
Submitted to Rev. Mat. Iberoam., 1–41 c© European Mathematical Society

A coordinate-free proof of the finiteness principle
for Whitney’s extension problem

Jacob Carruth, Abraham Frei-Pearson, Arie Israel and Bo’az Klartag

Abstract.
We present a coordinate-free version of Fefferman’s solution of Whit-

ney’s extension problem in the space Cm−1,1(Rn). While the original argu-
ment relies on an elaborate induction on collections of partial derivatives,
our proof uses the language of ideals and translation-invariant subspaces
in the ring of polynomials. We emphasize the role of compactness in the
proof, first in the familiar sense of topological compactness, but also in the
sense of finiteness theorems arising in logic and semialgebraic geometry.
In a follow-up paper, we apply these ideas to study extension problems
for a class of sub-Riemannian manifolds where global coordinates may be
unavailable.

1. Introduction

Whitney’s extension problem asks, given a subset E ⊂ Rn and a function f :
E → R, how can one determine whether f admits an extension F : Rn → R in
a prescribed regularity class (e.g., Hölder, Cm, Sobolev, etc.)? In [23, 24, 25], H.
Whitney developed characterizations for the existence of extensions in the class Cm

(i.e., functions which are continuously differentiable up to order m). In particular,
in dimension n = 1, he proved that certain natural conditions on the continuity of
the finite difference quotients of a function f : E → R (for E ⊂ R) are necessary and
sufficient for the existence of a Cm-extension to the real line. In higher dimensions
there is no analogue of finite difference quotients and the problem is far more
difficult. Several years ago, a complete characterization of Cm-extendibility in
arbitrary dimensions was developed by C. Fefferman [11, 12], building on the work
of Y. Brudnyi and P. Shvartsman [4, 5, 6, 7, 8, 17, 19, 20], who solved the extension
problem in C1,1(Rn), work of G. Glaeser on C1-extendibility [15], and work of
E. Bierstone, P. Milman, and W. Paw lucki on Cm-extendibility for functions on
subanalytic sets [2, 3].
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In this article we focus on the Hölder class Cm−1,1(Rn), consisting of all Cm−1

functions F : Rn → R whose (m− 1)-st order derivatives are Lipschitz continuous.
This space is equipped with a seminorm
(1.1)

‖F‖Cm−1,1(Rn) := sup
x,y∈Rn

 ∑
|α|=m−1

(∂αF (x)− ∂αF (y))2

|x− y|2

 1
2

, F ∈ Cm−1,1(Rn),

where |α| := α1 + · · ·+ αn is the order of a multiindex α = (α1, · · · , αn) ∈ Zn≥0.
In [16, 19], Shvartsman studies Whitney’s extension problem in the space

C1,1(Rn). One of his main results is the following finiteness principle (see also
[4, 17]): Suppose that the restriction of a function f : E → R (for E ⊂ Rn) to
every subset S ⊂ E of cardinality at most 3 · 2n−1 can be extended to a func-
tion FS ∈ C1,1(Rn) with ‖FS‖C1,1(Rn) ≤ M . Then the function f itself can be
extended to a function F ∈ C1,1(Rn) with norm ‖F‖C1,1(Rn) ≤ γ(n)M . Brudnyi
and Shvartsman conjectured in [5, 8] (see also [17, 18, 19]) that a similar result
would hold for the entire range of Hölder spaces (i.e., for all orders of smoothness
m ≥ 2). In [10], Fefferman verified their conjecture with the following theorem:

Theorem 1.1 (The Brudnyi-Shvartsman-Fefferman finiteness principle). For any
m,n ≥ 1, there exist constants C# ≥ 1 and k# ∈ N such that the following holds.

Let E ⊂ Rn and f : E → R be given. Suppose that there exists M > 0 so that for
all subsets S ⊂ E satisfying #(S) ≤ k# there exists a function FS ∈ Cm−1,1(Rn)
with ‖FS‖Cm−1,1(Rn) ≤M and FS = f on S.

Then there exists F ∈ Cm−1,1(Rn) with ‖F‖Cm−1,1(Rn) ≤ C# ·M and F = f
on E.

The finiteness principle says that a function f : E → R admits a Cm−1,1

extension if and only if for every k#-point subset S ⊂ E, the restriction f |S admits
a Cm−1,1 extension with a uniform bound on the seminorm. The parameters k#

and C# in Theorem 1.1 are often referred to as finiteness constants for the function
space Cm−1,1(Rn).

In this article we present a proof of Theorem 1.1 based on a coordinate-free ver-
sion of Fefferman’s stopping time argument. Our approach emphasizes the metric
and symmetry structures of Rn and shortens several components of the analysis
through the use of compactness arguments. Two types of compactness are relevant
here. The first is topological compactness, which is the common compactness used
in Analysis. The second is logic-type compactness results from the theory of semi-
algebraic sets. We will explain how to replace the basis-dependent notion of mono-
tonic multiindex sets from Fefferman’s argument with the basis-independent notion
of transverse dilation-and-translation-invariant subspaces. Our use of the latter
concept is likely adaptable to the study of extension problems on sub-Riemannian
manifolds, where global coordinates may be unavailable. In a follow-up paper [9],
we will address this topic for a class of sub-Riemannian manifolds known as Carnot
groups.

Our main result is a finiteness principle for Cm−1,1-extension on finite subsets
E ⊂ Rn, where the constants depend on a parameter C(E) = Cm(E) ∈ {0, 1, 2, · · · },
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called the “complexity” of E. (See section 4 for the definition of this quantity.)

Theorem 1.2. Fix m,n ≥ 1. There exist constants λ1, λ2 ≥ 1, determined by
m and n such that the following holds. Fix a finite set E ⊂ Rn and a function
f : E → R. Set k# = 2λ1C(E) and C# = 2λ2C(E). Suppose that for all subsets
S ⊂ E with #(S) ≤ k# there exists FS ∈ Cm−1,1(Rn) with FS = f on S and
‖FS‖Cm−1,1(Rn) ≤ 1. Then there exists a function F ∈ Cm−1,1(Rn) with F = f on

E and ‖F‖Cm−1,1(Rn) ≤ C#.

In order to deduce Theorem 1.1 from Theorem 1.2, we will prove the following
lemma:

Lemma 1.3. There exists a constant K0, determined only by m and n, such that
C(E) ≤ K0 for any finite set E ⊂ Rn.

Together, Theorem 1.2 and Lemma 1.3 imply Theorem 1.1 in the case when
E is a finite subset of Rn and M = 1. By a compactness argument involving the
Arzela-Ascoli theorem, one can extend this result to infinite sets. Finally, by a
trivial rescaling argument we deduce Theorem 1.1 for arbitrary M > 0.

Fefferman’s proof of Theorem 1.1 yields the constants k# = exp(exp(γD)) and
C# = exp(exp(γD)), where D =

(
n+m−1

n

)
is the dimension of the jet space for

Cm−1,1(Rn), or equivalently, the number of multiindices (α1, · · · , αn) of order at
most m− 1, and γ > 0 is a numerical constant independent of m and n. Bierstone
and Milman [1] and Shvartsman [21] independently obtain the improvement k# =
2D at the expense of multiplying C# by a multiplicative factor which does not
affect the asymptotics C# = O(exp(exp(γD))). In [14], Fefferman and Klartag
show that the finiteness principle fails for C# = 1 + ε for a small absolute constant
ε > 0, no matter the choice of k#.

We apply compactness arguments and algebraic methods to prove our results.
For this reason, some of the constants are either inexplicit or depend poorly on m
and n. In particular, the constant K0 in Lemma 1.3 is not explicit. By the use
of more direct methods (which will lengthen the proofs), it is possible to obtain
K0 = exp(exp(γD)). This dependence is likely far from optimal. In fact, evidence
suggests that it is possible to take K0 to be a polynomial function of the dimension
D. By following through our proof, one may check that the constants λ1 and
λ2 in Theorem 1.2 are harmless polynomial functions of D. This leads us to
conjecture that the finiteness principle will hold with the constants k# = 2D and
C# = exp(poly(D)).

Throughout the proof, the symbols C,C ′, c, etc., will be used to denote univer-
sal constants which are determined only by m and n. The same symbol may be
used to denote a different constant in separate appearances, even within the same
line.

We are grateful to the participants of the Tenth and Eleventh Whitney Prob-
lems Workshops for their interest in our work. We are also grateful to the National
Science Foundation and the European Research Foundation for their generous fi-
nancial support.
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2. Notation, definitions, and preliminary lemmas

Given a convex domain G ⊂ Rn with nonempty interior, we let Cm−1,1(G) denote
the space of real-valued functions F : G → R whose (m − 1)-st order partial
derivatives are Lipschitz continuous. Define a seminorm on Cm−1,1(G) by

‖F‖Cm−1,1(G) := sup
x,y∈G

 ∑
|α|=m−1

(∂αF (x)− ∂αF (y))2

|x− y|2

 1
2

, F ∈ Cm−1,1(G).

The seminorm on Cm−1,1(Rn) is abbreviated by ‖F‖ := ‖F‖Cm−1,1(Rn).
Let P be the space of polynomials of degree at most m− 1 in n real variables.

Let us review some of the structure and basic properties of P. First, P is a vector
space of dimension D := #{α ∈ Zn≥0 : |α| ≤ m − 1}. For x ∈ Rn, define an inner
product on P:

〈P,Q〉x :=
∑

|α|≤m−1

1

α!
· ∂αP (x) · ∂αQ(x),

where α! =
∏n
i=1 αi! and we also set xα =

∏n
i=1 x

αi
i . If P (z) =

∑
|α|≤m−1 aα · (z−

x)α and Q(z) =
∑
|α|≤m−1 bα ·(z−x)α, then 〈P,Q〉x =

∑
|α|≤m−1 α! ·aαbα. There-

fore, the inner product space (P, 〈·, ·〉x) admits an orthonormal basis of monomials
{ 1√

α!
· (z − x)α}|α|≤m−1. We define a norm on P by |P |x :=

√
〈P, P 〉x.

We define translation operators Th : P → P (for h ∈ Rn) by Th(P )(z) :=
P (z − h), and dilation operators τx,δ : P → P (for (x, δ) ∈ Rn × (0,∞)) by
τx,δ(P )(z) := δ−mP (x + δ · (z − x)). The dilation operators lead us to define a
scaled inner product on P: For (x, δ) ∈ Rn × (0,∞), let

〈P,Q〉x,δ := 〈τx,δ(P ), τx,δ(Q)〉x (P,Q ∈ P),

and the corresponding scaled norm is denoted by |P |x,δ :=
√
〈P, P 〉x,δ. The unit

ball associated to this norm is the subset

Bx,δ :=

{
P : |P |x,δ =

( ∑
|α|≤m−1

1

α!
· (δ|α|−m · ∂αP (x))2

) 1
2

≤ 1

}
⊂ P.

We write 〈·, ·〉 and | · | to denote the “standard” inner product 〈·, ·〉0,1 and norm
| · |0,1 on P, and B = B0,1 for the corresponding unit ball.

Given Ω ⊂ P, P0 ∈ P, and r ∈ R, let rΩ := {rP : P ∈ Ω} and P0 +
Ω := {P0 + P : P ∈ Ω}. For future use, we record below a few identities and
inequalities which connect the dilation and translation operators with the scaled
inner products, norms, and balls.

(a) (i) Th1
◦ Th2

= Th1+h2
.

(ii) τx,δ1 ◦ τx,δ2 = τx,δ1δ2 .

(iii) Th ◦ τx,δ = τx+h,δ ◦ Th.

(b) (i) 〈τx,ρ(P ), τx,ρ(Q)〉x,δ =
〈P,Q〉x,δρ.

(ii) |τx,ρ(P )|x,δ = |P |x,δρ.
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(iii) τx,ρBx,δ = Bx,δ/ρ.

(c) (i) 〈Th(P ), Th(Q)〉x,δ =
〈P,Q〉x−h,δ.

(ii) |Th(P )|x,δ = |P |x−h,δ.

(iii) ThBx,δ = Bx+h,δ.

Furthermore, for any δ ≥ ρ > 0,

(2.1)

{
(ρ/δ)m · |P |x,ρ ≤ |P |x,δ ≤ (ρ/δ) · |P |x,ρ, and hence

(δ/ρ) · Bx,ρ ⊂ Bx,δ ⊂ (δ/ρ)m · Bx,ρ.

Let JxF ∈ P denote the (m−1)-jet of a function F ∈ Cm−1,1(Rn) at x, namely,
the Taylor polynomial

(JxF )(z) :=
∑

|α|≤m−1

1

α!
· ∂αF (x) · (z − x)α (z ∈ Rn).

The importance of the norms | · |x,δ on P stems from the Taylor and Whitney
theorems. According to Taylor’s theorem, if F ∈ Cm−1,1(G), where G is any
convex domain in Rn with nonempty interior, then

|∂β(F − JyF )(x)| ≤ C · ‖F‖Cm−1,1(G) · |x− y|m−|β|, for x, y ∈ G, |β| ≤ m− 1.

This implies

(2.2)

{
|JxF − JyF |x,δ ≤ CT ‖F‖Cm−1,1(G), or equivalently

JxF − JyF ∈ CT ‖F‖Cm−1,1(G) · Bx,δ for x, y ∈ G, δ ≥ |x− y|,

where CT = CT (m,n) is a constant determined by m and n. Therefore the norm
| · |x,δ may be used to describe the compatibility conditions on the (m− 1)-jets of
a Cm−1,1 function at two points x, y in Rn, whenever |x− y| ≤ δ. The conditions
in (2.2) capture the essence of the concept of a Cm−1,1 function in the following
sense: Whitney’s theorem [23] states that whenever E ⊂ Rn is an arbitrary set,
M > 0, and {Px}x∈E is a collection of polynomials with

(2.3) |Px − Py|x,δ ≤M for x, y ∈ E, δ = |x− y|,

then there exists a Cm−1,1 function F : Rn → R with ‖F‖ ≤ CM and JxF = Px
for all x ∈ E. As usual, C is a constant depending solely on m and n.

The vector space of (m − 1)-jets is a ring, denoted by Px, equipped with the
product �x (indexed by a basepoint x ∈ Rn) defined by P �x Q = Jx(P ·Q). The
product and translation/dilation operators are related by

(2.4)

{
τx,δ (P �x Q) = δm · τx,δ(P )�x τx,δ(Q),

Th (P �x Q) = Th(P )�x+h Th(Q) for x, h ∈ Rn, δ > 0.

The following lemma, taken verbatim from [13, section 12], summarizes a few basic
properties of the product and norms introduced above. See the proof of Lemma
1 in [13, section 12] for a direct argument that leads to explicit constants. Our
argument below emphasizes the rôle of rescaling and compactness.
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Lemma 2.1. Let x, y ∈ Rn and δ, ρ > 0. Assume that |x− y| ≤ ρ ≤ δ. Then for
any P,Q ∈ P,

(i) |P |y,ρ ≤ C̃|P |x,ρ.

(ii) |P �x Q|x,ρ ≤ C̃δ
m|P |x,δ|Q|x,ρ.

(iii) |(P �y Q)− (P �x Q)|x,ρ ≤ C̃δ
m|P |x,δ|Q|x,δ.

Here, C̃ > 0 is a constant depending solely on m and n.

Proof. The main step is to use (2.4) and observe that by translating and rescaling,
we may reduce matters to the case x = 0 and ρ = 1. Next, note that it suffices to
prove the lemma for non-zero polynomials P and Q. Normalizing, we assume that
|P |0,1 = |Q|0,1 = 1.

In order to prove (i), observe that the space of all relevant parameters is com-
pact, since |y| ≤ 1 and |P |0,1 = 1. The left-hand side of (i) is a continuous function
on this space of parameters, hence the maximum is attained, and yields the con-
stant C̃ on the right-hand side. In order to prove (ii), observe that the left-hand

side in (ii) is bounded from above by a constant C̃ by compactness, while

δm|P |0,δ ≥ |P |0,1 = 1

for any δ ≥ 1, according to (2.1). Hence (ii) holds true as well. In order to prove
(iii), it is more convenient to rescale so that δ = 1, rather than ρ = 1. We may still
assume that |P |0,1 = |Q|0,1 = 1. Consider the unit ball B = {x ∈ Rn : |x| ≤ 1}
and the function F (x) = P (x)Q(x). Yet another compactness argument yields
that ‖F‖Cm−1,1(B) ≤ C0 for a constant C0 determined by m and n. From Taylor’s
theorem, rendered above as (2.2),

|(P �y Q)− (P �0 Q)|0,ρ = |JyF − J0F |0,ρ ≤ CT · C0,

and the lemma is proven. 2

If |x− y| ≤ λδ for some λ ≥ 1, then we have the inequality

(2.5) |P |y,δ ≤ C̃λm−1|P |x,δ,

or the equivalent inclusion Bx,δ ⊂ C̃λm−1By,δ. Indeed, this follows from (2.1) and
Lemma 2.1:

|P |y,δ ≤ λm|P |y,λδ ≤ C̃λm|P |x,λδ ≤ C̃λm−1|P |x,δ.

Furthermore, if θ ∈ Cm−1,1(Rn) is supported on a ball B ⊂ Rn, then

(2.6) |Jx(θ)|x,diam(B) ≤ CT ‖θ‖ (x ∈ Rn).

Indeed, this inequality is trivial if x ∈ Rn\B, as then Jx(θ) = 0. Fix x0 ∈ ∂B. Then
Jx0

(θ) = 0. As |x− x0| ≤ diam(B) for any x ∈ B, we may apply Taylor’s theorem
(rendered as (2.2)) and obtain |Jx(θ)|x,diam(B) = |Jx(θ)−Jx0

(θ)|x,diam(B) ≤ CT ‖θ‖,
which yields (2.6).

We next give a more general form of Lemma 2.1(iii) involving products of up
to three polynomials which are allowed to vary from point to point.
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Lemma 2.2. Fix polynomials Px, Qx, Rx and Py, Qy, Ry in P, for |x−y| ≤ ρ ≤ δ.
Suppose that Px, Py ∈ M0Bx,δ, Qx, Qy ∈ M1Bx,δ, and Rx, Ry ∈ M2Bx,δ. Also
suppose that Px−Py ∈M0Bx,ρ, Qx−Qy ∈M1Bx,ρ, and Rx−Ry ∈M2Bx,ρ. Then

|Px �x Qx �x Rx − Py �y Qy �y Ry|x,ρ ≤ Cδ2mM0M1M2,

where C is a constant determined by m and n.

Proof. In view of (2.4), we may assume that δ = 1. By renormalizing, we may
assume M0 = M1 = M2 = 1. Then all six polynomials belong to Bx,1, and the
three differences Px − Py, Qx − Qy, and Rx − Ry belong to Bx,ρ. The letter x
appears five times in the expression Px�xQx�xRx, and we will change these five
x’s to five y’s one by one. We first apply Lemma 2.1(ii) three times and replace
Rx, Qx, and Px by Ry, Qy, and Py, in that respective order, as follows:

|Px �x Qx �x Rx − Py �x Qy �x Ry|x,ρ ≤ C.

This step also requires the bounds |Px �x Qx|x,1 ≤ C, |Px �x Ry|x,1 ≤ C, and
|Qy �x Ry|x,1 ≤ C, which are all consequences of Lemma 2.1(ii). Next we apply
Lemma 2.1(iii) twice, and deduce that

|Py �x Qy �x Ry − Py �y Qy �y Ry|x,ρ ≤ C.

This step requires the bounds |Py �x Qy|x,1 ≤ C and |Qy �y Ry|x,1 ≤ C, which
follow from Lemma 2.1(ii) and, for the second inequality, also Lemma 2.1(iii). This
concludes the proof of the lemma. 2

Remark 2.3. We can obtain a version of Lemma 2.2 also for products of two
polynomials. Notice that 1 ∈ δ−mBx,δ for any δ > 0. Thus, by taking Px = Py = 1,
under the hypotheses of Lemma 2.2, |Qx �x Rx −Qy �y Ry|x,ρ ≤ CδmM1M2.

Finally, we state a few elementary facts from convex geometry. A convex set Ω
in a finite-dimensional vector space V is said to be symmetric if P ∈ Ω =⇒ −P ∈
Ω. If A, K, and T are symmetric convex sets then

(2.7) K ⊂ T =⇒ (A+K) ∩ T ⊂ (A ∩ 2T ) +K,

and also if K is bounded then

(2.8) K ⊂ T +K/3 =⇒ K ⊂ 2T.

To prove (2.7), pick x ∈ (A + K) ∩ T . Then x = a + k with a ∈ A and k ∈ K.
It suffices to show that a ∈ 2T . This holds since a = x − k ∈ T −K ⊂ 2T . Next
observe that the condition K ⊂ T + K/3 implies supx∈K f(x) ≤ supx∈T f(x) +
1
3 supx∈K f(x) for any linear functional f : V → R. If K is bounded, this implies
2
3 supx∈K f(x) ≤ supx∈T f(x). From the Hahn-Banach theorem, K is contained in
the closure of 3

2T , and therefore K ⊂ 2T .
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2.1. Taylor polynomials of functions with prescribed values.

Fix a finite subset E ⊂ Rn and a function f : E → R satisfying the hypothesis
of Theorem 1.2. That is, we assume that for some natural number k# ∈ N, the
following holds:
(2.9)

FH(k#)

{
For all S ⊂ E with #(S) ≤ k# there exists FS ∈ Cm−1,1(Rn)

with FS = f on S and ‖FS‖ ≤ 1.

We call FH(k#) the finiteness hypothesis and k# the finiteness constant. We aim
to construct a function F ∈ Cm−1,1(Rn) satisfying F = f on E and ‖F‖ ≤ C#

for a suitable constant C# ≥ 1. We first introduce a family of convex subsets of
P that contain information on the Taylor polynomials of extensions associated to
subsets of E:

ΓS(x, f,M) := {JxF :F ∈ Cm−1,1(Rn), F = f on S, ‖F‖ ≤M},
for S ⊂ E, x ∈ Rn, f : E → R, and M > 0.

We also denote Γ(x, f,M) := ΓE(x, f,M). Notice that ΓS(x, f,M) is nonempty
if and only if there exists an extension of the restricted function f |S with Cm−1,1

seminorm at most M . Therefore the finiteness hypothesis FH(k#) is equivalent
to the condition that ΓS(x, f, 1) 6= ∅ for all S ⊂ E with #(S) ≤ k#. Now, for
` ∈ Z≥0 we define

Γ`(x, f,M) := {P ∈ P : ∀S ⊂ E, #(S) ≤(D + 1)`, ∃FS ∈ Cm−1,1(Rn),

FS = f on S, JxF
S = P, ‖FS‖ ≤M};

here, recall that D = dimP. In other words, an element of Γ`(x, f,M) is simulta-
neously the jet of a solution to any extension problem associated to a subset S ⊂ E
of cardinality at most (D + 1)`. The sets denoted by Γ`(·, ·, ·) were introduced in
[10] as a tool to demonstrate that Γ(x, f,M) is nonempty – the latter condition is
relevant because it implies, in particular, the existence of an extension of f with
Cm−1,1 seminorm at most M . We note the identity

(2.10) Γ`(x, f,M) =
⋂

S⊂E, #(S)≤(D+1)`

ΓS(x, f,M).

Given x ∈ Rn and S ⊂ E, let

σ(x, S) := {Jxϕ : ϕ ∈ Cm−1,1(Rn), ϕ = 0 on S, ‖ϕ‖ ≤ 1},

and given ` ∈ Z≥0, let

(2.11) σ`(x) =
⋂

S⊂E, #(S)≤(D+1)`

σ(x, S).

We also denote σ(x) := σ(x,E).
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Note that σ(x) and σ`(x) are symmetric convex sets in P, whereas Γ(x, f,M)
and Γ`(x, f,M) are merely convex. By a straightforward application of the Arzela-
Ascoli theorem one can show that σ(x), σ`(x), Γ(x, f,M), and Γ`(x, f,M) are
closed. Finally, we observe that σ(x, S) = ΓS(x, 0, 1), σ`(x) = Γ`(x, 0, 1), and
σ(x) = Γ(x, 0, 1).

Lemma 2.4 (Relationship between Γ` and σ`). For any ` ∈ Z≥0,

Γ`(x, f,M/2) + (M/2)σ`(x) ⊂ Γ`(x, f,M), and

Γ`(x, f,M)− Γ`(x, f,M) ⊂ 2Mσ`(x).

Proof. By definition we have ΓS(x, f,M/2) + (M/2)σ(x, S) ⊂ ΓS(x, f,M) and
ΓS(x, f,M)−ΓS(x, f,M) ⊂ 2Mσ(x, S). The conclusion of the lemma then follows
from the definition of Γ` and σ` in (2.10) and (2.11). 2

Remark 2.5. Lemma 2.4 implies that Px + M
2 · σ`(x) ⊂ Γ`(x, f,M) ⊂ Px +

2M · σ`(x), for any Px ∈ Γ`(x, f,M/2). Later on we will be concerned with the
geometry of the set Γ`(x, f,M) at various points x ∈ Rn. Lemma 2.4 implies that
it is sufficient to understand the geometry of the set σ`(x) (which depends on fewer
parameters and is therefore more manageable).

Recall the translation and scaling transformations Th and τx,δ on P. With a
slight abuse of notation, we also denote the transformations Th and τx,δ on Rn
given by

Th(y) = y + h, τx,δ(y) = x+ δ · (y − x) (x, y, h ∈ Rn, δ > 0).

Then,

(2.12) σ(Th(y), Th(S)) = Th {σ(y, S)} , and σ(τx,δ(y), τx,δ(S)) = τx,δ {σ(y, S)} ,

for any x, y, h ∈ Rn, δ > 0, and S ⊂ Rn, as may be verified directly. Here in our
notation, if T : Rn → Rn then T (S) = {T (y) : y ∈ S}.

In the next lemma we establish two important properties of the sets Γ`(x, f,M).
We show that the finiteness hypothesis FH(k#) (see (2.9)) implies that Γ`(x, f,M)
is non-empty if ` and k# are suitably related and if M ≥ 1. We also show that
the mappings x 7→ Γ`(x, f,M) are “quasicontinuous” in a sense to be made precise
below.

Lemma 2.6. If x ∈ Rn, (D + 1)`+1 ≤ k#, and M ≥ 1, then

(2.13) FH(k#) =⇒ Γ`(x, f,M) 6= ∅.

If x, y ∈ Rn, ` ≥ 1, δ ≥ |x− y|, and M > 0, then

(2.14) Γ`(x, f,M) ⊂ Γ`−1(x, f,M) + CTM · Bx,δ

and

(2.15) σ`(x) ⊂ σ`−1(x) + CT · Bx,δ,

where CT is the constant in (2.2).
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Proof. We first show that the finiteness hypothesis with constant k# ≥ (D +
1)`+1 implies the intersection of the sets in (2.10) is nonempty for M = 1. As
Γ(x, f,M) ⊃ Γ(x, f, 1) for M ≥ 1, the implication (2.13) will then follow. By
Helly’s theorem and the fact that dimP = D, it suffices to show that the inter-
section of any (D + 1)-element subcollection is nonempty. Fix S1, · · · , SD+1 ⊂ E
with #(Si) ≤ (D + 1)`. Let S := S1 ∪ · · · ∪ SD+1. Note that ΓS1(x, f, 1) ∩ · · · ∩
ΓSD+1

(x, f, 1) ⊃ ΓS(x, f, 1). Furthermore, #(S) ≤ (D + 1) · (D + 1)` ≤ k#, and
so ΓS(x, f, 1) 6= ∅ by the finiteness hypothesis FH(k#). This finishes the proof of
(2.13).

To prove (2.14) and (2.15) we reproduce the proof of [10, Lemma 10.2]. Note
(2.15) is a special case of (2.14), as σ`(x) = Γ`(x, 0, 1). So it suffices to prove
(2.14). Given P ∈ Γ`(x, f,M), we will find Q ∈ Γ`−1(y, f,M) with

(2.16) |P −Q|x,δ ≤ CTM.

For a subset S ⊂ E, consider

K(S) :=
{
JyF : F ∈ Cm−1,1(Rn), F = f on S, ‖F‖ ≤M, JxF = P

}
.

Then K(S) ⊂ P is convex, and according to (2.2),

(2.17) K(S) ⊂ P + CTM · Bx,δ.

Note that K(S) 6= ∅ whenever #(S) ≤ (D + 1)`, due to the fact that P ∈
Γ`(x, f,M). We will show that

(2.18) ∅ 6=
⋂
S⊂E

#(S)≤(D+1)`−1

K(S) ⊂ Γ`−1(y, f,M).

The inclusion on the right-hand side of (2.18) is immediate from the definition
of Γ`−1(y, f,M). All that remains is to show that the intersection of the collec-
tion of sets in (2.18) is non-empty. By Helly’s theorem it suffices to show that
the intersection of any (D + 1)-element subcollection is nonempty. Thus, pick
S1, . . . , SD+1 ⊂ E with #(Si) ≤ (D + 1)`−1. Then S = S1 ∪ . . . ∪ SD+1 is of
cardinality at most (D + 1)(D + 1)`−1 = (D + 1)`, and thus K(S) 6= ∅. Clearly,
K(S) ⊂ K(S1)∩ · · · ∩K(SD+1). This finishes the proof of (2.18). Fix a polynomial
Q belonging to the intersection in (2.18). According to (2.18), Q ∈ Γ`−1(y, f,M).
By (2.17), Q ∈ K(∅) ⊂ P + CTM · Bx,δ, and so Q − P ∈ CTM · Bx,δ, giving
(2.16). 2

Lemma 2.7. If x, y ∈ Rn, and δ ≥ |x− y|, then σ(x) ⊂ σ(y) + CT · Bx,δ.

Proof. Let P ∈ σ(x). Then there exists ϕ ∈ Cm−1,1(Rn) with ϕ = 0 on E,
‖ϕ‖ ≤ 1, and Jxϕ = P . Let Q = Jyϕ. Then Q ∈ σ(y), and by (2.2) we have
P −Q ∈ CT · Bx,δ. 2

Remark 2.8. By (2.1), Bx,δ ⊂ δ · Bx,1 for δ ≤ 1. Therefore, Lemma 2.7 implies
the mapping x 7→ σ(x) is continuous, where the space of subsets of P carries the
topology induced by the Hausdorff metric with respect to any of the topologically
equivalent scaled norms.
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Lemma 2.9. There exists a constant C ≥ 1 determined by m and n so that, for
any ball B ⊂ Rn and z ∈ 1

2B, we have

σ(z, E ∩B) ∩ Bz,diam(B) ⊂ C · σ(z, E).

Proof. Choose a cutoff function θ ∈ Cm−1,1(Rn) which is supported on B, equal
to 1 on (1

2 )B, and satisfies ‖θ‖ ≤ C · δ−m. Fix z ∈ ( 1
2 )B and a polynomial

P ∈ σ(z, E ∩ B) ∩ Bz,δ. Since P ∈ σ(z, E ∩ B) there exists ϕ ∈ Cm−1,1(Rn) with
ϕ = 0 on E ∩ B, ‖ϕ‖ ≤ 1, and Jz(ϕ) = P . Define ϕ̃ = ϕθ. This function clearly
vanishes on all of E. Since z belongs to the ball ( 1

2 )B on which θ is identically
1, we have Jz(ϕ̃) = Jz(ϕ) = P . To prove P ∈ Cσ(z, E), all that remains is to
establish the seminorm bound ‖ϕ̃‖ ≤ C. As ϕ̃ vanishes on Rn \ B, it suffices to
prove ‖ϕ̃‖Cm−1,1(B) ≤ C. To do so, we will prove that

(2.19)
|Jx(ϕ̃)− Jy(ϕ̃)|x,ρ = |Jx(ϕ)�x Jx(θ)−Jy(ϕ)�y Jy(θ)|x,ρ ≤ C

for x, y ∈ B, ρ = |x− y|.

To prove this estimate we will apply Lemma 2.2. According to (2.6), Jx(θ) ∈
Cδ−mBx,δ. On the other hand, by (2.5) and the fact |x − y| ≤ δ, also Jy(θ) ∈
Cδ−mBy,δ ⊂ C ′δ−mBx,δ. By Taylor’s theorem (in the form (2.2)), Jx(θ)− Jy(θ) ∈
C‖θ‖Bx,ρ ⊂ Cδ−mBx,ρ.

Note that |x−z| ≤ δ, since x ∈ B and z ∈ ( 1
2 )B. Thus, by Taylor’s theorem (see

(2.2)) and (2.5), Jx(ϕ) = (Jx(ϕ)−Jz(ϕ))+P ∈ CTBx,δ+Bz,δ ⊂ CTBx,δ+C̃Bx,δ ⊂
CBx,δ. On the other hand, by Taylor’s theorem, Jx(ϕ)− Jy(ϕ) ∈ CTBx,ρ. We are
therefore in a position to apply Lemma 2.2 (see Remark 2.3), with Qx, Qy, Rx,
and Ry picked to be the jets at x and y of ϕ and θ, respectively. This finishes the
proof of (2.19). 2

2.2. Whitney convexity

The next definition illustrates an additional important property of the sets σ`(x)
beyond convexity.

Definition 2.10 (Whitney convexity). Given a symmetric convex set Ω in P, and
x ∈ Rn, the Whitney coefficient of Ω at x is the infimum over all R > 0 such that
(Ω∩Bx,δ)�x Bx,δ ⊂ RδmΩ for all δ > 0. Denote the Whitney coefficient of Ω at x
by wx(Ω). If no finite R exists, then wx(Ω) = +∞. If wx(Ω) < +∞ then we say
that Ω is Whitney convex at x.

The term “Whitney convexity” was coined by Fefferman [11]. It is a quanti-
tative analogue of the concept of an ideal; roughly, a small Whitney coefficient
means that Ω is “close” to an ideal. For example, any ideal I in Px is Whitney
convex at x with wx(I) = 0.

For x ∈ Rn, a symmetric convex set Ω ⊂ P and r ≥ 1, it holds that wx(rΩ) ≤
wx(Ω). One can also check that wx(Ω1 ∩ Ω2) ≤ max{wx(Ω1), wx(Ω2)}. Further-
more, it follows from (2.4) that wx(Ω) = wx(τx,δ(Ω)) and wx(Ω) = wx+h(ThΩ) for
any δ > 0.
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Lemma 2.11. For any z ∈ Rn, the sets σ`(z) and σ(z) are Whitney convex at z
with Whitney coefficient at most C0, for a universal constant C0 = C0(m,n).

Proof. Note that wx(σ`(z)) ≤ max{wz(σ(x, S)) : S ⊂ E, #(S) ≤ (D + 1)`}.
Hence, it will be sufficient to show that the Whitney coefficient of σ(z, S) at z is
at most C for any subset S ⊂ E and z ∈ Rn, where C is a constant determined by
m and n. Fix δ > 0, and let P ∈ σ(z, S) ∩ Bz,δ and P̃ ∈ Bz,δ. In order to prove
the lemma, we need to show that

(2.20) P �z P̃ ∈ Cδmσ(z, S).

Since P ∈ σ(z, S), there exists ϕ ∈ Cm−1,1(Rn) with ϕ = 0 on S, Jz(ϕ) = P ,
and ‖ϕ‖ ≤ 1. Fix a C∞-function θ : Rn → R, which is supported on the ball
B = {y ∈ Rn : |y− z| ≤ δ

2}, which equals one in a neighborhood of z, and satisfies
‖θ‖ ≤ Cδ−m for a constant C determined by m and n. Since Jz(θ) = 1 and

Jz(ϕ) = P , we conclude that Jz(θP̃ϕ) = 1 �z P̃ �z P = P̃ �z P . In order to
establish (2.20) and conclude the proof of the lemma, it therefore suffices to show

Jz(θP̃ϕ) ∈ Cδmσ(z, S). Since the function θP̃ϕ vanishes on S (as does ϕ), all that

remains is to establish the seminorm bound ‖θP̃ϕ‖ ≤ Cδm, and as this function

vanishes on Rn \ B, it suffices to establish ‖θP̃ϕ‖Cm−1,1(B) ≤ Cδm. To that end,
we need to show that

(2.21)
|Jx(θ)�x P̃ �x Jx(ϕ)− Jy(θ)�y P̃ �y Jy(ϕ)|x,ρ ≤ Cδm,

for x, y ∈ B, ρ = |x− y|.

We prepare to apply Lemma 2.2 to prove this estimate.

Following the proof of Lemma 2.9 (using that Jz(ϕ) = P ∈ Bz,δ and
diam({x, y, z}) ≤ δ = diam(B)), and by (2.6), the jets Jx(ϕ), Jy(ϕ) belong to

CBx,δ; and Jx(θ), Jy(θ) belong to Cδ−mBx,δ. Furthermore, P̃ ∈ Bz,δ, and hence by

(2.5), P̃ ∈ C̃Bx,δ. Finally, by Taylor’s theorem (rendered as (2.2)), Jx(ϕ)−Jy(ϕ) ∈
CBx,ρ and Jx(θ)− Jy(θ) ∈ Cδ−mBx,ρ.

We are in a position to apply Lemma 2.2, with Px, Py, Rx, and Ry picked to be

the jets at x and y of ϕ and θ, respectively, and with Qx = Qy = P̃ . This finishes
the proof of the estimate (2.21), and with it the proof of (2.20). 2

Lemma 2.12. If Ω is Whitney convex at x, then span(Ω) is an �x-ideal in Px.

Proof. Choose any R ∈ (wx(Ω),∞). Then (Ω∩Bx,δ)�xBx,δ ⊂ RδmΩ for all δ > 0,
and so

Ω�x Px =
⋃
δ>0

(Ω ∩ Bx,δ)�x Bx,δ ⊂
⋃
δ>0

RδmΩ = span(Ω).

Thus, span(Ω) �x Px =
⋃
r>0 r · Ω �x Px ⊂ span(Ω), and hence span(Ω) is an

�x-ideal. 2
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2.3. Covering lemmas

This section contains the covering lemmas that will be used later in the paper.
Given a ball B ⊂ Rn and λ > 0, we write λB to denote the ball with the same
center as B and with radius equal to λ times the radius of B.

2.3.1. Whitney covers.

Definition 2.13. A finite collection of closed balls W is a Whitney cover of a ball
B̂ ⊂ Rn if (a) W is a cover of B̂, (b) the collection of third-dilates { 13B : B ∈ W}
is pairwise disjoint, and (c) diam(B1)/ diam(B2) ∈ [1/8, 8] for all balls B1, B2 ∈ W
with 6

5B1 ∩ 6
5B2 6= ∅.

Lemma 2.14 (Bounded overlap). If W is Whitney cover of B̂ then #{B ∈ W :
x ∈ 6

5B} ≤ 100n for all x ∈ Rn.

Proof. We may assume Wx := {B ∈ W : x ∈ 6
5B} is nonempty, and fix B0 ∈ Wx

of maximal radius. By rescaling, we may assume diam(B0) = 1. If B ∈ Wx then
6
5B∩

6
5B0 6= ∅, and so condition (c) of Definition 2.13 implies that diam(B) ∈ [ 18 , 1];

thus, by the triangle inequality, 1
3B ⊂ ( 12

5 + 1
3 )B0 = 41

15B0 for all B ∈ Wx. Since
the collection { 13B}B∈W is pairwise disjoint, a volume comparison shows that
#Wx ≤ (24 · 4115 )n ≤ 100n. 2

2.3.2. Partitions of unity.

Lemma 2.15 (Existence of partitions of unity). If W is a Whitney cover of B̂ ⊂
Rn, then there exist non-negative C∞ functions θB : B̂ → [0,∞) (B ∈ W) such
that

1. θB = 0 on B̂ \ 6
5B.

2. |∂αθB(x)| ≤ C diam(B)−|α| for all |α| ≤ m and x ∈ B̂.

3.
∑
B∈W θB = 1 on B̂.

Here, C is a constant determined by m and n.

Proof. For each B ∈ W, fix a C∞ cutoff function ψB : Rn → R which is supported
on 6

5B, equals 1 on B, and satisfies the natural derivative bounds |∂αψB(x)| ≤
C diam(B)−|α| for x ∈ Rn, |α| ≤ m. Set Ψ =

∑
B∈W ψB and define

θB(x) := ψB(x)/Ψ(x), x ∈ B̂.

Each point in B̂ belongs to some B ∈ W, thus Ψ ≥ 1 on B̂. Thus θB ∈ C∞(B̂)
is well-defined. Property 1 follows because ψB is supported on 6

5B. Furthermore,∑
B θB =

∑
B ψB/Ψ = 1 on B̂, yielding property 3.

Property 2 is trivial for x ∈ B̂ \ 6
5B, as then Jx(θB) = 0. Now fix x ∈

6
5B ∩ B̂. If ψB′(x) 6= 0 then x ∈ 6

5B
′. In particular, 6

5B ∩
6
5B
′ 6= ∅, and
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hence diam(B′)/ diam(B) ∈ [ 18 , 8]. Furthermore, by Lemma 2.14, the cardinal-
ity of Wx := {B′ : x ∈ 6

5B
′} is at most 100n. Hence,

(2.22)

|∂αΨ(x)| ≤
∑

B′∈Wx

|∂αψB′(x)|

≤
∑

B′∈Wx

C diam(B′)−|α| ≤ C ′ diam(B)−|α| (|α| ≤ m).

By a repeated application of the quotient rule for differentiation, and substituting
the bounds (2.22) and |∂αψB(x)| ≤ C diam(B)−|α|, we conclude that |∂αθB(x)| =
|∂α(ψB/Ψ)(x)| ≤ C ′′ diam(B)−|α| for |α| ≤ m. 2

We mention a few additional properties of the partition of unity {θB} in Lemma
2.15. First, by property 2 of Lemma 2.15 and the definition of the scaled norm
| · |x,δ,

(2.23) |Jx(θB)|x,diam(B) ≤ C diam(B)−m (x ∈ B̂).

By the equivalence of Cm−1,1(B̂) and the homogeneous Sobolev space Ẇm,∞(B̂)
and by property 2 of Lemma 2.15,

(2.24) ‖θB‖Cm−1,1(B̂) ≤ C max
|α|=m

‖∂αθB‖L∞(B̂) ≤ C diam(B)−m.

Lemma 2.16 (Gluing lemma). Fix a Whitney cover W of B̂, a partition of unity
{θB}B∈W as in Lemma 2.15, and points xB ∈ 6

5B for each B ∈ W. Suppose
{FB}B∈W is a collection of functions in Cm−1,1(Rn) with the following properties:

• ‖FB‖ ≤M0.

• FB = f on E ∩ 6
5B.

• |JxBFB − JxB′FB′ |xB ,diam(B) ≤M0 whenever 6
5B ∩

6
5B
′ 6= ∅.

Let F =
∑
B∈W θBFB. Then F ∈ Cm−1,1(B̂) with F = f on E ∩ B̂ and

‖F‖Cm−1,1(B̂) ≤ CM0, where C is a constant determined by m and n.

Proof. The nonzero terms in the sum F (x) =
∑
B θB(x)FB(x), x ∈ E ∩ B̂, oc-

cur when x ∈ 6
5B. By assumption, FB(x) = f(x) for such B. Thus F (x) =∑

B θB(x)f(x) = f(x). Therefore, F = f on E ∩ B̂.
We will now bound the seminorm of F . Recall the following well-known char-

acterization: F ∈ Cm−1,1(B̂) if and only if there exists ε > 0 and M ≥ 0 such

that for any x, y ∈ B̂ with |x− y| ≤ ε and any multiindex α with |α| = m− 1, we
have |∂αF (x)− ∂αF (y)| ≤ M · |x− y|. Furthermore, the seminorm ‖F‖Cm−1,1(B̂)

is comparable to the least possible M up to constant factors depending on m and
n. This characterization is an easy consequence of the triangle inequality on Rn,
and the proof is left as an exercise for the reader. Thus, it suffices to prove that if
|x− y| ≤ 1

100δmin for δmin := minB∈W diam(B), then

(2.25) |JxF − JyF |x,ρ ≤ CM0, for ρ := |x− y|.
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Fix an arbitrary ball B0 ∈ W with x ∈ B0. Since |x− y| ≤ 1
100 diam(B0), we have

that both x and y belong to 6
5B0. Note that

∑
B JxθB =

∑
B JyθB = 1. This lets

us write

JxF − JyF =
∑
B∈W

[
(JxFB − JxFB0

)�x JxθB − (JyFB − JyFB0
)�y JyθB

]
+ (JxFB0

− JyFB0
).

The summands in the main sum on the right-hand side are nonzero only if x ∈ 6
5B

or y ∈ 6
5B. By Lemma 2.14, there can be at most 2 · 100n many elements B ∈ W

with this property. Therefore, to prove inequality (2.25) it suffices to show that
the | · |x,ρ norm of each summand on the right-hand side is at most CM0. To start,
consider the last term and apply Taylor’s theorem (in the form (2.2)):

|JxFB0 − JyFB0 |x,ρ ≤ CT ‖FB0‖ ≤ CM0.

Next we select a summand in the main sum by fixing an element B ∈ W with
either x ∈ 6

5B or y ∈ 6
5B. In either case, 6

5B ∩
6
5B0 6= ∅. Let δ := diam(B).

By condition (c) in the definition of a Whitney cover (see Definition 2.13), we
have δ/diam(B0) ∈ [ 18 , 8]. Define four polynomials Px = Jx(FB) − Jx(FB0

) and
Rx = Jx(θB), and similarly Py = Jy(FB)− Jy(FB0) and Ry = Jy(θB). We will be
finished once we show that

(2.26) |Px �x Rx − Py �y Ry|x,ρ ≤ CM0.

We will prove (2.26) using Lemma 2.2 (specifically, the form in Remark 2.3).
Let us verify that the hypotheses of this lemma are satisfied. Using |x − y| = ρ
and Taylor’s theorem (see (2.2)),

(2.27)
|Px − Py|x,ρ ≤ |Jx(FB)− Jy(FB)|x,ρ + |Jx(FB0)− Jy(FB0)|x,ρ

≤ CT · (‖FB‖+ ‖FB0‖) ≤ CM0.

Next write |Px|x,δ ≤ |PxB0
− Px|x,δ + |PxB0

|x,δ. As x ∈ B0 and xB0 ∈ 6
5B0, we

have |x − xB0
| ≤ 6

5 diam(B0) ≤ 3δ. Thus, by (2.1) and following the proof of
(2.27), |PxB0

− Px|x,δ ≤ 3m|PxB0
− Px|x,3δ ≤ C ′M0. Then by (2.1) and (2.5),

the hypothesis in the third bullet point of this lemma, and another application of
Taylor’s theorem,

|PxB0
|x,δ ≤ |JxB (FB)− JxB0

(FB0)|x,δ + |JxB (FB)− JxB0
(FB)|x,δ

≤ C|JxB (FB)− JxB0
(FB0

)|xB0
,δ + C|JxB (FB)− JxB0

(FB)|xB0
,δ

≤ C ′|JxB (FB)− JxB0
(FB0

)|xB0
,diam(B0) + C ′|JxB (FB)− JxB0

(FB)|xB0
,4δ

≤ C ′′M0.

Here, note we are using that |xB−xB0 | ≤ 6
5 diam(B)+ 6

5 diam(B0) ≤ 4δ in the final
application of Taylor’s theorem. In conclusion, |Px|x,δ ≤ CM0. By the identical
argument, |Py|y,δ ≤ CM0 – then by (2.5), |Py|x,δ ≤ C ′M0.
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Next, note the estimate |Rx−Ry|x,ρ ≤ Cδ−m is a direct consequence of Taylor’s
theorem and (2.24). Also, |Rx|x,δ ≤ Cδ−m is a direct consequence of (2.23).
Similarly, |Ry|y,δ ≤ Cδ−m, and thus by (2.5), |Ry|x,δ ≤ C ′δ−m.

We obtain (2.26) by an application of Lemma 2.2 (see Remark 2.3), which
finishes the proof of the lemma. 2

3. Transversality

Let (X, 〈·, ·〉) be a real Hilbert space of finite dimension d := dimX < ∞. We
denote the norm of X by |·| =

√
〈·, ·〉, and let B be the unit ball of X. Let S denote

the set of symmetric, closed, convex subsets of X, and let dH : S × S → [0,∞] be
the Hausdorff metric, namely,

dH(Ω1,Ω2) := inf{ε > 0 : Ω1 ⊂ Ω2 + εB, Ω2 ⊂ Ω1 + εB}.

Given a set A ⊂ X and subspace V ⊂ X, let A/V (the quotient of A by V ) be the
image ofA under the quotient mapping π : X → X/V , i.e., A/V := {a+V : a ∈ A}.
Definition 3.1. Let V be a linear subspace of X, let Ω ∈ S, and let R ≥ 1. We
say that Ω is R-transverse to V if (1) B/V ⊂ R · (Ω∩B)/V , and (2) Ω∩V ⊂ R ·B.

Remark 3.2. Transversality captures the idea that there is a uniform lower bound
on the angle between the subspace V and the “large” vectors of Ω. If Ω is an
ellipsoid in X, it is equivalent (modulo multiplicative factors in the constants) to
say that the principal axes of Ω of length at least R make an angle of at least 1

R with
V ; furthermore, Ω will be 1-transverse to the subspace V spanned by the principal
axes of Ω of length at most 1. By approximation with John ellipsoids, this shows
that every symmetric, closed, convex set Ω ⊂ X is

√
d-transverse to some subspace

V .

Lemma 3.3 (Stability I). If Ω is R-transverse to V , then Ω + λB is (R+ 3R2λ)-
transverse to V for any λ > 0.

Proof. Note that B/V ⊂ R · (Ω∩B)/V ⊂ R · ((Ω + λB) ∩ B) /V . All that remains
is to show

(Ω + λB) ∩ V ⊂ (R+ 3R2λ)B.

Fix P ∈ (Ω + λB) ∩ V . Write P = P0 + P1 with P0 ∈ Ω and P1 ∈ λB. By the
transversality of Ω and V , we have λB/V ⊂ Rλ(Ω ∩ B)/V . Since P1 ∈ λB, there
exists a polynomial P2 ∈ Rλ(Ω ∩ B) with P1/V = P2/V – or rather, P1 − P2 ∈ V .
Define P̃ := P − (P1 − P2) ∈ V . We write P̃ = P0 + P2, where P0 ∈ Ω and
P2 ∈ Rλ · Ω, and thus P̃ ∈ (Rλ+ 1) · (Ω ∩ V ) ⊂ (Rλ+ 1) · RB, where the second
containment is by transversality of Ω and V . Therefore,

P = P̃ + P1 − P2 ∈ (R2λ+R)B + λB +RλB ⊂ (R2λ+R+ λ+Rλ)B.

We conclude that P ∈ (R+ 3R2λ)B, which completes the proof of the lemma.
2
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Lemma 3.4 (Stability II). Let Ω1,Ω2 ∈ S, and let R ≥ 1, R̃ ≥ 4R. If Ω1 is
R-transverse to V , then the following holds:

• If dH(Ω1,Ω2) ≤ 1
4R then Ω2 is 4R-transverse to V .

• If dH(Ω1 ∩ R̃B,Ω2 ∩ R̃B) ≤ 1
4R then Ω2 is 4R-transverse to V .

Proof. For the proof of the first bullet point, we may suppose Ω1 ⊂ Ω2 + λB and
Ω2 ⊂ Ω1 + λB for λ = 1

3R . According to Lemma 3.3, Ω1 + λB is 2R-transverse to
V . Thus,

(3.1) Ω2 ∩ V ⊂ (Ω1 + λB) ∩ V ⊂ 2R · B.

Also,

B/V ⊂ R · (Ω1 ∩ B) /V ⊂ R · ((Ω2 + λB) ∩ B) /V.

By (2.7), (Ω2 + λB) ∩ B ⊂ (Ω2 ∩ 2B) + λB, hence,

B/V ⊂ R · (Ω2 ∩ 2B + λB)/V = R · (Ω2 ∩ 2B)/V +Rλ · B/V.

Recall Rλ = 1
3 , hence K ⊂ T +K/3 for K = B/V and T = R · (Ω2 ∩ 2B)/V . From

(2.8) we conclude that K ⊂ 2T , i.e.,

(3.2) B/V ⊂ 2R · (Ω2 ∩ 2B)/V ⊂ 4R · (Ω2 ∩ B)/V.

From (3.1) and (3.2) we conclude that Ω2 is 4R-transverse to V .

Note Ω1 is R-transverse to V iff Ω1 ∩ R̃B is R-transverse to V (since R̃ ≥ R),
and similarly, Ω2 is 4R-transverse to V iff Ω2 ∩ R̃B is 4R-transverse to V (since
R̃ ≥ 4R). Thus, by applying the first bullet point to the sets Ω1∩R̃B and Ω2∩R̃B,
we obtain the conclusion in the second bullet point. 2

Lemma 3.5 (Stability III). Suppose Ω is R-transverse to V , and let U : X → X
be a unitary transformation. Then U(Ω) is R-transverse to U(V ). If additionally
‖U − id‖op ≤ 1

16R2 , then U(Ω) is 4R-transverse to V and Ω is 4R-transverse to
U(V ).

Proof. Unitary transformations preserve the metric structure of X, and in partic-
ular, they preserve transversality. If ‖U − id‖op ≤ 1

16R2 then

dH(Ω ∩ 4RB, U(Ω) ∩ 4RB) = dH(Ω ∩ 4RB, U(Ω ∩ 4RB)) ≤ ‖U − id‖op · 4R ≤
1

4R
.

Therefore, by Lemma 3.4, U(Ω) is 4R-transverse to V . Similarly, U−1(Ω) is 4R-
transverse to V , and thus by the first claim we have that Ω is 4R-transverse to
U(V ). 2
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3.1. Transversality in the space of polynomials

Definition 3.6. Given a closed, symmetric, convex set Ω ⊂ P, a subspace V ⊂ P,
R ≥ 1, x ∈ Rn, and δ > 0, we say that Ω is (x, δ,R)-transverse to V if Ω is
R-transverse to V with respect to the Hilbert space structure (P, 〈·, ·〉x,δ), i.e., (1)
Bx,δ/V ⊂ R · (Ω ∩ Bx,δ)/V , and (2) Ω ∩ V ⊂ R · Bx,δ.

Our next result establishes a few basic properties of transversality in this set-
ting.

Lemma 3.7. If Ω is (x, δ,R)-transverse to V , then the following holds:

• ThΩ is (x+ h, δ,R)-transverse to ThV .

• τx,rΩ is (x, δ/r,R)-transverse to τx,rV .

• If δ′ ∈ [κ−1δ, κδ] for some κ ≥ 1, then Ω is (x, δ′, κmR)-transverse to V .

Proof. The proof of the first and second bullet points is easy: Apply Th and τx,r to
both sides of (1) and (2) in Definition 3.6, and use the identities ThBx,δ = Bx+h,δ
and τx,rBx,δ = Bx,δ/r. The third bullet point follows from the equivalence of the

unit balls Bx,δ ⊂ max
{

1, (δ/δ′)
m} · Bx,δ′ and Bx,δ′ ⊂ max

{
1, (δ′/δ)

m} · Bx,δ, as
well as the property that A∩ (r ·B) ⊂ r · (A∩B) if A and B are symmetric convex
sets, and r ≥ 1.

2

The continuity of the mapping x 7→ σ(x) can be used to show that the transver-
sality of the set σ(x) with respect to a fixed subspace is stable with respect to small
perturbations of the basepoint.

Lemma 3.8. There exists c1 = c1(m,n) > 0 so that the following holds. Let
V ⊂ P be a subspace, x, y ∈ Rn, δ > 0, R ≥ 1. Suppose that σ(x) is (x, δ,R)-
transverse to V and |x− y| ≤ c1 δR . Then σ(y) is (y, δ, 8R)-transverse to V .

Proof. If c1 <
1

4CT
, where CT is the constant in (2.2), then by Lemma 2.7,

σ(y) ⊂ σ(x) + CT · Bx,c1· δR ⊂ σ(x) + CT ·
(
c1
R

)
· Bx,δ ⊂ σ(x) +

(
1

4R

)
· Bx,δ.

Similarly, σ(x) ⊂ σ(y) + ( 1
4R ) · Bx,δ. Thus, dx,δH (σ(x), σ(y)) ≤ 1

4R , where dx,δH is
the Hausdorff distance with respect to the norm | · |x,δ on P. From Lemma 3.4
we conclude that σ(y) is (x, δ, 4R)-transverse to V . Since |x − y| ≤ c1δ/R ≤ c1δ,
if c1 is sufficiently small then ( 9

10 ) · By,δ ⊂ Bx,δ ⊂ ( 10
9 ) · By,δ. Therefore we can

replace Bx,δ by By,δ in the definition of transversality, at the cost of increasing the
constant 4R to 8R. Thus, σ(y) is (y, δ, 8R)-transverse to V . 2
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3.2. Ideals in the ring of polynomials and DTI subspaces

Definition 3.9. A subspace V ⊂ P is translation-invariant if ThV = V for all
h ∈ Rn, and V is dilation-invariant at x ∈ Rn if τx,δV = V for all δ > 0. Say that
V is dilation-and-translation-invariant (DTI) if Thτx,δV = V for all x, h ∈ Rn,
δ > 0. We write DTI to denote the collection of all DTI subspaces of P.

Remark 3.10. Equivalently, V ⊂ P is translation-invariant if P ∈ V,Q ∈ P =⇒
Q(∂)P ∈ V . Since Th = τ(1−δ)−1h,δ−1 ◦ τ0,δ (for any δ > 1), any translation
operator is a composition of dilation operators. Thus, V is DTI if and only if
τx,δV = V for all (x, δ) ∈ Rn × (0,∞).

We now illustrate a connection between translation-invariant subspaces and
ideals in Px.

Lemma 3.11. Let (x, δ) ∈ Rn × (0,∞). Let V ⊥ be the orthogonal complement of
a subspace V ⊂ P with respect to the inner product 〈·, ·〉x,δ. Then V is translation-
invariant if and only if V ⊥ is an �x-ideal in Px.

Proof. Translating, we may assume that x = 0. Rescaling preserves the property
of V being translation-invariant, and also of V ⊥ being an �x-ideal, according to
(2.4). Hence we may assume that δ = 1. Note the identity 〈Q,P 〉 = Q(∂)(P )(0)
for any P,Q ∈ P. Note ∂α annihilates P for |α| ≥ m, and hence R(∂)[Q(∂)P ] =
(R �0 Q)(∂)P for any P,Q,R ∈ P. Suppose that V is a translation-invariant
subspace, and let Q ∈ V ⊥. Then, for any h ∈ Rn and P ∈ V , also ThP ∈ V and
hence,

0 = 〈Q,Th(P )〉 = Q(∂) [Th(P )] (0) = Th(Q(∂)P )(0) = Q(∂)P (−h).

Consequently, Q(∂)P = 0. Thus, for any R ∈ P, we have (R �0 Q)(∂)P =
R(∂) [Q(∂)P ] = 0. In particular, 〈R �0 Q,P 〉 = 0 for any P ∈ V and hence
R�0 Q ∈ V ⊥. This shows that V ⊥ is an �0-ideal.

For the other direction, suppose that V ⊥ is an �0-ideal. Let P ∈ V and R ∈ P.
Then for any Q ∈ V ⊥,

0 = 〈R�0 Q,P 〉 = Q(∂) [R(∂)P ] (0) = 〈Q,R(∂)P 〉.

This means that R(∂)P ∈ (V ⊥)⊥ = V . Hence R(∂)P ∈ V whenever P ∈ V and
R ∈ P, and consequently the subspace V is translation-invariant. 2

We say that two subspaces V1, V2 ⊂ P are complementary if V1 + V2 = P and
V1 ∩ V2 = {0}.
Lemma 3.12. For any �0-ideal I in P0, there exists V ∈ DTI that is complemen-
tary to I.

Proof. Set I∗ = limδ→0 τ0,δ(I) (where the Grassmanian is endowed with the usual
topology). Let us first show that this limit exists: Consider the canonical pro-
jection πk : P0 → Pk0 onto the subspace of k-homogeneous polynomials Pk0 :=
span{zα : |α| = k}, and denote the subspace of (≥ k)-homogeneous polynomials
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P≥k0 := span{zα : |α| ≥ k}. By Gaussian elimination we can pick a basis B1 :=

{P kj }
0≤k≤m−1
1≤j≤Nk for I in the block form: P kj ∈ P

≥k
0 , and B0 := {πkP kj }

0≤k≤m−1
1≤j≤Nk

is linearly independent in P0. The family Bδ := {δm−kτ0,δ(P kj )}k,j converges el-
ementwise as δ → 0 to B0. Since Bδ is a basis for τ0,δ(I), and B0 is a basis for
I∗ := span(B0), we learn that τ0,δ(I) converges to I∗, as desired.

The ideals form a closed subset of the Grassmanian, thus I∗ is an ideal in the
ring P0. Let V be the orthogonal complement of I∗ with respect to the standard
inner product on P0. Observe that I∗ is dilation-invariant at x = 0, i.e., τ0,δI∗ = I∗
for all δ > 0. Equivalently, I∗ is a direct sum of homogeneous subspaces of P0,
i.e., I∗ = I0 + · · · + Im−1, with Ik ⊂ Pk0 . But then V is also a direct sum of
homogeneous subspaces of P0, and so V is dilation-invariant at x = 0. From
Lemma 3.11, we also know that V is translation-invariant. Thus, V ∈ DTI. The
subspaces I∗ and V are complementary and this property is open in G × G. By
definition of I∗ as a limit, τ0,δ(I) and V are complementary for some δ > 0. By
an application of the isomorphism of vector spaces τ0,δ−1 , we learn that I and
τ0,δ−1V are complementary. To finish the proof, recall that V ∈ DTI, and hence
τ0,δ−1V = V . 2

Our next result says that every Whitney convex set is transverse to a DTI
subspace.

Lemma 3.13. Given A ∈ [1,∞), there exists a constant R0 = R0(A,m, n) so that
the following holds. Let Ω be a closed, symmetric, convex subset of P. If Ω is
Whitney convex at x ∈ Rn with wx(Ω) ≤ A, and δ > 0, then there exists V ∈ DTI
such that Ω is (x, δ,R0)-transverse to V .

Proof. By the second bullet point in Lemma 3.7, Ω is (x, δ,R)-transverse to V if
and only if τx,δΩ is (x, 1, R)-transverse to τx,δV . Thus, by the remark following
Definition 2.10, we may rescale and assume that δ = 1. Similarly, by translating
we may assume that x = 0.

Let S be the set of closed, symmetric, convex subsets of P. We endow S with
the topology of local Hausdorff convergence, i.e., Ωj → Ω iff limj→∞ dH(Ωj ∩
RB,Ω ∩ RB) = 0 for all R > 0 – here, B ⊂ P is the unit ball with respect to
the norm | · | = | · |0,1 on P, and dH is the Hausdorff metric with respect to this
norm. As a consequence of the Blaschke selection theorem, thus endowed, S is
a compact space. Write G to denote the Grassmanian of all subspaces of P, and
Gk ⊂ G the Grassmanian of all k-dimensional subspaces. We may identify G as a
compact subspace of S.

For any (x, δ) ∈ Rn×(0,∞), the isomorphism τx,δ : P → P induces a continuous
mapping on the Grassmanian τx,δ : G → G. Thus, DTI = {V ∈ G : τx,δV =
V ∀(x, δ) ∈ Rn × (0,∞)} is a closed subset of G, and hence DTI is compact.

The conclusion of the lemma is equivalent to the existence of a constant R0 =
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R0(A,m, n) so that φ(Ω) ≤ R0 for all Ω ∈ wcA, where

wcA := {Ω ∈ S : Ω is Whitney convex at 0 with w0(Ω) ≤ A},
φ : wcA → [0,∞], φ(Ω) := inf{ψ(Ω, V ) : V ∈ DTI}, with

ψ : wcA ×DTI→ [0,∞], where

ψ(Ω, V ) := inf{R : Ω ∩ V ⊂ R · B, B/V ⊂ R · (Ω ∩ B)/V }.

If Ωn → Ω, Ωn ∈ wcA, δ > 0, and A∗ > A, then

(Ω ∩ B0,δ)�0 B0,δ = lim
n→∞

(Ωn ∩ B0,δ)�0 B0,δ ⊂ lim
n→∞

A∗δmΩn = A∗δmΩ,

where we used the continuity of �0 on S×S. So wcA is closed, and hence compact.
We claim that ψ is upper semicontinuous (usc). Indeed, ψ = infR>0 ψR, with
ψR = R1ER +∞1EcR and

ER = {(Ω, V ) ∈ S ×DTI : ∃R′ < R, Ω ∩ V ⊂ R′ · B and B/V ⊂ R′ · (Ω ∩ B)/V }.

As ER is open, ψR is usc. Hence the same is true of ψ, and also of φ.
Since φ is usc and wcA is compact, it suffices to show that φ(Ω) < ∞ for all

Ω ∈ wcA. Since Ω is Whitney convex at 0, I = span(Ω) is an ideal in P0 (see Lemma
2.12). By Lemma 3.12 there exists a subspace V ∈ DTI which is complementary
to I, i.e., V ∩ I = {0} and V + I = P. Note that span(Ω + V ) = I + V = P, and
so by convexity, Ω +V contains a ball εB for some ε > 0. If εB ⊂ Ω +V , it follows
that εB/V ⊂ Ω/V . Thus,

εB/V ⊂
⋃
R>0

(Ω ∩RB)/V.

By compactness, there exists an R > 0 with ε
2B/V ⊂ (Ω∩RB)/V ⊂ R(Ω∩ B)/V .

Thus, B/V ⊂ 2R
ε (Ω ∩ B)/V . Combined with V ∩ Ω ⊂ V ∩ I = {0}, this implies

that φ(Ω) ≤ 2R
ε . 2

For any x ∈ Rn, the set σ(x) = σ(x,E) is Whitney convex at x with wx(σ(x)) ≤
C0 (see Lemma 2.11). Let R0 be the constant from Lemma 3.13 with A = C0.
Then

(3.3)

{
for any finite set E ⊂ Rn, for any (x, δ) ∈ Rn × (0,∞),

there exists V ∈ DTI such that σ(x) is (x, δ,R0)-transverse to V.

Constants: Recall the constant c1 is defined in Lemma 3.8. We specify con-
stants Rlabel � Rmed � Rbig � Rhuge, C∗, and C∗∗, defined as follows:

(3.4)

{
Rlabel := 8R0, Rmed := 256DRlabel, Rbig := 10mRmed, Rhuge := 2m+3Rbig

C∗ := 20c−11 Rbig, C∗∗ = 1 + 2mCT (1 +Rlabel(5C∗)
m).

Lemma 3.14. Let B be a closed ball in Rn. There exists V ∈ DTI such that σ(z)
is (z, C∗ diam(B), Rlabel)-transverse to V for all z ∈ 100B.
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Proof. Let x0 ∈ Rn be the center of B. We apply (3.3) with x = x0 and δ =
C∗ diam(B). Thus, σ(x0) is (x0, C∗ diam(B), R0)-transverse to some V ∈ DTI.

Let z ∈ 100B be arbitrary. Then |z − x0| ≤ 100 diam(B) ≤ c1
C∗ diam(B)

R0
(see

(3.4)). By Lemma 3.8, we conclude that σ(z) is (z, C∗ diam(B), 8R0)-transverse to
V .

2

4. Complexity

The left and right endpoints of an interval I ⊂ R are denoted by l(I) and r(I),
respectively. An interval J is to the left of an interval I, written J < I, if either
r(J) < l(I) or r(J) = l(I) and l(J) < l(I). Let X be a finite-dimensional Hilbert
space with inner product 〈·, ·〉X , set d := dimX < ∞, and denote the norm and
unit ball of X by | · |X =

√
〈·, ·〉

X
and B = {x ∈ X : |x|X ≤ 1}. Let Ψ : RD → X

be a coordinate transformation of the form Ψ(v) =
∑
j vjej for an orthonormal

basis {ej}1≤j≤d of X. Fix ~m = (m1, · · · ,md) ∈ Zd≥0 and a 1-parameter family of

maps Tδ : X → X (δ > 0) of the form Tδ = ΨT̃δΨ
−1, where the transformation

T̃δ : Rd → Rd is represented in standard Euclidean coordinates by a diagonal
matrix Dδ = diag(δ−m1 , · · · , δ−md).

Definition 4.1. Given a closed, symmetric, convex set Ω ⊂ X, the complexity of
Ω relative to the dynamical system X = (X,Tδ)δ>0 at scale δ0 > 0 with parameter
R ≥ 1– written CX ,δ0,R(Ω) – is the largest integer K ≥ 1 such that there exist
intervals I1 > I2 > · · · > IK in (0, δ0] and subspaces V1, V2 · · · , VK ⊂ X, such that
Tr(Ik)(Ω) is R-transverse to Vk, but Tl(Ik)(Ω) is not 256dR-transverse to Vk for all
k = 1, · · · ,K. If no such K exists, let CX ,δ0,R(Ω) := 0.

Proposition 4.2. Given R ≥ 1 and ~m ∈ Zd≥0, there exists a constant K0 =
K0(d, ~m,R) such that CX ,δ0,R(Ω) ≤ K0 for all closed, symmetric, convex sets Ω ⊂
X and all δ0 > 0.

4.1. Background on semialgebraic geometry

We review some standard terminology from semialgebraic geometry: A set B ⊂ Rd
is a basic set if it is the solution set of a finite number of polynomial inequalities, i.e.,
B = {x ∈ Rd : pi(x) ≤ 0, qj(x) < 0 ∀i∀j}, for polynomials p1, · · · , pk, q1, · · · , ql on
Rd. A semialgebraic set is a finite union of basic sets. The class of semialgebraic
sets is obviously closed under finite unions/intersections and complements. The
celebrated Tarski-Seidenberg theorem on quantifier elimination implies that the
class of semialgebraic sets is closed under projections π : Rd → Rd−1; see [22].
Semialgebraic sets are closely related to first-order formulas over the reals, which
are defined by the following elementary rules: (1) If p is a polynomial on Rd, then
“p ≤ 0” and “p < 0” are (first-order) formulas, (2) If Φ and Ψ are formulas,
then “Φ and Ψ”, “Φ or Ψ”, and “not Φ” are formulas, and (3) If Φ is a formula
and x is a variable of Φ (ranging in R), then “∃x Φ” and “∀x Φ” are formulas.
A first-order formula is quantifier-free if it arises only via (1) and (2). Clearly
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the semialgebraic sets are precisely the solution sets of quantifier-free formulas.
The Tarski-Seidenberg theorem states that every first-order formula is equivalent
(i.e., has an identical solution set) to a quantifier-free formula. Accordingly, the
solution set of a first-order formula is semialgebraic. In particular, the set M+ of
all positive-definite d×d matrices is a semialgebraic subset of Rd×d because it can
be represented as the solution set of a first-order formula: M+ = {(aij)1≤i,j≤d :

aij = aji for i, j = 1, · · · , d and
∑d
i,j=1 aijxixj > 0 ∀x1, · · · ,∀xd}. Later we

will need the following theorem which gives an upper bound on the number of
connected components of a semialgebraic set.

Theorem 4.3 (Corollary 3.6, Chapter 3 of [22]). If S ⊂ Rk1+k2 is semialgebraic
then there is a natural number M such that for each point a ∈ Rk1 the fiber
Sa := {b ∈ Rk2 : (a, b) ∈ S} has at most M connected components.

4.2. Proof of Proposition 4.2

The coordinate mapping Ψ−1 : X → Rd is a Hilbert space isomorphism when Rd is
equipped with the standard Euclidean inner product 〈·, ·〉. Thus C(X,Tδ),δ0,R(Ω) =

C(Rd,T̃δ),δ0,R(Ψ−1(Ω)), where T̃δ := Ψ−1TδΨ. Therefore, we may reduce to the case

where (X, 〈·, ·〉X) = (Rd, 〈·, ·〉) and the transformation Tδ on Rd is represented in
Euclidean coordinates by the diagonal matrix Dδ = diag(δ−m1 , · · · , δ−md) (i.e.,
Tδ(x) = Dδ · x).

We give a proof by contradiction. Fix a one-parameter family of linear trans-
formations Tδ : Rd → Rd of the above form, and fix a closed, symmetric, con-
vex set Ω ⊂ Rd, δ0 > 0, and R ≥ 1, such that C(Rd,Tδ)δ>0,δ0,R(Ω) ≥ K0 + 1 –
we will determine the value of K0 later in the argument. The family (Tδ)δ>0

satisfies the semigroup properties T1 = id and Tδ1δ2 = Tδ1 ◦ Tδ2 . Hence, by
exchanging Ω and Tδ0(Ω), we may reduce to the case δ0 = 1. The inequality
C(Rd,Tδ)δ>0,1,R(Ω) ≥ K0 + 1 implies that there exist intervals I1 > · · · > IK0+1 in

(0, 1] and subspaces V1, · · · , VK0+1 ⊂ Rd such that (a) Tr(Ik)(Ω) is R-transverse to
Vk, whereas (b) Tl(Ik)(Ω) is not 256dR-transverse to Vk, for all 1 ≤ k ≤ K0 + 1.

The Grassmanian G of subspaces of Rd will be endowed with the metric

dG(V1, V2) := inf{‖U − id‖op : U ∈ O(d,R), U(V1) = V2}.

In particular, dG(V1, V2) <∞ ⇐⇒ dim(V1) = dim(V2).
Fix ε := (212dR2)−1 and let N be an ε-net in G.
We will next apply a perturbation argument in order to approximate Ω by an

ellipsoid E with similar properties. Let R0 := 256dR. Fix a compact, symmetric,
convex set Ω̃ ⊂ Rd with nonempty interior such that{

dH(Tr(Ik)(Ω) ∩R0B, Tr(Ik)(Ω̃) ∩R0B) < R−10 , and

dH(Tl(Ik)(Ω) ∩R0B, Tl(Ik)(Ω̃) ∩R0B) < R−10 for all 1 ≤ k ≤ K0 + 1,

where dH is the Hausdorff metric with respect to the Euclidean norm on Rd –
we can choose Ω̃ of the form (Ω + λB) ∩ (λ−1B) for a small constant λ > 0. By
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Lemma 3.4 and properties (a) and (b), we have that Tr(Ik)(Ω̃) is 4R-transverse to

Vk, but Tl(Ik)(Ω̃) is not 64dR-transverse to Vk. If E is the John ellipsoid of Ω̃, which

satisfies E ⊂ Ω̃ ⊂
√
dE , then Tr(Ik)(E) is 4

√
dR-transverse to Vk, but Tl(Ik)(E) is

not 64
√
dR-transverse to Vk. Hence, setting R̂ = 16

√
dR,

(4.1)

{
Tr(Ik)(E) is (1/4)R̂-transverse to Vk, but

Tl(Ik)(E) is not 4R̂-transverse to Vk, for all 1 ≤ k ≤ K0 + 1.

We identify ellipsoids with positive-definite matrices in the usual way: any el-
lipsoid has the form EA := {x ∈ Rd : 〈Ax, x〉 ≤ 1} for some A ∈M+. Furthermore,
any subspace of Rd has the form VC := rowsp(C) for some matrix C ∈ Rd×d, where
rowsp(C) is the span of the row vectors of C. Consider the set

S = {(C,A,R, δ) ∈ Rd
2

×M+ × [1,∞)× (0,∞) : Tδ(EA) is R-transverse to VC}.

Here, it is useful to note that Tδ(EA) = EAδ , with Aδ := Dδ−1ADδ−1 . Then S

is a semialgebraic subset of R2d2+2 because M+ is semialgebraic and the state-
ment “Tδ(EA) is R-transverse to VC” is expressable by a first order formula in the

variables (C,A, δ,R) ∈ R2d2+2.
Consider the ellipsoid E determined as above and fix an arbitrary subspace

V ⊂ Rd. Write V = VC and E = EA for some C ∈ Rd2 , A ∈ M+. By Theorem
4.3, for any R ≥ 1 there exists a set Λ = Λ(VC , EA, R) ⊂ (0,∞) with #(Λ) ≤ M ,
where M is an integer constant determined by d and ~m, so that for any interval
I ⊂ (0,∞) \ Λ, either (C,A, δ,R) ∈ S (i.e., Tδ(EA) is R-transverse to VC) for all
δ ∈ I, or (C,A, δ,R) /∈ S (i.e., Tδ(EA) is not R-transverse to VC) for all δ ∈ I. Set

Λbad :=
⋃
V ∈N

Λ(V, E , R̂).

For an interval I ⊂ (0,∞) \ Λbad and subspace V ∈ N , we have (A) either [Tδ(E)

is R̂-transverse to V for all δ ∈ I] or [Tδ(E) is not R̂-transverse to V for all δ ∈ I].
Note that #(Λbad) ≤ #(N ) ·M .

Set K0 := 2 ·#(N ) ·M . Then K0 + 1 > 2 ·#(Λbad). By definition of the order
relation on intervals, at most two of the intervals I1 > · · · > IK0+1 can contain a
given number δ ∈ R. Thus, we can find k∗ so that Ik∗ is disjoint from Λbad.

Since N is an ε-net in G, there exist U ∈ O(d,R) and V ∈ N with U(Vk∗) = V
and ‖U−1 − id‖op = ‖U − id‖op < ε = 1

212dR2 = 1

16R̂2
. By condition (A), either

Tδ(E) is R̂-transverse to V for all δ ∈ Ik∗ , or Tδ(E) is not R̂-transverse to V for all

δ ∈ Ik∗ . By Lemma 3.5, either Tδ(E) is ( 1
4 )R̂-transverse to Vk∗ for all δ ∈ Ik∗ , or

Tδ(E) is not 4R̂-transverse to Vk∗ for all δ ∈ Ik∗ . This contradicts (4.1) for k = k∗
and finishes the proof of the proposition.

5. The Local Main Lemma

Definition 5.1. For x ∈ Rn, let Px = P be the Hilbert space endowed with
the inner product 〈·, ·〉x := 〈·, ·〉x,1. Write Xx for the system (Px, τx,δ)δ>0, where
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the rescaling transformations τx,δ : Px → Px (δ > 0) are given by τx,δ(P )(z) =
δ−mP (x + δ(z − x)). With respect to the monomial basis {(z − x)α}|α|≤m−1, the
transformation τx,δ is represented by a diagonal matrix with negative integer powers
of δ on the main diagonal. Given a ball B ⊂ Rn and a finite set E ⊂ Rn, the local
complexity of E on B is the integer-valued quantity

C(E|B) := sup
x∈B
CXx,C∗ diam(B),Rlabel

(σ(x)).

Remark 5.2. We obtain an equivalent formulation of local complexity by in-
spection of Definition 4.1: We have C(E|B) ≥ K if and only if there exists
x ∈ B and there exist subspaces V1, · · · , VK ⊂ P and intervals I1 > I2 > · · · >
IK in (0,diam(B)], such that τx,r(Ik)(σ(x)) is (x,C∗, Rlabel)-transverse to Vk, but
τx,l(Ik)(σ(x)) is not (x,C∗, Rmed)-transverse to Vk for all k = 1, · · · ,K. Here,
Rmed := 256DRlabel (see (3.4)).

We have the following basic monotonicity property of complexity: B1 ⊂ B2 =⇒
C(E|B1) ≤ C(E|B2). As a consequence of Proposition 4.2, we also have the follow-
ing result:

Corollary 5.3. There exists K0 = K0(m,n) such that C(E|B) ≤ K0 for any
closed ball B ⊂ Rn and finite subset E ⊂ Rn.

Next we define the (global) complexity C(E) of a finite subset E ⊂ Rn.

Definition 5.4. Given a finite subset E ⊂ Rn, let B0 ⊂ Rn be a compact ball
containing E – for definiteness, one can choose B0 to be the compact ball of minimal
radius containing E. Then let C(E) := C(E|5B0).

Now Lemma 1.3 from the introduction follows from Corollary 5.3. The main
apparatus that will be used to prove Theorem 1.2 is the following:

Lemma 5.5 (Local Main Lemma for K). Let K ≥ −1. There exist constants
C# = C#(K) ≥ 1 and `# = `#(K) ∈ Z≥0, depending only on K,m, n, with the
following properties.

Let E ⊂ Rn be finite and let B0 ⊂ Rn be a ball. If C(E|5B0) ≤ K then the
following holds:

Local Finiteness Principle on B0: Suppose f : E → R, M > 0, x0 ∈ B0, and
P0 ∈ P satisfy the following finiteness hypothesis: For all S ⊂ E with #(S) ≤
(D + 1)`

#

there exists FS ∈ Cm−1,1(Rn) with FS = f on S, Jx0
FS = P0, and

‖FS‖ ≤M . Then there exists a function F ∈ Cm−1,1(Rn) with F = f on E ∩B0,
Jx0F = P0, and ‖F‖ ≤ C#M .

Remark 5.6. Equivalently, the Local Finiteness Principle on B0 states that

Γ`#(x0, f,M) ⊂ ΓE∩B0
(x0, f, C

#M).

In particular, by taking f = 0 and M = 1, we have

σ`#(x0) ⊂ C# · σ(x0, E ∩B0).



26 J. Carruth, A. Frei-Pearson, A. Israel and B. Klartag

5.1. Proof of Theorem 1.2

We now explain why it is that the Local Main Lemma implies Theorem 1.2. Fix
a ball B0 with E ⊂ B0 as in Definition 5.4. We apply the Local Main Lemma
for K = C(E) = C(E|5B0) and deduce that the Local Finiteness Principle for B0

is true. Therefore, Γ`#(x0, f,M) ⊂ ΓE(x0, f, C
#M) for any M > 0. Our main

result, Theorem 1.2, now follows easily: By Lemma 2.6, the Finiteness Hypothesis

FH(k#) (see (2.13)) with constant k# = (D + 1)`
#+1 implies Γ`#(x0, f, 1) 6= ∅,

and so ΓE(x0, f, C
#) 6= ∅. In particular, there exists F ∈ Cm−1,1(Rn) with F = f

on E and ‖F‖ ≤ C#.

Remark 5.7. In section 9.1 we verify that the constant C# = C#(K) in the Local
Main Lemma depends exponentially on K, and the constant `# = `#(K) depends

linearly on K; thus, k# = (D + 1)`
#+1 will depend exponentially on K. This

finishes the proof of Theorem 1.2.

5.2. Organization

The rest of the paper is organized as follows. In section 6 we formulate the Main
Induction Argument that will be used to prove the Local Main Lemma for all K.
In section 7 we prove the Main Decomposition Lemma which will allow us to pass
from a local extension problem on a ball B0 to a family of easier subproblems on
a collection of “Whitney balls” B ⊂ 5B0; this lemma is the main component in
the analysis of the induction step. In section 8, we state a technical lemma that
allows us to control the shape of the set σ`(x) at lengthscales which are much
coarser than the lengthscales of the balls in the decomposition; we next apply this
lemma to enforce mutual consistency for a family of jets that are associated to
the local extension problems on the Whitney balls. In section 9 we will construct
a solution to the local extension problem on B0 by gluing together the solutions
to the local problems on the Whitney balls by means of a partition of unity; the
consistency conditions arranged in the previous step will ensure that the individual
local extensions are sufficiently compatible, which will imply the necessary control
on the Cm−1,1 seminorm of the glued-together function.

6. The Main Induction Argument I: Setup

We will prove the Local Main Lemma by induction on the complexity parameter
K ∈ {−1, 0, · · · ,K0} – recall, K0 is a finite upper bound on the local complexity
of any set. When K = −1, the Local Main Lemma is vacuously true (say, for
C#(−1) = 1, `#(−1) = 0) since complexity is non-negative. This establishes the
base case of the induction.

For the induction step, fix K ∈ {0, 1, · · · ,K0}. The induction hypothesis states
that the Local Main Lemma for K − 1 is valid. Denote the finiteness constants in
the Local Main Lemma for K − 1 by `old := `#(K − 1) and Cold := C#(K − 1).
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Applying the Local Main Lemma to a closed ball of the form (6/5) ·B, we obtain

(6.1)
If x ∈ (6/5) ·B and C(E|6B) ≤ K − 1, then,

Γ`old(x, f,M) ⊂ ΓE∩ 6
5B

(x, f, ColdM) for any f : E → R, M > 0.

(Here we use the formulation of the Local Finiteness Principle in Remark 5.6.)
Fix a ball B0 ⊂ Rn with C(E|5B0) ≤ K. To prove the Local Main Lemma

for K, we are required to prove the Local Finiteness Principle (LFP) on B0 for a
suitable choice of the constants `# ∈ Z≥0 and C# ≥ 1, determined by m, n, and
K. Thus, our goal is to prove that Γ`#(x0, f,M) ⊂ ΓE∩B0(x0, f, C

#M) for any
f : E → R, x0 ∈ B0, M > 0. A rescaling of the form f 7→ f/M allows us to reduce
to the case M = 1. If #(B0 ∩E) ≤ 1 then the LFP is true as long as C# ≥ 1 and
`# ≥ 0 – indeed,

(6.2)

Γ`#(x0, f, 1) ⊂ Γ0(x0, f, 1) =
⋂

S⊂E, #(S)≤1

ΓS(x0, f, 1)

⊂ ΓE∩B0
(x0, f, 1) ⊂ ΓE∩B0

(x0, f, C
#).

Accordingly, it suffices to assume that

(6.3) #(B0 ∩ E) ≥ 2.

Under these assumptions, we will prove that for any x0 ∈ B0 and f : E → R,

(6.4) Γ`#(x0, f, 1) ⊂ ΓE∩B0
(x0, f, C

#).

7. The Main Decomposition Lemma

In this section we fix the following data:

• A closed ball B0 ⊂ Rn and a point x0 ∈ B0.

• A finite set E ⊂ Rn satisfying #(E ∩B0) ≥ 2 and C(E|5B0) ≤ K.

• A function f : E → R.

• An integer `# ∈ Z≥0.

• A polynomial P0 ∈ Γ`#(x0, f, 1).

Our plan is to introduce a cover of the ball 2B0 which will later be used to
decompose the local extension problem on B0 into a family of easier subproblems
associated to the elements of the cover.

Lemma 7.1 (Main Decomposition Lemma). Recall that the constants Rlabel �
Rmed � Rbig � Rhuge, C∗, and C∗∗ are defined in (3.4). Given data B0, E, K, f ,
`#, and P0 as above, there exists a subspace V ∈ DTI such that
(a) The set σ(x) is (x,C∗ diam(B0), Rlabel)-transverse to V for all x ∈ 100B0.
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There exists a Whitney cover W of 2B0 such that, for all B ∈ W,
(b) B ⊂ 100B0 and diam(B) ≤ 1

2 diam(B0).
(c) The set σ(x) is (x,C∗δ,Rhuge)-transverse to V for all x ∈ 8B, δ ∈ [diam(B),diam(B0)].
(d) Either #(6B ∩ E) ≤ 1 or C(E|6B) < K.

For every B ∈ W there exists a point zB ∈ Rn and a jet PB ∈ P satisfying
(e) zB ∈ 6

5B ∩ 2B0; also, if x0 ∈ 6
5B then zB = x0.

(f) PB ∈ Γ`#−1(zB , f, C∗∗) and P0 − PB ∈ C∗∗BzB ,diam(B0); also, if x0 ∈ 6
5B then

PB = P0.
(g) P0 − PB ∈ V .

We obtain a local finiteness principle on the elements of the cover W in the
next lemma.

Lemma 7.2. For any B ∈ W, the Local Finiteness Principle on 6
5B is true for

the constants `old = `#(K − 1) ∈ Z≥0 and Cold = C#(K − 1) ≥ 1. That is,
Γ`old(x, f,M) ⊂ ΓE∩ 6

5B
(x, f, ColdM), for all x ∈ 6

5B, M > 0.

Proof. If C(E|6B) < K, the result follows from (6.1). On the other hand, if
#(E ∩ 6B) ≤ 1, the result follows from (6.2). Condition (d) implies that these
cases are exhaustive. 2

7.1. Proof of the Main Decomposition Lemma

We apply Lemma 3.14 to select a subspace V ∈ DTI such that
σ(x) is (x,C∗ diam(B0), Rlabel)-transverse to V for all x ∈ 100B0. This establishes
property (a). The construction of W is based on the following definition:

Definition 7.3. A ball B ⊂ 100B0 is OK if #(B∩E) ≥ 2 and if there exists z ∈ B
such that σ(z) is (z, C∗δ,Rbig)-transverse to V for all δ ∈ [diam(B),diam(B0)].

The OK property is inclusion monotone in the sense that if B ⊂ B′ ⊂ 100B0

and B is OK then B′ is OK.
For each x ∈ 2B0, let r(x) := inf{r > 0 : B(x, r) ⊂ 100B0, B(x, r) is OK}.

Every subball of 100B0 that contains 2B0 is OK, so the infimum is well-defined –
this also implies r(x) ≤ 2 diam(B0) for all x ∈ 2B0. If B ⊂ 100B0 is sufficiently
small then #(B ∩ E) ≤ 1, and so B is not OK – in particular, this shows that
r(x) ≥ ∆ := 1

2 min{|x − y| : x, y ∈ E, x 6= y} > 0 for all x ∈ 2B0. Let Bx :=
B(x, 17r(x)) for x ∈ 2B0. Then

(7.1) 70Bx ⊂ 100B0, for x ∈ 2B0.

Obviously the family W∗ = {Bx}x∈2B0
is a cover of 2B0.

Lemma 7.4. If B ∈ W∗ then 8B is OK, and 6B is not OK.

Proof. We write B = B(x, 17r(x)) for some x ∈ 2B0. According to (7.1), 6B ⊂
8B ⊂ 100B0. By definition of r(x) as an infimum and the inclusion monotonicity
of the OK property, the result follows. 2

We apply the Vitali covering lemma to extract a finite subcoverW ⊂W∗ of 2B0

with the property that the family of third-dilates { 13B}B∈W is pairwise disjoint.
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Lemma 7.5. W is a Whitney cover of 2B0.

Proof. We have only to verify condition (c) in the definition of a Whitney cover
(see Definition 2.13). Suppose for sake of contradiction that there exist balls Bj =
B(xj , rj) ∈ W for j = 1, 2, with 6

5B1∩ 6
5B2 6= ∅ and r1 <

1
8r2. Since 6

5B1∩ 6
5B2 6= ∅,

we have |x1 − x2| ≤ 6
5r1 + 6

5r2. If z ∈ 8B1 then |z − x1| ≤ 8r1, and therefore

|z − x2| ≤ |z − x1|+ |x1 − x2| ≤ 8r1 +
6

5
r1 +

6

5
r2 ≤ r2 +

3

20
r2 +

6

5
r2 ≤ 6r2.

Hence, 8B1 ⊂ 6B2. By Lemma 7.4, 8B1 is OK. Thus, by inclusion monotonicity,
6B2 is OK. But this contradicts Lemma 7.4. This finishes the proof by contradic-
tion. 2

We now establish conditions (b)-(d) in the Main Decomposition Lemma. Fix
a ball B ∈ W.

We will use the following principal condition: (PC) If #(6B∩E) ≥ 2 then for all
x ∈ 6B there exists δx ∈ [6 diam(B),diam(B0)] so that σ(x) is not (x,C∗δx, Rbig)-
transverse to V . This follows because 6B is not OK.

Proof of (b): The inclusion B ⊂ 100B0 follows from (7.1). For sake of contradic-
tion, suppose that diam(B) > 1

2 diam(B0). Since B ∩ B0 6= ∅, we have B0 ⊂ 5B.
Therefore, #(5B ∩ E) ≥ #(B0 ∩ E) ≥ 2. Fix a point x ∈ B. Then (PC) implies
that the interval [6 diam(B),diam(B0)] is nonempty, thus diam(B) ≤ 1

6 diam(B0),
which gives the contradiction.

Proof of (c): Since 8B is OK, σ(z) is (z, C∗δ,Rbig)-transverse to V for some z ∈ 8B
and all δ ∈ [8 diam(B),diam(B0)]. If x ∈ 8B then |x − z| ≤ 8 diam(B) ≤ δ ≤
c1
Rbig
· (C∗δ) (see (3.4)), and so, by Lemma 3.8,

σ(x) is (x,C∗δ, 8Rbig)-transverse to V if δ ∈ [8 diam(B),diam(B0)].

Any number in the interval [diam(B),diam(B0)] is comparable to a number in
[8 diam(B),diam(B0)] up to a multiplicative factor of at most 8. Hence, by Lemma
3.7, σ(x) is (x,C∗δ, 8

m+1Rbig)-transverse to V for all δ ∈ [diam(B),diam(B0)].
Since Rhuge ≥ 8m+1Rbig (see (3.4)), this implies (c).

Proof of (d): Suppose that #(6B∩E) ≥ 2 and set J := C(E|6B). According to the
formulation of complexity in Remark 5.2, there exist intervals I1 > I2 > · · · > IJ
in (0, 6 diam(B)], subspaces V1, · · · , VJ ⊂ P, and a point z ∈ 6B, such that
(A) τz,r(Ij)(σ(z)) is (z, C∗, Rlabel)-transverse to Vj , and
(B) τz,l(Ij)(σ(z)) is not (z, C∗, Rmed)-transverse to Vj , for 1 ≤ j ≤ J , where Rmed =
256DRlabel.

Since B∩B0 6= ∅ and diam(B) ≤ 1
2 diam(B0) (see (b)) it follows that 6B ⊂ 5B0.

Hence, z ∈ 5B0.

Since #(6B∩E) ≥ 2, (PC) implies that there exists δz ∈ [6 diam(B),diam(B0)]
with

(7.2) σ(z) is not (z, C∗δz, Rbig)-transverse to V.
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We will now establish that (A) and (B) hold for j = 0 with I0 := [δz,diam(B0)]
and V0 := V . Since V is a DTI subspace, τz,l(I0)V = V , and therefore, by rescaling
(7.2),

(7.3) τz,l(I0)(σ(z)) is not (z, C∗, Rbig)-transverse to V.

On the other hand, from property (a) we learn that σ(z) is (z, C∗ diam(B0), Rlabel)-
transverse to V . Therefore, by rescaling,

(7.4) τz,r(I0)(σ(z)) is (z, C∗, Rlabel)-transverse to V.

The conditions (7.3) and (7.4) together imply (A) and (B) for j = 0 (recall Rbig ≥
Rmed).

Notice that r(I1) ≤ 6 diam(B) ≤ δz = l(I0), thus I1 < I0. In conclusion,
I0 > I1 > · · · > IJ are subintervals of (0,diam(B0)].

We produced intervals I0 > I1 > · · · > IJ in (0, 5 diam(B0)] and subspaces
V0, · · · , VJ ⊂ P, so that (A) and (B) hold for j = 0, 1, · · · , J . Since z ∈ 5B0, by
the formulation of complexity in Remark 5.2, we have C(E|5B0) ≥ J + 1. Since
C(E|5B0) ≤ K, this completes the proof of (d).

Finally we define a collection of points {zB}B∈W and polynomials {PB}B∈W
so as to establish properties (e)-(g).
Proof of (e): We define the collection {zB}B∈W to satisfy property (e). For all
B ∈ W such that x0 ∈ 6

5B we set PB = P0. We define PB for the remaining balls
B ∈ W in the proof of (f) and (g) below.
Proofs of (f) and (g): If x0 ∈ 6

5B then zB = x0 and PB = P0, in which case
(f) and (g) are trivially true (note that P0 ∈ Γ`#(x0, f, 1) ⊂ Γ`#−1(x0, f, 1)).
Suppose instead x0 /∈ 6

5B. Then zB ∈ 6
5B ∩ 2B0 and so |x0 − zB | ≤ 2 diam(B0).

By Lemma 2.6, given that P0 ∈ Γ`#(x0, f, 1), we can find PB ∈ Γ`#−1(zB , f, 1)
with P0 − PB ∈ CTBzB ,2 diam(B0) ⊂ 2mCTBzB ,diam(B0). We still have to arrange
P0 − PB ∈ V as in (g). Unfortunately, there is no reason for this to be true,
and we will have to perturb PB to arrange this property. This is where we use
condition (a), which implies that σ(zB) is (zB , 5C∗ diam(B0), Rlabel)-transverse to
V . Therefore,

BzB ,diam(B0)/V ⊂ BzB ,5C∗ diam(B0)/V ⊂ Rlabel · (σ(zB) ∩ BzB ,5C∗ diam(B0))/V

⊂ Rlabel · (σ`#−1(zB) ∩ BzB ,5C∗ diam(B0))/V.

Since P0 − PB ∈ 2mCTBzB ,diam(B0), the last containment implies we can find a
bounded correction

RB ∈ 2mCTRlabel · (σ`#−1(zB) ∩ BzB ,5C∗ diam(B0)),

so that RB/V = (P0−PB)/V , i.e., P0−PB −RB ∈ V . Set P̃B = PB +RB . Then

P0 − P̃B ∈ V and

P̃B ∈ Γ`#−1(zB , f, 1) + 2mCTRlabelσ`#−1(zB) ⊂ Γ`#−1(zB , f, 1 + 2mCTRlabel).
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Furthermore,

P0 − P̃B = (P0 − PB)−RB ∈ 2mCTBzB ,diam(B0) + 2mCTRlabelBzB ,5C∗ diam(B0)

⊂ 2mCT · (1 +Rlabel · (5C∗)m) · BzB ,diam(B0).

Thus we have proven (f) and (g) for all B ∈ W such that x0 /∈ 6
5B, with P̃B in

place of PB , where C∗∗ = 1 + 2mCT · (1 +Rlabel · (5C∗)m). This finishes the proof
of Lemma 7.1.

8. The Main Induction Argument II

We return to the setting of the Main Induction Argument in section 6. Let `old =
`#(K − 1) and Cold = C#(K − 1) be as in (6.1). We fix data (B0, x0, E, f) as
in section 6. Recall our goal is to establish the containment (6.4) for a suitable
choice of `# = `#(K) and C# = C#(K) which will be determined by the end of
the proof. We fix a polynomial P0 ∈ Γ`#(x0, f, 1), and apply Lemma 7.1 to the
data (B0, x0, E, f, `

#, P0). Through this we obtain a Whitney cover W of 2B0, a
DTI subspace V ⊂ P, and the families {PB}B∈W ⊂ P and {zB}B∈W ⊂ Rn.

Let W0 be the collection of all balls B ∈ W with B ∩ B0 6= ∅. Then W0 is a
Whitney cover of B0.

The main goal of this section is to prove that the polynomials {PB}B∈W0 are
pairwise compatible. Specifically, we will prove:

Lemma 8.1. There exist constants ` > `old and C ≥ 1, determined by m and n,
such that the following holds. If `# ≥ `, and {PB}B∈W is a family of polynomials
satisfying the conditions in Lemma 7.1, then PB − PB′ ∈ C · BzB ,diam(B) for any

B,B′ ∈ W0 with ( 6
5 )B ∩ ( 6

5 )B′ 6= ∅.
We will see that Lemma 8.1 follows easily from the next result.

Lemma 8.2. There exist constants ε∗ ∈ (0, 1), `∗ > `old, and R∗ ≥ 1, de-

pending only on m and n, such that the following holds. If B̂ ∈ W0 satisfies
diam(B̂) ≤ ε∗ diam(B0), and if the subspace V is as in Lemma 7.1, then σ`∗(x) is
(x, diam(B), R∗)-transverse to V for any B ∈ W0 and x ∈ 6B.

Lemma 8.2 is difficult for subtle reasons: We know from condition (c) of the
Main Decomposition Lemma that σ(x) is (x, diam(B), R)-transverse to V for any
B ∈ W and x ∈ 8B, where R = Rhuge · (6C∗)m. But it is not apparent why V
would also be transverse to σ`(x), which generally can be significantly larger than
σ(x). The key point in the proof of this proposition is that we are able to use
the validity of the Local Finiteness Principle on the balls B in W to establish a
two-sided relationship between the sets σ(x) and σ`∗(x) (for sufficiently large `∗)
as long as we are willing to “blur” these sets at a lengthscale larger than diam(B).
Since transversality is stable under “blurrings” (e.g., see Lemma 3.3), the result
will follow.

The proof of Lemma 8.2 is the most technical part of the paper. We next
explain how Lemma 8.1 follows from Lemma 8.2. After this we will establish a
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preparatory lemma, Lemma 8.3, and finally give the proof of Lemma 8.2 in section
8.2.

Proof of Lemma 8.1. We fix ε∗ ∈ (0, 1) and `∗ as in Lemma 8.2, and define ` =
`∗ + 2. We consider the following two situations:

• Case 1: diam(B) > ε∗ diam(B0) for all B ∈ W0.

• Case 2: There exists B̂ ∈ W0 with diam(B̂) ≤ ε∗ diam(B0).

Fix B,B′ ∈ W0 with 6
5B ∩

6
5B
′ 6= ∅. In Case 1, by condition (f) in Lemma 7.1,

we have

PB − PB′ = (PB − P0) + (P0 − PB′) ∈ C∗∗BzB ,diam(B0) + C∗∗BzB′ ,diam(B0).

Note that |zB − zB′ | ≤ 2 diam(B0) (recall zB , zB′ ∈ 2B0), and so by (2.5),

BzB′ ,diam(B0) ⊂ C̃2m−1BzB ,diam(B0). Since diam(B) > ε∗ diam(B0), we conclude
that BzB ,diam(B0) ⊂ (ε∗)−mBzB ,diam(B). When put together, we learn that PB −
PB′ ∈ C∗∗ · (ε∗)−m(1 + C̃2m−1)BzB ,diam(B), which gives the desired result in this
case.

Now suppose that Case 2 holds. By property (g) in Lemma 7.1, we have

PB − PB′ = (PB − P0) + (P0 − PB′) ∈ V.

By property (1) we have PB′ ∈ Γ`#−1(zB′ , f, C). By Lemma 2.6, there exists

P̃B ∈ Γ`#−2(zB , f, C) with P̃B − PB′ ∈ C ′ · BzB ,diam(B). Furthermore, since P̃B ∈
Γ`#−2(zB , f, C) and PB ∈ Γ`#−1(zB , f, C) ⊂ Γ`#−2(zB , f, C), we have

P̃B − PB ∈ 2C · σ`#−2(zB) = 2C · σ`∗(zB),

where we have used the fact that `# − 2 ≥ `− 2 = `∗. Thus,

PB − PB′ = (PB − P̃B) + (P̃B − PB′) ∈ 2C · σ`∗(zB) + C ′ · BzB ,diam(B),

and hence

PB − PB′ ∈ (2C · σ`∗(zB) + C ′ · BzB ,δB ) ∩ V ⊂ C ′′ · (σ`∗(zB) + BzB ,diam(B)) ∩ V.

Since σ`∗(zB) is (zB ,diam(B), R∗)-transverse to V (see Lemma 8.2), also σ`∗(zB)+
BzB ,diam(B) is (zB ,diam(B), R∗∗)-transverse to V , with R∗∗ = R∗ + 3 · (R∗)2 (see
Lemma 3.3). In particular,

(σ`∗(zB) + BzB ,diam(B)) ∩ V ⊂ R∗∗ · BzB ,diam(B).

Therefore, PB−PB′ ∈ C ′′R∗∗ ·BzB ,diam(B), which concludes the proof of the lemma.

2
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8.1. Finiteness principles for set unions with weakly controlled con-
stants

Through the use of Lemma 2.16 and Helly’s theorem we will obtain the following
result: If a ball B̂ ⊂ Rn is covered by a collection of balls each of which satisfies
a Local Finiteness Principle, then B̂ satisfies a Local Finiteness Principle with
constants that may depend on the cardinality of the cover. We should remark that
we lack any control on the cardinality of the cover W0 of B0, and so this type
of result cannot be used to obtain a Local Finiteness Principle on B0 with any
control on the constants. This lemma will be used in the next subsection, however,
to obtain a local finiteness principle on a family of intermediate balls that are much
larger than the balls of the cover, yet small when compared to B0.

Lemma 8.3. Fix C0 ≥ 1 and `0 ∈ Z≥0. Let W be a Whitney cover of a ball

B̂ ⊂ Rn with cardinality N = #W. If the Local Finiteness Principle holds on 6
5B

with constants C0 and `0, for all B ∈ W, then the Local Finiteness Principle holds

on B̂ with constants C1 and `1 := `0 + d log(D·N+1)
log(D+1) e, where C1 depends only on

C0, m, and n – in particular, C1 is independent of the cardinality N of the cover.

Proof. Let f : E → R and M > 0. For any B ∈ W and x ∈ 6
5B we have

Γ`0(x, f,M) ⊂ ΓE∩ 6
5B

(x, f, C0M) thanks to the Local Finiteness Principle on 6
5B.

Fix a point x0 ∈ B̂. Our goal is to prove that

(8.1) Γ`1(x0, f,M) ⊂ ΓE∩B̂(x0, f, C1M),

for a constant C1 ≥ 1, to be determined later.
For each B ∈ W, we fix xB ∈ 6

5B so that

(8.2) xB = x0 ⇐⇒ x0 ∈
6

5
B;

otherwise, if x0 /∈ 6
5B then xB is an arbitrary element of 6

5B.
Fix an arbitrary element P ∈ Γ`1(x0, f,M). We will define a family of auxiliary

convex sets to which we will apply Helly’s theorem and obtain the desired conclu-
sion. The convex sets will belong to the vector space PN consisting of N -tuples of
(m− 1)-st order Taylor polynomials indexed by the elements of the cover W. For
each S ⊂ E, the convex set K(S,M) ⊂ PN is defined by

K(S,M) := {(JxBF )B∈W : F ∈ Cm−1,1(Rn), ‖F‖ ≤M, F = f on S, Jx0
F = P}

If #(S) ≤ (D + 1)`1 then P ∈ Γ`1(x0, f,M) ⊂ ΓS(x0, f,M). Thus, there exists
F ∈ Cm−1,1(Rn) with ‖F‖ ≤ M , F = f on S, and Jx0

F = P . Therefore,
(JxBF )B∈W ∈ K(S,M). In particular, K(S,M) 6= ∅ if #(S) ≤ (D + 1)`1 .

If S1, · · · , SJ ⊂ E, with J := dim(PN ) + 1 = D ·N + 1, then

J⋂
j=1

K(Sj ,M) ⊃ K(S,M), for S = S1 ∪ · · · ∪ SJ .
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If furthermore #(Sj) ≤ (D+1)`0 for every j, then #(S) ≤ J ·(D+1)`0 ≤ (D+1)`1 ,
and consequently by the previous remark K(S,M) 6= ∅. Therefore, given arbitrary
subsets S1, · · · , SJ ⊂ E (J = dim(PN ) + 1) with #(Sj) ≤ (D+ 1)`0 for each j, we
have

J⋂
j=1

K(Sj ,M) 6= ∅.

Therefore, by Helly’s theorem,

K :=
⋂
S⊂E

#(S)≤(D+1)`0

K(S,M) 6= ∅.

Fix an arbitrary element (PB)B∈W ∈ K. By definition of K,
(∗) for any S ⊂ E with #(S) ≤ (D+1)`0 there exists a function FS ∈ Cm−1,1(Rn)
with ‖FS‖ ≤ M , FS = f on S, Jx0F

S = P , and JxBF
S = PB for all B ∈ W.

From this condition we will establish the following properties:
(a) PB = P if x0 ∈ 6

5B,
(b) |PB − PB′ |xB ,diam(B) ≤ CM whenever 6

5B ∩
6
5B
′ 6= ∅,

(c) for each B ∈ W there exists FB ∈ Cm−1,1(Rn) such that ‖FB‖ ≤ C0M , FB = f
on E ∩ 6

5B, and JxBFB = PB .

For the proof of (a) and (b) take S = ∅ in (∗). Then PB = JxBF
∅ = Jx0

F ∅ = P
whenever x0 ∈ 6

5B (see (8.2)), which yields (a). For (b), note that xB ∈ 6
5B, xB′ ∈

6
5B
′, and 6

5B ∩
6
5B
′ 6= ∅, and hence by the definition of Whitney covers, diam(B)

and diam(B′) differ by a factor of at most 8. Thus, |xB − xB′ | ≤ 6
5 diam(B) +

6
5 diam(B′) ≤ 11 diam(B). Thus, by (2.1) and Taylor’s theorem (see (2.2)),

|PB − PB′ |xB ,diam(B) ≤ 11m|PB − PB′ |xB ,11 diam(B)

= 11m|JxBF ∅ − JxB′F
∅|xB ,11 diam(B)

≤ 11mCT ‖F ∅‖ ≤ CM.

For the proof of (c), note that (∗) implies PB ∈ Γ`0(xB , f,M) for each B ∈ W.
By assumption, the Local Finiteness Principle holds on 6

5B with constants C0 and
`0, and therefore PB ∈ ΓE∩ 6

5B
(xB , f, C0M) for each B ∈ W. This completes the

proof of (c).
Fix a partition of unity {θB} adapted to the Whitney cover W as in Lemma

2.15, and set F =
∑
B∈W θBFB . By use of properties (b) and (c), we conclude

via Lemma 2.16 that (A) ‖F‖Cm−1,1(B̂) ≤ CM and (B) F = f on E ∩ B̂. Since

supp θB ⊂ 6
5B, we learn that Jx0

θB = 0 if x0 /∈ 6
5B; on the other hand, Jx0

FB =
JxBFB = PB = P if x0 ∈ 6

5B (see (8.2)). Thus, if we compare the following sums
term-by-term, we obtain the identity

Jx0
F =

∑
B∈W

Jx0
θB �x0

Jx0
FB =

∑
B∈W

Jx0
θB �x0

P.

Recall that
∑
B∈W θB = 1 on B̂ and x0 ∈ B̂. Thus,

∑
B∈W Jx0θB = Jx0(1) = 1.

Therefore, (C) Jx0F = P . By a standard technique we extend the function F ∈
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Cm−1,1(B̂) to a function in Cm−1,1(Rn) with norm bounded by C‖F‖Cm−1,1(B̂) ≤
C ′M – by abuse of notation, we denote this extension by the same symbol F . Then
(D) ‖F‖ ≤ C ′M . Furthermore, (B) and (C) continue to hold for this extension.
From (B),(C), and (D) we conclude that P ∈ ΓE∩B̂(x0, f, C

′M). This finishes the
proof of (8.1).

2

8.2. Proof of Lemma 8.2

We need to generate an upper containment on σ`(x) ∩ V for a suitable integer
constant `. Recall from property (c) in Lemma 7.1, σ(x) ∩ V ⊂ Rhuge · Bx,diam(B)

for x ∈ 8B and B ∈ W. To generate a similar containment for σ`(x) ⊃ σ(x) we
introduce the idea of “keystone balls” which are elements of the cover for which we
may obtain a local finiteness principle on a dilate of the balls by a large constant
factor (much larger than the constants C,C∗, Rhuge, etc.). By an appropriate choice
of this factor, we can deduce information about the shape of σ`(x) (through the
existence of a transverse subspace) on a neighborhood of a keystone ball. This
information can then be passed along to the remaining elements of the cover due
to the “quasicontinuity” of the sets σ`(x) (Lemma 2.6) and the fact that every ball
is close to a keystone ball (as established in Lemma 8.6).

8.2.1. Keystone balls. Let ε∗ ∈ (0, 1
300 ] be a free parameter, which will later be

fixed to be a small enough constant determined by m and n. In what follows all
constants may depend on m and n. If a constant depends additionally on ε∗ we
will be explicit and write it as C(ε∗), C0(ε∗), etc. Set A = (3ε∗)−

1
2 ≥ 10.

By hypothesis of Lemma 8.2, diam(B̂) ≤ ε∗ diam(B0) for some B̂ ∈ W0.

Definition 8.4. A ball B# ∈ W is keystone if diam(B) ≥ 1
2 diam(B#) for every

B ∈ W with B ∩ A · B# 6= ∅. Write W# ⊂ W to denote the set of all keystone
balls.

Lemma 8.5. For each ball B ∈ W there exists a keystone ball B# ∈ W# with
B# ⊂ 3AB, dist(B,B#) ≤ 2Adiam(B), and diam(B#) ≤ diam(B).

Proof. If B is itself keystone, take B# = B to establish the result. Otherwise, let
B1 = B. Since B1 is not keystone there exists B2 ∈ W with B2 ∩ AB1 6= ∅ and
diam(B2) < 1

2 diam(B1). Similarly, if B2 is not keystone there exists B3 ∈ W with
B3 ∩ AB2 6= ∅ and diam(B3) < 1

2 diam(B2). We continue to iterate this process.
As W is finite, the process must terminate after finitely many steps. By iteration,
there exists a sequence of balls B1, B2, · · · , BJ ∈ W with Bj ∩ ABj−1 6= ∅ and
diam(Bj) <

1
2 diam(Bj−1) for all j, and with BJ keystone. As Bj ∩ABj−1 6= ∅ we

have dist(Bj−1, Bj) ≤ A
2 diam(Bj−1). Now estimate

dist(B1, BJ) ≤
J∑
j=2

dist(Bj−1, Bj) +

J−1∑
j=2

diam(Bj) ≤ (A/2 + 1)

J∑
j=1

diam(Bj)

≤ (A+ 2) diam(B1) ≤ 2Adiam(B1).
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Since diam(BJ) ≤ diam(B1), we have BJ ⊂ (2A+6)B1 ⊂ 3AB1. We set B# = BJ
and this finishes the proof. 2

We define a mapping κ : W0 → W#. By applying Lemma 8.5, we obtain a
keystone ball B̂# with B̂# ⊂ 3AB̂ and diam(B̂#) ≤ diam(B̂). For each B ∈ W0,
we proceed as follows:

• If diam(B) > ε∗ diam(B0) (B is medium-sized), set κ(B) := B̂#.

• If diam(B) ≤ ε∗ diam(B0) (B is small-sized), Lemma 8.5 yields a keystone
ball B# with B# ⊂ 3AB; set κ(B) := B#.

Lemma 8.6. The mapping κ : W0 → W# satisfies the following properties: For
any B ∈ W0, (a) dist(B, κ(B)) ≤ C4 diam(B), for C4 = C4(ε∗), (b) diam(κ(B)) ≤
diam(B), and (c) A · κ(B) ⊂ 2B0.

Proof. Suppose B is medium-sized. Then κ(B) = B̂#. As diam(B) > ε∗ diam(B0)

and B ⊂ B0, we deduce that 9(ε∗)−1B ⊃ B0 ⊃ B̂; furthermore, B̂# ⊂ 3AB̂.

Thus, B̂# ⊂ 27(ε∗)−1AB, which gives (a) for C4 = 27(ε∗)−1A. Also, diam(B̂#) ≤
diam(B̂) ≤ ε∗ diam(B0) < diam(B), which establishes (b). Finally, since B̂ ⊂ B0

and diam(B̂) ≤ ε∗ diam(B0), we have AB̂# ⊂ 3A2B̂ ⊂ (1 + 3ε∗A2)B0 = 2B0,
which gives (c).

Now suppose B is small-sized. Then we defined κ(B) = B#, where B# is
related to B as in Lemma 8.5. In particular, dist(B,B#) ≤ 2Adiam(B) and
diam(B#) ≤ diam(B), yielding (a) and (b). Furthermore, B# ⊂ 3AB, and from
B ⊂ B0 and diam(B) ≤ ε∗ diam(B0) we deduce that AB# ⊂ 3A2B ⊂ (1 +
3ε∗A2)B0 = 2B0, yielding (c). 2

This completes the description of the geometric relationship between the balls
of W0 and keystone balls in W. We will next need a lemma about the shape of
σ`(zB#) for a keystone ball B#.

Lemma 8.7. Let B# ∈ W be a keystone ball with AB# ⊂ 2B0. Then there
exists an integer constant `(ε∗) > `old, determined by ε∗, m, and n, and a constant
C ≥ 1 determined by m and n, so that the Local Finiteness Principle holds on
AB# with constants C and `(ε∗), namely, Γ`(ε∗)(x, f,M) ⊂ ΓE∩AB#(x, f, CM)

for all x ∈ AB# and M > 0. In particular, by taking f = 0 and M = 1, we have
σ`(ε∗)(x) ⊂ C · σ(x,E ∩AB#) for any x ∈ AB#.

Proof. LetW(B#) be the collection of all elements ofW that intersect AB#. Since
W is a Whitney cover of 2B0 and AB# ⊂ 2B0, we have that W(B#) is a Whitney
cover of AB#. The Local Finiteness Principle holds on 6

5B for all B ∈ W(B#),
with constants Cold and `old (see Lemma 7.2). Therefore, the Local Finiteness
Principle holds on AB# with the constant C1 determined by m and n, and the

constant `1 = `old + d log(D·N+1)
log(D+1) e, where N = #W(B#); see Lemma 8.3.

We will estimate N = #W(B#) using a volume comparison bound. By the
definition of keystone balls, diam(B) ≥ 1

2 diam(B#) for all B ∈ W(B#) – further-
more, we claim that diam(B) ≤ 10A diam(B#). We proceed by contradiction. If
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diam(B) > 10Adiam(B#) for some B ∈ W(B#) then B∩AB# 6= ∅, which implies
that 6

5B ∩ B
# 6= ∅. Then diam(B) ≤ 8 diam(B#) thanks to the definition of a

Whitney cover, which gives a contradiction.

For any B ∈ W(B#) we have B ∩ AB# 6= ∅ and diam(B) ≤ 10Adiam(B#),
and therefore B ⊂ 30AB#.

We can estimate the volume of Ω :=
⋃
B∈W(B#)

1
3B in two ways. First, note

that Vol(Ω) ≤ Vol(30AB#) = (30A)nVol(B#). Next, using that the collection
{ 13B}B∈W is pairwise disjoint, N = #W(B#), and diam(B) ≥ 1

2 diam(B#)∀B ∈
W(B#), we have

Vol(Ω) =
∑

B∈W(B#)

3−nVol(B) ≥ N6−nVol(B#).

We conclude that N ≤ (180A)n ≤ 180n(ε∗)−
n
2 . Therefore, `1 ≤ `(ε∗) := `old +

d log(D·180
n(ε∗)−

n
2 +1)

log(D+1) e. 2

Lemma 8.8. If the parameter ε∗ is picked sufficiently small depending on m and
n, and if A = (3ε∗)−

1
2 in the definition of keystone balls, then for any keystone

ball B# ∈ W# such that AB# ⊂ 2B0, we have

σ`(zB#) ∩ V ⊂ Bz
B# ,A diam(B#), for ` = `(ε∗) > `old.

Proof. By Lemma 8.7, and Lemma 2.9 (applied to the ball AB# and point z =
zB# ∈ 1

2AB
#),

σ`(ε∗)(zB# , E) ∩ Bz
B# ,A diam(B#) ⊂ (Cσ(zB# , E ∩AB#)) ∩ Bz

B# ,A diam(B#)

⊂ C3σ(zB# , E),

for a constant C3 determined by m and n. Dropping the dependence on E, we
have shown that

(8.3) σ`(ε∗)(zB#) ∩ Bz
B# ,A diam(B#) ⊂ C3σ(zB#).

By property (c) in Lemma 7.1, σ(zB#) is (zB# , C∗ diam(B#), Rhuge)-transverse

to V . Hence, σ(zB#) ∩ V ⊂ RhugeBz
B# ,C∗ diam(B#) ⊂ R̂Bz

B# ,diam(B#), for R̂ =

Rhuge(C∗)
m. Combined with (8.3), this implies

σ`(zB#) ∩ V ∩ Bz
B# ,A diam(B#) ⊂ C3σ(zB#) ∩ V ⊂ C3R̂Bz

B# ,diam(B#)

⊂ Bz
B# ,C3R̂ diam(B#).

For a sufficiently small choice of ε∗ we have A = (3ε∗)−
1
2 ≥ 2C3R̂, and there-

fore the above containment implies that σ`(zB#) ∩ V ⊂ Bz
B# ,C3R̂ diam(B#) ⊂

Bz
B# ,A diam(B#). 2
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8.2.2. Finishing the proof of Lemma 8.2. We fix A = (3ε∗)−
1
2 , ε∗ = ε∗(m,n),

and ` = `(ε∗) > `old via Lemma 8.8. The constants ε∗, A and ` are determined
only by m and n.

Fix B ∈ W0 and x ∈ 6B. Consider the keystone ball B# ∈ W given by B# =
κ(B) which satisfies the conditions in Lemma 8.6, namely, diam(B#) ≤ diam(B),
dist(B#, B) ≤ C4 diam(B), and AB# ⊂ 2B0. By Lemma 8.8,

(8.4) σ`(zB#) ∩ V ⊂ Bz
B# ,A diam(B#) ⊂ AmBz

B# ,diam(B#) ⊂ AmBzB# ,diam(B).

Next, |x − zB# | ≤ 6 diam(B) + dist(B,B#) + 6
5 diam(B#) ≤ C5 diam(B) for

C5 = C4 + 8. Thus, Lemma 2.6 gives

σ`+1(x) ⊂ σ`(zB#) + CTBz
B# ,C5 diam(B) ⊂ σ`(zB#) + CTC

m
5 BzB# ,diam(B).

Recall that property (c) in the Main Decomposition Lemma states that σ(zB#)
is (zB# , C∗δ,Rhuge)-transverse to V for all δ ∈ [diam(B#),diam(B0)]. We take
δ = diam(B) in this statement, and apply Lemma 3.7 to deduce that σ(zB#) is
(zB# ,diam(B), R1)-transverse to V , for R1 = Rhuge · (C∗)m. Thus, in particular,

Bz
B# ,diam(B)/V ⊂ R1·(σ(zB#)∩Bz

B# ,diam(B))/V ⊂ R1·(σ`(zB#)∩Bz
B# ,diam(B))/V.

Combined with (8.4), this shows that σ`(zB#) is (zB# ,diam(B), R2)-transverse to
V , for R2 = max{R1, A

m}. Also, by Lemma 3.3, σ`(zB#) + CTC
m
5 BzB# ,diam(B) is

(zB# ,diam(B), R3)-transverse to V , for R3 = R2 + 3R2
2CTC

m
5 . We conclude that

(8.5)
σ`+1(x) ∩ V ⊂ (σ`(zB#) + CTC

m
5 BzB# ,diam(B)) ∩ V ⊂ R3Bz

B# ,diam(B)

⊂ R4Bx,diam(B),

for R4 = R3C̃C
m−1
5 . Here, (2.5) and |x − zB# | ≤ C5 diam(B) are used to obtain

the last containment.
On the other hand, property (c) of the Main Decomposition Lemma shows that

σ(x) is (x, 6C∗ diam(B), Rhuge)-transverse to V , and hence σ(x) is (x, diam(B), R1)-
transverse to V , for R1 = Rhuge · (6C∗)m (by Lemma 3.7). In particular,

(8.6) Bx,diam(B)/V ⊂ R1 · (σ(x) ∩ Bx,diam(B))/V ⊂ R1 · (σ`+1(x) ∩ Bx,diam(B))/V.

Combining (8.5) and (8.6), we see that σ`+1(zB) is (zB ,diam(B),max{R1, R4})-
transverse to V . This finishes the proof of Lemma 8.2, with ε∗ = ε∗(m,n), `∗ =
`(ε∗) + 1, and R∗ = max{R1, R4}.

9. The Main Induction Argument III: Putting it all together

Here we finish the proof of the containment (6.4). Namely, for suitable constants
`# ∈ Z≥0 and C# ≥ 1, we will prove

Γ`#(x0, f, 1) ⊂ ΓE∩B0
(x0, f, C

#), for all x0 ∈ B0, f : E → R.
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This will conclude the proof of the Local Finiteness Principle on B0, and complete
the Main Induction Argument.

Continuing with the argument outlined in the beginning of section 8, we fix
P0 ∈ Γ`#(x0, f, 1). We apply the Main Decomposition Lemma to the data x0, B0,
E, f , `#, and P0 to obtain a Whitney cover W of 2B0, a DTI subspace V ⊂ P,
and families {PB}B∈W and {zB}B∈W . Recall thatW0 ⊂ W is a finite cover of B0.

We define `# = `, where ` > `old is defined via Lemma 8.1.
Recall that condition (f) in the Main Decomposition Lemma states that PB ∈

Γ`#−1(zB , f, C) for all B ∈ W0. By Lemma 7.2 and the fact that `# − 1 ≥ `old it
follows that PB ∈ Γ`#−1(zB , f, C) ⊂ Γ`old(zB , f, C) ⊂ ΓE∩ 6

5B
(zB , f, C · Cold). So,

PB ∈ ΓE∩ 6
5B

(zB , f, C · Cold) for all B ∈ W.

Recall that zB ∈ 6
5B for all B ∈ W. By definition of ΓE∩ 6

5B
(· · · ), there exists

FB ∈ Cm−1,1(Rn) with

(9.1)

{
FB = f on E ∩ (6/5) ·B, JzBFB = PB , and

‖FB‖ ≤ C · Cold.

Since `# = `, by Lemma 8.1 we conclude that
(9.2)

|JzBFB − JzB′FB′ |zB ,diam(B) ≤ C whenever B,B′ ∈ W0, (
6

5
) ·B ∩ (

6

5
) ·B′ 6= ∅.

Let {θB}B∈W0 be a partition of unity on B0 subordinate to the cover W0, as in
Lemma 2.15. Define

F =
∑
B∈W0

FBθB on B0.

By Lemma 2.16 (and the conditions (9.1) and (9.2)), F ∈ Cm−1,1(B0) satisfies
‖F‖Cm−1,1(B0) ≤ C ′ · Cold and F = f on E ∩ B0. Recall the points {zB}B∈W
possess the additional property that zB = x0 if x0 ∈ 6

5B, and the polynomials
{PB}B∈W possess the additional property that PB = P0 if x0 ∈ 6

5B (see condition
(e) in Lemma 7.1). Thus, Jx0

FB = P0 whenever x0 ∈ 6
5B. Therefore,

Jx0F =
∑

B∈W0:x0∈ 6
5B

Jx0(FBθB) =
∑

B∈W0:x0∈ 6
5B

Jx0FB �x0 Jx0θB

=
∑

B∈W0:x0∈ 6
5B

P0 �x0 Jx0θB = P0 �x0 1 = P0.

We now extend the function F to all of Rn by a classical extension technique
(e.g., Stein’s extension theorem). This gives a function F̂ ∈ Cm−1,1(Rn) with

‖F̂‖ ≤ C‖F‖Cm−1,1(B0) ≤ C ′′ · Cold and F̂ = F on B0. In particular, F̂ = f on

E ∩ B0 and Jx0
F̂ = P0 (since x0 ∈ B0). Thus, P0 ∈ ΓE∩B0

(x0, f, C
′). We finally

define C# = C ′′ · Cold. Since P0 ∈ Γ`#(x0, f, 1) was arbitrary, this finishes the
proof of the containment (6.4).
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9.1. The dependence of constants on complexity

In order to obtain the explicit dependence of the constants in Theorem 1.2 on
the complexity of E, we will need to track the dependence on K of the constants
`# = `#(K) and C# = C#(K) in the Local Main Lemma for K; see Remark 5.7.

It is clear that the constant C# = C#(K) has the form C# = ConstK , for a
universal constant Const. Indeed, when we pass from the Local Main Lemma for
K− 1 to the Local Main Lemma for K, the constant C# = C#(K) takes the form
C# = C ′′ · Cold, where Cold = C#(K − 1) and C ′′ is a universal constant.

In order to determine the dependence of `# = `#(K) on K, we need to deter-
mine how the constant ` in Lemma 8.1 is chosen. In fact, in section 8.2.2 we see
that ` is defined to be `(ε∗) for a particular choice of ε∗ determined by m and n. By

inspection of the proof of Lemma 8.7, we have `(ε∗) := `old + d log(D·180
n(ε∗)−

n
2 +1)

log(D+1) e.
Since we defined `# = ` in the previous section, and since `old = `#(K − 1), we
learn that `# depends linearly on K.
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