worth asking whether the number
of models in the giant planet forming disk locus is in line with
observations. At the values of Mdisk corresponding to these mod-
els the ALMA surveys are complete, since any disk that shows
an infrared excess with Spitzer has been targeted and the sen-
sitivity of the surveys is always such that these massive disks
are readily detected. Even in the case in which the disk sur-
veys were not complete, there should be no bias against massive
disks with already formed giant planets. Similarly, the spectro-
scopic surveys connected to the ALMA surveys are ∼95% com-
plete, and they are usually slightly incomplete in the lower stellar
mass end of the distribution of targets, which corresponds to the
lower disk masses. Therefore, it is safe to assume that both the
massive disks and the corresponding stars have been observed
in the ALMA and X-shooter surveys. It is in any case possible
that the observed targets have values of Ṁacc lower than what is
detectable with X-shooter spectra. As discussed by Manara et al.
(2013) and Ingleby et al. (2011), among others, Ṁacc compati-
ble with or lower than the typical chromospheric noise of young
stellar objects are not measurable from near-ultraviolet and opti-
cal spectra. This limit depends on the stellar mass and is typ-
ically ∼10−11−10−10 M� yr−1, exactly in the region where the
giant planet forming disks with higher Ṁacc are located. Both
Alcalá et al. (2014, 2017) and Manara et al. (2016b, 2017) have
reported a number of objects present in the surveys of Lupus and
Chamaeleon I for which the excess emission in the spectra has
a strength that is compatible with being chromospheric. These
objects, highlighted with downward triangles in the plots and
referred to as “weak-accretors”, are the only candidates to have
real Ṁacc lower than this chromospheric noise. However, these
weak-accretors account for only ∼6−12% of the observed pop-
ulation of objects with a disk in these two regions, and have in
some cases Mdisk lower than the lowest masses of giant planet
forming disks in the models. Even in the case that these are
all objects whose Ṁacc is in line with that reported for giant
planet forming disks, the fraction of disks with these low Ṁacc
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Fig. 3. Mass accretion rate vs. disk mass for the models (filled circles,
colors as in Fig. 2) and for transition disks with resolved cavities. The
pink symbols show transition disks around T Tauri stars and the vio-
let symbols the transition disks around Herbig stars from Pinilla et al.
(2018). The gray star symbol refers to PDS 70. Other symbols as in
Fig. 2.

is smaller by at least a factor of two than predicted by cur-
rent planet synthesis population models. This is well in line
with the overabundance of planets formed in models in compar-
ison with current detections of planets with Kepler and HARPS
(Mulders et al. 2019).

4. Transition disks and disks with planets

To better understand the population of giant planets forming
disks predicted by the models we compiled a list of known tran-
sition disks with dust cavities resolved by ALMA observations,
i.e., larger than ∼20–30 au (Pinilla et al. 2018, see Table A.3).
One of the favored explanations for the cavities observed with
ALMA is indeed the presence of one, or more, giant planets
in the inner regions of these disks. In one case, PDS 70, two
accreting giant planets have been detected in the dust depleted
cavity (Keppler et al. 2018; Haffert et al. 2019). The disk masses
and Ṁacc for these targets are shown in Fig. 3 together with the
transition disks located in the Lupus and Chamaeleon I regions
and the models. All the transition disks with Mdisk > 10−3 M�
have been resolved with ALMA. When the central star is not
a Herbig star, their Ṁacc are within the range of the models
given their Mdisk in ∼80% of the cases and are always compat-
ible within the uncertainties. However, ∼10–20% of the targets
are only compatible with models of disks with not yet formed
giant planets. In a way, this is similar to what was discussed
by Ercolano & Pascucci (2017, and references therein), mean-
ing that there are too many transition disks with high accretion
rates than predicted by photo-evaporation models. Allowing a
more rapid dispersal of the disk due to planet-induced photo-
evaporation (Rosotti et al. 2013) might mitigate the discrepancy
here by allowing a faster disk dispersal in the low-Ṁacc and high-
Mdisk objects that formed a planet predicted by the models dis-
cussed here. A similar effect would also be obtained including
stronger photo-evaporative winds, as in the case of X-ray photo-
evaporation, although even these models still are unable to repro-
duce the observed accreting transition disks with large cavities
(Picogna et al. 2019).

It is worth noting that five transition disks around T Tauri
stars (∼25%) present Ṁacc values compatible with those of mod-
els in which at least two giant planets have formed, either
measured Ṁacc values or because they are weak-accretors. In par-
ticular, PDS 70 falls well within the region where models predict
two giant planets to have formed, and J1604–2165, another well-
studied transition disk, is also in the same region of the parameter
space. Furthermore, two of the five Herbig stars with transition
disks reported in this work only have an upper limit on the value
of Ṁacc, and they can potentially be compatible with having Ṁacc
in line with disks with giant planets.

5. Conclusions

We performed the first comparison between observed properties
of disks, namely their mass and mass accretion rate on the cen-
tral star, with disk properties predicted by models adopted for
planetary synthesis population studies for ∼1–3 Myr old proto-
planetary disks.

We showed that the planetary synthesis population models
typically predict disks with lower Ṁacc than the median mea-
sured values, but still within the observed spread. However,
the spread of Ṁacc predicted by these disk models is too small
to match the observed spread, since the spread in the viscous
timescale is too small. This is in line with what was suggested by
Lodato et al. (2017) and Mulders et al. (2017). Therefore, plane-
tary synthesis population models must use a larger dispersion of
viscous timescales to match the observations.

The planetary synthesis models discussed in this work pre-
dict a larger percentage, of ∼20%, of disks with very low Ṁacc .
10−10 M� yr−1 and high Mdisk & 3 × 10−3 M� than what is obser-
ved in ∼1–3 Myr old disk populations, i.e., ∼6–12%. This dis-
crepancy points to either the fact that fewer giant planets are
forming in disks than what is predicted by models, as pointed
out also by Mulders et al. (2019), or to the fact that the current
prescription of gas accretion onto planets overpredicts the real
accretion rate onto planets. The latter would make the accretion
rate onto the star lower than observed. This might be related to
the models that underpredict the number of intermediate mass
planets when compared to the planetary mass function deduced
from microlensing surveys (Suzuki et al. 2018).

The comparison between the models and the measured val-
ues of Ṁacc and Mdisk for transition disks with large cavities,
which are possibly explained by the presence of giant planets,
shows some agreement with this hypothesis that the cavities are
carved by giant planets. Indeed, the majority (∼80%) of transi-
tion disks have values of Ṁacc and Mdisk that are compatible with
what is expected for disks with at least one giant planets formed.
Most notably, the system PDS 70 has measured Mdisk and Ṁacc
well in line with predictions for systems with two giant plan-
ets, which have been observed in this system. However, there
is a small percentage, ∼20%, of transition disks with Ṁacc that
is higher than the highest Ṁacc predicted by the models. Differ-
ent initial conditions for viscously evolving disks are needed, or
different models of disk evolution should be explored, such as
magnetic disk wind driven evolution, to explain these objects.

Future work should focus on detailed comparisons between
the models and the current and future observations. In particu-
lar, it is important to test whether the disks with Mdisk . 10−4 M�
and Ṁacc . 10−12 M� yr−1, predicted by the currently adopted pre-
scriptions for photo-evaporation and by planet synthesis pop-
ulation models, can be observed. To this aim, higher sensi-
tivity and resolution ALMA surveys are needed. Related to
this point, a more detailed description of the effect of internal
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photo-evaporation, for example including X-ray photo-evapor-
ation (e.g., Picogna et al. 2019), should be explored in the planet
synthesis population models to understand how the picture of disk
properties and planet formation would be affected. Finally, this
work did not discuss how these properties vary with the assumed
stellar masses and at later times. This must be the subject of future
studies.
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Appendix A: Observational data used in the paper

We report the values of Ṁacc and Mdust used in this work.
The latter is converted to Mdisk assuming a gas-to-dust ratio
of 100. All the values have been rescaled with respect to
their original papers using the more recent Gaia DR2 dis-
tances (Gaia Collaboration 2018). The information for the
targets in the Lupus region (Table A.1) are taken from
Alcalá et al. (2014, 2017) for the accretion properties, and from
Ansdell et al. (2016) for the disk masses. As discussed in the
text, the latter are rescaled to the same opacities used in other
works (Andrews et al. 2013). The accretion parameters for the
Chamaeleon I targets are taken from Manara et al. (2016b,
2017), while the disk masses are taken from Pascucci et al.
(2016); these are reported in Table A.2.

The properties for the transition disks (Table A.3) mainly
come from the compilation of Pinilla et al. (2018); the refer-
ences for the accretion rates are reported in the table. In addition
to that, accretion rates and disk masses for PDS70 are reported
(Keppler et al. 2018; Haffert et al. 2019); those for HD142666
are reported as well.

Table A.1. Stellar and disk masses for the Lupus targets used.

Name Dist log Ṁacc Mdust Notes
[pc] [M� yr−1] [M⊕]

Sz65 155 −9.54 20.30 na
Sz66 157 −8.50 4.78 . . .
J15450887−3417333 154 −8.36 14.51 . . .
Sz68 154 −8.40 46.68 na
Sz69 154 −9.48 5.29 . . .
Sz71 155 −9.02 52.68 . . .
Sz72 155 −8.60 4.47 . . .
Sz73 156 −8.12 9.77 . . .
Sz74 158 −7.83 6.87 . . .
Sz81A 159 −8.92 3.16 . . .
Sz82 158 −7.98 196.68 td
Sz83 159 −7.08 141.92 . . .
Sz84 152 −9.23 9.93 td
Sz129 161 −8.30 61.82 . . .
J15592523−4235066 147 −11.29 <0.05 . . .
RYLup 159 −8.16 91.05 td
J16000060−4221567 161 −9.73 0.81 . . .
J16000236−4222145 164 −9.56 42.17 . . .
J16002612−4153553 164 −9.76 0.42 . . .
Sz130 160 −9.09 2.08 . . .
MYLup 156 −9.63 56.60 td,na
Sz131 160 −9.18 2.88 . . .
Sz133 153 −99.00 21.13 sl
Sz88A 158 −8.49 2.93 . . .
Sz88B 159 −10.05 <0.06 . . .

Table A.1. continued.

Name Dist log Ṁacc Mdust Notes
[pc] [M� yr−1] [M⊕]

J16070384−3911113 158 −12.76 1.48 sl
Sz90 160 −8.96 7.33 . . .
J16073773−3921388 174 −10.40 0.76 . . .
Sz95 158 −9.40 1.33 . . .
J16080017−3902595 159 −10.56 1.00 . . .
Sz96 156 −9.37 1.31 . . .
J16081497−3857145 158 −10.60 2.73 . . .
Sz97 157 −9.88 1.51 . . .
Sz98 156 −7.54 75.61 . . .
Sz99 159 −9.73 <0.06 . . .
Sz100 136 −9.87 13.43 td
J160828.1−391310 175 −11.42 <0.07 na
Sz103 159 −9.33 3.83 . . .
J16083070−3828268 156 −9.32 43.06 td,na
Sz104 165 −10.03 1.13 . . .
V856Sco 161 −99.00 18.89 . . .
Sz106 161 −10.07 0.68 sl
Sz108B 168 −9.62 9.98 . . .
J16084940−3905393 159 −9.77 0.56 . . .
V1192Sco 150 −99.00 0.27 sl
Sz110 159 −8.84 5.12 . . .
J16085324−3914401 167 −10.00 7.19 . . .
J16085373−3914367 158 −10.94 1.04 . . .
Sz111 158 −9.47 58.71 td
J16085529−3848481 157 −10.72 0.59 . . .
Sz112 160 −9.94 1.30 td
Sz113 163 −9.12 7.78 . . .
J16090141−3925119 164 −9.95 6.17 . . .
Sz114 162 −9.17 33.14 . . .
Sz115 157 −9.57 <0.06 . . .
J16092697−3836269 159 −8.25 1.29 . . .
Sz117 158 −8.91 3.44 . . .
Sz118 163 −9.21 22.22 . . .
J16095628−3859518 156 −10.96 2.39 . . .
J16100133−3906449 192 −9.74 <0.12 . . .
J16101857−3836125 158 −10.76 <0.06 . . .
J16101984−3836065 158 −10.52 <0.06 . . .
J16102955−3922144 163 −10.05 2.48 td
Sz123B 158 −10.24 <0.06 sl
Sz123A 158 −9.21 13.33 td
J16115979−3823383 164 −10.53 <0.06 . . .
J16124373−3815031 159 −9.07 9.96 . . .
J16134410−3736462 160 −9.24 0.72 . . .

Notes. Stellar properties adapted from Alcalá et al. (2014, 2017) and
disk masses from Ansdell et al. (2016) (rescaled for different opacity)
using the Gaia DR2 (Gaia Collaboration 2018) distances. na = non-
accretor, sl = sub-luminous, td = transition disk.
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Table A.2. Stellar and disk masses for the Chamaeleon I targets used.

2MASS name Other names Dist log Ṁacc Mdust Notes
[pc] [M� yr−1] [M⊕]

2MASS J10533978−7712338 2M J10533978−7712338 191.81 −11.72 2.2259 sl
2MASS J10555973−7724399 T3 185.08 −8.43 15.3631 . . .

2MASS J10561638−7630530 ESOHalpha553 196.48 −10.78 1.9879 na
2MASS J10563044−7711393 T4 183.09 −9.22 50.9436 . . .

2MASS J10574219−7659356 T5 190.00 −8.35 4.2586 . . .

2MASS J10580597−7711501 2M J10580597−7711501 186.57 −11.68 1.2118 na
2MASS J10581677−7717170 Sz-Cha 189.84 −7.65 147.4129 td
2MASS J10590108−7722407 TW-Cha 185.21 −8.65 29.3149 . . .

2MASS J10590699−7701404 CR-Cha 187.48 −8.55 203.0813 . . .

2MASS J11004022−7619280 T10 191.54 −8.98 33.5953 . . .

2MASS J11022491−7733357 CS-Cha 176.26 −8.20 92.0593 td
2MASS J11023265−7729129 CHXR71 195.35 −10.24 <0.4043 na
2MASS J11025504−7721508 T12 182.24 −8.54 0.5047 . . .

2MASS J11040425−7639328 CHSM1715 192.31 −10.62 1.3482 . . .

2MASS J11040909−7627193 CT-Cha-A 191.78 −6.44 49.8157 . . .

2MASS J11044258−7741571 ISO-52 193.15 −10.34 2.0116 na
2MASS J11045701−7715569 T16 194.46 −7.54 1.2572 . . .

2MASS J11062554−7633418 ESOHalpha559 209.30 −10.48 26.5032 . . .

2MASS J11063276−7625210 CHSM7869 187.14 −10.87 <0.0723 . . .

2MASS J11064180−7635489 Hn-5 195.29 −9.04 0.4821 . . .

2MASS J11064510−7727023 CHXR20 185.47 −8.50 <0.3644 . . .

2MASS J11065906−7718535 T23 190.34 −7.95 11.5032 . . .

2MASS J11065939−7530559 2M J11065939−7530559 196.24 −10.87 1.5752 . . .

2MASS J11071181−7625501 CHSM9484 199.48 −11.58 <0.0822 na
2MASS J11071206−7632232 T24 195.75 −8.20 2.1143 . . .

2MASS J11071330−7743498 CHXR22E 173.47 −10.81 <0.3188 na,td
2MASS J11071860−7732516 Cha-Ha-9 198.58 −10.67 0.4760 . . .

2MASS J11072074−7738073 Sz19 190.62 −7.45 12.3622 . . .

2MASS J11072825−7652118 T27 190.00 −8.13 <0.3824 . . .

2MASS J11074245−7733593 ChaHalpha2 190.00 −9.84 1.1201 . . .

2MASS J11074366−7739411 T28 194.81 −7.65 52.5996 . . .

2MASS J11074656−7615174 CHSM10862 194.22 −11.76 1.0675 na
2MASS J11075792−7738449 Sz-22 163.19 −8.31 6.8730 . . .

2MASS J11075809−7742413 T30 184.46 −8.11 2.8416 . . .

2MASS J11080002−7717304 CHXR30A 190.00 −9.93 <0.3737 na
2MASS J11080148−7742288 VW-Cha 190.00 −7.42 20.8577 . . .

2MASS J11080297−7738425 ESO-Ha-562 190.00 −8.98 47.7823 . . .

2MASS J11081509−7733531 T33A 190.00 −8.79 97.5590 . . .

2MASS J11081850−7730408 ISO138 185.65 −11.63 <0.0712 na
2MASS J11082238−7730277 ISO-143 193.28 −9.86 <0.0772 . . .

2MASS J11082650−7715550 ISO147 200.00 −10.89 <0.0826 . . .

2MASS J11083905−7716042 Sz27 188.36 −8.64 6.4824 td
2MASS J11083952−7734166 Cha-Ha6 179.32 −10.17 <0.0664 . . .

2MASS J11085090−7625135 T37 192.77 −10.53 <0.0768 . . .

2MASS J11085367−7521359 2M J11085367−7521359 188.27 −7.91 11.5165 . . .

2MASS J11085464−7702129 T38 186.01 −9.07 1.7817 . . .

2MASS J11085497−7632410 ISO165 194.65 −10.43 <0.0783 . . .

2MASS J11091812−7630292 CHXR79 187.63 −8.83 <0.3645 . . .

2MASS J11092266−7634320 C1-6 203.25 −9.21 2.0788 . . .

2MASS J11092379−7623207 T40 192.30 −7.08 58.8462 . . .

2MASS J11094621−7634463 Hn10e 195.04 −9.24 2.3551 . . .

2MASS J11094742−7726290 ISO207 192.96 −8.93 71.2352 . . .

2MASS J11095215−7639128 ISO217 240.14 −10.25 <0.1191 . . .

2MASS J11095336−7728365 ISO220 186.29 −10.27 <0.0717 . . .

2MASS J11095340−7634255 Sz32 201.96 −6.75 40.9535 . . .

2MASS J11095407−7629253 Sz33 212.11 −8.94 17.9838 . . .

2MASS J11095873−7737088 T45 191.29 −6.70 9.8888 . . .

2MASS J11100010−7634578 T44 192.08 −6.50 658.7556 . . .

Notes. Stellar properties adapted from Manara et al. (2016b, 2017) and disk masses from Pascucci et al. (2016) using the Gaia DR2
(Gaia Collaboration 2018) distances. na = non-accretor, sl = sub-luminous, td = transition disk.
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Table A.2. continued.

2MASS name Other names Dist log Ṁacc Mdust Notes
[pc] [M� yr−1] [M⊕]

2MASS J11100369−7633291 Hn11 201.01 −9.29 5.2263 . . .

2MASS J11100469−7635452 T45a 195.00 −9.54 3.8179 . . .

2MASS J11100704−7629376 T46 179.61 −8.53 3.0229 . . .

2MASS J11100785−7727480 ISO235 199.93 −10.70 <0.0826 . . .

2MASS J11101141−7635292 ISO-237 195.37 −9.48 36.5996 na
2MASS J11103801−7732399 CHXR47 190.00 −7.89 2.5077 . . .

2MASS J11104141−7720480 ISO252 204.22 −9.63 <0.0861 . . .

2MASS J11104959−7717517 Sz37 185.16 −7.60 26.1129 . . .

2MASS J11105333−7634319 T48 194.69 −7.70 15.1512 . . .

2MASS J11105359−7725004 ISO256 195.78 −10.09 3.9382 . . .

2MASS J11105597−7645325 Hn13 190.00 −9.40 1.0454 . . .

2MASS J11113965−7620152 T49 190.51 −7.18 10.2706 . . .

2MASS J11114632−7620092 CHX18N 192.52 −7.90 17.0103 . . .

2MASS J11120351−7726009 ISO282 185.49 −9.71 1.3134 . . .

2MASS J11120984−7634366 T50 193.23 −9.11 2.1573 . . .

2MASS J11122441−7637064 T51 193.81 −7.97 <0.3800 . . .

2MASS J11122772−7644223 T52 193.24 −7.31 28.4416 . . .

2MASS J11123092−7644241 CWCha 196.00 −7.74 6.1133 . . .

2MASS J11124268−7722230 T54A 201.58 −9.37 <0.4207 na,td
2MASS J11124861−7647066 Hn17 191.24 −9.47 <0.0755 . . .

2MASS J11132446−7629227 Hn18 189.52 −9.58 3.7763 . . .

2MASS J11142454−7733062 Hn21W 188.95 −8.82 3.5031 . . .

2MASS J11173700−7704381 Sz45 188.38 −7.85 12.9369 td
2MASS J11183572−7935548 2M J11183572−7935548 94.62 −9.57 1.7129 td
2MASS J11241186−7630425 2M J11241186−7630425 184.75 −10.43 0.6530 td
2MASS J11432669−7804454 2M J11432669−7804454 190.00 −8.50 0.6446 . . .

Table A.3. Stellar and disk masses for the transition disks used here.

Object RA Dec Dist [pc] Mdust [M⊕] log Ṁacc Ref

J16083070 16:08:30.68 −38:28:27.22 156 34.45 −9.32 Alcalá et al. (2017)
RYLup 15:59:28.37 −40:21:51.58 159 72.84 −8.16 Alcalá et al. (2017)
Sz111 16:08:54.67 −39:37:43.49 158 46.97 −9.47 Alcalá et al. (2014)
Sz100 16:08:25.75 −39:06:01.64 137 10.74 −9.87 Alcalá et al. (2014)
Sz118 16:09:48.64 −39:11:17.24 164 17.77 −9.21 Alcalá et al. (2017)
Sz123A 16:10:51.57 −38:53:14.10 158 10.66 −9.21 Alcalá et al. (2014)
J15583692 15:58:36.90 −22:57:15.57 166 47.26 −7.80 Manara et al. (in prep.)
J16042165 16:04:21.64 −21:30:28.98 150 42.66 −10.51 Manara et al. (in prep.)
SzCha 10:58:16.71 −77:17:17.15 190 147.41 −7.65 Manara et al. (2014)
J10563044 10:56:30.31 −77:11:39.25 183 50.94 −9.22 Manara et al. (2016b)
DoAr44 16:31:33.46 −24:27:37.52 146 50.88 −8.12 Manara et al. (2014)
HD100546 11:33:25.36 −70:11:41.27 110 152.72 −6.84 Fairlamb et al. (2015)
HD135344B 15:15:48.42 −37:09:16.33 135 110.93 −7.33 Fairlamb et al. (2015)
LkCa15 04:39:17.80 +22:21:03.22 159 144.40 −8.31 Manara et al. (2014)
SR21 16:27:10.27 −24:19:13.01 138 82.29 −7.81 Manara et al. (2014)
SR24S 16:26:58.50 −24:45:37.20 115 82.48 −7.47 Natta et al. (2006)
Sz91 16:07:11.57 −39:03:47.85 159 11.31 −9.07 Alcalá et al. (2014)
TCha 11:57:13.28 −79:21:31.72 110 35.54 −8.40 Schisano et al. (2009)
HD34282 05:16:00.48 −09:48:35.42 311 344.39 −8.30 Fairlamb et al. (2015)
CIDA1 04:14:17.62 +28:06:09.28 136 7.46 −7.92 Pinilla et al. (2018)
CQTau 05:35:58.47 +24:44:53.70 163 105.71 <−7.94 Mendigutía et al. (2011)
HD142666 15:56:40.2 −22:01:39.5 148 80.79 <−8.27 Fairlamb et al. (2015)
RYTau 04:21:57.42 +28:26:35.13 130 75.03 −7.65 Mendigutía et al. (2011)
UXTauA 04:30:04.00 +18:13:49.18 140 30.16 −8.71 Rigliaco et al. (2015)
RXJ1615 16:15:20.23 −32:55:05.36 158 209.81 −8.49 Manara et al. (2014)
DMTau 04:33:48.75 +18:10:09.66 145 25.22 −8.02 Manara et al. (2014)
PDS70 14:08:10.15 −41:23:52.58 113 39.79 −10.26 Haffert et al. (2019)

Notes. References are for the stellar and accretion properties. All disk masses from Lupus are from Ansdell et al. (2016), that for PDS70 from
Keppler et al. (2019), for DMTau from Kudo et al. (2018), the others from Pinilla et al. (2018).
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