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A coordinate-free proof of the finiteness principle
for Whitney’s extension problem

Jacob Carruth, Abraham Frei-Pearson, Arie Israel and Bo’az Klartag

Abstract.

We present a coordinate-free version of Fefferman’s solution of Whit-
ney’s extension problem in the space C™ ' (R™). While the original argu-
ment relies on an elaborate induction on collections of partial derivatives,
our proof uses the language of ideals and translation-invariant subspaces
in the ring of polynomials. We emphasize the role of compactness in the
proof, first in the familiar sense of topological compactness, but also in the
sense of finiteness theorems arising in logic and semialgebraic geometry.
In a follow-up paper, we apply these ideas to study extension problems
for a class of sub-Riemannian manifolds where global coordinates may be
unavailable.

1. Introduction

Whitney’s extension problem asks, given a subset £ C R™ and a function f :
E — R, how can one determine whether f admits an extension F' : R” — R in
a prescribed regularity class (e.g., Holder, C™, Sobolev, etc.)? In [23, 24, 25], H.
Whitney developed characterizations for the existence of extensions in the class C™
(i.e., functions which are continuously differentiable up to order m). In particular,
in dimension n = 1, he proved that certain natural conditions on the continuity of
the finite difference quotients of a function f : E — R (for E C R) are necessary and
sufficient for the existence of a C""-extension to the real line. In higher dimensions
there is no analogue of finite difference quotients and the problem is far more
difficult. Several years ago, a complete characterization of C"™-extendibility in
arbitrary dimensions was developed by C. Fefferman [11, 12], building on the work
of Y. Brudnyi and P. Shvartsman [4, 5, 6, 7, 8, 17, 19, 20], who solved the extension
problem in C1(R"), work of G. Glaeser on Cl-extendibility [15], and work of
E. Bierstone, P. Milman, and W. Pawlucki on C"-extendibility for functions on
subanalytic sets [2, 3].
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In this article we focus on the Hélder class C™~11(R™), consisting of all C™ 1
functions F' : R™ — R whose (m — 1)-st order derivatives are Lipschitz continuous.
This space is equipped with a seminorm

(1.1)

HFHCmfl,l(Rn) = sup 3 , Fe Cm_l’l(Rn),
z,yER™ la|=m—1 |z —yl
where |af := a1 + -+ + ay, is the order of a multiindex o = (a, -+ , ) € Z%,.

In [16, 19], Shvartsman studies Whitney’s extension problem in the space
CU1(R™). One of his main results is the following finiteness principle (see also
[4, 17]): Suppose that the restriction of a function f : E — R (for E C R"™) to
every subset S C E of cardinality at most 3 - 2"~ ! can be extended to a func-
tion Fg € CYH(R™) with [|Fs|c11gny < M. Then the function f itself can be
extended to a function F € CV1(R™) with norm ||F||c1.1gny < y(n)M. Brudnyi
and Shvartsman conjectured in [5, 8] (see also [17, 18, 19]) that a similar result
would hold for the entire range of Hélder spaces (i.e., for all orders of smoothness
m > 2). In [10], Fefferman verified their conjecture with the following theorem:

Theorem 1.1 (The Brudnyi-Shvartsman-Fefferman finiteness principle). For any
m,n > 1, there exist constants C# > 1 and k% € N such that the following holds.
Let E CR™ and f : E — R be given. Suppose that there exists M > 0 so that for
all subsets S C E satisfying #(S) < k¥ there exists a function F¥ € O™~ LH(R™)
with ||F¥||cm-11gny < M and FS = f on S.
Then there exists F € C™ VY R™) with ||F||gm-1.1@ny < C# - M and F = f
on E.

The finiteness principle says that a function f : E — R admits a C™ 1!
extension if and only if for every k#-point subset S C E, the restriction f|s admits
a O™ b1 extension with a uniform bound on the seminorm. The parameters k#
and C# in Theorem 1.1 are often referred to as finiteness constants for the function
space C™~L1(R™).

In this article we present a proof of Theorem 1.1 based on a coordinate-free ver-
sion of Fefferman’s stopping time argument. Our approach emphasizes the metric
and symmetry structures of R™ and shortens several components of the analysis
through the use of compactness arguments. Two types of compactness are relevant
here. The first is topological compactness, which is the common compactness used
in Analysis. The second is logic-type compactness results from the theory of semi-
algebraic sets. We will explain how to replace the basis-dependent notion of mono-
tonic multiindez sets from Fefferman’s argument with the basis-independent notion
of transverse dilation-and-translation-invariant subspaces. Our use of the latter
concept is likely adaptable to the study of extension problems on sub-Riemannian
manifolds, where global coordinates may be unavailable. In a follow-up paper [9],
we will address this topic for a class of sub-Riemannian manifolds known as Carnot
groups.

Our main result is a finiteness principle for C™~!-extension on finite subsets
E C R™, where the constants depend on a parameter C(E) = C,,,(E) € {0,1,2,---},
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called the “complexity” of E. (See section 4 for the definition of this quantity.)

Theorem 1.2. Fix m,n > 1. There exist constants A1, Ao > 1, determined by
m and n such that the following holds. Fiz a finite set E C R™ and a function
f:E —= R. Set k# = 2MCE) gnd C# = 222CE) - Suppose that for all subsets
S C E with #(S) < k¥ there exists F° € O™ MY(R™) with F¥ = f on S and
[ F|cm-11(mny < 1. Then there ezists a function F € C™ 1 (R") with F = f on
E and ||F||Cm—1,1(]Rn) < C#.

In order to deduce Theorem 1.1 from Theorem 1.2, we will prove the following
lemma:

Lemma 1.3. There exists a constant K, determined only by m and n, such that
C(E) < Ky for any finite set E C R™.

Together, Theorem 1.2 and Lemma 1.3 imply Theorem 1.1 in the case when
E is a finite subset of R™ and M = 1. By a compactness argument involving the
Arzela-Ascoli theorem, one can extend this result to infinite sets. Finally, by a
trivial rescaling argument we deduce Theorem 1.1 for arbitrary M > 0.

Fefferman’s proof of Theorem 1.1 yields the constants k# = exp(exp(yD)) and
C# = exp(exp(yD)), where D = ("“:_1) is the dimension of the jet space for
C™=LY(R"), or equivalently, the number of multiindices (a1, -+ , ;) of order at
most m — 1, and v > 0 is a numerical constant independent of m and n. Bierstone
and Milman [1] and Shvartsman [21] independently obtain the improvement k# =
2P at the expense of multiplying C# by a multiplicative factor which does not
affect the asymptotics C# = O(exp(exp(yD))). In [14], Fefferman and Klartag
show that the finiteness principle fails for C# = 1 + ¢ for a small absolute constant
€ > 0, no matter the choice of k#.

We apply compactness arguments and algebraic methods to prove our results.
For this reason, some of the constants are either inexplicit or depend poorly on m
and n. In particular, the constant Ky in Lemma 1.3 is not explicit. By the use
of more direct methods (which will lengthen the proofs), it is possible to obtain
Ky = exp(exp(yD)). This dependence is likely far from optimal. In fact, evidence
suggests that it is possible to take K to be a polynomial function of the dimension
D. By following through our proof, one may check that the constants A\; and
A2 in Theorem 1.2 are harmless polynomial functions of D. This leads us to
conjecture that the finiteness principle will hold with the constants k% = 2 and
C# = exp(poly(D)).

Throughout the proof, the symbols C, C’, ¢, etc., will be used to denote univer-
sal constants which are determined only by m and n. The same symbol may be
used to denote a different constant in separate appearances, even within the same
line.

We are grateful to the participants of the Tenth and Eleventh Whitney Prob-
lems Workshops for their interest in our work. We are also grateful to the National
Science Foundation and the European Research Foundation for their generous fi-
nancial support.
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2. Notation, definitions, and preliminary lemmas

Given a convex domain G C R™ with nonempty interior, we let C™~11(G) denote
the space of real-valued functions F' : G — R whose (m — 1)-st order partial
derivatives are Lipschitz continuous. Define a seminorm on C™~11(G) by

2

(0°F(z) — 0°F(y))*

HF”CWL—IJ G) ‘= Sup , F S Omil,l(G).
© 2YEG \ 4| mo1 |z —y[?
The seminorm on C™~11(R™) is abbreviated by [|[F|| := [|[F|lgm—1.1(rn).

Let P be the space of polynomials of degree at most m — 1 in n real variables.
Let us review some of the structure and basic properties of P. First, P is a vector
space of dimension D := #{a € Z% : [a| < m — 1}. For z € R", define an inner
product on P:

1 (0% (6%

lal<m—1

where a! =[]}, a;! and we also set 2 = [[;_; a". If P(2) = 32| 1<y G- (2 —
z)® and Q(2) = X 4 j<m—1 ba (z—2)%, then (P,Q)s = 3|, <1 & aaba. There-
fore, the inner product space (P, (-, ), ) admits an orthonormal basis of monomials
{\/107 (2= 2)%}aj<m—1. We define a norm on P by |P|, := \/(P, P),.

We define translation operators Tj, : P — P (for h € R™) by Tp(P)(z) =
P(z — h), and dilation operators 7,5 : P — P (for (z,§) € R™ x (0,00)) by
Tos(P)(2) == 6 ™P(x 4+ J - (2 — x)). The dilation operators lead us to define a
scaled inner product on P: For (z,d) € R™ x (0, 00), let

<P7 Q>x,5 = <Tz,6(P)aTm,6(Q)>m (PaQ S P)?

and the corresponding scaled norm is denoted by |P|; s := /(P, P)ys. The unit
ball associated to this norm is the subset

B,s = {P: |Plss = < > i-(a'a‘—m : aap(:c)f)é < 1} cP.

lal<m—1

We write (-,-) and |- | to denote the “standard” inner product (-,-)o,1 and norm
|- ]o,1 on P, and B = By 1 for the corresponding unit ball.

Given Q C P, Pp € P, and r € R, let rQ := {rP : P € Q} and P +
Q:={Py+ P: P e Q}. For future use, we record below a few identities and
inequalities which connect the dilation and translation operators with the scaled
inner products, norms, and balls.

(a) (1) Thy ©Thy = Thy+h,- (b) (1) <Tz,p(P)aTm,p(Q)>fc,6 =
<P7 Q>m,6p~

(iil) Th o 7,6 = Tutn,s © Th- (ii) |72,p(P)|zs = |P

(11) Tx,61 © Tax,62 = Tx,6102-

z,0p-
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(ili) 74,)Bss = Bys/p- (ii) [Th(P)lx,s = |Ple—ns-
() () (Tu(P), Th(Q))z.s =
<P7 Q>th,5- (111) ThB:c,5 = Ba:+h,6~

Furthermore, for any § > p > 0,

(2.1) (p/0)™ - |Pla,p < |Plas < (p/d) - |Pla,p, and hence
' (5/p) - Brp C Bus C (5/p)™ - By p.

Let J,F € P denote the (m—1)-jet of a function ' € C™~1L1(R") at x, namely,
the Taylor polynomial

(JeF)(z) = )

lal<m—1

1
— - 0%F(z)- (2 —2)* (2 €R").
a!

The importance of the norms | - |, 5 on P stems from the Taylor and Whitney
theorems. According to Taylor’s theorem, if F € C™~LY(G), where G is any
convex domain in R™ with nonempty interior, then

|07 (F = J,F)(@)| < C - | Fllom-rq) - le =y, forz,y € G, [B| <m — 1.
This implies

(2.2) | Jo F' = JyFlp 5 < Cr||F|lcm-1.1(c), or equivalently
' JoF — JyF € Cr||F|lgm-11(G) - By forz,y € G, 6 > |z — 1y,

where Cr = Cr(m,n) is a constant determined by m and n. Therefore the norm
| - |+,6 may be used to describe the compatibility conditions on the (m — 1)-jets of
a C™~ L1 function at two points z,y in R", whenever |z — y| < §. The conditions
in (2.2) capture the essence of the concept of a C™~ ! function in the following
sense: Whitney’s theorem [23] states that whenever E C R™ is an arbitrary set,
M >0, and {P, }.eE is a collection of polynomials with

(2.3) |Py — Pylos <M forz,y € E, 6 = |z —y|,

then there exists a C™ =11 function F': R" — R with ||F|| < CM and J,F = P,
for all x € E. As usual, C is a constant depending solely on m and n.

The vector space of (m — 1)-jets is a ring, denoted by P, equipped with the
product @, (indexed by a basepoint x € R™) defined by P ©, Q = J(P - Q). The
product and translation/dilation operators are related by

(2 4) Tx,5 (P Og Q) =" Tw,é(P) O TI,(S(Q))
' T3 (P@I Q) :Th(P) Oz+n Th(Q) for x,h € R", § > 0.

The following lemma, taken verbatim from [13, section 12], summarizes a few basic
properties of the product and norms introduced above. See the proof of Lemma
1 in [13, section 12] for a direct argument that leads to explicit constants. Our
argument below emphasizes the role of rescaling and compactness.
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Lemma 2.1. Let z,y € R™ and §,p > 0. Assume that |z —y| < p <. Then for
any P,Q € P,
(1) [Ply,p < C|Plz,p-

(ii) |P @z Ql, , < CO™|Pls.6|Qla.p-

(iii) |(P©y Q) — (P ®, Q)l,., < C6™|Ply s/l
Here, C > 0 is a constant depending solely on m and n.

Proof. The main step is to use (2.4) and observe that by translating and rescaling,
we may reduce matters to the case x = 0 and p = 1. Next, note that it suffices to
prove the lemma for non-zero polynomials P and . Normalizing, we assume that
|Plo,1 = |Qlo1 = 1.

In order to prove (i), observe that the space of all relevant parameters is com-
pact, since |y| < 1 and |P|o1 = 1. The left-hand side of (i) is a continuous function
on this space of parameters, hence the maximum is attained, and yields the con-
stant C' on the right-hand side. In order to prove (ii), observe that the left-hand
side in (ii) is bounded from above by a constant C by compactness, while

™| Plo,s > |Ploy =1

for any ¢ > 1, according to (2.1). Hence (ii) holds true as well. In order to prove
(iii), it is more convenient to rescale so that § = 1, rather than p = 1. We may still
assume that |P|o,1 = |Qlo,1 = 1. Consider the unit ball B = {& € R™ : |z] < 1}
and the function F(z) = P(z)Q(z). Yet another compactness argument yields
that || F'||¢m-1.1(p) < Cp for a constant Cy determined by m and n. From Taylor’s
theorem, rendered above as (2.2),

(P ©y Q) = (PooQ)ly, =IJyF = JoF], , < Cr - Co,
and the lemma is proven. O
If |x — y| < AJ for some A > 1, then we have the inequality
(2.5) |P|y,5 < 5'/\m_1|P|1.75,

or the equivalent inclusion B, 5 C 5’)\7”_18%5. Indeed, this follows from (2.1) and
Lemma 2.1:

|Plys < A Plyas < CXNPlars < CA Y P,s.
Furthermore, if § € C™~11(R") is supported on a ball B C R™, then
(26) |Jz(0)|a;,diam(B) < CT”aH (ZL' € Rn)

Indeed, this inequality is trivial if € R™\ B, as then J,(0) = 0. Fix xy € 9B. Then
Jze(0) = 0. As |z — x| < diam(B) for any x € B, we may apply Taylor’s theorem
(rendered as (2.2)) and obtain |.J;(0)|5 diam(B) = |/ (0) = Jeo (0)|2,diamm) < Cr||0]],
which yields (2.6).

We next give a more general form of Lemma 2.1(iii) involving products of up
to three polynomials which are allowed to vary from point to point.
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Lemma 2.2. Fiz polynomials Py, Qy, Ry and Py, Qy, R, in P, for |[z—y| < p < 4.
Suppose that Py, Py, € MoBys, Qu,Qy € MiBys, and Ry, R, € MyB, 5. Also
suppose that P, — Py € MoB, p, Qz —Qy € M1B, ,, and Ry — R, € M2B, ,. Then

|Pz Og Q:r Og Ra: - Py ®y Qy ®y Rylz,p < CégmMOMlM%
where C' is a constant determined by m and n.

Proof. In view of (2.4), we may assume that § = 1. By renormalizing, we may
assume My = M; = My = 1. Then all six polynomials belong to B, 1, and the
three differences P, — Py, Q. — @y, and R, — Ry belong to B, ,. The letter x
appears five times in the expression P, ®, @, ©®; R;, and we will change these five
2’s to five y’s one by one. We first apply Lemma 2.1(ii) three times and replace
R., Qg, and P, by Ry, Q,, and P,, in that respective order, as follows:

This step also requires the bounds |P; ©p Qglz1 < C, |Py ©p Ryl < C, and
|Qy ©z Rylz1 < C, which are all consequences of Lemma 2.1(ii). Next we apply
Lemma 2.1(iii) twice, and deduce that

|Py Oz Qy O Ry—Py @y Qv QyRy|w,p <C.

This step requires the bounds |P, ®y Qylz1 < C and |Qy ©y Ryl|z1 < C, which
follow from Lemma 2.1(ii) and, for the second inequality, also Lemma 2.1(iii). This
concludes the proof of the lemma. O

Remark 2.3. We can obtain a version of Lemma 2.2 also for products of two
polynomials. Notice that 1 € =B, 5 for any § > 0. Thus, by taking P, = Py, =1,
under the hypotheses of Lemma 2.2, |Qz Or Ry — Qy ©y Rylz p < CO™ M1 M.

Finally, we state a few elementary facts from convex geometry. A convex set {2
in a finite-dimensional vector space V is said to be symmetric if P € ) — —P €
Q. If A, K, and T are symmetric convex sets then

(2.7) KCcT = (A+K)nTCc (An2T)+ K,
and also if K is bounded then
(2.8) KCcT+K/3 = K C2T.

To prove (2.7), pick x € (A+ K)NT. Then x = a+ k with a € A and k € K.
It suffices to show that a € 27". This holds since a =2z —k € T — K C 2T. Next
observe that the condition XK' C T + K/3 implies sup,cx f(z) < sup,er f(x) +
L sup,cx f(x) for any linear functional f : V — R. If K is bounded, this implies
Zsup,ex f(x) <sup,er f(x). From the Hahn-Banach theorem, K is contained in
the closure of %T, and therefore K C 27T.
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2.1. Taylor polynomials of functions with prescribed values.

Fix a finite subset £ C R™ and a function f : E — R satisfying the hypothesis
of Theorem 1.2. That is, we assume that for some natural number k% € N, the
following holds:

(2.9)
For all S C E with #(S) < k* there exists ¥ € C™~L1(R™)
FH(E)

with F¥ = f on S and ||F¥|| < 1.

We call FH(k#) the finiteness hypothesis and k¥ the finiteness constant. We aim
to construct a function F' € C™~L1(R") satisfying F = f on E and ||F|| < C#
for a suitable constant C# > 1. We first introduce a family of convex subsets of
‘P that contain information on the Taylor polynomials of extensions associated to
subsets of E:

Us(z, f, M) = {J,F:F € C"""(R"), F = fon S, |F| <M},
for SCE, xeR", f: EF—R, and M > 0.

We also denote I'(z, f, M) := T'g(z, f, M). Notice that I's(x, f, M) is nonempty
if and only if there exists an extension of the restricted function f|g with C™~1:!
seminorm at most M. Therefore the finiteness hypothesis fH(k#) is equivalent
to the condition that I's(z, f,1) # 0 for all S € E with #(S) < k#. Now, for
l € Z>o we define

Ty(x, f,M):={PcP:VSCE, #(S) <(D +1)*,, 3F% ¢ C™ V}(R"),
F¥=fonS, J,F¥ =P, |F°|| < M};
here, recall that D = dim P. In other words, an element of T'y(x, f, M) is simulta-
neously the jet of a solution to any extension problem associated to a subset S C
of cardinality at most (D + 1)¢. The sets denoted by I'y(-,-,-) were introduced in
[10] as a tool to demonstrate that T'(z, f, M) is nonempty — the latter condition is

relevant because it implies, in particular, the existence of an extension of f with
C™~ b1 seminorm at most M. We note the identity

(210) ]-—‘l(xmfaM): ﬂ Fs(l',f,M).
SCE, #(8)<(D+1)*

Given x € R™ and S C E, let
o(x,8) = {Jop: € C" VIR"), p=0o0n S, [p] <1},

and given £ € Z>, let

(2.11) ou(x) = ﬂ o(z,S).

SCE, #(S)<(D+1)*¢

We also denote o(x) := o(z, E).
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Note that o(x) and oy(x) are symmetric convex sets in P, whereas I'(z, f, M)
and I'y(x, f, M) are merely convex. By a straightforward application of the Arzela-
Ascoli theorem one can show that o(x), o¢(z), I'(z, f, M), and Ty(z, f, M) are
closed. Finally, we observe that o(z,S) = T's(z,0,1), o¢(z) = Ty(z,0,1), and
o(z) =T(z,0,1).

Lemma 2.4 (Relationship between I'y and o4). For any ¢ € Z>o,

Do, £.M/2) + (M/2)as(x) C Tylar, £, M), and
Co(x, f,M) —Ty(x, f, M) C 2Moy(x).

Proof. By definition we have I'g(z, f, M/2) + (M/2)o(z,S) C T's(x, f, M) and
Ps(z, f,M)—Tg(x, f, M) C 2Mo(x,S). The conclusion of the lemma then follows
from the definition of I'y and oy in (2.10) and (2.11). O

Remark 2.5. Lemma 2.4 implies that P, + & - oy(z) C Ty(z, f,M) C P, +
2M - o4(x), for any Py € To(x, f,M/2). Later on we will be concerned with the
geometry of the set T'y(x, f, M) at various points x € R™. Lemma 2.4 implies that
it is sufficient to understand the geometry of the set op(x) (which depends on fewer
parameters and is therefore more manageable).

Recall the translation and scaling transformations 7}, and 7,6 on P. With a
slight abuse of notation, we also denote the transformations 7} and 7,5 on R"
given by

Th(y):y+ha Tm,é(y):x+6(y_$) (l'vyahGRn75>O)
Then,

(2.12) o(Th(y), Tn(S)) = Trh{o(y,S)}, and o(75,5(Y), T2.6(S)) = w5 {o(y,5)},

for any xz,y,h € R™, § > 0, and S C R", as may be verified directly. Here in our
notation, if T: R™ — R"™ then T'(S) = {T(y) : y € S}.

In the next lemma we establish two important properties of the sets I'y(z, f, M).
We show that the finiteness hypothesis FH (k%) (see (2.9)) implies that T'y(z, f, M)
is non-empty if £ and k% are suitably related and if M > 1. We also show that
the mappings x — T'y(x, f, M) are “quasicontinuous” in a sense to be made precise
below.

Lemma 2.6. If v € R", (D + 1)1 < k#, and M > 1, then
(2.13) FH(E?) = Ty(x, f, M) # 0.
Ife,yeR", £>1,0 > |z —y|, and M > 0, then

(2.14) Ty(z, f, M) C Doy (z, f, M) + Cr M - By g
and
(2.15) Ug(x) C O’gfl(l') +Cr - Bz’g,

where Cr is the constant in (2.2).
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Proof. We first show that the finiteness hypothesis with constant k# > (D +
1)“1 implies the intersection of the sets in (2.10) is nonempty for M = 1. As
I(x, f,M) D I'(z, f,1) for M > 1, the implication (2.13) will then follow. By
Helly’s theorem and the fact that dimP = D, it suffices to show that the inter-
section of any (D + 1)-element subcollection is nonempty. Fix Sy,---,Sps1 C E
with #(S;) < (D + 1), Let S := S U---USpy1. Note that I's, (z, f,1) N---N
Lsy.,(z, f,1) D Tg(z, f,1). Furthermore, #(S) < (D +1) - (D + 1)* < k#, and
so I's(z, f, 1) # 0 by the finiteness hypothesis FH(k#). This finishes the proof of
(2.13).

To prove (2.14) and (2.15) we reproduce the proof of [10, Lemma 10.2]. Note
(2.15) is a special case of (2.14), as o¢(x) = Ty(x,0,1). So it suffices to prove
(2.14). Given P € T'y(z, f, M), we will find @Q € T'y_1(y, f, M) with

(2.16) P~ Qlos < CrM.
For a subset S C E, consider

K(S):={J,F:FeC™ " (R"), F=fonS, |F|| <M, J,F=P}.
Then K(S) C P is convex, and according to (2.2),
(2.17) K(S)Cc P+ CrM - B, s.

Note that K(S) # () whenever #(S) < (D + 1)¢, due to the fact that P €
To(x, f, M). We will show that

(2.18) 0# () K(S)CTealy,f,M).
SCE
#(S)<(D+1)*

The inclusion on the right-hand side of (2.18) is immediate from the definition
of T'y_1(y, f, M). All that remains is to show that the intersection of the collec-
tion of sets in (2.18) is non-empty. By Helly’s theorem it suffices to show that
the intersection of any (D + 1)-element subcollection is nonempty. Thus, pick
Sl,...,SD+1 C F with #(SL) < (D + 1)2_1. Then S = S;U... U SD+1 is of
cardinality at most (D + 1)(D + 1)*~! = (D + 1)¢, and thus K(S) # 0. Clearly,
K(S) C K(S1)N---NK(Sp+1). This finishes the proof of (2.18). Fix a polynomial
Q belonging to the intersection in (2.18). According to (2.18), @ € T'y_1(y, f, M).
By (2.17), Q € K(0) ¢ P+ CrM - B,s, and so Q — P € CrM - B, 5, giving
(2.16). O

Lemma 2.7. Ifz,y € R", and 6 > |z — y|, then o(z) C o(y) + Cr - By s.

Proof. Let P € o(x). Then there exists ¢ € C™ L1(R") with ¢ = 0 on E,
lell <1, and Jyp = P. Let Q = Jyp. Then Q € o(y), and by (2.2) we have
P*QGCT'BQM;. 0

Remark 2.8. By (2.1), By s C 6 - By for 6 < 1. Therefore, Lemma 2.7 implies
the mapping x — o(x) is continuous, where the space of subsets of P carries the
topology induced by the Hausdorff metric with respect to any of the topologically
equivalent scaled norms.
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Lemma 2.9. There exists a constant C > 1 determined by m and n so that, for
any ball B CR™ and z € %B, we have

O'(Z7E N B) n Bz,diam(B) cC- O'(Z,E).

Proof. Choose a cutoff function §# € C™~11(R™) which is supported on B, equal
to 1 on (3)B, and satisfies [|0]] < C -6~™. Fix 2z € (3)B and a polynomial
P € o(z,ENB)NB, ;. Since P € o(z, EN B) there exists ¢ € C™~H1(R") with
p=0o0n ENB, ||¢]| <1, and J,(p) = P. Define @ = pf. This function clearly
vanishes on all of E. Since z belongs to the ball (3)B on which 6 is identically
1, we have J,(p) = J.(p) = P. To prove P € Co(z, E), all that remains is to
establish the seminorm bound ||| < C. As @ vanishes on R™ \ B, it suffices to

prove ||@]|gm-1.1(py < C. To do so, we will prove that

[J2(®) = Jy(D)]ap = [T () Oz Jo(0)=Jy(0) Oy Jy(O)|z,p < C
(2.19)

for z,y € B, p= |z —yl.

To prove this estimate we will apply Lemma 2.2. According to (2.6), J,(0) €
Cé67™By,s. On the other hand, by (2.5) and the fact | — y| < 4, also J,(0) €
Co~"By,s C C'0~"By,,s5. By Taylor’s theorem (in the form (2.2)), J,(0) — J, () €
C0||Bg,, C CO~ By p.

Note that |#—2z| < 6, since z € B and z € (3)B. Thus, by Taylor’s theorem (see
(2'2>) and (2'5)a Ja:(@) = (J:E((p) _Jz(@))"i'P € CTBac,ﬁ'i’Bzﬁ - CTBz,6+CBx,6 C
CB,,5. On the other hand, by Taylor’s theorem, J,(¢) — J,(¢) € CrB; ,. We are
therefore in a position to apply Lemma 2.2 (see Remark 2.3), with Q,, @y, Ra,
and R, picked to be the jets at z and y of ¢ and 6, respectively. This finishes the
proof of (2.19). O

2.2. Whitney convexity

The next definition illustrates an additional important property of the sets oy(x)
beyond convexity.

Definition 2.10 (Whitney convexity). Given a symmetric convez set Q) in P, and
x € R™, the Whitney coefficient of Q at x is the infimum over all R > 0 such that
(QNBgs) ©Op Bys C RI™Q for all § > 0. Denote the Whitney coefficient of Q at x
by we (). If no finite R exists, then w,(Q) = +o00. If w,(Q) < 400 then we say
that 2 is Whitney convez at x.

The term “Whitney convexity” was coined by Fefferman [11]. It is a quanti-
tative analogue of the concept of an ideal; roughly, a small Whitney coefficient
means that € is “close” to an ideal. For example, any ideal I in P, is Whitney
convex at & with wy(I) = 0.

For x € R™, a symmetric convex set 0 C P and r > 1, it holds that w,(rQ2) <
wy (). One can also check that w, (1 N Q2) < max{w, (1), w,(Q2)}. Further-
more, it follows from (2.4) that w,(Q) = wy(74,5(Q)) and w;(Q) = weyn (TQ) for
any § > 0.
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Lemma 2.11. For any z € R"™, the sets 04(z) and o(z) are Whitney convex at z
with Whitney coefficient at most Cy, for a universal constant Co = Cy(m,n).

Proof. Note that w,(0¢(2)) < max{w,(o(x,S)) : S C E, #(S) < (D + 1)*}.
Hence, it will be sufficient to show that the Whitney coefficient of o(z, S) at z is
at most C for any subset S C E and z € R", where C is a constant determined by
m and n. Fix § > 0, and let P € o(z,5)N B, s and P € B, 5. In order to prove

the lemma, we need to show that
(2.20) Po, PeCimo(z,59).

Since P € o(z,9), there exists p € C™~HH(R") with ¢ = 0 on S, J,(¢) = P,
and ||¢]| < 1. Fix a C*°-function 6 : R™ — R, which is supported on the ball
B={yeR":|y—z| < £}, which equals one in a neighborhood of z, and satisfies
[|8]] < Co—™ for a constant C' determined by m and n. Since J,(0) = 1 and
J.(p) = P, we conclude that JZ(9]3<,0) =10,P®, P =P@®, P. In order to
establish (2.20) and conclude the proof of the lemma, it therefore suffices to show
J.(0Pg) € C6™a(z,S). Since the function #Py vanishes on S (as does ), all that
remains is to establish the seminorm bound ||[§Py| < C6™, and as this function
vanishes on R™ \ B, it suffices to establish ||0?S0||Cm,71,1(3) < Cé™. To that end,
we need to show that

|Ja:(9) Og ﬁ Og Jz(@) - Jy(H) Oy ﬁ Oy Jy(@)lz,p < Com,

(2.21)
forx,y € B, p= |z —y|.
We prepare to apply Lemma 2.2 to prove this estimate.

Following the proof of Lemma 2.9 (using that J,(p) = P € B, s and
diam({z,y,2}) < § = diam(B)), and by (2.6), the jets J;(¢), Jy(¢) belong to
CBg5; and J,(6), Jy(0) belong to Cd~™ B, 5. Furthermore, Pe B. s, and hence by
(2.5), P € CB,.s. Finally, by Taylor’s theorem (rendered as (2.2)), J.(¢)—Jy(¢) €
CB,,, and J,(0) — Jy,(0) € CO™™ B, .

We are in a position to apply Lemma 2.2, with P,, P,, R, and R, picked to be
the jets at x and y of ¢ and 6, respectively, and with Q, = Q, = P. This finishes
the proof of the estimate (2.21), and with it the proof of (2.20). O

Lemma 2.12. If Q is Whitney convex at x, then span(Q) is an ©,-ideal in P,.

Proof. Choose any R € (w;(€2),00). Then (QNBy,5) Oy By C RO™Q for all 6 > 0,
and so

QOp Po = | J(QNBrs) G0 Bos C | ) RI™Q = span().

6>0 6>0

Thus, span() ©p Pe = U,so7 - Q @z Pr C span(f2), and hence span(Q) is an
®g-1deal. ]
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2.3. Covering lemmas

This section contains the covering lemmas that will be used later in the paper.
Given a ball B € R™ and A > 0, we write AB to denote the ball with the same
center as B and with radius equal to A\ times the radius of B.

2.3.1. Whitney covers.

Definition 2.13. A finite collection of closed balls VW is a Whitney cover of a ball
B CR™ if (a) W is a cover of B, (b) the collection of third-dilates {$B : B € W}
is pairwise disjoint, and (c¢) diam(By)/ diam(Bs) € [1/8, 8] for all balls By, By € W
with gBl n gBQ 75 (Z)

Lemma 2.14 (Bounded overlap). If W is Whitney cover of B then #{BeW:
T € gB} < 100™ for all x € R™.

Proof. We may assume W, :={BeW:z¢€ gB} is nonempty, and fix By € W,
of maximal radius. By rescaling, we may assume diam(By) = 1. If B € W, then
SBNEBy # 0, and so condition (c) of Definition 2.13 implies that diam(B) € [§,1];
thus, by the triangle inequality, %B C (% + %)Bo = %Bo for all B € W,. Since
the collection {%B} Bew s pairwise disjoint, a volume comparison shows that
#W, < (24 - )™ < 100m. O

2.3.2. Partitions of unity.

Lemma 2.15 (Existence of partitions of unity). If W is a Whitney cover of BC
R™, then there exist non-negative C* functions g : B — [0,00) (B € W) such
that

1. =0 on]?\gB.
2. 10%0p(z)| < Cdiam(B)~1l for all |a| < m and = € B.

3. Y gewbn=10n B.

Here, C is a constant determined by m and n.

Proof. For each B € W, fix a C* cutoff function ¥ 5 : R®™ — R which is supported
on 2B, equals 1 on B, and satisfies the natural derivative bounds [0y p(z)| <
C diam(B)~1°l for z € R", |a| <m. Set ¥ =3\, ¥p and define

05(z) == vg(z)/V(x), x € B.

Each point in B belongs to some B € W, thus ¥ > 1 on B. Thus 65 € C®(B)
is well-defined. Property 1 follows because g is supported on gB. Furthermore,
> g0 => 5vp/¥ =1on B, yielding property 3.

Property 2 is trivial for z € B \ ¢B, as then J,(0) = 0. Now fix z €
SBN B. If g (x) # 0 then z € SB’. In particular, SB N SB’ # 0, and



14 J. CARRUTH, A. FREI-PEARSON, A. ISRAEL AND B. KLARTAG

hence diam(B’)/diam(B) € [§,8]. Furthermore, by Lemma 2.14, the cardinal-

ity of Wy :={B’ : z € $B'} is at most 100". Hence,
07 (@) < Y |0%Ypi ()]
B'eW,

< Z C diam(B')~1*l < ¢’ diam(B) 1l (Ja| < m).
B'eW,

(2.22)

By a repeated application of the quotient rule for differentiation, and substituting
the bounds (2.22) and |0%¢(x)| < C diam(B)~!?l, we conclude that |00 (x)| =
|0%(1p/¥)(2)| < C” diam(B)~!°l for |a| < m. O

We mention a few additional properties of the partition of unity {65} in Lemma
2.15. First, by property 2 of Lemma 2.15 and the definition of the scaled norm

| . |a:,§a
(2.23) | J2(05) |2 diam(p) < C diam(B)™™ (z € B).

By the equivalence of Cmfl’l(é) and the homogeneous Sobolev space W”“’O(E)
and by property 2 of Lemma 2.15,

(220) 85l gmor 3y < O max 07051 5, < Cdiom(B) ™",

Lemma 2.16 (Gluing lemma). Fiz a Whitney cover W of E, a partition of unity
{0} Bew as in Lemma 2.15, and points xp € %B for each B € W. Suppose
{FB}YBew is a collection of functions in C™ L1 (R™) with the following properties:

¢ [1FB] < Mo.
e Fp=f onEﬂgB.
. ‘JxBFB - J£B/FB’|wB,diam(B) < MO whenever gB N gB/ 7& @

Let F = Y pewfsFp. Then F e C™ VY B) with F = f on EN B and
HFHCm,Ll(g) < CMy, where C is a constant determined by m and n.

Proof. The nonzero terms in the sum F(z) = ) 5 0p(z)Fp(z), € EN B, oc-
cur when # € ¢B. By assumption, Fp(z) = f(x) for such B. Thus F(z) =
S5 05(x)f(x) = f(z). Therefore, F = f on EN B.

We will now bound the seminorm of F. Recall the following well-known char-
acterization: F € C™~L1(B) if and only if there exists € > 0 and M > 0 such
that for any z,y € B with |z — y| < e and any multiindex o with |o| =m — 1, we
have |0%F(x) — 0*F(y)| < M - |z — y|. Furthermore, the seminorm ||F|\Cm,1,1(§)
is comparable to the least possible M up to constant factors depending on m and
n. This characterization is an easy consequence of the triangle inequality on R™,
and the proof is left as an exercise for the reader. Thus, it suffices to prove that if
|z —y| < ﬁémin for dmin := mingeyy diam(B), then

(2.25) |Jo F' — JyFly,, < CMy, for p:= |z —yl.
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Fix an arbitrary ball By € W with x € By. Since |z — y| < 155 diam(By), we have
that both # and y belong to £By. Note that Y, J.0p =Y. J,0p = 1. This lets

us write

J.F = J,F =" [(JmFB — J.Fp,) O Jubp — (J,Fp — J,Fp,) ®y J,0p
Bew
+ (JZFBO - JZ/FBO)'

The summands in the main sum on the right-hand side are nonzero only if x € 6B
ory € 6B By Lemma 2.14, there can be at most 2 - 100™ many elements B € W
with thls property. Therefore to prove inequality (2.25) it suffices to show that
the |- |5, norm of each summand on the right-hand side is at most C'My. To start,
consider the last term and apply Taylor’s theorem (in the form (2.2)):

| S By — JyFpyla,p < Crl|Fp,l| < CMo.

Next we select a summand in the main sum by fixing an element B € W with
either © € gB ory € gB. In either case, gB N %Bo # 0. Let § := diam(B).
By condition (c) in the definition of a Whitney cover (see Definition 2.13), we
have &/ diam(By) € [%,8]. Define four polynomials P, = J,(Fp) — J.(Fpg,) and
R, = J;(0B), and similarly P, = J,(Fg) — Jy(FB,) and R, = J,(0p). We will be
finished once we show that

(2.26) P, ©y Ry — Py ®y Ryls, < CM.

We will prove (2.26) using Lemma 2.2 (specifically, the form in Remark 2.3).
Let us verify that the hypotheses of this lemma are satisfied. Using |z — y| = p
and Taylor’s theorem (see (2.2)),

|Pw - Py|9:,p < ‘Jo:(FB) - Jy(FB)lw,p + |Jw(FBo) - Jy(FBo)|w,p

2.27
(2.27) < Op - (|Fs] + | Fsoll) < CMo.

Next write [Pylzs < [Pop, — Prle,s + [Pop,ylzs- As € Bo and zp, € gBo, we
have |z — zp,| < ¢diam(By) < 36. Thus, by (2.1) and following the proof of
(2.27), |Pip, = Peles < 3™|Pip, — Pulezs < C'My. Then by (2.1) and (2.5),
the hypothesis in the third bullet point of this lemma, and another application of
Taylor’s theorem,

|PIBO |r,5 < |JzB (FB) - JIBO (FBU)LI:,L‘ + |Jx5 (FB) - JmB (FB)|z 5
< C|JIB (FB) - JIBO (FBO)|IBO,5 + C|JIB (FB) IBO (FB)|$BO
< C/|JIB (FB) - JIBU (FBo)|a¢BO,diam(Bo) + C/|Jx5 (FB) - JxBO (FB)|IBU,45
S C//M

Here, note we are using that |zg—zp,| < £ diam(B)+ £ diam(By) < 44 in the final

application of Taylor’s theorem. In conclusion, |Py|;s < CMy. By the identical
argument, |P,|, s < CMy — then by (2.5), |Pylss < C' M.
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Next, note the estimate |[R;—Ry|s,, < C6~™ is a direct consequence of Taylor’s
theorem and (2.24). Also, |Rylzs < C6~™ is a direct consequence of (2.23).
Similarly, |R,|y,s < C6~™, and thus by (2.5), |Ryls,s < C'6~™.

We obtain (2.26) by an application of Lemma 2.2 (see Remark 2.3), which
finishes the proof of the lemma. O

3. Transversality

Let (X, {(-,-)) be a real Hilbert space of finite dimension d := dim X < co. We
denote the norm of X by |-| = 1/(:,-), and let B be the unit ball of X. Let S denote
the set of symmetric, closed, convex subsets of X, and let dgy : S x S — [0, 00] be
the Hausdorff metric, namely,

dH(Ql,QQ) = inf{e >0:01 CQ+eB, Qo C QY+ EB}

Given a set A C X and subspace V C X, let A/V (the quotient of A by V') be the
image of A under the quotient mapping 7 : X — X/V ie., A/V :={a+V :a € A}.

Definition 3.1. Let V' be a linear subspace of X, let Q@ € S, and let R > 1. We
say that Q is R-transverse to V if (1) B/V C R-(QNB)/V, and (2) QNV C R-B.

Remark 3.2. Transversality captures the idea that there is a uniform lower bound
on the angle between the subspace V' and the “large” wvectors of Q. If Q0 is an
ellipsoid in X, it is equivalent (modulo multiplicative factors in the constants) to
say that the principal axes of Q of length at least R make an angle of at least % with
V'; furthermore, Q will be 1-transverse to the subspace V' spanned by the principal
azes of 0 of length at most 1. By approzximation with John ellipsoids, this shows
that every symmetric, closed, convex set Q@ C X is \/d-transverse to some subspace

V.

Lemma 3.3 (Stability I). If Q is R-transverse to V, then Q + AB is (R + 3R?)\)-
transverse to V' for any A > 0.

Proof. Note that B/V C R-(QNB)/V C R-((Q+ AB) N B) /V. All that remains
is to show
(Q+AB)NV C (R+3R*)\)B.

Fix Pe (Q+AB)NV. Write P = Py + P, with Py € Q and P, € AB. By the
transversality of Q and V', we have AB/V C RA(Q N B)/V. Since P; € A\B, there
exists a polynomial P, € RA(Q N B) with P,/V = P,/V — or rather, P, — P, € V.
Define P := P — (P, — P,) € V. We write P = Py + P,, where Py € Q and
Py € R\-Q, and thus P € (RA\+1)-(QNV) C (R\+ 1) - RB, where the second

containment is by transversality of Q and V. Therefore,
P=P+P —Pyc(R]A\+RB+AB+ R\ C (R’X+ R+ X+ R)NB.

We conclude that P € (R + 3R2)\)B, which completes the proof of the lemma.
O
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Lemma 3.4 (Stability II). Let Q,Qy € S, and let R > 1, R > 4R. If Q is
R-transverse to V', then the following holds:

o Ifdy(Q1,Q9) < ﬁ then Qo is 4R-transverse to V.

o Ifdy (N RB, QN RB) < ﬁ then Qo is 4R-transverse to V.

Proof. For the proof of the first bullet point, we may suppose €, C Q5 + AB and
Oy CQ +ABfor A = ﬁ. According to Lemma 3.3, Q4 + AB is 2R-transverse to
V. Thus,

(3.1) QWLNV C(+M)NV C2R-B.

Also,
B/VCR-(nNB)/VCR-((Q%+AB)NB)/V.

By (2.7), (Q2 + AB) N B C (Q2 N2B) + AB, hence,
B/VCR-(Q2:N2B+AB)/V=R-(Q22N28B)/V + RX-B/V.

Recall RA = %, hence K C T+ K/3 for K =B/V and T = R- (22 N2B)/V. From
(2.8) we conclude that K C 27, i.e.,

(3.2) B/V C2R-(QN2B)/V C AR - (N B)/V.

From (3.1) and (3.2) we conclude that €9 is 4R-transverse to V.

Note € is R-transverse to V iff Q; N RB is R-transverse to V (since R > R),
and similarly, Q, is 4R-transverse to V iff Qy N RB is 4R-transverse to V (since
R> 4R). Thus, by applying the first bullet point to the sets NRB and QyNRB,
we obtain the conclusion in the second bullet point. O

Lemma 3.5 (Stability III). Suppose Q is R-transverse to V, and let U : X — X
be a unitary transformation. Then U(Q) is R-transverse to U(V'). If additionally
|U —id|lop < 15z, then U(Y) is 4R-transverse to V and Q is 4R-transverse to
Uv).

Proof. Unitary transformations preserve the metric structure of X, and in partic-
ular, they preserve transversality. If U — id||op < 155z then

1
dir(QN4RB,U(Q) N4RB) = d (2N 4RB,U(QN4RB)) < |U — idlop - 4R < 5.

Therefore, by Lemma 3.4, U(f2) is 4R-transverse to V. Similarly, U~1(Q) is 4R-
transverse to V', and thus by the first claim we have that Q is 4R-transverse to
U\v). O
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3.1. Transversality in the space of polynomials

Definition 3.6. Given a closed, symmetric, convex set Q2 C P, a subspace V C P,
R>1,z € R" and 6 > 0, we say that Q is (x,d, R)-transverse to V if Q is
R-transverse to V with respect to the Hilbert space structure (P, (-, ")x,5), i.e., (1)
Bys/VCR-(2NBss)/V, and (2) QNV CR-Bys.

Our next result establishes a few basic properties of transversality in this set-
ting.

Lemma 3.7. If Q is (x, 0, R)-transverse to V, then the following holds:

o TyQ is (v + h, 6, R)-transverse to T,V .
o 7,8 is (x,0/r, R)-transverse to 75, V.

o If &' € [k710, K] for some k > 1, then Q is (x,8, k™ R)-transverse to V.

Proof. The proof of the first and second bullet points is easy: Apply T}, and 7, , to
both sides of (1) and (2) in Definition 3.6, and use the identities T),B; 5 = Byyn,s
and 7, By s = By 5/r- The third bullet point follows from the equivalence of the
unit balls B, 5 C max{l, (5/6’)m} - By and By s C max{l7 ((5’/6)m} - By s, as
well as the property that AN(r-B) C r-(ANDB) if A and B are symmetric convex
sets, and r > 1.

O

The continuity of the mapping « — o(z) can be used to show that the transver-
sality of the set o(x) with respect to a fixed subspace is stable with respect to small
perturbations of the basepoint.

Lemma 3.8. There exists ¢y = c1(m,n) > 0 so that the following holds. Let
V C P be a subspace, x,y € R*, § > 0, R > 1. Suppose that o(z) is (x,6, R)-
transverse to V and |z — y| < cl%. Then o(y) is (y,d,8R)-transverse to V.

Proof. If ¢1 < ﬁ, where Cr is the constant in (2.2), then by Lemma 2.7,

C

Co(z)+Cr- (é) Bas C o)+ (;) Bas.

Similarly, o(z) C o(y) + (75) - Bz,s. Thus, 430 (o(z),0(y)) < 15 Where a0 is
the Hausdorff distance with respect to the norm |- |; s on P. From Lemma 3.4
we conclude that o(y) is (x,d,4R)-transverse to V. Since |z — y| < ¢10/R < ¢10,
if ¢ is sufficiently small then (%) “Bys C By C (19—0) - By,s. Therefore we can
replace By s by By,s in the definition of transversality, at the cost of increasing the
constant 4R to 8R. Thus, o(y) is (y, d, 8R)-transverse to V. O

o(y) Co(z)+ Cr- B, ...

o
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3.2. Ideals in the ring of polynomials and DTI subspaces

Definition 3.9. A subspace V' C P is translation-invariant if T,V =V for all
h € R", and V is dilation-invariant at x € R" if 7, sV =V for all § > 0. Say that
V' is dilation-and-translation-invariant (DTI) if Ty sV =V for all x,h € R™,
6 > 0. We write DTT to denote the collection of all DTI subspaces of P.

Remark 3.10. Equivalently, V C P is translation-invariant if P € V,Q € P =
Q)P € V. Since T, = T1_g)-1p,5-1 © To,s (for any 6 > 1), any translation
operator is a composition of dilation operators. Thus, V is DTI if and only if
Te,sV =V for all (z,0) € R™ x (0,00).

We now illustrate a connection between translation-invariant subspaces and
ideals in P,.

Lemma 3.11. Let (z,6) € R™ x (0,00). Let V* be the orthogonal complement of
a subspace V. C P with respect to the inner product (-,-)z 5. Then V is translation-
invariant if and only if V* is an ©p-ideal in P,.

Proof. Translating, we may assume that x = 0. Rescaling preserves the property
of V being translation-invariant, and also of V* being an ®,-ideal, according to
(2.4). Hence we may assume that § = 1. Note the identity (Q, P) = Q(9)(P)(0)
for any P,Q € P. Note 0% annihilates P for || > m, and hence R(9)[Q(J)P] =
(R ®p Q)(O)P for any P,Q,R € P. Suppose that V is a translation-invariant
subspace, and let Q € V+. Then, for any h € R” and P € V, also T,P € V and
hence,

0=(Q, Tw(P)) = Q) [Tn(P)] (0) = Th(Q()P)(0) = Q(I) P(=h).

Consequently, Q(9)P = 0. Thus, for any R € P, we have (R ©9 Q)(0)P =
R(0)[Q(0)P] = 0. In particular, (R ®9 Q,P) = 0 for any P € V and hence
R ®o Q € VL. This shows that V' is an ®¢-ideal.

For the other direction, suppose that V* is an ®¢-ideal. Let P € V and R € P.
Then for any Q € V+,

0= (R©oQ,P)=Q(9)[R(9)P] (0) = (Q, R(D)P).

This means that R(O)P € (V1)L = V. Hence R(9)P € V whenever P € V and
R € P, and consequently the subspace V is translation-invariant. ]

We say that two subspaces Vi, Vo C P are complementary if V1 + Vo =P and
VinVsy = {0}.

Lemma 3.12. For any ®¢-ideal I in Py, there exists V- € DTI that is complemen-
tary to I.

Proof. Set I, = lims_,0 79,5(I) (where the Grassmanian is endowed with the usual
topology). Let us first show that this limit exists: Consider the canonical pro-
jection 7 : Py — PF onto the subspace of k-homogeneous polynomials P :=
span{z® : |a| = k}, and denote the subspace of (> k)-homogeneous polynomials



20 J. CARRUTH, A. FREI-PEARSON, A. ISRAEL AND B. KLARTAG

Pozk := span{z® : |a| > k}. By Gaussian elimination we can pick a basis B :=
{Pf}?gfg\';k_l for I in the block form: PF e P, and By = {Wka}(l)E?g\';kﬂ
is linearly independent in Py. The family Bs := {6m_k7'0)5(P]k)}k,j converges el-
ementwise as 6 — 0 to By. Since Bs is a basis for 7y 5(I), and By is a basis for
I, := span(By), we learn that 79 s(I) converges to I, as desired.

The ideals form a closed subset of the Grassmanian, thus I, is an ideal in the
ring Py. Let V be the orthogonal complement of I, with respect to the standard
inner product on Py. Observe that I, is dilation-invariant at x = 0, i.e., 79 51« = I
for all § > 0. Equivalently, I, is a direct sum of homogeneous subspaces of Py,
ie, I, = I+ .-+ 1™ 1 with I¥ C P¥. But then V is also a direct sum of
homogeneous subspaces of Py, and so V is dilation-invariant at * = 0. From
Lemma 3.11, we also know that V is translation-invariant. Thus, V' € DTI. The
subspaces I, and V are complementary and this property is open in G x G. By
definition of I, as a limit, 795(/) and V are complementary for some 6 > 0. By
an application of the isomorphism of vector spaces 7y s-1, we learn that I and
To,s-1V are complementary. To finish the proof, recall that V' € DTI, and hence
T0,5-1 V=V. a

Our next result says that every Whitney convex set is transverse to a DTI
subspace.

Lemma 3.13. Given A € [1,00), there exists a constant Ry = Ro(A, m,n) so that
the following holds. Let Q) be a closed, symmetric, convex subset of P. If Q is
Whitney convez at x € R™ with w,(Q) < A, and § > 0, then there exists V € DTI
such that Q is (x, 0, Rg)-transverse to V.

Proof. By the second bullet point in Lemma 3.7, Q is («,d, R)-transverse to V if
and only if 7, sQ is (z, 1, R)-transverse to 7, sV. Thus, by the remark following
Definition 2.10, we may rescale and assume that 6 = 1. Similarly, by translating
we may assume that z = 0.

Let S be the set of closed, symmetric, convex subsets of P. We endow S with
the topology of local Hausdorff convergence, i.e., Q; — Q iff lim; o du(Q2; N
RB,QNRB) = 0 for all R > 0 — here, B C P is the unit ball with respect to
the norm |- | = |- |p1 on P, and dy is the Hausdorff metric with respect to this
norm. As a consequence of the Blaschke selection theorem, thus endowed, S is
a compact space. Write G to denote the Grassmanian of all subspaces of P, and
Gr C G the Grassmanian of all k-dimensional subspaces. We may identify G as a
compact subspace of S.

For any (z,d) € R™x(0, c0), the isomorphism 7, 5 : P — P induces a continuous
mapping on the Grassmanian 7,5 : G — G. Thus, DTI = {V € G : 7,5,V =
V V(z,0) € R™ x (0,00)} is a closed subset of G, and hence DTI is compact.

The conclusion of the lemma is equivalent to the existence of a constant Ry =
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Ro(A,m,n) so that ¢(2) < Ry for all Q € wcy, where

wey = {Q € §:Q is Whitney convex at 0 with wg(2) < A},
¢:weq — [0,00], d(Q) :=1inf{p(Q,V):V € DTI}, with
¥ :weyqg X DTT — [0, 00], where

Y, V) =inf{R:QNV CR-B, BI[VCR-(QNB)/V}.

IfQ, — 9, Q, € weca, 6 >0, and A* > A, then

(Q n 80,5) ®o B(Lg = h_)m (Qn n 80,5) ®o B()y(; C h_)m A*(San = A*5m97

where we used the continuity of ®p on S xS. So wcy is closed, and hence compact.
We claim that ¢ is upper semicontinuous (usc). Indeed, ¥ = infgsg g, with
Yr = Rlg, + oclge and

Er={(Q,V)eSxDTI: 3R <R, QNV C R -Band B/V C R - (QnB)/V}.

As Er is open, ¥ is usc. Hence the same is true of ¢, and also of ¢.

Since ¢ is usc and wey is compact, it suffices to show that ¢(Q) < oo for all
Q) € wey. Since € is Whitney convex at 0, I = span(2) is an ideal in Py (see Lemma
2.12). By Lemma 3.12 there exists a subspace V' € DTI which is complementary
to I,ie., VNI ={0}and V + I =P. Note that span(QQ+V) =14V =P, and
so by convexity, {24 V contains a ball eB for some € > 0. If eB C 24V, it follows
that eB/V C Q/V. Thus,

eB/V C | J(@nRB)/V.
R>0

By compactness, there exists an R > 0 with $§B8/V C (QNRB)/V C R(QNB)/V.
Thus, B/V C 22(Q N B)/V. Combined with VN Q C V NI = {0}, this implies
that () < 2£. m

For any = € R", the set o(z) = o(x, E) is Whitney convex at z with w, (o (z)) <
Co (see Lemma 2.11). Let Ry be the constant from Lemma 3.13 with A = Cj.
Then

(3.3) for any finite set F C R", for any (z,d) € R" x (0, 00),
’ there exists V' € DTI such that o(z) is (z,d, Ro)-transverse to V.

Constants: Recall the constant ¢; is defined in Lemma 3.8. We specify con-
stants Riaper K Rmea K Rpig K Runges Cx, and Cl, defined as follows:

(3 4) Ripe = 8R0, Roca 1= 256DR1ab017 Rbig = 10mRmcd7 Rhugc = 2m+3Rbig
’ C, :=20¢7 'Ry, Cow = 1+ 2"Cr(1 + Rippa(5C)™).

Lemma 3.14. Let B be a closed ball in R™. There exists V € DTI such that o(z)
is (z, Cy diam(B), Ry,.) -transverse to V. for all z € 100B.
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Proof. Let xyp € R™ be the center of B. We apply (3.3) with & = z¢ and ¢ =
C,diam(B). Thus, o(xg) is (zg, Cyx diam(B), Ry)-transverse to some V € DTIL.
Let z € 100B be arbitrary. Then |z — x| < 100diam(B) < cl%zn(m (see
(3.4)). By Lemma 3.8, we conclude that o(z) is (z, C, diam(B), 8 Ry)-transverse to
V.

O

4. Complexity

The left and right endpoints of an interval I C R are denoted by I(I) and r(I),
respectively. An interval J is to the left of an interval I, written J < I, if either
r(J) <I(I) or r(J) =I(I) and I(J) < I(I). Let X be a finite-dimensional Hilbert
space with inner product (-,-)x, set d := dim X < oo, and denote the norm and
unit ball of X by |- |[x =+/(-,-)x and B={z € X : |z|x <1}. Let ¥: RP - X
be a coordinate transformation of the form W(v) =}, v;e; for an orthonormal
basis {e;}1<j<a of X. Fix i = (mq,--- ,mq) € Z¢, and a 1-parameter family of
maps Ts : X — X (§ > 0) of the form Ty = UTsW 1, where the transformation
Ts : RY — R? is represented in standard Euclidean coordinates by a diagonal
matrix Dy = diag(6—™2, -+ 6~ ™d),

Definition 4.1. Given a closed, symmetric, convex set Q0 C X, the complexity of
Q relative to the dynamical system X = (X, Ts)s>0 at scale 69 > 0 with parameter
R > 1- written Cx 5, r(2) — is the largest integer K > 1 such that there exist
intervals Iy > Iy > -+ > I in (0,d¢] and subspaces Vi, Vo -+, Vi C X, such that
Ty (1,)(R) is R-transverse to Vi, but Ty1,)(2) is not 256d R-transverse to Vy, for all
k=1,---,K. If no such K exists, let Cx 5, r(2) :== 0.

Proposition 4.2. Given R > 1 and m € Z%o; there exists a constant Ko =
Ko(d,m, R) such that Cx s, r(Q2) < Ko for all closed, symmetric, convex sets Q C
X and all 69 > 0.

4.1. Background on semialgebraic geometry

We review some standard terminology from semialgebraic geometry: A set B ¢ R?
is a basic set if it is the solution set of a finite number of polynomial inequalities, i.e.,
B={z eR%:p;(z) <0, ¢;(z) < 0ViVj}, for polynomials p1,- - ,pr,q1, - ,q on
R?. A semialgebraic set is a finite union of basic sets. The class of semialgebraic
sets is obviously closed under finite unions/intersections and complements. The
celebrated Tarski-Seidenberg theorem on quantifier elimination implies that the
class of semialgebraic sets is closed under projections 7 : RY — R?~L: see [22].
Semialgebraic sets are closely related to first-order formulas over the reals, which
are defined by the following elementary rules: (1) If p is a polynomial on R?, then
“p < 0” and “p < 0” are (first-order) formulas, (2) If ® and ¥ are formulas,
then “® and ¥”, “® or ¥”, and “not ®” are formulas, and (3) If ® is a formula
and x is a variable of ® (ranging in R), then “Jz ®” and “Va ®” are formulas.
A first-order formula is quantifier-free if it arises only via (1) and (2). Clearly
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the semialgebraic sets are precisely the solution sets of quantifier-free formulas.
The Tarski-Seidenberg theorem states that every first-order formula is equivalent
(i.e., has an identical solution set) to a quantifier-free formula. Accordingly, the
solution set of a first-order formula is semialgebraic. In particular, the set M™ of
all positive-definite d x d matrices is a semialgebraic subset of R?*¢ because it can
be represented as the solution set of a first-order formula: M* = {(a;;)1<; j<d :
a;; = aj; for i,5 = 1,---,d and szzl ajjrizy > 0 Vry,--- ,Vag}. Later we
will need the following theorem which gives an upper bound on the number of
connected components of a semialgebraic set.

Theorem 4.3 (Corollary 3.6, Chapter 3 of [22]). If S C R¥1+k2 s semialgebraic
then there is a natural number M such that for each point a € RF the fiber
S, :={b e R : (a,b) € S} has at most M connected components.

4.2. Proof of Proposition 4.2

The coordinate mapping ¥~! : X — R? is a Hilbert space isomorphism when R? is
equipped with the standard Euclidean inner product (-, -). Thus C(x 7),s,,7(€2) =

C (T1(Q)), where Ty := U~1T5W. Therefore, we may reduce to the case

(R4,T5),00,R
where (X, {-,-)x) = (R%,(-,-)) and the transformation T5 on R? is represented in
Euclidean coordinates by the diagonal matrix Ds = diag(d=",---,5-™4) (i.e.,
T5(x) = D5 . CU)

We give a proof by contradiction. Fix a one-parameter family of linear trans-
formations Ts : R? — R? of the above form, and fix a closed, symmetric, con-
vex set Q C R, 6y > 0, and R > 1, such that CRa,Ty)520,00,R(82) = Ko+ 1 —
we will determine the value of Ky later in the argument. The family (T5)s>o
satisfies the semigroup properties 77 = id and Tj,5, = T5, o Ts,. Hence, by
exchanging  and T5,(€2), we may reduce to the case 6o = 1. The inequality
C(ra, Ty)5-0,1,8(82) > Ko + 1 implies that there exist intervals Iy > --- > Ig, 41 in
(0,1] and subspaces V1, - -+, Vi, 41 C R? such that (a) T,(1,) () is R-transverse to
Vi, whereas (b) Tj(z,)(€) is not 256d R-transverse to Vj, for all 1 <k < Ko + 1.

The Grassmanian G of subspaces of R? will be endowed with the metric

dg(V1,Va) == inf{||U —id|op : U € O(d,R), U(V1) = Va}.

In particular, dg(V1,V2) < 00 <= dim(V7) = dim(V2).

Fix € := (212dR?)~! and let N be an e-net in G.

We will next apply a perturbation argument in order to approximate €2 by an
ellipsoid £ with similar properties. Let Ry := 256dR. Fix a compact, symmetric,
convex set Q C R? with nonempty interior such that

dpr (T () N RoB, T, () N RoB) < Ry, and
dpr (Tycroy () N RoB, Ti1,)(Q) N RoB) < Ry* for all 1 <k < Koy +1,

where dp is the Hausdorff metric with respect to the Euclidean norm on R —
we can choose © of the form (2 + AB) N (A71B) for a small constant A > 0. By
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Lemma 3.4 and properties (a) and (b), we have that T}.(;,)(2) is 4R-transverse to
Vi, but Tl(Ik)(fvl) is not 64dR-transverse to V. If € is the John ellipsoid of Q, which
satisfies £ C Q C V/dE, then Ty(1)(€) is 4V/dR-transverse to Vi, but Tj(r,)(€) is
not 64v/dR-transverse to Vj,. Hence, setting R= 16VdR,

(4.1) Trr)(€) is (1/4) R-transverse to Vj, but
‘ Ty(1,)(€) is not AR-transverse to Vi, for all 1 < k < Ky + 1.

We identify ellipsoids with positive-definite matrices in the usual way: any el-
lipsoid has the form £4 := {z € R? : (Az, x) < 1} for some A € M*. Furthermore,
any subspace of R? has the form V¢ := rowsp(C) for some matrix C' € R?*? where
rowsp(C) is the span of the row vectors of C. Consider the set

S={(C,A R, € RY x M x [1,00) x (0,00) : T5(E4) is R-transverse to Vil

Here, it is useful to note that T5(E4) = Ea,, with As := Ds-1ADs—1. Then S
is a semialgebraic subset of R24°+2 because M* is semialgebraic and the state-
ment “Ts(£4) is R-transverse to V7 is expressable by a first order formula in the
variables (C, A, 8, R) € R24°+2,

Consider the ellipsoid £ determined as above and fix an arbitrary subspace
V c R Write V = Vi and € = €4 for some C € R”, A € M*+. By Theorem
4.3, for any R > 1 there exists a set A = A(V,E4, R) C (0,00) with #(A) < M,
where M is an integer constant determined by d and m, so that for any interval
I C (0,00) \ A, either (C,A,5,R) € S (i.e., T5(£4) is R-transverse to V) for all
§€l,or (C,A6,R) ¢S (ie., Ts(Ea) is not R-transverse to V) for all § € I. Set

Apoq = U A(V,S,E).
VeN
For an interval I C (0,00) \ Ay.q and subspace V € A, we have (A) either [T5(E)
is R-transverse to V for all § € I] or [T3(&) is not R-transverse to V for all § € I].
Note that #(Apaq) < #(WN) - M.

Set Ko :=2-#(N)-M. Then Ko+ 1 > 2-#(A,.q). By definition of the order
relation on intervals, at most two of the intervals Iy > --- > Ik, 11 can contain a
given number § € R. Thus, we can find k, so that I, is disjoint from A, 4.

Since AV is an e-net in G, there exist U € O(d,R) and V € N with U(V,,) =V
and HU‘i— idllop = U —id|lop < € = 5mipz = 16%. Iiy condition (A), either
T5(€) is R-transverse to V for all § € I, or T5(&) is not R-transverse to V for all
§ € Ij,,. By Lemma 3.5, either T5(€) is (i)ﬁ?—transverse to Vy, for all § € I, , or
Ts(€) is not 4R-transverse to V. for all § € I,,. This contradicts (4.1) for k = k,
and finishes the proof of the proposition.

5. The Local Main Lemma

Definition 5.1. For x € R", let P, = P be the Hilbert space endowed with
the inner product (-, )y := (-,-)z1. Write Xy for the system (Py,Tu.s5)s>0, where
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the rescaling transformations 7,5 @ Py — Py (6 > 0) are given by 7, 5(P)(z) =
6~ P(x + (2 — x)). With respect to the monomial basis {(z — 2)*}|a|<m—1, the
transformation 1, 5 is represented by a diagonal matriz with negative integer powers
of § on the main diagonal. Given a ball B C R™ and a finite set E C R™, the local
complezity of E on B is the integer-valued quantity

C(E|B) := sup Cx,.C. diam(B), Ry (0 (7).
TE

Remark 5.2. We obtain an equivalent formulation of local complezity by in-
spection of Definition 4.1: We have C(E|B) > K if and only if there exists
xr € B and there exist subspaces Vi,--- , Vg C P and intervals Iy > I > -+ >
I in (0,diam(B)], such that 7, .(1,)(0(x)) is (2, Cy, Ri)-transverse to Vi, but
Te(ry) (0(x)) ds not (z,Cs, R,..)-transverse to Vi for all k = 1,--- K. Here,
R,..:=256DR,,., (see (3.4)).

We have the following basic monotonicity property of complexity: By C By =
C(E|B1) < C(E|Ba). As a consequence of Proposition 4.2, we also have the follow-
ing result:

Corollary 5.3. There exists Ky = Ko(m,n) such that C(E|B) < K, for any
closed ball B C R™ and finite subset E C R™.

Next we define the (global) complexity C(E) of a finite subset E C R™.

Definition 5.4. Given a finite subset E C R", let By C R™ be a compact ball
containing E — for definiteness, one can choose By to be the compact ball of minimal
radius containing E. Then let C(E) := C(E|5By).

Now Lemma 1.3 from the introduction follows from Corollary 5.3. The main
apparatus that will be used to prove Theorem 1.2 is the following:

Lemma 5.5 (Local Main Lemma for K). Let K > —1. There exist constants
C# = C#(K) > 1 and (# = (#(K) € Z>o, depending only on K, m,n, with the
following properties.

Let E C R™ be finite and let By C R™ be a ball. If C(E|5By) < K then the
following holds:

Local Finiteness Principle on By: Suppose f : E — R, M > 0, zg € By, and
Py € P satisfy the following finiteness hypothesis: For all S C E with #(5) <
(D + 1)£# there exists F¥ € C™~LY(R™) with FS = f on S, J,,F° = Py, and
|FS|| < M. Then there exists a function F € C™~LL(R™) with F = f on EN By,
JooF = Py, and ||F|| < C# M.

Remark 5.6. FEquivalently, the Local Finiteness Principle on By states that
Ty# (20, f, M) C Tpnp, (20, f,C*M).
In particular, by taking f =0 and M = 1, we have

oo (1) C CF - o(xg, EN By).
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5.1. Proof of Theorem 1.2

We now explain why it is that the Local Main Lemma implies Theorem 1.2. Fix
a ball By with F C By as in Definition 5.4. We apply the Local Main Lemma
for K = C(E) = C(E|5Byp) and deduce that the Local Finiteness Principle for By
is true. Therefore, T'yx (0, f, M) C Tg(xo, f,C* M) for any M > 0. Our main
result, Theorem 1.2, now follows easily: By Lemma 2.6, the Finiteness Hypothesis
FH(k?) (see (2.13)) with constant k# = (D + 1)€#+1 implies Ty« (20, f, 1) # 0,
and so I'g(z9, f, C*) # 0. In particular, there exists F' € C™~L1(R™) with F = f
on E and ||F|| < C#.

Remark 5.7. In section 9.1 we verify that the constant C* = C#(K) in the Local
Main Lemma depends exponentially on K, and the constant {# = (#(K) depends
linearly on K; thus, k% = (D + 1)4#'H will depend exponentially on K. This
finishes the proof of Theorem 1.2.

5.2. Organization

The rest of the paper is organized as follows. In section 6 we formulate the Main
Induction Argument that will be used to prove the Local Main Lemma for all K.
In section 7 we prove the Main Decomposition Lemma which will allow us to pass
from a local extension problem on a ball By to a family of easier subproblems on
a collection of “Whitney balls” B C 5Bj; this lemma is the main component in
the analysis of the induction step. In section 8, we state a technical lemma that
allows us to control the shape of the set o¢(x) at lengthscales which are much
coarser than the lengthscales of the balls in the decomposition; we next apply this
lemma to enforce mutual consistency for a family of jets that are associated to
the local extension problems on the Whitney balls. In section 9 we will construct
a solution to the local extension problem on By by gluing together the solutions
to the local problems on the Whitney balls by means of a partition of unity; the
consistency conditions arranged in the previous step will ensure that the individual
local extensions are sufficiently compatible, which will imply the necessary control
on the C™~ 1! seminorm of the glued-together function.

6. The Main Induction Argument I: Setup

We will prove the Local Main Lemma by induction on the complexity parameter
K € {-1,0,---, Ky} — recall, Ky is a finite upper bound on the local complexity
of any set. When K = —1, the Local Main Lemma is vacuously true (say, for
C#(—1) = 1, £#(—1) = 0) since complexity is non-negative. This establishes the
base case of the induction.

For the induction step, fix K € {0,1,--- , Kp}. The induction hypothesis states
that the Local Main Lemma for K — 1 is valid. Denote the finiteness constants in
the Local Main Lemma for K — 1 by £, := (#(K — 1) and C,, := C#*(K — 1).
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Applying the Local Main Lemma to a closed ball of the form (6/5) - B, we obtain

If =€ (6/5)-B and C(E|6B) < K — 1, then,

6.1
(6.1) Ty (z, f,M) C FEmgB(OC,ﬁComM) forany f: E - R, M > 0.

(Here we use the formulation of the Local Finiteness Principle in Remark 5.6.)

Fix a ball By € R™ with C(E|5By) < K. To prove the Local Main Lemma
for K, we are required to prove the Local Finiteness Principle (LFP) on By for a
suitable choice of the constants (# € Zso and C# > 1, determined by m, n, and
K. Thus, our goal is to prove that I'yx(z9, f, M) C Tgnp,(z0, f, C* M) for any
f:E— R, x9 € By, M > 0. A rescaling of the form f — f/M allows us to reduce
to the case M = 1. If #(By N E) < 1 then the LFP is true as long as C# > 1 and
(# >0 — indeed,

Tyx (o, fi1) CTo(zo, f,1) = () Tslo, f,1)
(6.2) SCE, #(8)<1

C Tpns, (20, f,1) C Tgag, (xo, f,CF).
Accordingly, it suffices to assume that
(6.3) #(BoNE)>2.
Under these assumptions, we will prove that for any zg € By and f: E — R,

(64) FZ# (mOaf,]-) C FEﬂBo(mO;fa C#)

7. The Main Decomposition Lemma

In this section we fix the following data:

e A closed ball By C R™ and a point x¢ € By.

e A finite set E C R™ satisfying #(F N By) > 2 and C(E|5Bp) < K.
e A function f: E — R.

e An integer (# € Z>,.

e A polynomial Py € T'p% (o, f,1).

Our plan is to introduce a cover of the ball 2By which will later be used to
decompose the local extension problem on By into a family of easier subproblems
associated to the elements of the cover.

Lemma 7.1 (Main Decomposition Lemma). Recall that the constants R,.,. <
R... < R,, € R,,,., Cs, and Cy, are defined in (3.4). Given data By, E, K, f,
(% and Py as above, there exists a subspace V € DTI such that

(a) The set o(x) is (x,Cy diam(By), Riu.)-transverse to V- for all x € 100By.
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There exists a Whitney cover W of 2By such that, for all B € W,
(b) B C 100By and diam(B) < § diam(By).
(c) The set o(x) is (x, Cid, Ry,.)-transverse to V for allz € 8B, ¢ € [diam(B), diam(By)].
(d) Either #(6BNE) <1 or C(E|6B) < K.
For every B € W there exists a point zp € R™ and a jet Pg € P satisfying
(e) zp € gB N 2By; also, if ¢ € gB then zp = xg.
(f) Pp € Fl#—l(ZBafa C**) and Py — Pp € C**BzB,diam(Bo); also, if xo € gB then
Pg =P,.
(9) Po— P eV.

We obtain a local finiteness principle on the elements of the cover W in the
next lemma.

Lemma 7.2. For any B € W, the Local Finiteness Principle on gB is true for
the constants {,, = (#(K — 1) € Z>o and C,, = C#(K —1) > 1. That is,
Loz, f,M) CTprsp(, f,Cul), for all x € gB, M > 0.

Proof. If C(E|6B) < K, the result follows from (6.1). On the other hand, if
#(EN6B) < 1, the result follows from (6.2). Condition (d) implies that these
cases are exhaustive. o

7.1. Proof of the Main Decomposition Lemma

We apply Lemma 3.14 to select a subspace V' € DTI such that
o(z) is (z, Cx diam(By), R )-transverse to V for all 2 € 100B,. This establishes
property (a). The construction of W is based on the following definition:

Definition 7.3. A ball B C 100By is OK if #(BNE) > 2 and if there exists z € B
such that o(z) is (z,Cyd, R,,)-transverse to V for all § € [diam(B), diam(By)].

The OK property is inclusion monotone in the sense that if B € B’ C 100B
and B is OK then B’ is OK.

For each = € 2By, let r(x) := inf{r > 0 : B(z,r) C 100By, B(z,r) is OK}.
Every subball of 100B, that contains 2By is OK, so the infimum is well-defined —
this also implies () < 2diam(By) for all z € 2By. If B C 100B, is sufficiently
small then #(B N E) < 1, and so B is not OK — in particular, this shows that
r(z) > A= jmin{lz —y| : 2,y € E,x # y} > 0 for all x € 2By. Let B, :=
B(x, 3r(z)) for x € 2By. Then

(7.1) 70B, C 100B,, for x € 2B,.

Obviously the family W* = {B; }ze2p, is a cover of 2Bj.
Lemma 7.4. If B € W* then 8B is OK, and 6B is not OK.

Proof. We write B = B(z, 2r(z)) for some z € 2B;. According to (7.1), 6B C
8B C 100By. By definition of r(z) as an infimum and the inclusion monotonicity
of the OK property, the result follows. |

We apply the Vitali covering lemma to extract a finite subcover W C W* of 2By
with the property that the family of third-dilates { %B} Bew Is pairwise disjoint.
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Lemma 7.5. W is a Whitney cover of 2By.

Proof. We have only to verify condition (c) in the definition of a Whitney cover
(see Definition 2.13). Suppose for sake of contradiction that there exist balls B; =
B(zj,rj) € Wior j = 1,2, with gB1ﬂgB2 £ Pandr; < %7“2. Since gBlﬁng £ (),
we have |21 — z2| < grl + g’l”g. If z € 8By then |z — 1| < 8r1, and therefore

6 6 3 6
|z — ma| < |z — 21| + |21 — 22| < 811 + 571 T2 ST oara oy < 6.
Hence, 8B; C 6B;. By Lemma 7.4, 8B; is OK. Thus, by inclusion monotonicity,
6B, is OK. But this contradicts Lemma 7.4. This finishes the proof by contradic-
tion. a

We now establish conditions (b)-(d) in the Main Decomposition Lemma. Fix
aball BeW.

We will use the following principal condition: (PC) If #(6 BNE) > 2 then for all
x € 6B there exists 0, € [6diam(B),diam(By)] so that o(z) is not (z, Cydy, Ry, )-
transverse to V. This follows because 6B is not OK.
Proof of (b): The inclusion B C 1008y follows from (7.1). For sake of contradic-
tion, suppose that diam(B) > 3 diam(By). Since B N By # 0, we have By C 5B.
Therefore, #(5BNE) > #(By N E) > 2. Fix a point « € B. Then (PC) implies
that the interval [6 diam(B), diam(By)] is nonempty, thus diam(B) < ¢ diam(By),
which gives the contradiction.
Proof of (c): Since 8B is OK, o(z) is (z, C\0, Ry, )-transverse to V for some z € 8B
and all § € [8diam(B),diam(By)]. If z € 8B then |z — z| < 8diam(B) < § <

Rcblig - (C0) (see (3.4)), and so, by Lemma 3.8,

o(x) is (x, Cid, 8R,,;,)-transverse to V if § € [8diam(B), diam(By)].

Any number in the interval [diam(B), diam(By)] is comparable to a number in
[8 diam(B), diam(By)] up to a multiplicative factor of at most 8. Hence, by Lemma
3.7, o(z) is (x,C.6,8™ TR, )-transverse to V for all § € [diam(B),diam(By)].
Since Ry > 8™ R, (see (3.4)), this implies (c).
Proof of (d): Suppose that #(6BNE) > 2 and set J := C(E|6B). According to the
formulation of complexity in Remark 5.2, there exist intervals Iy > I > --- > I
in (0,6 diam(B)], subspaces V;,--- ,V; C P, and a point z € 6B, such that
(A) 7201, (0(2)) is (2, Ck, Riper)-transverse to V;, and
(B) 711,y (0(2)) is not (2, Cy, Ry,ea)-transverse to V;, for 1 < j < J, where R,,.q =
256D R, 1. -

Since BNBy # () and diam(B) <
Hence, z € 5By.

Since #(6BNE) > 2, (PC) implies that there exists §, € [6 diam(B), diam(By)]
with

1 diam(By) (see (b)) it follows that 6B C 5B.

(7.2) o(z) is not (z,Cy0,, Ry, )-transverse to V.
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We will now establish that (A) and (B) hold for j = 0 with I := [0,, diam(By)]
and Vp := V. Since V is a DTI subspace, 7. ;(7,)V = V, and therefore, by rescaling
(7.2),

(7.3) T.1(10)(0(2)) is not (2, C, Ry, )-transverse to V.

On the other hand, from property (a) we learn that o(z) is (z, C diam(By), Ry.pe )-
transverse to V. Therefore, by rescaling,

(7.4) Tor(10)(0(2)) is (2, Ok, Riape)-transverse to V.

The conditions (7.3) and (7.4) together imply (A) and (B) for j = 0 (recall R,;, >
Roca)-

Notice that r(I;) < 6diam(B) < §, = I(Iy), thus I; < Iy. In conclusion,
Iy > 1 > --- > I; are subintervals of (0, diam(By)].

We produced intervals Iy > Iy > --- > I; in (0,5 diam(By)] and subspaces
Vo, -+, Vy; C P, so that (A) and (B) hold for j = 0,1,---,J. Since z € 5By, by
the formulation of complexity in Remark 5.2, we have C(E|5By) > J + 1. Since
C(E|5Byp) < K, this completes the proof of (d).

Finally we define a collection of points {zp}pew and polynomials {Pg}pew
so as to establish properties (e)-(g).

Proof of (e): We define the collection {zg}pew to satisfy property (e). For all
B € W such that zg € gB we set Pg = Py. We define Pg for the remaining balls
B € W in the proof of (f) and (g) below.

Proofs of (f) and (g): If g € 2B then zp = 29 and Pg = Py, in which case
(f) and (g) are trivially true (note that Py € T'pu(xo, f,1) C Tpr_1(x0, f,1)).
Suppose instead zg ¢ $B. Then zp € $B N 2B; and so |zg — z5| < 2diam(By).
By Lemma 2.6, given that Py € Ty« (xo, f,1), we can find Pg € Typx_;(2B, f,1)
with Py — Pp € CrB., 2diam(By) C 2" CTB. 5 diam(B,)- We still have to arrange
Py — Pg € V as in (g). Unfortunately, there is no reason for this to be true,
and we will have to perturb Pp to arrange this property. This is where we use
condition (a), which implies that o(zp) is (zp, 5C\ diam(By), Ry )-transverse to
V. Therefore,

B. . diam(Bo)/V C B.p 50, diam(Bo)/V C Riaver - (0(28) N B., 50, diam(By))/V
C Rlal)el . (05#71(23) N BzB,SC'* diam(Bo))/V-

Since Py — Pp € 2" CrB., diam(B,), the last containment implies we can find a
bounded correction

Rp € 2" CrRipe - (00#_1(2B) N B., 5¢, diam(Bo))s

so that Rp/V = (Py— Pg)/V, ie., Py— Pg— Rp € V. Set Pg = Pg + Rp. Then
Py — P €V and

f)B € Fe#fl(ZB7 f7 1) + QmCTRlabeIUZ#fl(zB) - Fz#71(2’B, fa 1+ 2mCTRlabel)'
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Furthermore,

Py—Pg=(Py—Pg)—Rp € 2" CrB. ,; diam(By) T 2" Cr Riave B2 5 5¢, diam(Bo)
C 2mOT . (1 + Rlabel . (50*)171) : BZB,diam(Bo)-

Thus we have proven (f) and (g) for all B € W such that o ¢ B, with P in
place of Pg, where Cy. = 1+ 2™Cp - (1 4+ Riper - (5Cx)™). This finishes the proof
of Lemma 7.1.

8. The Main Induction Argument 11

We return to the setting of the Main Induction Argument in section 6. Let £,,q4 =
(#(K — 1) and C,,, = C#(K — 1) be as in (6.1). We fix data (By,z0, E, f) as
in section 6. Recall our goal is to establish the containment (6.4) for a suitable
choice of (# = (#(K) and C# = C#(K) which will be determined by the end of
the proof. We fix a polynomial Py € T’y (xq, f,1), and apply Lemma 7.1 to the
data (By, zo, E, f, %, Py). Through this we obtain a Whitney cover W of 2By, a
DTI subspace V' C P, and the families {Pg}pew C P and {z5}pew C R™

Let Wy be the collection of all balls B € W with BN By # (). Then Wy is a
Whitney cover of By.

The main goal of this section is to prove that the polynomials {Pg}gew, are
pairwise compatible. Specifically, we will prove:

Lemma 8.1. There exist constants Z,> L, and C > 1, determined by m and n,
such that the following holds. If % > {, and {Pg}pew is a family of polynomials
satisfying the conditions in Lemma 7.1, then Pp — Ppr € C - B, qiam(B) for any
B,B' € Wy with (2)BN ($)B' # 0.

We will see that Lemma 8.1 follows easily from the next result.

Lemma 8.2. There exist constants € € (0,1), £* > {,,, and R* > 1, de-
pending only on m and n, such that the following holds. If B € Wy satisfies
diam(B) < ¢* diam(By), and if the subspace V is as in Lemma 7.1, then oo« (z) is
(z,diam(B), R*)-transverse to V for any B € Wy and = € 6B.

Lemma 8.2 is difficult for subtle reasons: We know from condition (c) of the
Main Decomposition Lemma that o(z) is (z, diam(B), R)-transverse to V for any
B € W and = € 8B, where R = R, - (6C.)™. But it is not apparent why V
would also be transverse to oy(z), which generally can be significantly larger than
o(z). The key point in the proof of this proposition is that we are able to use
the validity of the Local Finiteness Principle on the balls B in W to establish a
two-sided relationship between the sets o(x) and oy« (z) (for sufficiently large £*)
as long as we are willing to “blur” these sets at a lengthscale larger than diam(B).
Since transversality is stable under “blurrings” (e.g., see Lemma 3.3), the result
will follow.

The proof of Lemma 8.2 is the most technical part of the paper. We next
explain how Lemma 8.1 follows from Lemma 8.2. After this we will establish a
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preparatory lemma, Lemma 8.3, and finally give the proof of Lemma 8.2 in section
8.2.

Proof of Lemma 8.1. We fix ¢* € (0,1) and ¢* as in Lemma 8.2, and define ¢ =
£* 4+ 2. We consider the following two situations:

e (Case 1: diam(B) > €* diam(By) for all B € W).

e Case 2: There exists B € W), with diam(B) < €* diam(By).

Fix B, B’ € Wy with $BN 2B’ # (). In Case 1, by condition (f) in Lemma 7.1,
we have

Pp — Pp = (PB - PO) + (PO - PB’) € C**BzB,diam(Bo) + C**BZB/,diam(Bg)'

Note that |z — zp/| < 2diam(By) (recall zp,zp: € 2Bp), and so by (2.5),
B. ., diam(By) C 5’2m_1BZB,diam(BO). Since diam(B) > ¢* diam(By), we conclude
that B., diam(By) C (€°)7"B., diam(p)- When put together, we learn that Pp —
Pp € Cus - (6)"™(1 + éZm_l)BzB’diam(B), which gives the desired result in this
case.

Now suppose that Case 2 holds. By property (g) in Lemma 7.1, we have

Pp — Ppr = (Pp — PRy) + (Po— Ppr) € V.
By property (1) we have Pg: € Tyx_1(2p/, f,C). By Lemma 2.6, there exists

Pp € Ty _5(2B, f,C) with Pg — Pg e C'- B., diam(B)- Furthermore, since Pg e
Ly _o(zB, [,C) and Pp € Iz _4(2B, f,C) C T'yx_s(28, f,C), we have

pB —Pge2C- O’g#_Q(ZB) =2C - O'g*(ZB),
where we have used the fact that {# —2 > ¢ — 2 = ¢*. Thus,

PB _PB’ = (PB —PB)+(PB _PB’) c 20'0’@*(23) +C/'BZB,diam(B)7
and hence
Pg — Pg € (2C - 04 (25) + C" - B.,s5)NV C C" (o4 (2B) + BZB,dia.m(B)) nVv.

Since oy« (2p) is (2, diam(B), R*)-transverse to V (see Lemma 8.2), also oy (25)+

B., diam(B) is (2B, diam(B), R**)-transverse to V, with R** = R* 43 - (R*)? (see
Lemma 3.3). In particular,

(O-K* (ZB) + BZB7diam(B)) nvVcRr™. BzB,diam(B)-

Therefore, Pg—Pp: € C" R*™ B, giam(B), Which concludes the proof of the lemma.
O
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8.1. Finiteness principles for set unions with weakly controlled con-
stants

Through the use of Lemma 2.16 and Helly’s theorem we will obtain the following
result: If a ball B C R" is covered by a collection of balls each of which satisfies
a Local Finiteness Principle, then B satisfies a Local Finiteness Principle with
constants that may depend on the cardinality of the cover. We should remark that
we lack any control on the cardinality of the cover Wy of By, and so this type
of result cannot be used to obtain a Local Finiteness Principle on By with any
control on the constants. This lemma will be used in the next subsection, however,
to obtain a local finiteness principle on a family of intermediate balls that are much
larger than the balls of the cover, yet small when compared to By.

Lemma 8.3. Fizx Cy > 1 and ¢y € Z>o. Let W be a Whitney cover of a ball
B C R" with cardinality N = #W. If the Local Finiteness Principle holds on gB
with constants Cy and £y, for all B € W, then the Local Finiteness Principle holds
on B with constants Ci and V1 == by + f%}, where C1 depends only on
Cy, m, and n — in particular, Cy is independent of the cardinality N of the cover.

Proof. Let f : E — Rand M > 0. For any B € W and = € ngehave
Lo, f, M) C T gnsp(x, f,CoM) thanks to the Local Finiteness Principle on SB.

Fix a point zg € B. Our goal is to prove that
(81) Fgl(l'o,f,M) CFEQ§($0afaclM)7

for a constant Cy > 1, to be determined later.
For each B € W, we fix zp € gB so that

6
(8.2) Tp =Ty < xg € SB;

otherwise, if 2o ¢ B then zp is an arbitrary element of £B.

Fix an arbitrary element P € Ty, (zg, f, M). We will define a family of auxiliary
convex sets to which we will apply Helly’s theorem and obtain the desired conclu-
sion. The convex sets will belong to the vector space P consisting of N-tuples of
(m — 1)-st order Taylor polynomials indexed by the elements of the cover W. For
each S C E, the convex set (S, M) C PV is defined by

K(S, M) :={(Joy F)pew : F € C" VY R"), |F|| <M, F=fonS, J,,FF =P}

If #(S) < (D + 1) then P € Ty, (xo, f, M) C T's(zo, f, M). Thus, there exists
F e C™ LY R") with |[F|| < M, F = f on S, and J,,F = P. Therefore,
(Jop F)ew € K(S, M). In particular, K(S, M) # 0 if #(S) < (D + 1)%.

If S,---,8; C E, with J :=dim(PY)+1=D-N +1, then

K(S;,M) > K(S,M), for S=5U---US,.
1

J
Jj=
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If furthermore #(5;) < (D+1)% for every j, then #(S) < J-(D+1)% < (D+1)%,
and consequently by the previous remark K(S, M) # (). Therefore, given arbitrary
subsets S, ,S; C E (J = dim(PV) + 1) with #(S5;) < (D +1)% for each j, we
have

J
K(S;, M) # 0.
j=1
Therefore, by Helly’s theorem,
K= N K(S, M) # 0.
SCE
#(S)<(D+1)%0

Fix an arbitrary element (Pg)pgew € K. By definition of K,

() for any S C E with #(S) < (D+1)% there exists a function F'¥ € C™~1L1(R")
with ||F5|| < M, F¥ = fon S, J,,F® = P, and J,,F° = Pg for all B € W.
From this condition we will establish the following properties:

(a) Pp = Pif zg € B,

(b) |PB - PB/|wB,diam(B) < C'M whenever gB N gB/ 7£ @,

(c) for each B € W there exists Fz € C™~1L1(R") such that |[Fg|| < CoM, Fp = f
on £ N gB, and J,,Fp = Pp.

For the proof of (a) and (b) take S = @ in (x). Then Pg = J,, F* = J,, F = P
whenever 2 € 2B (see (8.2)), which yields (a). For (b), note that 5 € ¢B, 25 €
SB’, and BN 2B’ # 0, and hence by the definition of Whitney covers, diam(B)
and diam(B’) differ by a factor of at most 8. Thus, |zp — zp/| < £ diam(B) +
§ diam(B’) < 11diam(B). Thus, by (2.1) and Taylor’s theorem (see (2.2)),

|PB - PB"IB,diam(B) < 11m|PB - PB’lzB,ll diam(B)
=11"|J,,F’ - JxB,F®|xB,11 diam(B)
<11™Crp||FY| < CM.

For the proof of (¢), note that () implies Pg € I'y,(zp, f, M) for each B € W.
By assumption, the Local Finiteness Principle holds on gB with constants Cy and
lo, and therefore Pg € I'gqsp(2p, f,CoM) for each B € W. This completes the
proof of (c).

Fix a partition of unity {65} adapted to the Whitney cover W as in Lemma

2.15, and set F' = ) 5., 0pFp. By use of properties (b) and (c), we conclude
via Lemma 2.16 that (A) ||F||Cm,1.1(§) < CM and (B) F = f on EN B. Since
suppflp C gB, we learn that J,,0p = 0 if 2 ¢ %B; on the other hand, J,,Fp =
JopFp = P = P if zy € B (see (8.2)). Thus, if we compare the following sums
term-by-term, we obtain the identity

JeoF =Y Joy0B Ouy JugF = Y Joy0B Ou, P.
Bew Bew

Recall that > 5., 05 = 1 on B and zo € B. Thus, Y new JeofB = Juo (1) = 1.
Therefore, (C) J,,F = P. By a standard technique we extend the function F €
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C™=L1(B) to a function in C™~L1(R") with norm bounded by ClFlgm-11(3) <
C'M — by abuse of notation, we denote this extension by the same symbol F. Then
(D) |F|| < C"M. Furthermore, (B) and (C) continue to hold for this extension.
From (B),(C), and (D) we conclude that P € I, 5(zo, f, C’M). This finishes the
proof of (8.1).

O

8.2. Proof of Lemma 8.2

We need to generate an upper containment on og(z) NV for a suitable integer
constant £. Recall from property (c) in Lemma 7.1, o(2) NV C Ryuge - By diam(B)
for x € 8B and B € W. To generate a similar containment for oy(z) D o(x) we
introduce the idea of “keystone balls” which are elements of the cover for which we
may obtain a local finiteness principle on a dilate of the balls by a large constant
factor (much larger than the constants C, Cy, R,,,,., etc.). By an appropriate choice
of this factor, we can deduce information about the shape of o¢(z) (through the
existence of a transverse subspace) on a neighborhood of a keystone ball. This
information can then be passed along to the remaining elements of the cover due
to the “quasicontinuity” of the sets o¢(x) (Lemma 2.6) and the fact that every ball
is close to a keystone ball (as established in Lemma 8.6).

8.2.1. Keystone balls. Let ¢* € (0, 300} be a free parameter, which will later be
fixed to be a small enough constant determined by m and n. In what follows all
constants may depend on m and n. If a constant depends additionally on €* we
will be explicit and write it as C(€*), Co(e*), etc. Set A = (3¢*)~2 > 10.

By hypothesis of Lemma 8.2, diam(B) < ¢* diam(By) for some B € W,

Definition 8.4. A ball B¥ € W is keystone if diam(B) > i diam(B¥) for every
B € W with BN A-B#* £ (. Write W# C W to denote the set of all keystone
balls.

Lemma 8.5. For each ball B € W there exists a keystone ball B# € W# with
B# C 3AB, dist(B, B¥) < 2Adiam(B), and diam(B#) < diam(B).

Proof. If B is itself keystone, take B# = B to establish the result. Otherwise, let
B; = B. Since Bj is not keystone there exists B, € W with By N AB; # 0 and
diam(Bs) < % diam(B;). Similarly, if Bs is not keystone there exists By € W with
B3 N AB; # () and diam(Bs) < 3 diam(B). We continue to iterate this process.
As W is finite, the process must terminate after finitely many steps. By iteration,
there exists a sequence of balls By, By, -+ ,By € W with B; N AB;_; # () and
diam(B;) < § diam(B;_1) for all j, and with B; keystone. As B; N AB;_1 # () we
have dist(B;_1, B;) < 4 diam(B;_1). Now estimate

J
dist(B1, By) < Zdlst i1, B +Zd1am <(A/24+1) Zdlam )
Jj=2 j=1

IN

(A +2)diam(B;) < 2Ad1am(Bl).
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Since diam(B;) < diam(By ), we have B; C (24+6)B; C 3AB;. We set B¥ = B
and this finishes the proof. a

We define a mapping x : Wy — W, By applying Lemma 8.5, we obtain a
keystone ball B# with B# c 3AB and dlam(B#) < dlam(B) For each B € W,
we proceed as follows:

o If diam(B) > ¢* diam(By) (B is medium-sized), set k(B) := B#.

o If diam(B) < ¢*diam(By) (B is small-sized), Lemma 8.5 yields a keystone
ball B# with B# C 3AB; set x(B) := B*.

Lemma 8.6. The mapping k : Wy — W7 satisfies the following properties: For
any B € Wy, (a) dist(B, k(B)) < Cydiam(B), for Cy = Cy(€*), (b) diam(k(B)) <
diam(B), and (¢) A-k(B) C 2By.

Proof. Suppose B is medium-sized. Then k(B) = B#. As diam(B) > € diam(By)
and B C By, we deduce that 9(¢*)"'B D By D B; furthermore, B# C 3AB.
Thus, B#  27(e*)"'AB, which gives (a) for Cy = 27(¢*) "L A. Also, diam(B#) <
diam(B) < €* diam(B,) < diam(B), which establishes (b). Finally, since B C By
and diam(B) < ¢* diam(By), we have AB# C 3A42B C (1 + 3¢*A2)B, = 2B,
which gives (c).

Now suppose B is small-sized. Then we defined x(B) = B¥, where B¥ is
related to B as in Lemma 8.5. In particular, dist(B, B#) < 2Adiam(B) and
diam(B#) < diam(B), yielding (a) and (b). Furthermore, B# C 3AB, and from
B C By and diam(B) < €*diam(By) we deduce that AB#* C 3A42B C (1 +
3e* A?) By = 2By, yielding (c). O

This completes the description of the geometric relationship between the balls
of Wy and keystone balls in W. We will next need a lemma about the shape of
o¢(zp#) for a keystone ball B¥.

Lemma 8.7. Let B¥ € W be a keystone ball with AB* C 2By. Then there
exists an integer constant £(e*) > £,,, determined by €*, m, and n, and a constant
C > 1 determined by m and n, so that the Local Finiteness Principle holds on
AB# with constants C and ((e*), namely, Loey(z, f,M) C Tgrap#(z, f,CM)
for all x € AB# and M > 0. In particular, by taking f =0 and M = 1, we have
oyey(w) CC-o(x, EN AB?#) for any x € AB¥.

Proof. Let W(B#) be the collection of all elements of W that intersect AB#. Since
W is a Whitney cover of 2By and AB# C 2By, we have that W(B#) is a Whitney
cover of AB#. The Local Finiteness Principle holds on gB for all B € W(B#),
with constants C.4 and £,, (see Lemma 7.2). Therefore, the Local Finiteness
Principle holds on AB# with the constant C; determined by m and n, and the

constant £ = 0,4 + f%], where N = #W(B7#); see Lemma 8.3.

We will estimate N = #W(B#) using a volume comparison bound. By the
definition of keystone balls, diam(B) > 1 diam(B#) for all B € W(B#) — further-
more, we claim that diam(B) < 10A diam(B#). We proceed by contradiction. If
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diam(B) > 10A diam(B#) for some B € W(B#) then BNAB# # (), which implies
that $B N B# # (. Then diam(B) < 8diam(B#) thanks to the definition of a
Whitney cover, which gives a contradiction.

For any B € W(B#) we have BN AB# # () and diam(B) < 10A diam(B¥),
and therefore B C 30AB¥.

We can estimate the volume of Q := pepy (54 +B in two ways. First, note
that Vol(2) < Vol(30AB#) = (30A4)"Vol(B#). Next, using that the collection
{1B}ew is pairwise disjoint, N = #W(B#), and diam(B) > % diam(B#)VB €
W(B#), we have

Vol(Q) = > 37"Vol(B) > N6~ "Vol(B¥).
BeW(B#)

We conclude that N < (1804)" < 180" (¢*)~2. Therefore, £; < l(€*) := £yq +

log(D-180™ ()~ 3 +1)
|— . log(D+1) -‘ O

Lemma 8.8. If the parameter €* is picked sufficiently small depending on m and
n, and if A = (36*)7% in the definition of keystone balls, then for any keystone
ball B#* € W# such that AB¥* C 2B, we have

o0(2p#) NV C B, , Adiam#), for £=1L(") > L.

Proof. By Lemma 8.7, and Lemma 2.9 (applied to the ball AB# and point z =
Zp# € %AB#),

0@(5*)(23#, E) N BzB#,A diam(B#) - (CU('ZB#7E N AB#)) N BZB#,Adiam(B#)
C 030-(23#7E)7

for a constant C3 determined by m and n. Dropping the dependence on E, we
have shown that

(8.3) ou(e)(2p#) N B, _, Adiam(B#) C C30(2p#).

By property (c) in Lemma 7.1, o(2p#) is (zp#,Csx diam(B#), R,,,,.)-transverse
to V. Hence, o(zp#) NV C RywB. , o, diam#) C BB, _, diam(n#), for R =
Rz (Cy)™. Combined with (8.3), this implies

UZ(ZB#) nvn BZB#,Adiam(B#) C C30(ZB#) nvc C3RBZB#,diam(B#)
- BZB#,CBEdiam(B#y

For a sufficiently small choice of €* we have A = (3¢*) 3 > 2031?, and there-

fore the above containment implies that o(zp#) NV C B, o faiamp#) C
B#

BzB#,Adiam(B#)' O
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8.2.2. Finishing the proof of Lemma 8.2. We fix A = (36*)’%, e =¢e*(m,n),
and £ = {(e*) > {4 via Lemma 8.8. The constants €*, A and ¢ are determined
only by m and n.

Fix B € W, and z € 6B. Consider the keystone ball B# € W given by B# =
x(B) which satisfies the conditions in Lemma 8.6, namely, diam(B#) < diam(B),
dist(B#¥, B) < Cydiam(B), and AB# C 2By. By Lemma 8.8,

(84) O-Z(zB#) nv c BzB#,Adiam(B#) - AmBzB#,diam(B#) - AmBzB#,diam(B)'

Next, |z — zp#| < 6diam(B) + dist(B, B#) + ¢ diam(B#) < C; diam(B) for
C5 = C4 + 8. Thus, Lemma 2.6 gives

oe41(x) Cor(2p#) + CrB._, 05 diamB) C 0e(2p#) + CrCF" B, _, diam(B)-

Recall that property (c) in the Main Decomposition Lemma states that o(zp#)
is (2p#, 040, Ry,.)-transverse to V for all § € [diam(B#),diam(By)]. We take
§ = diam(B) in this statement, and apply Lemma 3.7 to deduce that o(zg#) is
(zp#,diam(B), Ry)-transverse to V, for Ry = Ry, - (Cx)™. Thus, in particular,

B., ., diamB)/V C Ri-(0(2p#)NB._, diam(B))/V C Ri-(0e(2p#)NB._, diam(B))/V-

Combined with (8.4), this shows that o¢(zp#) is (zp#, diam(B), Ry)-transverse to
V, for Ry = max{Ri, A™}. Also, by Lemma 3.3, 0¢(z2p#) + CrC5' B, _, diam(B) s
(2p#,diam(B), R3)-transverse to V, for R3 = Ry + 3R3CTCP*. We conclude that
oe1(x) NV C (0e(2p#) + CrCS" B, _, diamB)) NV C R3B._, diam(B)

(8.5)
C R4Bm,diam(B)7

for Ry = Rgé’Cg”_l. Here, (2.5) and |z — zp#| < C5diam(B) are used to obtain
the last containment.

On the other hand, property (c) of the Main Decomposition Lemma shows that
o(z)is (z,6C, diam(B), Ry,..)-transverse to V, and hence o (z) is (z, diam(B), R;)-
transverse to V, for Ry = Ry, - (6C%)™ (by Lemma 3.7). In particular,

(86) Bm,diam(B)/V C Rl : (U(LC) N Bm,diam(B))/V C Rl : (Uz+1($) N Bm,diam(B))/V
Combining (8.5) and (8.6), we see that o,y1(25) is (zp, diam(B), max{R1, R4})-

transverse to V. This finishes the proof of Lemma 8.2, with ¢* = €¢*(m,n), £* =
(") + 1, and R* = max{R, R4}.

9. The Main Induction Argument III: Putting it all together

Here we finish the proof of the containment (6.4). Namely, for suitable constants
(% € Z>o and C# > 1, we will prove

Ty# (20, f,1) C Tpnp, (20, f,C*), forallazg € By, f: E—R.
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This will conclude the proof of the Local Finiteness Principle on By, and complete
the Main Induction Argument.

Continuing with the argument outlined in the beginning of section 8, we fix
Py € Ty# (g, f,1). We apply the Main Decomposition Lemma to the data xq, By,
E, f, ¢#, and P, to obtain a Whitney cover W of 2By, a DTI subspace V C P,
and families { Pg}gew and {zp}pecw. Recall that Wy C W is a finite cover of By.

We define ¢# = ¢, where ¢ > {,,, is defined via Lemma 8.1.

Recall that condition (f) in the Main Decomposition Lemma states that Pg €
Ty#_1(2p, f,C) for all B € W,. By Lemma 7.2 and the fact that £# — 1 > £, it
follows that Pp € I'p#_1(2, f,C) CT,4(28, f,C) CTprep(zp, f,C - Coa)- So,

Pp e FEmgB(Z& f,C-C,y) for all B € W.

Recall that zp € B for all B € W. By definition of Ipasp(---), there exists
Fp € C™~LH(R") with

9.1
( ) ”FB” <C-Cog.

{FB = fon EN(6/5)- B, J.,Fg = Pp, and
Since ¢# = /, by Lemma 8.1 we conclude that
9.2)

— 6 6
| JopFp — J.p Frlsp diam(s) < C whenever B, B € Wy, (5) -Bn (3) -B' #0).

B/

Let {65} Bew, be a partition of unity on By subordinate to the cover Wy, as in
Lemma 2.15. Define

F = Z Fplp on By.
BeW,
By Lemma 2.16 (and the conditions (9.1) and (9.2)), F € C™ L1(By) satisfies
|Fllem-11(By) < C"-Coq and F' = f on EN By. Recall the points {25} pew
possess the additional property that zp = zg if g € %B, and the polynomials
{Pg}Bey possess the additional property that Pg = Py if z¢ € gB (see condition
(e) in Lemma 7.1). Thus, J,,Fp = P, whenever zy € $B. Therefore,

JeoF'= > Ly(Fels)= > JoFB O o 08
BeWy:zo€SB BeWy:zo€ LB

= > PO Jebp =P Oy l=h.
BEWo:xoegB

We now extend the function F' to all of R™ by a classical extension technique
(e.g., Stein’s extension theorem). This gives a function F' € C™ LY(R™) with
|F|| < Cl|Fllem-11(By) < C" - Cq and F = F on By. In particular, F = f on
E N By and Jmoﬁ = Py (since z¢ € By). Thus, Py € T'gnp, (z0, f,C’). We finally
define C# = C" - C,,. Since Py € Tyx (w0, f,1) was arbitrary, this finishes the

proof of the containment (6.4).
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9.1. The dependence of constants on complexity

In order to obtain the explicit dependence of the constants in Theorem 1.2 on
the complexity of E, we will need to track the dependence on K of the constants
(# = (#(K) and C# = C#(K) in the Local Main Lemma for K; see Remark 5.7.

It is clear that the constant C# = C#(K) has the form C# = Const™, for a
universal constant Const. Indeed, when we pass from the Local Main Lemma for
K —1 to the Local Main Lemma for K, the constant C# = C#(K) takes the form
C#* =C"-C,4, where C,,y = C#(K — 1) and C" is a universal constant.

In order to determine the dependence of £# = ¢#(K) on K, we need to deter-
mine how the constant ¢ in Lemma 8.1 is chosen. In fact, in section 8.2.2 we see
that £ is defined to be £(€*) for a particular choice of €* determined by m and n. By

1og(D-180"(e*)*%+1)].
log(D+1)
Since we defined ¢# = ¢ in the previous section, and since £, = (# (K —1), we
learn that ¢# depends linearly on K.

inspection of the proof of Lemma 8.7, we have £(€*) := £ 4+ [
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