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ABSTRACT: Efficient organic photovoltaics (OPVs) require broadband charge Donor _ Acceptor
photogeneration with near-unity quantum yield. This can only be achieved by l P\ \

exploiting all pathways that generate charge. Electron transfer from organic donors to
acceptors has been well-studied and is considered the primary path to charge
photogeneration in OPVs. In contrast, much less is known about the hole transfer A
pathway. Here we study charge photogeneration in an archetypal system comprising <
tetraphenyldibenzoperiflanthene:C,, blends using our recently developed multispectral
two-dimensional electronic spectroscopy (M-2DES), supported by time-dependent
density functional theory and fully quantum-mechanical Fermi’s golden rule rate
calculations. Our approach identifies in real time two rapid charge transfer pathways
that are confirmed through computational analysis. Surprisingly, we find that both
electron and hole transfer occur with comparable rates and efficiencies, facilitated by
donor—acceptor electronic interactions. Our results highlight the importance of the hole transfer pathway for optimizing the
efficiency of OPV devices employing small-molecule heterojunctions.

rganic photovoltaics (OPVs) commonly employ a electron transfer following energy transfer from fullerene to the

donor:fullerene acceptor blend heterojunction (HJ) for donor can also contribute to charge generation. These findings
light harvesting and charge generation. The charge generation await further verification and generalization to other OPV
process begins with absorption of a photon by either the donor materials by real-time characterization techniques.
or acceptor, forming an exciton. The exciton migrates to the Here we combine multispectral two-dimensional electronic
donor—acceptor junction where the electron transfers to the spectroscopy (M-2DES) with time-dependent density func-
acceptor or the hole to the donor. Hence, the charge transfer tional theory (TD-DFT) and rate theory to elucidate the
(CT) process is integral to photogeneration. To further mechanisms of charge transfer at donor—acceptor interfaces.

improve the device efficiency, therefore, an understanding of
the photophysical processes leading to CT is essential.' > Due
to the relatively low extinction coeflicients of fullerenes in the
solar spectral range, alternative CT pathways initiated by
photoexcitation in the acceptor are often neglected. This
concept has been challenged by several reports showing that
low-donor-content devices (<10% weight ratio) can achieve
similar or even higher-power-conversion efficiencies than
higher-donor-content devices, >~ highlighting the impor-
tance of considering the mechanism of charge separation via
the hole transfer pathway. Recently, several groups have
reported the spectral dependence of charge generation yields
when exciting the fullerene excitonic states in the ultraviolet
and provided further evidence for the hole transfer path-

2DES has emerged as an effective tool to investigate
photoexcitation dynamics in complex materials such as
photosynthetic systems,'”~>* organic semiconducting materi-
als,”*** and quantum dots.”® Recently, it has been used to
uncover mechanisms of electron transfer in conjugated
polymer/fullerene blends,”**>*”** although studies on hole
transfer are still lacking. TD-DFT electronic structure
calculations of dyad models have also been used to simulate
complex interfacial processes in OPVs.””*' In this context,
long-range interactions and polarization effects must be
accounted for to achieve a reliable description of interfacial
CT states.”>>* In this study, we employ an approach based on
screened-range-separated hybrid functionals (SRSH) recently

ay.3’9_12 Armin and co-workers'® have used a two-diode shown to accurately address condensed phase effects on
model to successfully describe the internal quantum efliciency
in the visible range and propose that the hole transfer pathway Received: January 7, 2020
is independent of excitation wavelength. Recent work on OPVs Accepted: February 7, 2020
employing nonfullerene acceptors have highlighted the Published: February 7, 2020

potential for exploiting the hole transfer pathway.'’~'

Furthermore, Kandada and co-workers have reported'® that
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Figure 1. Absorptive 2DES of the DBP:C,, blends, alongside with the absorption, pump, and probe spectra. (a) 2DES of 1:1 DBP:C,, blend.
Contour interval: $% of the maximum amplitude. (b) 2DES of 1:8 DBP:C,, blend. Contour interval: $% of the maximum amplitude in the visible
2DES and 10% of the maximum amplitude in near-IR 2DES. Dashed lines: 0—0 and 0—1 transitions of the DBP excitonic peaks. Blue solid lines to
the left and on top of 2DES: absorption spectra of the DBP:C, blends. Shaded pink: pump and probe spectra.

ground state transport properties34 and excited state properties
of solvated pigments.*>*® The polarization-consistent approach
invokes SRSH within a polarizable continuum model (PCM)
in TD-DFT calculations of the excited states. Electronic
transition rate constants are then obtained following Fermi’s
golden rule””””*® based on the first-principles SRSH-PCM
energy parameters. We apply this comprehensive approach to
understand charge photogeneration in the archetypal donor—
acceptor system comprising dilute tetraphenyldibenzoperiflan-
thene:fullerene (DBP:C.,) blends.’

Elucidating the kinetics of hole transfer in DBP:C,, blends is
complicated by the overlapping absorption spectra of the
constituents. The high-time and -frequency resolution of 2DES
is ideally suited for resolving the spectral signatures of different
processes that involve separate components of the bulk
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heterojunction (BHJ) blend.””** More specifically, a 2D
frequency spectrum is a map that correlates the photoexcited
and the probed states. Compared with conventional pump—
probe spectroscopy, the additional excitation axis in 2DES
enables direct monitoring of the kinetics of charge generation
starting from different initial states. In 2DES, the photoexcited
dynamics are encoded in the evolution of three signals: the
ground state bleaching (GSB), stimulated emission (SE), and
photoinduced absorption (PA). GSB is the nonlinear analog of
linear absorption, revealing the loss of ground state molecules
due to photoexcitation or energy or charge transfer. SE is
analogous to fluorescence or phosphorescence of the excited
molecules and appears at slightly longer wavelengths than GSB
due to vibrational relaxation. PA reveals higher-lying
absorptions from excited states including excitons, CT states,

https://dx.doi.org/10.1021/acs.jpclett.0c00058
J. Phys. Chem. Lett. 2020, 11, 2203—-2210
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Figure 2. Global-target analysis of the 1:1 DBP:C,, blend. (a) Species-associated spectra of two DBP excitons (S1 and S2) and the CT product
(S3). Contour interval: 10% of the maximum amplitude (A), which is displayed in the top-left corner of each plot. Dashed lines: 0—0 and 0—1
transitions of the DBP excitonic peaks. Red solid lines to the left and on top of 2DES: absorption spectra of the blend. Shaded pink: pump and
probe spectra. (b) Kinetic model with two electron transfer pathways used in the analysis and the fitted time traces for two excitons and the CT

product.

and polarons. A global analysis of the three signals is often
required to establish a complete kinetic map of a particular
dynamical process. One-color 2DES, which employs the same
pump and probe pulses in the visible regime, has been used to
investigate electron transfer in OPVs.>* However, it is desirable
to extend the accessible frequency range from the visible to the
near-infrared (IR) where PA signals of the organic donor and
hole polarons are located.*' ~*

Here we apply multispectral 2DES (M-2DES) using both
visible and near-IR probes to investigate charge transfer in the
DBP:C, blends. Figure lab shows the respective absorptive
M-2DES spectra of 1:1 and 1:8 DBP:C,, blend films at several
different delays following excitation. At 0.1 ps, the 2D spectra
of both blends exhibit a similar pattern of positive diagonal and
cross peaks at ~610 and ~570 nm, which are attributed to
GSB and SE signals associated with the dominant DBP
transitions (i.e, $;** = S¢*® and S,*' — S*°, see Figure S1 and
Sections S1 and S2). A negative signal is observed at 0.1 ps, at
detection wavelengths spanning 800—1000 nm, and is assigned
to PA of the DBP and C,, consistent with pump—probe
(Figure S2) and 2DES (Figure S3) measurements of neat
films. These assignments are also consistent with our SRSH-
PCM calculations (see Section S2 of SI). In the 1:1 DBP:C,,
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blend, an additional SE corresponding to the S;*° — Sy
transition appears at A = 660 nm. This feature is absent in the
1:8 DBP:C,, blend, which instead shows a negative PA signal
from A = 625 to 700 nm. This peak is attributed to PA of C,
in accordance with previous studies** as well as our
calculations (Table S1 and Section S2) and pump—probe
measurements of C,, (Figure S2c).

After 3.0 ps, a negative-going feature from 640 to 690 nm
arises in the 1:1 DBP:C,, blend and lasts for >1 ns (see Figure
S4 in SI). This feature is present at earlier times in the 1:8
DBP:C,, blend. It is assigned to PA of the DBP hole polarons
based on several observations: (1) The rise of PA from A = 640
to 690 nm is only seen in blends, suggesting that this species is
generated via charge transfer. (2) The GSB of DBP decays
much slower than in a neat DBP film, which provides further
evidence for the formation of a relatively long-lived CT species.
(3) It has been reported that hole—polaron absorption in
several conjugated molecules appears at the red edge of the
absorption spectrum.”**"** For example, P3HT films have an
absorption peak at 604 nm and a hole polaron absorption band
from 640 to 700 nm.”**"** Absorption of fullerene electron
polarons has not been observed in this spectral range** and is
not expected according to our computational analysis (see

https://dx.doi.org/10.1021/acs.jpclett.0c00058
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Figure 3. Global-target analysis of the 1:8 DBP:C,, blend. (a) Species-associated spectra of the C,, exciton (S1), DBP exciton (S2), and CT
product (S3). Contour interval: 10% of the maximum amplitude (A), which is displayed in the top-left corner of each plot. Dashed lines: 0—0 and
0—1 transitions of the DBP excitonic peaks. Blue solid lines to the left and on top of 2DES: absorption spectra of the blend. (b) Kinetic model with
an electron transfer and a hole transfer pathway and the fitted time traces for S1, S2, and S3.

Section S2 and Table S1 of the SI). It has been proposed that
electroabsorption induced by the adjacent CT state or
polarons can also appear on the red side of the donor
absorption band.”*® However, we exclude this possibility,
since the transient absorption spectra of blends do not exhibit
the characteristic first derivative line shape associated with
electroabsorption, and broadening induced by the electric field
of DBP is likely weak owing to its nonexistent dipole moment.
In addition, we observe broad spectral band, long-lived PA
from 800 to 1000 nm with a lifetime >1 ns in both 1:1 and 1:8
DBP:C,, blends. We tentatively attribute this feature to
absorption by CT states owing to the similar formation and
decay rates with PA of the DBP hole polarons.

To quantitatively evaluate the charge generation pathways in
the blends, we employ global-target analysis*”** of the M-
2DES data, finding that three exponential terms are required to
obtain a satisfactory fit for both samples. We tested possible
models (see Figure SS and Section S$4 in the SI) and find that
the model in Figures 2 and 3 provides a consistent picture for
both blends. In the case of 1:1 DBP:C,, (Figure 2), S1
represents excitons photogenerated inside the DBP domain
that migrate to the DBP—C,, interface with a time constant of
0.5 + 0.2 ps. The aggregation of DBP into nanocrystalline
domains and its impact on delocalized electronic states at the
HJ interface have been investigated previously.”*’ Exciton S2,
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located near the DBP—C,, interface, can be generated either
by photoexcitation or energy transfer. It then dissociates into a
CT state with a time constant of 3.6 + 0.2 ps. Species-
associated spectra of both excitons are composed of GSB and
PA of DBP, suggesting that the majority of photons are
absorbed by DBP, as expected. The species-associated
spectrum for S3 exhibits GSB of DBP and PA of the DBP
hole polaron in the visible and CT state in the near-IR. This
finding suggests that both DBP excitons transition into the
same CT states.

Figure 3 shows global-target analysis results of the 1:8
DBP:C,, blend. In contrast to the 1:1 DBP:C,, blend, the S1
component exhibits very different spectral features as well as a
longer lifetime (1.0 & 0.1 ps). The species-associated spectrum
for S1 is dominated by PA from A = 580 to 680 nm, which
resembles PA of the neat C,, film (see Figure S2c in the SI).
We, therefore, attribute S1 to the C,, exciton, which is
expected to be present in considerably higher concentration in
the 1:8 DBP:C,, blend compared to the 1:1 DBP:C,, blend.
We find that S2 has a similar spectral profile and lifetime to S2
in the 1:1 DBP:C,, blend, which we attribute to DBP excitons
generated close to the heterointerface. Compared to the 1:1
blend, the 1:8 DBP:C;, blend contains a larger fraction of
interfacial and considerably fewer bulk DBP molecules. Thus,
the 1:8 DBP:C,, blends should exhibit predominantly

https://dx.doi.org/10.1021/acs.jpclett.0c00058
J. Phys. Chem. Lett. 2020, 11, 2203—-2210
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Figure 4. Interfacial excited electronic states of a dyad model and the simulated kinetics. (a) An energy-level diagram of 2$ interfacial excited
electronic states participating in the photoexcitation and the subsequent formation of two weakly coupled CT states. (b) Electron, hole, and exciton
transfer kinetics based on the calculated Fermi’s golden rule transition rates. Dotted and dashed black lines: simulated population dynamics
revealing the formation of the two lowest CT states on similar time scales. Cyan curve: combined population dynamics of the two lowest CT states,
which can be fit exponentially with time constants of 0.79 ps for donor excitons and 0.84 ps for acceptor excitons.

interfacial rather than bulk DBP excitons, indicating that our
interpretation of the S2 exciton is consistent in blends with
both high and low DBP concentrations. Interestingly, we find
that both DBP and C,, excitons dissociate into common CT
states whose spectral signatures appear in S3. Consistent with
our analysis of the 1:1 DBP:C, blend, S3 exhibits PA of the
DBP hole polaron in the visible and of the CT states in the
near-IR and has a similar lifetime. This finding suggests that
there also exists an efficient charge generation pathway
initiated by C,, photoexcitation, resulting in hole transfer
into DBP.

Next, we turn to the computational analysis of the interfacial
processes based on a DBP—C,, dyad model. Previous studies
have shown that CT states can be delocalized over both the
DBP and C;, domains and subsequently dissociate into charge-
separated states.” Here, we focus on the early time dynamics
following photoexcitation that involves multiple excited states.
As energy and charge transfer processes strongly depend on
the excitation energies, we employ the polarization-consistent
SRSH-PCM framework, which has been shown to yield
accurate excitation energies for both excited and CT states of
condensed phase molecular systems.”**° Our analysis consid-
ers a DBP—C,; complex in its optimized geometry, assuming
that delocalization effects become relevant only on later time
scales. Accounting for the spectral range of the pump laser
(Figure Sla), 25 relevant electronic states have been identified
as shown in Figure 4a, alongside the identification of the
specific configurations. Within the interfacial model of the
molecular complex, only a single excited DBP state (state S) is
found. We therefore interpret the occurrence of the second
exciton in the 1:1 DBP:C,, blend, which is absent in the 1:8
DBP:C,, blend, as due to delocalized excitons within the DBP
domains.”*’ A simulation of its fast transition (0.5 + 0.2 ps)
into an interfacial DBP—exciton would require a trimolecular
model that goes beyond the scope of this analysis.

Given the foregoing discussion, we restrict our analysis to
the interfacial excited donor state (state S, red). However,
several C,y-excited states can be seen: four bright states with
significant oscillator strengths are found (states 14, 17, 19, and
22, orange) as well as multiple dark states of low oscillator
strength (6—11, 18, blue). CT states are found throughout the
energy range (1—4, 12, 13, 15, 16, 20, 21, 2325, green). Most
notably, electronic densities of the four lowest CT states (1—4)
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differ from each other only on the anionic C,, site and are,
therefore, expected to share the same spectroscopic signature
as the DBP hole—polaron PA signal. Further information about
the states can be found in Table S2 of the SIL

To model the charge generation process, 600 transition rate
constants between all 25 states were calculated based on
Fermi’s golden rule (see SI, Section SS for further details). To
this end, molecular reorganization energies were approximated
by characteristic single-molecule deformations for the different
transition types. A kinetic model was applied to simulate the
population dynamics induced by either a donor or an acceptor
exciton reaching the interface. The results are shown in Figure
4b, where the populations of states that share the same
electronic properties, as indicated by color in Figure 4a, have
been grouped for the sake of clarity. The donor exciton (Figure
4b, left panel, red curve) shows a transition via electron
transfer into the two lowest CT states (cyan curve), whose
DBP hole polaron PA signatures are indistinguishable due to
the same electronic configuration on the DBP* side.
Furthermore, the combined population of both states is
described by a single exponential rise with a time constant of
0.8 ps, corresponding to the single CT rate of an
experimentally observed 3.6 & 0.2 ps (S2 to S3 in Figure 2).
Considering the limitations of the dyad approach and the
assumptions made within the Fermi’s golden rule approach
(e.g., the harmonic and perturbative approximations), we view
a deviation within 1 order of magnitude to be in reasonable
agreement.

A more complex picture is associated with C,, excitons.
Immediately upon population of the four C,y-localized excited
states (orange curve)—be it through photoexcitation or via
excitons reaching the donor:acceptor interface—several
transitions on the femtosecond time scale occur. These are
not resolved experimentally due to their ultrashort lifetimes
and the presence of coherent artifacts on this time scale. Two
decay channels are dominant: (1) exciton transfer toward the
energetically favored DBP site (red), and (2) intramolecular
relaxation into lower-lying dark excited C,, states (blue). Both
groups of states are transiently populated for approximately 1
ps. This indicates that eflicient Forster resonant energy transfer
(FRET) from bright C,, states (orange curves in Figure 4b,
right panel) toward the DBP (red) occurs at the interface,
which is suppressed for the dark C,, states (blue) due to their

https://dx.doi.org/10.1021/acs.jpclett.0c00058
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vanishing transition dipole moments. The subsequent slower
transitions populate the two lowest CT states (state 1 and 2,
cyan). More specifically, they correspond to both electron
transfer from the DBP-localized excited state (state S) with an
effective time constant of 1.8 ps (corresponding to S1 in the
experiment: 3.4 + 0.2 ps), and hole transfer from the C-
localized excited states (6 and 7) with a time constant of 0.7 ps
(S2 in the experiment: 1.0 + 0.2 ps), which is of the same time
scale as hole transport within the DBP domain as determined
in previous studies.’’ Note that the effective electron transfer
time appears to be larger than the direct electron transfer time
(0.8 ps) from DBP to C,, due to the repopulation of the DBP
excited state from higher-lying excited states. Overall, we find
that both pathways, originating in photoexcitation of either the
donor or the acceptor, contribute with approximately equal
efficiency to the charge generation process.

Ultrafast electron transfer in organic donor/acceptor blends
has been reported in previous studies,"***>*'~>* with the time
scale ranging from hundreds of femtoseconds to tens of
picoseconds. In the 1:1 DBP:C,, blend, we find that
excitons—either photoexcited within the DBP domain or at
the donor—acceptor interface—transition into CT states
within 34 + 02 ps. This finding is further verified by
computational analysis based on SRSH-PCM electronic
structure calculations and Fermi’s golden-rule-based transition
rate constants. A similar electron transfer process has also been
observed in the 1:8 DBP:C,, blend. As both types of DBP
excitons can be efficiently converted into common CT states,
we conclude that energy loss is limited by charge separation
and recombination but not by inefficient exciton diffusion to
the donor/acceptor interface or the initial CT step.

Previous studies have shown that hole transfer is an
important pathway for charge generation in the ultraviolet
where the sunlight is predominantly absorbed by full-
erenes.””™'? In the 1:8 DBP:C., blend, we find evidence for
a hole transfer pathway following the photoexcitation of Cy, in
the visible, which is nearly as likely as electron transfer. This
finding is consistent with the two-diode model that proposes
that the hole transfer pathway is independent of excitation
wavelength.'” We note that Kandada and co-workers reported
that charge generation originating from the PCBM exciton is
via electron transfer following energy transfer from PCBM to
P3HT." Our calculations show that such exciton transfer from
bright excited C,, states competes with intramolecular
relaxation to low-lying dark excited C,, states that cannot
undergo further Forster energy transfer. However, our
experiments show no evidence of such energy transfer. This
may be rooted in its predicted fast time scale (<0.1 ps), which
is inaccessible due to pulse-overlap artifacts,” and its spectral
signatures might be masked by the photogenerated DBP
excitons.

In summary, systematic analysis of charge transfer in
DBP:C, blends provides insight into the charge generation
mechanisms in this archetypal OPV system. 2DES studies
supported by Fermi’s golden rule calculations of transition
rates based on energies obtained using the SRSH-PCM
framework reveal that the hole transfer from the acceptor
significantly contributes to the high power-conversion
efficiency in the low-donor-content (1:8 DBP:C,,) blend.
The fast, 1 ps hole transfer rate indicates that no exciton
diffusion occurs prior to hole transfer. Previous X-ray
diffraction and transmission electron microscopy measure-
ments’ show that C, crystalline domains have a size of ~5 nm.

2208

These findings imply that C,, excitons are delocalized over the
crystalline domain. Such delocalization can facilitate hole
transfer and subsequent charge separation.”** Another
interesting finding is that the CT states are formed at similar
rates via both the electron transfer and the hole transfer
pathways. These CT states then dissociate into free charge
carriers or recombine to the ground state. Our results
underscore the importance of considering both electron and
hole transfer pathways in the design of next generation OPV
devices that minimize energy loss.
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