
Myopic Control of Systems with Unknown Dynamics

Melkior Ornik1, Steven Carr2, Arie Israel3, and Ufuk Topcu1,2

Abstract— This paper introduces a strategy for satisfying
basic control objectives for systems whose dynamics are almost
entirely unknown. This setting is motivated by a scenario where
a system undergoes a critical failure, thus significantly changing
its dynamics. In such a case, retaining the ability to satisfy
basic control objectives such as reach-avoid is imperative. To
deal with significant restrictions on our knowledge of system
dynamics, we develop a theory of myopic control. The primary
goal of myopic control is to, at any given time, optimize the
current direction of the system trajectory, given solely the
limited information obtained about the system until that time.
Building upon this notion, we propose a control algorithm which
simultaneously uses small perturbations in the control effort to
learn local system dynamics while moving in the direction which
seems to be optimal based on previously obtained knowledge.
We show that the algorithm results in a trajectory that is nearly
optimal in the myopic sense, i.e., it is moving in a direction that
seems to be nearly the best at the given time, and provide formal
bounds for suboptimality. We demonstrate the usefulness of the
proposed algorithm on a high-fidelity simulation of a damaged
Boeing 747 seeking to remain in level flight.

I. INTRODUCTION

In an event of a rapid and unexpected change in the
dynamics of a system, the ability to retain a degree of
useful control over a system is crucial. A notable example
of such a catastrophic event is that of an aircraft losing
its wing after collision with another airplane [2]. In the
particular event, the pilot managed to retain enough control
authority over the aircraft to be able to safely land at a nearby
airbase. The pilot’s strategy depended on his intuition and
prior experience. This paper seeks to develop a methodical
approach to control of an unknown system in real time.
The strategy we propose is based on an intuitive approach
one might use when trying to drive an unknown vehicle:
performing small “wiggles” in controls to see how the system
behaves, before deciding on a longer-term control action.

In the described setting of control of an unknown system,
the only data available to extract information on the system
dynamics can be obtained during the system run. Data-driven
learning of the dynamics of unknown systems has been a
subject of significant recent research [6], [15], [33]. However,
the developed methods often make significant assumptions
on possible system dynamics or require a large amount of
data; hence, they are not suitable for the above motivating
example. A recent work [1] based on a similar scenario
uses differential inclusions to assess the safety of a system

1 Institute for Computational Engineering and Sciences, University of
Texas at Austin. e-mails: mornik@ices.utexas.edu, utopcu@utexas.edu

2 Department of Aerospace Engineering and Engineering Mechanics,
University of Texas at Austin. e-mail: stevencarr@utexas.edu

3 Department of Mathematics, University of Texas at Austin. e-mail:
arie@math.utexas.edu

governed by unknown dynamics. However, [1] discusses
uncontrolled dynamics, and does not prescribe a control law
which would ensure safety of a trajectory. A number of
works do deal with control design for unknown dynamics
[18], [26], [36] and damaged aircraft [23], [28]. The results
of these papers again significantly differ from our objective,
as they generally do not include formal guarantees on short-
time, non-asymptotic system performance. Additionally, the
control specifications discussed in those works are markedly
different than the ones that naturally arise in the scenario we
are exploring, as they are all based on reference tracking. In
particular, [18], [23], [36] employ methods based on transfer
functions to solve a tracking problem in an unknown system,
while [26] and [28] use neural networks in optimal tracking
control. Furthermore, [23] and [28] require significantly more
assumptions on the dynamics than the approach proposed in
this paper.

In this paper, we are primarily concerned with solving
reach-avoid-type problems. This consideration is motivated
by practical reasons: in the event of a system failure,
satisfying advanced control specifications likely becomes
impossible, and the system should concentrate on its survival.
In physical systems, it is reasonable to pose the problem
of system survival as a question of reaching a certain
target set as soon as possible while avoiding obstacles and
staying within a predefined safety envelope. In the motivating
example of a damaged aircraft, which we will use as a
running example throughout this paper, the target set is the
airbase runway, and the aircraft should reach it as soon as
possible without touching the ground beforehand.

A standard approach to reach-avoid problems in systems
with known dynamics [38] is based on constrained optimal
control, where the constraints are given by the geometry of
the safety envelope and obstacles, and the time to reach a
target set is minimized. The solutions to this problem clearly
depend on the full dynamics of the system. In our setting we
have very little information on the system dynamics. Hence,
it is unlikely that we can find the exact optimal control law
to solve a reach-avoid problem.

We instead propose the notion of myopic control, and
use it to solve problems of the reach-avoid type. In this
notion, the system aims to use a control law that seems to be
myopically optimal, i.e., work best at the given time, without
any knowledge on whether that control law will lead to good
results in the future. This framework is motivated by the
inherent lack of firm knowledge of future system dynamics.

To counterbalance the lack of confidence about the future,
a new myopically-optimal control input is calculated and
applied in the system every so often, after a short time

interval. In order to determine the next myopically-optimal
control input, the system continually modifies the previous
input by adding a series of wiggles: small, short-time controls
that do not significantly change the system trajectory, but
act as a learning mechanism to determine the local control
dynamics of the system. In order for this mechanism to
function, we make a technical assumption that the underlying
system is affine in control.

The proposed algorithm results in an approximate solution
to the myopic optimal control problem, with a degree of
suboptimality dependent on the length of the control law
update interval and the size of learning controls, i.e., wiggles.
Additionally, if there are known bounds on regularity of
system dynamics, the parameters of the algorithm can be set
to ensure a desired bound on the degree of suboptimality.

The organization of this paper is as follows: Section II
introduces the class of problems we are interested in solving,
and formalizes the limitations to control design imposed by
the lack of knowledge of the system. Section III then defines
the myopic optimal control problem. Section IV provides an
overview of the proposed algorithm to approximately solve
this problem, and Section V provides performance bounds
for the proposed algorithm. Finally, Section VI provides sim-
ulation results for the example of a wing-damaged aircraft,
showing that the algorithm indeed performs as expected.

Notation. Set of all continuous functions from set A ⊆ Rn
to set B ⊆ Rm is denoted by C(A,B). If I ⊆ R is an
interval and t ∈ I , the right one-sided derivative of function
f : I → Rn at time t, if it exists, is denoted by df(t+)/dt.
For a vector v ∈ Rn, ‖v‖ denotes its 2-norm, and ‖v‖∞
its max-norm. Finally, ei ∈ Rm denotes the i-th coordinate
vector, i.e., a vector consisting of all zeros, except for 1 at
the i-th position.

II. PROBLEM DEFINITION

We investigate the control system

ẋ = f(x) +

m∑
i=1

gi(x)ui (1)

which evolves on X ⊆ Rn, where f, gi ∈ C(X ,X) are a
priori unknown functions, and u = (u1, . . . , um) is the m-
dimensional control input with values in a bounded set U ⊆
Rm. While it is trivial to modify our proposed algorithm for
the case where U is any manifold with corners in the sense
of [17], for simplicity we take U = {u ∈ Rm | ‖u‖∞ ≤ 1}.
In the remainder of the text, a solution to (1) with control
input u and initial value x0 is denoted by φu(·, x0).

We are assuming that, at any time instance, we are able
to observe the full state x and the entire control u; a
modification of our approach to allow for noise in the state
observations and partial observations is a subject of current
work not covered by this paper. Additionally, in a practical
sense of control of a real-world system, we are usually only
interested in the behavior of a system on a compact state
space X . It thus makes sense to assume that there exist
M0 ≥ 0 and M1 ≥ 0 such that

• ‖f(x)‖ ≤ M0, ‖gi(x)‖ ≤ M0, for all x ∈ X and all
i ∈ {1, . . . ,m}, and

• ‖f(x)−f(y)‖ ≤M1‖x−y‖, ‖gi(x)−gi(y)‖ ≤M1‖x−
y‖, for all x, y ∈ X and all i ∈ {1, . . . ,m}.

The class of control-affine systems (1) covers a wide array
of physical control systems, including standard linear aircraft
models (e.g., [7], [34]) and a variety of nonlinear models
of mechanical systems [21], e.g., a unicycle with rider [27],
quadrotor helicopter [24], and the F-8 Crusader aircraft [14].
Control and optimal control of general control-affine systems
have been substantially covered by literature (see, e.g., [8],
[16], [21]), including investigations of reach-avoid problems
[12]. However, we emphasize that, motivated by the scenario
of an unexpected failure in a physical system, our setting
introduces two additional requirements on control design:

R1 Functions f, g1, . . . , gm in (1) are unknown at the begin-
ning of the system run. We are allowed to use trajectory
data during the system run to determine information on
them, and we may have some prior limited information
on the dynamics (given, e.g., by our knowledge of
physical laws; we give a specific example in Section
VI). However, when the run starts, we do not know
the actual values of functions f, g1, . . . , gm, but are
only aware that the system is of the form (1), and
potentially know a bound on the functions’ norms M0

and Lipschitz constants M1.
R2 There is only one system run, starting from a single

predetermined initial state x0. All control design needs
to be performed during that run, without any repetitions.

We note that the bulk of previous work on systems with
disturbances or noise, as discussed in, e.g., [9], [20], does not
help to deal with requirement R1. The standard setup in the
theory of systems with disturbances requires the controller
to know the “general” system dynamics, which are then
modified by some unknown, but bounded, disturbance or
noise. Requirement R1 is significantly more limiting for
control design. It stipulates that the system dynamics are
essentially unknown at the beginning of the system run.

The goal of this paper is to develop a method for solving
reach-avoid-type control problems [22] in the control-affine
setting (1) under the above requirements R1 and R2. In
the interest of space, we forgo a formal definition of a
reach-avoid problem, with the understanding that it is a
problem of reaching a certain target area T of the state
space, while avoiding certain undesirable areas B throughout
the system run. Its simplification is an avoid problem — if
there is no particular target area, the reach-avoid problem
naturally transforms into the problem of remaining outside
the undesirable set B for as long as possible. This problem is
again one natural abstraction of our running example: instead
of having to deal with the technicalities of aircraft landing,
we may simply want to pose the question of requiring the
damaged aircraft to stay above ground for as long as possible.

This paper would ideally end by providing a control design
to solve reach-avoid-type problems which respects require-
ments R1 and R2. This outcome is likely impossible. The

requirements that we have imposed imply that we have no
way of acquiring significant knowledge about the dynamics
in a certain area of X until the system trajectory reaches
that area. In fact, even when the system trajectory reaches
a point x ∈ X , we are still unable to exactly determine
the values of f(x) and gi(x), because a single controlled
trajectory provides only limited information on full control
dynamics around a point. Thus, it is not reasonable to expect
that a reach-avoid-type problem can be exactly solved under
the requirements of our setting. We now present an intuitive
variation of these problems that can be approached using
strategies which respect requirements R1 and R2.

III. MYOPIC CONTROL

Suppose that we want to solve the reach-avoid problem
under requirements R1 and R2. Requirement R2 implies
that, in order to determine the optimal control law u∗ to
be used starting at some time t, one may only use the
information obtained from the system trajectory until time
t. Thus, based on our knowledge of the system dynamics in
the interval [0, t], one would have to assess the “quality”
of a candidate future control law on the entire interval
(t,+∞). As mentioned, we can only do so with very limited
confidence, since the dynamics far away from points already
visited at some time 0 ≤ t′ ≤ t are unknown.

The above discussion behooves us to replace the original
reach-avoid-type problem by a myopic optimal control prob-
lem, where we want to design a control law such that, at
every time instance, the trajectory appears to behave as well
as possible. For instance, if our ultimate desire is to solve the
avoid problem, it makes sense to require that the trajectory
at any given instance of time is moving away from the
undesirable set B as fast as possible. Clearly, this reasoning
may not be ultimately optimal, as moving away from B as
fast as possible at some point could bring the trajectory into a
position where the dynamics are such that it is simply forced
to enter B (see Fig. 1 for an example). Thus, this notion of
“appearing to behave as well as possible” is simply our best
guess, based on intuition and any prior or side information
about the dynamics available during the system run.

B

x

Fig. 1. An example illustrating the built-in imperfection of myopic control.
Assume that the system dynamics are such that, unbeknownst to the control
designer, the system is restricted to moving along the blue curve. The control
objective is to avoid the undesirable set B, denoted in gray. When the system
is at point x, the available direction vectors are denoted by the green and
red arrows. From the designer’s myopic perspective, it may appear better
to control the system in the red direction, because this direction forces the
system to move further away from B. That action will ultimately result in
the system moving into the undesirable set.

We propose to formalize the above notion of “appearing
to behave as well as possible” using a goodness function

(φ, v) 7→ G(φ, v), φ ∈ F , v ∈ Rn, (2)

where F = ∪T≥0C([0, T],X). Function G is intended to
quantify how well the trajectory φ and its current velocity v
appear to be doing at satisfying the desired specifications.

Myopic policies and goodness or utility functions have
long been used in decision theory, in a wide variety of
control-theoretical settings, including resource allocation
[31], computer vision [32], and Bayesian learning [37]. How-
ever, all these settings differ significantly from the setting
of this paper; to the authors’ knowledge, myopic decision-
making has never been utilized in dealing with control of
unknown systems.

Example 1: Going back to our running example of a
damaged aircraft, assume that we want to have the aircraft
stay away from the ground for as long as possible. In
that case, if x1 and x2 denote the aircraft’s horizontal and
vertical position, respectively, undesirable set B is given by
B = {(x1, x2) | x2 ≤ 0}. One — but not the only — natural
option is for G to correspond to the slope on which the
trajectory is moving towards the boundary of B, i.e., x2 = 0.
Without additional information about the system, the more
negative this slope is, the worse the aircraft naturally appears
to be doing. Hence, G(φ, v) = v2/v1, where we disregard
the case of v1 ≤ 0, is a reasonable goodness function. Fig.
2 provides an illustration.

φ(T) G(φ, v) = 0

G(φ, v) = 0.5

G(φ, v) = −2 G(φ, v) = −0.25

Fig. 2. An illustration of the goodness function G from Example 1. Dashed
lines represent the possible tangents to the trajectory of system (1) at φ(T)
and thus our local predictions of future movement of the system state.
These tangents are evaluated by G depending on their slope towards the
undesirable set B, whose boundary is represented by a solid line.

In general, determining an appropriate goodness function
depends on our information on the system and the control
specifications. While this is a subject of future research, the
topic is discussed in more detail in an extended version [30]
of this paper. In this paper, we will provide a possible design
for our running example of a damaged aircraft in Section VI.

Having elaborated on how a goodness function provides a
measure of apparent quality of a trajectory at a given point
(with respect to problem specifications), we now formally
introduce the myopic optimal control problem. As a slight
deviation from standard notation, in order to emphasize that
φ ∈ F has [0, T] as its domain, we will occasionally write
such functions as φ|[0,T].

Myopic Optimal Control Problem (MOCP): Let x0 ∈ X .
Find a control law u∗ : [0,+∞)→ U such that, for all t ≥ 0,

if x = φu∗(t, x0), then

G

(
φu∗(·, x0)|[0,t],

dφu∗(0+, x)

dt

)
=

max
u∈U

G

(
φu∗(·, x0)|[0,t],

dφu(0+, x)

dt

)
.

(3)

Equation (3) slightly abuses notation: if u ∈ U , then u
is not formally a control input as a function of time. By
dφu(0+, x)/dt we denote the right-hand side of (1) when u
is plugged in. Additionally, while the notion of a solution
to (1) is questionable in the case of general measurable
functions u∗, in the remainder of the paper we will be
working with piecewise-constant control laws, and in that
sense we will not encounter any issues.

In the following section we propose a strategy to find
an approximate solution to the MOCP, while respecting
requirements R1 and R2. This strategy is the central the-
oretical contribution of this paper. The obtained solution is
approximate in the sense that, for any T > 0 and µ > 0,
Algorithm 3 can generate a piecewise-constant control law
u+ that satisfies∣∣∣∣G(φu+(·, x0)|[0,t],

dφu+(0+, x)

dt

)
−

max
u∈U

G

(
φu+(·, x0)|[0,t],

dφu(0+, x)

dt

)∣∣∣∣ < µ

(4)

for all t ≥ T . This law will be generated in real-time, during
the system run. Thus, our construction will approximately
solve the MOCP for a single initial state x0, while satisfying
requirements R1 and R2.

Existence of a control law that exactly solves the MOCP is,
to the authors’ knowledge, a novel problem. However, even
if an exact solution to the MOCP exists, it can be easily
shown that it cannot be found while respecting requirements
R1 and R2. We omit a discussion for lack of space, but once
again point the reader to the extended version [30] of this
paper, where the question is investigated.

IV. LEARN-CONTROL ALGORITHM

We intend to approximately solve the MOCP by the use of
short-time piecewise-constant controls. The proposed strat-
egy relies on repeatedly learning the local dynamics at points
on the observed system trajectory, and using those dynamics
to simultaneously apply a myopically-optimal control law.

In order to learn the local dynamics around a single point
on the trajectory, the controller can apply any m+1 affinely
independent constant controls for a short period of time.
Since system (1) is control-affine, we can use the observed
changes in states to approximate the function u 7→ vx(u)
defined by

vx(u) = f(x) +

m∑
i=1

gi(x)ui,

where x is a point on the trajectory around the time of this
learning process.

After doing so, if φ denotes the trajectory until the end of
the learning process, by determining argmaxuG(φ, vx(u)),

a constant control u∗ which appears to best satisfy the control
specifications at point x can be found. This control is then
used during the next iteration of the learning process. In other
words, the next learning process uses an affinely independent
set of controls u∗ + ∆u0, . . . , u∗ + ∆um, where ∆ui are
small enough to ensure that their application still results in
near-optimal goodness.

The described method of using short-time controls to
achieve real-time (nearly) optimal behavior bears some re-
semblance to the work in [3] and to extremum seeking [4].
However, both the problem statements and the settings of
these approaches are significantly different from ours, not
aiming to deal with a reach-avoid problem in a system with
entirely unknown dynamics.

The above description of the control strategy is formally
given as Algorithm 3.

Algorithm 3

Input ε, δ.

1 u∗ := 0

2 t0 := 0

3 repeat
4 Let x0 be the current state of the system.

5 Take ∆u0 = 0 and choose

∆u1 = ±δe1, . . . ,∆um = ±δem
such that u∗ + ∆u1, . . . , u∗ + ∆um ∈ U .

6 for j = 0, . . . ,m

7 Apply control u∗ + ∆uj in the interval of time

[t0 + jε, t0 + (j + 1)ε).

8 Let xj+1 be the system state at the end of that period.

9 end for
10 x := xm+1

11 Define function ṽx : U → Rn as follows:

If λ0, . . . , λm are unique coefficients

with
∑
λj = 1 such that u =

∑
λj(u∗ + ∆uj),

let ṽx(u) =
∑
λj(xj+1 − xj)/ε.

12 Take u∗ ∈ argmaxG(φ|[0,t0+(m+1)ε], ṽx(u))

13 t0 := t0 + (m+ 1)ε

14 until the end of system run

While Algorithm 3 prescribes a particular form for ∆i, the
local dynamics of the system can be learned by using any
∆i such that u∗ + ∆u1, . . . , u∗ + ∆um ∈ U is an affinely
independent set. The particular form for ∆i is included in the
algorithm in order to more easily establish a bound on the
degree of suboptimality of the resulting control law. This
bound, which is dependent on parameters δ ∈ (0, 1) and
ε > 0, is described in Theorem 8.

Remark 4: Algorithm 3 does not separate the learning and
control phases of the algorithm: the algorithm learns the local
dynamics as a result of performing slight perturbations of
the previously established optimal control law. However, we
note that these two phases can be decoupled by a minor
modification of the above algorithm. After learning the local
dynamics through consecutively applying any m+1 affinely

independent controls in a short time period ε′ < (m + 1)ε,
the system can then apply the optimal control law derived
from these dynamics for the remaining (m + 1)ε − ε′ time
in the cycle, after which it begins a new cycle by learning
the new local dynamics. While this modification results in
an ε′ period of time inside every iteration of the learn-
control cycle without any guarantees on the degree of myopic
suboptimality, it offers computational benefits in the case
where the optimal control law does not rapidly change over
time. Because of this reason, the algorithm used in the simu-
lation work of Section VI contains the modification described
above. The performance bounds presented in the subsequent
section apply to Algorithm 3 as originally presented.

V. PERFORMANCE BOUNDS

To save space, the theoretical results are accompanied
merely by intuitive proof sketches. We refer the reader to
the extended version [30] of this paper for full proofs.

A. Learning
We claim that the procedure in lines 5–11 of Algorithm 3

produces a good approximation ṽx : U → Rn of the map
vx : U → Rn, with x = xm+1 defined as in the algorithm.
For every point u∗ ∈ U = [−1, 1]m, if u∗i ≥ 0, then −1 ≤
u∗i − δ ≤ 1, and if u∗i < 0, then −1 ≤ u∗i + δ ≤ 1, for all
0 < δ < 1. Hence, for all u∗ ∈ U we can choose ∆ui = δei
or ∆ui = −δei such that u∗+∆ui ∈ U , as stipulated by line
5 of Algorithm 3. We also note that {u∗+∆ui | 0 ≤ i ≤ m}
is trivially an affinely independent set.

In our description of the remainder of the procedure, we
slightly abuse notation and denote u∗ + ∆ui by ui.

For each j ∈ {0, 1, . . . ,m}, vector

xj+1 − xj

ε
=
φuj (ε, xj)− φuj (0, xj)

ε
(5)

approximates the value

dφuj (ε, xj)

dt
= f(xj+1)+

m∑
i=1

gi(x
j+1)uji = vxj+1(uj). (6)

Additionally, since xj+1 and x = xm+1 are not far apart
(because xm+1 is the state of the trajectory just (m − j)ε
later than xj+1), vxj+1(uj) ≈ vx(uj).

Finally, since u0, . . . , um are affinely independent, for
every u ∈ U there exist unique λ0, . . . , λm ∈ R such that
u = λ0u

0 + . . .+ λmu
m and λ0 + . . .+ λm = 1. Thus,

vx(u) =

m∑
j=0

λj

(
f(x) +

m∑
i=1

gi(x)uji

)
=

m∑
j=0

λjvx(uj).

Since we already devised an approximation for vx(uj)
based on (5)-(6), we can thus approximate vx(u) for any
u ∈ U . A bound on the error of this approximation is given
by the following theorem.

Theorem 5: Let x0, . . . , xm+1 = x be as in Algorithm 3,
and let u ∈ U . Let λ0, . . . , λm ∈ R be such that u = λ0u

0 +
. . .+ λmu

m and λ0 + . . .+ λm = 1. Then,∥∥∥∥∥vx(u)−
m∑
j=0

λj
xj+1 − xj

ε

∥∥∥∥∥ ≤ 2M0M1 (m+ 1)
3
Tδε,

with Tδ = 1 + 4m3/2/δ.

B. Control

From Theorem 5 it follows that Algorithm 3 approximates
vxm+1(u) = f(xm+1) +

∑
gi(x

m+1)ui for any value u ∈ U
with arbitrary precision. Thus, we are able to accurately
calculate G at time t0 + (m + 1)ε for any control u,
with bounds on precision depending on the regularity of G.
Additionally, for a fixed x and φ, u 7→ G(φ, vx(u)) is a
real function of a bounded variable u ∈ U . Depending on
the properties of G, max and argmax of this function can
be found by an analytic or numerical optimization method;
discussion of available methods is not within the scope of
this paper. Thus, we can find an (approximately) optimal
control u∗ to be applied when the previous system trajectory
is given by φ, and the trajectory is at x.

As shown in Algorithm 3, our plan is to use the found
optimal control u∗ for a short time (m+1)ε after the system
is at point xm+1. During that time, the system will learn
new local dynamics around the new xm+1, and the whole
procedure will be repeated again. We note that this process
does not necessarily generate an optimal control law, as the
best control u∗ for a certain point xm+1 may no longer be
the best immediately after the system leaves the said point.
However, if the function G is “tame enough”, u∗ will still
be a good approximation of the optimal control. This fact
remains true even if we take into account that the policy u∗

was calculated based on a slightly incorrect learned dynamics
at xm+1. To prove this claim, we first introduce a measure
of tameness of G.

Definition 6: Function G : F × Rn → R has Lipschitz
constant L if for all φ1|[0,T1], φ2|[0,T2] ∈ F and v1, v2 ∈ Rn,
the following holds:∣∣G(φ1|[0,T1], v1)−G(φ2|[0,T2], v2)

∣∣ ≤
L
(
d
(
φ1|[0,T1], φ2|[0,T2]

)
+ ‖v1 − v2‖

)
,

(7)

where

d
(
φ1|[0,T1], φ2|[0,T2]

)
=

|T1 − T2|+ max
t∈[0,min(T1,T2)]

‖φ1(t)− φ2(t)‖. (8)

Definition 6 explicitly makes note of the usually standard
notion of a Lipschitz constant because d as defined in (8) is
not a proper metric on F . Thus, the existence of a Lipschitz
constant as in Definition 6 does not imply continuity of G
in the standard sense.

The claims of the beginning of this section are now
formalized by the following result.

Theorem 7: Let φ1|[0,T1], φ2|[0,T2] ∈ F , and let ν > 0.
Define x = φ1(T1) and y = φ2(T2). Assume that G
has Lipschitz constant L in the sense of Definition 6, and
let u∗ be the optimal control at x under approximately
learned local dynamics with the previous trajectory φ1|[0,T1],
i.e., G(φ1|[0,T1], f̃ +

∑
g̃iu
∗
i) = maxu∈U G(φ1|[0,T1], f̃ +∑

g̃iui), where ‖f̃+
∑m
i=1 g̃iui−(f(x)+

∑m
i=1 gi(x)ui)‖ ≤

ν for all u ∈ U . Then,∣∣∣max
u

G
(
φ2|[0,T2], vy(u)

)
−G

(
φ2|[0,T2], vy(u∗)

)∣∣∣ /L ≤
2d
(
φ1|[0,T1], φ2|[0,T2]

)
+ 2 ((m+ 1)M1‖x− y‖+ ν) .

In the context of Algorithm 3, the result of Theorem 7 can
be interpreted in the following way: let us take T1 to be the
time at the beginning of one repeat loop in the algorithm,
φ1|[0,T1] to be the trajectory of the system until time T1, T2 to
be any time in the interval [T1, T1+(m+1)ε), and φ2|[0,T2] to
be the trajectory of the system until time T2. Then, Theorem
7 essentially proves that Algorithm 3 results in a nearly
optimal policy with respect to (3). There is only one major
point that remains to be discussed. In Algorithm 3, we do not
apply just u∗ as the control. In order to facilitate learning,
we modify this u∗ by some small ∆ui. We need to show that
such a small control perturbation will not significantly impact
the degree of suboptimality of Algorithm 3. Theorem 8 deals
with that issue. It also translates the bound in Theorem 7,
which depends on d(φ1|[0,T1], φ2|[0,T2]), ‖x−y‖, and ν, into
a bound in terms of algorithm parameters ε and δ. Solely for
notational purposes, we assume that the run of system (1) is
of infinite horizon.

Theorem 8: Let x0 ∈ X . Let u+ : [0,+∞) → U be
the control law used in Algorithm 3. Assume that G has
Lipschitz constant L. Then, for all t ≥ (m+ 1)ε,∣∣∣∣G(φu+(·, x0)|[0,t],

dφu+(0+, x)

dt

)
− max

u∈U
G

(
φu+(·, x0)|[0,t],

dφu(0+, x)

dt

)∣∣∣∣ ≤
6L(M0 + 1)(M1 + 1)(m+ 1)3

(
1 +

4m
√
m

δ

)
ε

+ LM0(m+ 1)δ,

(9)

where x = φu+(t, x0).
Theorem 8 is the central result of the theoretical discus-

sions of this paper. It shows that, for any µ > 0, if ε and δ are
chosen in such a way that 6L(M0+1)(M1+1)(m+1)3(1+
4m
√
m/δ)ε+LM0(m+1)δ ≤ µ, Algorithm 3 will result in

a control law that approximately satisfies (3) at every time
t ≥ (m+ 1)ε, with an error no larger than µ.

As can be seen from Theorem 8, in order to achieve
arbitrarily good performance bounds on Algorithm 3, the
control actuators must allow that an arbitrarily small control
input can be applied for an arbitrarily short amount of
time. While actual minimal sizes of control inputs and
control application time will depend on the actuator type,
improvement on both of these resolutions is a topic of recent
practical research [10], [19].

VI. SIMULATION RESULTS

The simulation work presented in this section is motivated
by our running example: a damaged aircraft that is attempting
to retain a safe altitude. In particular, we consider the
dynamics of a Boeing 747-200 that lost 33% of its right
wing. The dynamics of such an aircraft were developed in

[5], and we use the nonlinear model contained therein to
simulate aircraft behavior. We emphasize, however, that we
do not use these dynamics at any point to decide on an
appropriate control law: the controller is ignorant of the true
system dynamics and bases its decisions on learned local
dynamics as described in Algorithm 3.

The state variables x = [v, w, q, θ, β, p, r, φ, z]
T

that we consider are forward velocity, vertical velocity, pitch
rate, pitch angle, sideslip angle, roll rate, yaw rate, roll
angle, and altitude, respectively. The control inputs u =
[δe, δa, δr] are the elevator, aileron, and rudder deflections
from the wings-level trim condition for an undamaged air-
craft, respectively. For the sake of readability, in the remain-
der of the paper, we denote the appropriate coordinates of x
by x1, . . . , x9, and analogously for u. The limits (in degrees)
on allowed control inputs u ∈ U are set to u1 = δe ∈
[−15, 15], u2 = δa ∈ [−25, 25] and u3 = δr ∈ [−10, 10],
roughly informed by the descriptions in [13].

A. Controller specifications

The initial flight conditions are taken from the trim con-
ditions of a Boeing 747-200 at 283000 kg, 500 knots and
a nominal altitude of 500 m [29]. The setting investigated
in this example is that the aircraft suffered damage while
in flight, during a banked turn, at an angle of 0.5 radians,
i.e., 28.6 degrees. Thus, the initial system state is x(0) =
[257.22,−0.7818, 0, 2.5, 0, 0, 0, 28.6, 500]

T (all values are in
metres, seconds and degrees). The aircraft’s main objective
is to remain in the air:

(i) x9(t) > 0 for all t ≥ 0.
While (i) is a primary objective, we also want the aircraft
to reach and stay within safe altitude bounds, and remain
nearly horizontal (i.e., within 5 degrees):
(ii) x9(t) ∈ [1900, 2100] for all t ≥ T ,

(iii) x8(t) ∈ [−5, 5] for all t ≥ T ,
with T > 0 as small as possible. Additionally, we require
adherence to the following safety specifications, based upon
physical constraints of an aircraft:
(iv.a) x4(t) ∈ [−10, 10] for all t ≥ 0 (high pitch angles

can cause stall; the conservative bound is informed
by [25]), and

(iv.b) x2(t) ∈ [−50, 50] for all t ≥ 0 (maximum sink and
climb rates; the bound is informed by [25]).

Since it may be impossible to progress towards all ob-
jectives at all times, we impose the following importance
ranking of specifications, ranked in descending order: (i),
(iv.a), (iv.b), (iii) and (ii).

We now design a goodness function corresponding to the
above specifications. As previously mentioned, there is no
formally correct way for developing a goodness function. Its
design depends primarily on the geometric intuition about
the problem. We develop the goodness function G from the
following conditional functions:

if z = x9 < 100: x9 should quickly increase,
else if |x4| > 10 |x2|, |x4| or both (as needed)

or |x2| > 50: should quickly decrease,
else if |x8| > 5: x8 should quickly approach 0,
else if
x9 /∈ [1900, 2100]:

x9 should quickly approach
2000,

else: |x4| and |x2| should remain
small

Defining the above functions would be simple if we had
full knowledge of the system dynamics. However, the only
a priori knowledge about system dynamics comes from
physical laws and basic understanding of aircraft control
inputs. In particular, we know the following:

(1) u1 = δe will have the most effect on longitudinal
parameters x2 = w and x3 = q (by the design of the
elevator);

(2) u2 and u3 will have the most effect on lateral parameters
x5 = β, x6 = p and x7 = r (by the design of the
ailerons and rudder);

(3) ẋ4 = x3 and ẋ8 = x6 (by definition);
(4) ẋ9 depends directly on x2 and indirectly on x4: an

increase in either of x2 or x4 will increase ẋ9 (by
longitudinal force definitions). ẋ8 depends on mostly
on x6 and x7 at high pitch angles: a decrease in x6
leads to an increase in ẋ8 (by lateral force definitions);

(5) u1 does not directly influence x4 and x9, but instead
acts on them through x2 and x3 (by Newton’s second
law on the longitudinal forces); and

(6) u2 and u3 do not directly influence x8, but instead act
on bank angle through x6 (by Newton’s second law on
the lateral forces).

We now design goodness functions that result in the
required motions, using solely facts (1)–(6). We first want
to design a function that results in an increase of x9. From
(5), we know that we cannot directly increase x9 through
control inputs. Thus, from (4), in order to increase x9 (and
ẋ9) we know that we want to increase both x2 and x4. Since
by (3) and (5) we cannot directly influence x4 through our
inputs, but only x3, we want to find a control input that
results in an increase of x2 and x3. We do not know exactly
from the dynamics which of these two methods we should
prioritize, so we will find an input that maximizes the value
ẋ2 + ẋ3. Analogously, in order to decrease ẋ9 and x9, we
want to minimize ẋ2 + ẋ3.

What remains is to find methods for decreasing |x4|, |x8|
and keeping |x2|, |x4| and |x6| around 0. In order to decrease
|x4|, we maximize the increase of x3 = ẋ4 in the direction
opposite from x4, thus providing negative acceleration which
will ultimately result in x4 reducing to 0. In order for |x4|
to remain around 0, we simply use the above method to
decrease |x4| whenever it grows beyond some small number
(e.g., |x4| > 0.5). We omit the discussion of designs for
the remaining motions, as they are similar to the two above
designs.

Using the above methods, our previous rough idea of a
goodness function G is now formalized as follows:

if x9 < 100: G(x|[0,t], v) = v3 + v2,
else if |x4| > 10
or if |x2| > 50

G(x|[0,t], v) = m1 +m2 +m3,
where m1 = −v2 · sign(x2)

or if |x8| > 5
or if
x9 ∈ [1900, 2100]:

if |x2| > 1 and m1 = 0
otherwise, and
m2 = −v3 · sign(x4)
if |x4| > 0.5 and m2 = 0
otherwise, and
m3 = −v6 · sign(x8)
if |x8| > 0.5 and m3 = 0
otherwise.

else: G(x|[0,t], v) = (v3 + v2) · |v8| ·
sign (2000− x9(t)).

We emphasize that this goodness function is not the only
possible one. The proposed function has the benefit of being
simple to design, but does not have a Lipschitz constant in the
sense of Definition 6. Thus, we are unable to directly use the
results of Section V to determine good choices of parameters
ε and δ. The choice of ε and δ is discussed in Section VI-
B. We employ Algorithm 3 with a minor modification as in
Remark 4.

B. Sample-rate and wiggle size selection

In selecting parameters ε and δ, we seek to account for
scenario-specific issues such as the non-minimum phase
of response of x2 to control u1. The choice of learning
period has to be of sufficient length that we can observe
the correct response of an input: most aircraft functionally
behave as natural low-pass filters [35], which means that
control resolution below a certain period has minimal impact.
On the other hand, the learning period must not be too
long, or the wiggle size δ too large, that they impact the
performance of the control. In this simulation, we decoupled
the control of the longitudinal parameters from the lateral
[11], and chose the length of the learn-control cycle to be
ε = 1 and ε = 0.1 with the learning period, as defined
in Remark 4, equal to ε′ = 0.1 and ε′ = 10−2 for the
longitudinal and lateral cases, respectively. We chose δ = 5.

C. Results

The simulation results are presented in Fig. 3. Myopic
control strategy performs exactly as desired, even though
the true dynamics are not control-affine. In the first few
seconds, the aircraft attempts to approach a wings-level
flight, primarily controlling for roll angle. After that, it begins
its climb until about 50 seconds, where the controller focuses
back to the roll angle.

While the peaks and troughs that result in the trajectory
leaving the desired bounds could be avoided by a more
careful design of the goodness function, we did not make
such changes in order to emphasize that the control design
performs exactly as intended: as soon as the climb rate
or roll angle leave the desired bounds, the controller takes
immediate action to return within them.

The aircraft’s oscillatory behavior after reaching the alti-
tude bounds is due to the phugoid and Dutch roll aircraft

dynamic modes. Designing a goodness function to control
for this behavior is outside of the scope of this paper. We
emphasize that myopic control is intended to be used to
satisfy the basic control objectives in an emergency; the
presented simulation is focused on demonstrating that it
successfully performs this task.

0 50 100 150 200 250

500

1,000

1,500

2,000

Time (s)

A
lti

tu
de

(m
)

Altitude

0 50 100 150 200 250

0

20

Time (s)

R
ol

l
an

gl
e
φ

(d
eg

)

Roll angle

Fig. 3. The simulated aircraft trajectory from the setting of Section VI.
The desired system state bounds are denoted by dashed lines. A shortened
video corresponding to this simulation is available at https://goo.gl/
a4qYAU.

REFERENCES

[1] M. Ahmadi, A. Israel, and U. Topcu, “Safety assessment based on
physically-viable data-driven models,” in 56th IEEE Conference on
Decision and Control, 2017, pp. 6409–6414.

[2] S. Aloni, Israeli F-15 Eagle Units in Combat. Osprey Publishing,
2006.

[3] A. R. Ansari and T. D. Murphey, “Sequential action control: Closed-
form optimal control for nonlinear and nonsmooth systems,” IEEE
Transactions on Robotics, vol. 32, no. 5, pp. 1196–1214, 2016.

[4] K. B. Ariyur and M. Krstić, Real-Time Optimization by Extremum-
Seeking Control. Wiley, 2003.

[5] M. Arruda, “Dynamic inverse resiliant control for damaged asymmet-
ric aircraft: Modeling and simulation,” Master’s thesis, Wichita State
University, 2009.

[6] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing
equations from data by sparse identification of nonlinear dynamical
systems,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 113, no. 15, pp. 3932–3937, 2016.

[7] A. E. Bryson, Control of Spacecraft and Aircraft. Princeton University
Press, 1994.

[8] F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems.
Springer, 2004.

[9] R. C. Dorf and R. H. Bishop, Modern Control Systems. Prentice
Hall, 2011.

[10] H.-A. Eckel, S. Scharring, S. Karg, C. Illg, and J. Peter, “Overview of
laser ablation micropropulsion research activities at DLR Stuttgart,” in
International Symposium on High Power Laser Ablation and Beamed
Energy Propulsion, 2014.

[11] B. Etkin and L. D. Reid, Dynamics of Flight: Stability and Control.
Wiley, 1995.

[12] F. Fadaie and M. E. Broucke, “A viability problem for control
affine systems with application to collision avoidance,” in 45th IEEE
Conference on Decision and Control, 2006, pp. 5998–6003.

[13] S. Ganguli, A. Marcos, and G. Balas, “Reconfigurable LPV control
design for Boeing 747-100/200 longitudinal axis,” in American Control
Conference, 2002, pp. 3612–3617.

[14] W. L. Garrard and J. M. Jordan, “Design of nonlinear automatic flight
control systems,” Automatica, vol. 13, no. 5, pp. 497–505, 1977.

[15] D. J. A. Hills, A. M. Grütter, and J. J. Hudson, “An algorithm for
discovering Lagrangians automatically from data,” PeerJ Computer
Science, vol. 1, 2015.

[16] A. Isidori, Nonlinear Control Systems. Springer, 1995.
[17] D. Joyce, “On manifolds with corners,” in Advances in Geometric

Analysis, S. Janeczko, J. Li, and D. H. Phong, Eds. International
Press, 2012, pp. 225–258.

[18] S. Khadraoui, H. N. Nounou, M. N. Nounou, A. Datta, and S. P.
Bhattacharyya, “Adaptive controller design for unknown systems using
measured data,” Asian Journal of Control, vol. 18, no. 4, pp. 1453–
1466, 2016.

[19] D. Krejci, F. Mier-Hicks, R. Thomas, T. Haag, and P. Lozano,
“Emission characteristics of passively fed electrospray microthrusters
with propellant reservoirs,” Journal of Spacecraft and Rockets, vol. 54,
no. 2, pp. 447–458, 2017.

[20] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems. Wiley,
1972.

[21] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[22] W. S. Levine, The Control Systems Handbook, Second Edition: Control
System Advanced Methods. CRC Press, 2011.

[23] Y. Liu, G. Tao, and S. M. Joshi, “Modeling and model reference
adaptive control of aircraft with asymmetric damage,” Journal of
Guidance, Control, and Dynamics, vol. 33, no. 5, pp. 1500–1517,
2010.

[24] A. Mokhtari, A. Benallegue, and Y. Orlov, “Exact linearization and
sliding mode observer for a quadrotor unmanned aerial vehicle,”
International Journal of Robotics and Automation, vol. 21, no. 1, pp.
39–49, 2006.

[25] S. S. Mulgund and R. F. Stengel, “Target pitch angle for the microburst
escape maneuver,” Journal of Aircraft, vol. 30, no. 6, pp. 826–832,
1993.

[26] J. Na and G. Herrmann, “Online adaptive approximate optimal
tracking control with simplified dual approximation structure for
continuous-time unknown nonlinear systems,” IEEE/CAA Journal of
Automatica Sinica, vol. 1, no. 4, pp. 412–422, 2014.

[27] Y. Naveh, P. Z. Bar-Yoseph, and Y. Halevi, “Nonlinear modeling and
control of a unicycle,” Dynamics and Control, vol. 9, no. 4, pp. 279–
296, 1999.

[28] N. T. Nguyen, K. S. Krishnakumar, J. T. Kaneshige, and P. P. Nespeca,
“Flight dynamics and hybrid adaptive control of damaged aircraft,”
Journal of Guidance, Control, and Dynamics, vol. 31, no. 3, pp. 751–
764, 2008.

[29] T. T. Ogunwa and E. J. Abdullah, “Flight dynamics and control
modelling of damaged asymmetric aircraft,” IOP Conference Series:
Materials Science and Engineering, vol. 152, no. 1, 2016.

[30] M. Ornik, A. Israel, and U. Topcu, “Control-oriented learning on the
fly,” arXiv:1709.04889 [math.OC], 2017.

[31] W. B. Powell, Approximate Dynamic Programming: Solving the
Curses of Dimensionality. Wiley, 2011.

[32] R. D. Rimey and C. M. Brown, “Control of selective perception using
Bayes nets and decision theory,” International Journal of Computer
Vision, vol. 12, no. 2, pp. 173–207, 1994.

[33] M. Schmidt and H. Lipson, “Distilling free-form natural laws from
experimental data,” Science, vol. 324, no. 5923, pp. 81–85, 2009.

[34] B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft Control and
Simulation: Dynamics, Controls Design, and Autonomous Systems.
Wiley, 2016.

[35] T. R. Yechout, Introduction to aircraft flight mechanics. AIAA, 2003.
[36] H.-H. Yeh, S. S. Banda, and P. J. Lynch, “Control of unknown systems

via deconvolution,” Dynamics and Control, vol. 13, no. 3, pp. 416–
423, 1990.

[37] S. Zhang and A. J. Yu, “Forgetful Bayes and myopic planning:
Human learning and decision-making in a bandit setting,” in Neural
Information Processing Systems Conference, 2013, pp. 2607–2615.

[38] Z. Zhou, R. Takei, H. Huang, and C. J. Tomlin, “A general, open-
loop formulation for reach-avoid games,” in 51st IEEE Conference on
Decision and Control, 2012, pp. 6501–6506.

https://goo.gl/a4qYAU
https://goo.gl/a4qYAU

	Introduction
	Problem Definition
	Myopic Control
	Learn-Control Algorithm
	Performance Bounds
	Learning
	Control

	Simulation Results
	Controller specifications
	Sample-rate and wiggle size selection
	Results

	References

