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ABSTRACT: In this work, we investigate the ability of different
quasiclassical mapping Hamiltonian methods to simulate the
dynamics of electronic transitions through conical intersections.
The analysis is carried out within the framework of the linear
vibronic coupling (LVC) model. The methods compared are the
Ehrenfest method, the symmetrical quasiclassical method, and
several variations of the linearized semiclassical (LSC) method,
including ones that are based on the recently introduced modified
representation of the identity operator. The accuracy of the various
methods is tested by comparing their predictions to quantum-
mechanically exact results obtained via the multiconfiguration time-
dependent Hartree (MCTDH) method. The LVC model is found to be a nontrivial benchmark model that can differentiate between
different approximate methods based on their accuracy better than previously used benchmark models. In the three systems studied,
two of the LSC methods are found to provide the most accurate description of electronic transitions through conical intersections.

1. INTRODUCTION
Conical intersections (CIs) are believed to play a central role
in many photochemical processes.1−12 Being able to calculate
the rates of electronic transitions through CIs in a reliable and
feasible manner is therefore key for understanding such
processes and developing rational design principles toward
controlling them. An exact fully quantum-mechanical simu-
lation of the dynamics of electronic transitions through CIs is
limited to relatively low-dimensional molecular systems or
simple model Hamiltonians.13−16 Thus, developing approx-
imate methods for simulating the dynamics of electronic
transitions through CIs in complex molecular systems is highly
desirable.
A wide variety of approximate methods that can be used for

simulating nonadiabatic dynamics in systems with CIs have
been proposed, including the Ehrenfest (mean-field) meth-
od,17 surface hopping methods,18−29 the mixed quantum-
classical Liouville (MQCL) method,30−37 and mapping
Hamiltonian (MH) approaches.13,37−55 These approximate
methods reduce the computational cost by describing the
dynamics of the nuclear degrees of freedom (DOF), and
sometimes also of the electronic DOF, in terms of classical-like
trajectories.
Approximate methods based on combining the MH

approach with quasiclassical (QC) approximations have
recently emerged as a promising approach toward modeling
nonadiabatic dynamics in complex molecular systems.49,56

Several variations of those QC/MH methods have been found
to be accurate for a variety of benchmark models, including the

spin-boson model, a Frenkel biexciton model, Tully models,
and a model for the Fenna−Matthews−Olson (FMO) light-
harvesting complex.49 Importantly, none of those models
include CIs. Our goal in this work is to extend the range of
applications of QC/MH methods to systems with CIs. We do
so in the context of the linear vibronic coupling (LVC) model
Hamiltonian.3,57 The choice of the LVC model Hamiltonian as
a benchmark for testing the ability of QC/MH methods to
describe the dynamics of electronic transitions through CIs is
motivated by the fact that it has been reported to provide a
rather accurate description of CI photophysics in many
polyatomic molecules and by the ability to calculate
quantum-mechanically exact electronic transition rates for it.
The analysis was performed on LVC Hamiltonians para-
metrized for three polyatomic systems: fulvene, the 2,6-
bis(methylene) adamantyl (BMA) radical cation, and the 2-
methylene-6-isopropylidene adamantyl (MIA) radical cation.
The choice of these systems was motivated by the availability
of ab initio parameter sets and the fact that these systems were
used in the past as benchmarks for equilibrium Fermi’s golden
rule (EQ-FGR), nonequilibrium Fermi’s golden rule (NE-

Received: February 20, 2020
Published: May 18, 2020

Articlepubs.acs.org/JCTC

© XXXX American Chemical Society
A

https://dx.doi.org/10.1021/acs.jctc.0c00177
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

Ei
ta

n 
G

ev
a 

on
 Ju

ne
 2

2,
 2

02
0 

at
 2

1:
40

:3
7 

(U
TC

).
Se

e 
ht

tp
s:

//p
ub

s.a
cs

.o
rg

/s
ha

rin
gg

ui
de

lin
es

 fo
r o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.



FGR) and linearized semiclassical (LSC) approximations with
EQ-FGR and NE-FGR.5,58 It should also be noted that these
systems represent the inverted region (fulvene), normal region
(BMA), and the vicinity of the transition point between those
two regions (MIA).
The rest of the article is organized as follows. The LVC

model and choice of initial state are described in section 2. The
various QC/MH methods tested and compared are outlined in
section 3. The results obtained by applying those QC/MH
methods to the aforementioned molecular systems described
by the LVC Hamiltonian are reported in section 4. Discussion
of the results is given in section 5. Concluding remarks are
given in section 6.

2. THE LINEAR VIBRONIC COUPLING (LVC) MODEL
AND CHOICE OF INITIAL STATE

The LVC model Hamiltonian is given by3,57

̂ = ̂ | ⟩⟨ | + ̂ | ⟩⟨ | + ̂ | ⟩⟨ | + ̂ | ⟩⟨ |H H H V VR R1 1 2 2 ( ) 1 2 ( ) 2 11 2 12 21
(1)
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Ĥj represents the nuclear Hamiltonian when the system is in
the electronic state |j⟩ (j = 1, 2), V12(R̂) = V21(R̂) are the
coupling terms between the two electronic states, and Nn is the
number of nuclear DOF. Boldfaced variables, for example, A,
indicate vector quantities, and a hat over a variable, for
example, B̂, indicates an operator quantity.
Within the LVC Hamiltonian, eq 1, the nuclear DOF are

given in terms of their mass-weighted coordinates, R̂ = (R̂1, ...,
R̂Nn

), and momenta, P̂ = (P̂1, ..., P̂Nn
). Importantly, the diabatic

potential energy surfaces (PESs), ̂V R( )jj , are assumed to be
harmonic and identical, except for a shift in equilibrium energy
and geometry. The electronic coupling terms, V12(R̂) =
V21(R̂), are assumed to be linear in the nuclear coordinates.
The fact that the electronic coupling terms are explicitly R̂-
dependent (i.e., in the non-Condon regime) is what makes it
possible for the LVC Hamiltonian to account for CIs.
We also note for future reference that the reaction free

energy and reorganization energy for the LVC model are given
by

∑
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Er > |ΔE| and Er < |ΔE| correspond to the Marcus normal and
inverted regions, respectively.
In what follows, we assume that the initial state of the overall

system is given by

ρ ρ σ̂ = ̂ ⊗ ̂(0) (0) (0)n (4)

where ρ̂n(0) and σ̂(0) are the reduced density operators that
describe the initial states of the nuclear DOF and electronic
DOF, respectively. The initial electronic state, σ̂(0), is assumed
to be given by |1⟩⟨1| or |2⟩⟨2|. The initial nuclear state, ρ̂n(0),
is assumed to be given by ρ̂n(0) = e−βĤ2/Tr{e−βĤ2} if σ̂(0) = |
1⟩⟨1| or ρ̂n(0) = e−βĤ1/Tr{e−βĤ1} if σ̂(0) = |2⟩⟨2|. Here, β = 1/
(kBT) where T is the absolute temperature and kB is the
Boltzmann constant. It should be noted that this choice
corresponds to a nonequilibrium initial state since the nuclear
DOF are in equilibrium with respect to one electronic state
while the electronic DOF are described by the other state.
The electronic density operator at a later time t is given by

σ σ σ σ
σ

̂ = | ⟩⟨ | + | ⟩⟨ | + | ⟩⟨ |
+ | ⟩⟨ |

t t t t

t

( ) ( ) 1 1 ( ) 2 2 ( ) 1 2

( ) 2 1
11 22 12

21 (5)

where

σ ρ α α= { ̂ | ⟩⟨ | | ⟩⟨ | }̂ ℏ − ̂ ℏt k j( ) Tr (0) e ejk
iHt iHt

n
/ /

(6)

Here, ρ̂n(0)|α⟩⟨α| is the aforementioned nonequilibrium initial
state. σjj(t) corresponds to the population of the jth electronic
state and σjk(t) (where j ≠ k) corresponds to the electronic
coherence between the jth and the kth electronic states. It
should be noted that the coherence, σ21(t), is relatively small
(∼10−3) for the systems under consideration in this article. As
a result, getting converged results for the coherence would
have required a significantly larger number of trajectories,
which we felt was not justified, given that population transfer
dynamics is often the main quantity of interest for systems with
CIs. In what follows, we will focus on the population dynamics,
that is, on the dynamics of σ11(t) and σ22(t).
As outlined in refs 48 and 49, the electronic population

operator can also be mapped as the sum of the identity
operator, 1̂, and a trace zero term, giving the alternative form

| ⟩⟨ | → ̂ + ̂a a
N

Q1 (1 )a
e (7)

where

∑̂ = ̂ − ̂
=

Q NM Ma aa
b

N

bbe
1

e

(8)

in which M̂aa ≡ |a⟩⟨a| and Ne is the number of electronic DOF.
Plugging eq 7 into eq 6 leads to the following alternative
expressions for the electronic density matrix elements:

σ

σ

= [ + + ]

= [ + ]

λλ
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̂ ̂ ̂ ̂
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M Q M

e
2 e 1

e
1

(9)

Here M̂ζλ ≡ |ζ⟩⟨λ|. The indices λ and ζ will be used
consistently throughout this paper to indicate indices that are
different (λ ≠ ζ). This should be contrasted to all other
indices, for example, j and k, which can be equal unless
explicitly stated otherwise.

3. THE MAPPING HAMILTONIAN (MH) APPROACH
AND QUASICLASSICAL (QC) APPROXIMATIONS

MH methods are based on casting the population and
coherence operators, {|j⟩⟨k|}, onto an isomorphic set of
operators, {Mjk(q̂, p̂)}:
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| ⟩⟨ | → ̂ ̂j k M q p( , )jk (10)

with {Mjk(q̂, p̂)} satisfying the same commutation relations as
{|j⟩⟨k|}.13,39,41,48−54,54,55,59−66 Here, {q̂, p̂} are a set of auxiliary
Cartesian coordinate and momentum operators.
In terms of the mapping operators, casting the electronic

density matrix elements in eq 6 yields

σ ≡ ̂ ̂αα
t C t( ) ( )jk M Mkj (11)

and in eq 9 yields

σ

σ
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= [ + ]
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e
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Here Q̂a = NeM̂aa − ∑b=1
Ne M̂bb, and the correlation function

ρ= { ̂ ̂ ̂ ̂ ̂ }̂ ̂C t A B t tq p q p( ) Tr (0) ( (0), ) ( ( ), ( ))AB n (13)

3.1. QC/MH Methods Based on the Linearized
Semiclassical (LSC) Approximation. Applying the LSC
approximation67 to a correlation function of the form given in
eq 13 results in the following QC approximation for CÂB̂(t):

∫ ∫ ∫ ∫π
ρ

= ℏ
× [ ̂ ]

C t
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R P q p

R P q p q p

( ) 1
2

d d d d

(0) ( , ) ( , ) ( , )

A B

N

t t

0 0 0 0

n W 0 0 W 0 0 W

W W

ikjjj y{zzz
(14)

Here, N = Ne + Nn is the total number of DOF of the overall
system. [ρ̂n(0)]W(R,P) is the Wigner transform of the nuclear
operator, ρ̂n(0). AW(q0, p0) and BW(qt, pt) are the Wigner
transforms of the electronic operators Â and B̂, respectively.
The general form of the Wigner transforms of a nuclear
operator D̂ and an electronic operator F̂ are given by

∫
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Applying the QC approximation to the correlation functions in
eqs 11 and 12 leads to two alternative QC/MH approx-
imations for the electronic density matrix elements, detailed in
the following.
The actual choice of mapping variables is not unique and

multiple choices of mapping variables have been proposed and
employed.54,55,64−66,68 In this work, we consider two such
choices, which are based on the Stock−Thoss−Meyer−Miller
mapping13,38 (the reader is referred to refs 69 and 56 for a
more detailed discussion of these two choices). The first
choice, which we refer to as mapping no. 1, leads to the
following QC mapping variables:

[ ̂ ] = ℏ + − ℏ

[ ̂ ] = ℏ − +
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(16)

The second choice, which we refer to as mapping no. 2, leads to
the following QC mapping variables:

ϕ
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We also note that the QC mapping no. 1 and mapping no. 2
approximations for Q̂a, eq 8, are given by

∑

∑
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Applying the above-mentioned QC/MH approximations to
eqs 11 or 12 yields the five different LSC-based methods
shown in Table 1 (see refs 56 and 48 for a more detailed

discussion). The first two methods, LSCI (also referred to as
PBME63) and LSCII (also referred to as LSC-IVR39) are based
on eq 11. Both LSCI and LSCII use mapping no. 2 for [M̂αα]W
but differ from each other in the mapping used for [M̂kj]W, with
LSCI using mapping no. 1 and LSCII using mapping no. 2.
The third through fifth LSC-based methods are based on eq

12 and were recently introduced by Saller et al.48 For the
correlation functions C[1̂]W[Q̂λ]W, C[1̂]W[M̂ζλ]W, C[Q̂α]W[Q̂λ]W, and
C[Q̂α]W[M̂ζλ]W [see eq 12], all three methods use mapping no. 2
for [Q̂λ]W and [M̂ζλ]W but differ in how they map the unity
operator and in the mapping used for [Q̂α]W. The third
method, referred to as mLSC/ϕ1ϕ1, maps the unity operator
onto 1 and uses mapping no. 1 for [Q̂α]W. The fourth method,
referred to as mLSC/ϕ1ϕ2, maps the unity operator onto 1 and
uses mapping no. 2 for [Q̂α]W. The fifth method, referred to as

Table 1. Summary of the Five LSC-Based QC/MH Methods
Used in This Papera

Methods Using σ(t) Based on Eq 11

C[M̂αα]W[M̂kj]W(t)

method [M̂αα]W mapping [M̂kj]W mapping

LSCI [M̂αα]W(II)(q,p) [M̂kj]W(I)(q,p)
LSCII [M̂αα]W(II)(q,p) [M̂kj]W(II)(q,p)

Methods Using σ(t) Based on Eq 12

C[Â]W[B̂]W(t)

[Â]W [B̂]W

method
[1̂]W

mapping
[Q̂λ]W
mapping

[Q̂α]W
mapping

[M̂kj]W
mapping

mLSC/
ϕ1ϕ1

1 [Q̂λ]W(I)(q,p) [Q̂λ]W(II)(q,p) [M̂kj]W(II)(q,p)

mLSC/
ϕ1ϕ2

1 [Q̂λ]W(II)(q,p) [Q̂λ]W(II)(q,p) [M̂kj]W(II)(q,p)

mLSC/
ϕ2ϕ2

2ℏϕ(q, p) [Q̂λ]W(II)(q,p) [Q̂λ]W(II)(q,p) [M̂kj]W(II)(q,p)

a[M̂]W
I is given in eq 16, [M̂]W

II is given in eq 17, [Q̂]W is given in eq
19, ϕ(q, p) is given in eq 18, and the general form of CAWBW

(t) is given
in eq 14.
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mLSC/ϕ2ϕ2, maps the unity operator onto 2ℏϕ(q, p) [with
ϕ(q, p) given in eq 18] and uses mapping no. 2 for [Q̂α]W.
In order to obtain the correlation functions in eqs 11 and 12,

the nuclear and electronic coordinates and momenta at time t,
{Rt, Pt, qt, pt}, need to be obtained from the initial state {R0,
P0, q0, p0}. The initial nuclear coordinates and momenta are
sampled from the Wigner transform of the initial nuclear
density matrix, ρ̂n(0) = e−βĤα/Tr{e−βĤα}:

∏ρ β ω
π

β ω
ω ω

[ ̂ ] = ℏ
ℏ

× − ℏ
ℏ Δ + + +α

α

=

P
R d R

R P(0) ( , )
tanh( /2)

exp
2tanh( /2)

2
1
2

i

N
i

i

i

i
i i i i

n W 0 0
1

2
2 2 ( )

n

Ä
Ç
ÅÅÅÅÅÅÅÅÅÅÅ ikjjjjj y{zzzzz

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑ
(20)

The initial electronic coordinates and momenta are sampled
based on the phase-space density ϕ(q0, p0) (see Table 1).
{Rt, Pt, qt, pt} is obtained from {R0, P0, q0, p0} via classical

dynamics as dictated by the following symmetrized mapping
Hamiltonian13,41

∑

∑

= + ̅ + ℏ [ − ̅ ]

× + + ℏ − +

=

=
≠

H V V V
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2

( )( )( )
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j j
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N
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2

1

2 2

, 1

e

e

(21)

It should be noted that the symmetrized form of the mapping
Hamiltonian, eq 21, is obtained by rewriting Vjj(R) as V̅(R) +
[Vjj(R) − V̅(R)], where ̅ = ∑ =V VR R( ) ( )

N j
N

jj
1

1e

e , and using the

closure relation, ∑j=1
Ne |j⟩⟨j|=1̂. Details on the numerical

integration scheme are described in Appendix A.
3.2. The Symmetrical Quasiclassical (SQC) Method.

The symmetrical quasiclassical (SQC) method can also be
viewed as an alternative implementation of the LSC
approximation.42−47 This method is formulated in terms of
action-angle (a-a) variables rather than in terms of Cartesian
coordinates and momenta. Each electronic state |j⟩ is
associated with a classical harmonic mode whose state is
described by an action variable, nj, and an angle variable, uj.

13,64

The QC mapping variables for the electronic density matrix
elements in terms of a-a variables are given by

∏

∏

δ δ

δ

δ δ

[ ̂ ] = −
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× −

λλ λ
ξ
ξ λ
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λζ λ
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1

W
(SQC) ( )

1
,

e

e

ikjjj y{zzzikjjj y{zzz
(22)

where n = (n1, ..., nNe
) and u = (u1, ..., uNe

). The SQC method is
based on replacing the delta functions in eq 22 with prelimit
delta functions. In this work, we use two different choices that
lead to square sampling windows and triangular sampling
windows.46

For the square sampling windows, δ(nj − a) is replaced with
h(γ − |nj − a|)/2γ, where

= ≥
<

h x
x
x

( )
1 0
0 0

lmono (23)

is the Heaviside function. This gives mapping variables for two-
state systems of the form

γ γ

γ

γ

[ ̂ ] = − | − | − | |

[ ̂ ] = − −

× − −

λλ λ ζ

λζ λ

ζ

‐

‐ −ζ λ

M h n h n

M h n

h n
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n u
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( , ) e 1
2

1
2

i u u

W
(SQC square)

W
(SQC square) ( ) ikjjj y{zzzikjjj y{zzz (24)

where γ is the window width parameter. The value of the
window width parameter, γ, is set to 0.366, as recommended in
ref 42.
For triangular sampling windows, the mapping variables for

two-state systems are given by

γ γ
γ

γ

γ γ

[ ̂ ] = + − +
× − − −

[ ̂ ] = + −

× + − − − −

λλ λ ζ

λ ζ

λζ λ

ζ λ ζ

‐

‐ −ζ λ

M h n h n
h n n

M h n

h n h n n

n u

n u

( , ) 2 ( 1) ( )
(2 2 )

( , ) 2e 1
2

1
2

(2 2 )

i u u

W
(SQC triangle)

W
(SQC triangle) ( ) ikjjj y{zzzikjjj y{zzz (25)

Previous studies46 showed that using triangular sampling
windows gives rise to more accurate results and better
convergence compared to using square sampling windows.
Within SQC, initial nuclear coordinates and momenta are

sampled based on [ρ̂n(0)]W(R0,P0), given in eq 20 (the same
as in LSC-based methods). In the case of a system with an
initial electronic state σ̂(0)=|α⟩⟨α|, for square windows, initial
sampling of the action variable, nl, is done randomly within the
intervals

γ γ α
γ γ α
− + =

− ≠
l

l

(1 , 1 )

( , )

lmooonoo (26)

For triangle windows, nl is sampled randomly within the
intervals

γ γ α
γ γ α
− − =

− − ≠
l

l

(1 , 2 )

( , 1 )

lmooonoo (27)

subject to the constraint nλ + nζ ≤ 2 − 2γ. For both square and
triangle mapping variables, initial sampling of the angle
variables, {u1, u2}, is done randomly within the interval (0, 2π).
The dynamics of the a-a variables within SQC is done in

terms of Cartesian coordinates and momenta and is identical
to that in the LSC-based methods. The relationship between
the a-a variables and the Cartesian coordinates and momenta is
given by

γ

γ

= + ℏ

= + ℏ

q n u

p n u

2( ) cos( )

2( ) sin( )

l l l

l l l (28)

It should be noted that another implementation of the SQC
method, which allows for a trajectory-dependent definition of
γ, was recently shown to be significantly more accurate when
applied to a one-dimensional photodissociation model.70

However, application of this new version of SQC was observed

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00177
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

D



not to produce significant improvement over the SQC with a
fixed γ and triangular sampling windows for the systems under
consideration in this work (not shown).
3.3. The Mean-Field (Ehrenfest) Method. The mean-

field (MF) method can also be cast as a QC/MH-type
method13 by expanding the electronic wave function at time t
in the electronic basis, {|j⟩},

∑ψ| ⟩ = | ⟩
=

t c t j( ) ( )
j

N

j
1

e

(29)

and expressing the expansion coefficients in terms of Cartesian
coordinates and momenta as follows

= +c q ip1
2
( )j j j (30)

The corresponding electronic density matrix is given by

∑σ ψ ψ̂ = | ⟩⟨ | = * | ⟩⟨ |
=

t t t c t c t j k( ) ( ) ( ) ( ) ( )
j k

N

j k
, 1

e

(31)

It can then be shown that the MF method is equivalent to
propagating {Rt, Pt, qt, pt} as classical variables whose
dynamics is governed by the QC Hamiltonian in eq 21.13

The initial nuclear coordinates and momenta within the MH
method are sampled in the same way as the LSC and SQC
methods [see eq 20]. However, unlike the LSC and SQC
methods, the initial values of the electronic coordinates and
momenta, {q0, p0} are uniquely determined by cj(0).

4. RESULTS
In this section, we report the results of calculations performed
on the LVC model for three sets of parameters that correspond
to the following three gas-phase molecules: fulvene, the 2,6-
bis(methylene) adamantyl (BMA) radical cation, and the 2-
methylene-6-isopropylidene adamantyl (MIA) radical cation.
Those parameters were adopted from ref 5, where they were
obtained from electronic structure calculations and the Köppel
diabatization scheme.71−73 Several key model parameters for
the three molecules are shown in Table 2. It should be noted
that fulvene corresponds to the Marcus inverted region (|ΔE| >
Er), while BMA and MIA correspond to the Marcus normal
region (|ΔE| < Er).

We compare results obtained by applying the above-
mentioned seven QC/MH methods (LSCI, LSCII, mLSC/
ϕ1ϕ1, mLSC/ϕ1ϕ2, mLSC/ϕ2ϕ2, SQC, and MF) with
quantum-mechanically exact results obtained via multilayer
mult iconfiguration time-dependent Hartree (ML-
MCTDH).15,74 Previously reported results for the same
models via NE-FGR58 are also included for comparison. The
results shown for all methods, except for LSCI, were obtained
by averaging over 106 trajectories. LSCI results were obtained

by averaging over 5 × 107 trajectories. It should be noted that
the number of trajectories needed for achieving convergence in
the systems under consideration is somewhat larger than that
needed for achieving convergence in previously considered
models.48,56,69 In the case of BMA and MIA, we believe that
this is caused by the smaller overall change in the population
over the time scale under consideration, which requires a
smaller absolute error in order to reach the same tolerance
with respect to the relative error. In the case of fulvene, we
believe that this is caused by the highly nonequilibrium nature
of the initial state. This results in stepwise population
relaxation, which implies that much of the population
relaxation happens before the system is able to reach
equilibrium on the donor PES.
We also note that the MCTDH results reported below are

somewhat different from previously reported results obtained
via the variational multiconfigurational Gaussian (vMCG)
wave packet method5 (not shown). While the origin of this
discrepancy is difficult to ascertain, we speculate that they may
reflect an insufficiently large Gaussian basis set used to obtain
the vMCG results.

4.1. Fulvene Molecule. The results for fulvene are shown
in Figure 1. In this case, σ̂(0) = |2⟩⟨2| and ρ̂n(0) = e−βĤ1/
Tr{e−βĤ1} (the electronic states are as labeled in ref 5).

We first note that while NE-FGR follows a similar trend to
that of MCTDH, there are significant quantitative deviations
between the two, with NE-FGR overestimating the electronic
transition rate. This suggests a breakdown of the weak
electronic coupling approximation underlying NE-FGR and
the necessity of a post-FGR method for quantitatively
predicting electronic transition rates for this molecule.
MF, which is arguably the simplest such post-FGR method,

is seen to reproduce the MCTDH electronic transition rate
rather well at short times but to significantly underestimate the
electronic transition rate at longer times. LSCII is seen to

Table 2. Number of Nuclear Modes, Absolute Value of the
Reaction Free Energy, |ΔE|, and Reorganization Energy, Er,
for Fulvene, BMA, and MIAa

fulvene BMA MIA

no. modes 30 78 96
|ΔE| (au) 0.0989 0.0004 0.0250
Er (au) 0.0887 0.0297 0.0274

aValues adopted from ref 5.

Figure 1. Comparison of donor population dynamics for the gas-
phase fulvene molecule via different methods at T = 0. The MCTDH
results, represented by a black line, give the exact dynamics for fulvene
with the LVC model.
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follow a similar behavior to MF and is in fact slightly worse
than MF at longer times. LSCI, on the other hand, is seen to
reproduce the MCTDH result rather well throughout the
entire time range.
Among the modified LSC methods, mLSC/ϕ1ϕ1 and

mLSC/ϕ1ϕ2 are seen to reproduce the MCTDH result rather
well throughout the entire time range, with mLSC/ϕ1ϕ1

performing slightly better than mLSC/ϕ1ϕ2. At the same
time, mLSC/ϕ2ϕ2 is seen to not only significantly overestimate
the electronic transition rate beyond very short times, but also
predict a negative electronic population at longer times, which
is clearly nonphysical.
Finally, SQC, with either square or triangular sampling

windows, is seen to reproduce the MCTDH result rather well
throughout the entire time range and is in fact very close to the
best performing modified LSC method, mLSC/ϕ1ϕ1.
4.2. 2,6-Bis(methylene) Adamantyl (BMA) Radical

Cation. The results for BMA are shown in Figure 2. In this
case, σ̂(0) = |1⟩⟨1| and ρ̂n(0) = e−βĤ2/Tr{e−βĤ2} (the electronic
states are as labeled in ref 5).

For BMA, NE-FGR reproduces the MCTDH result rather
well, implying that the weak electronic coupling approximation
underlying NE-FGR is valid and, given its relative simplicity,
may in fact be the method of choice for this molecule.
At the same time, MF is seen to deviate significantly from

the MCTDH result and to actually overestimate the electronic
transition rate. LSCII is seen to follow a similar behavior to MF
and is in fact somewhat worse than MF at longer times. In
contrast, and similarly to fulvene, LSCI is seen to reproduce
the MCTDH result rather well throughout the entire time
range.
Among the modified LSC methods, only mLSC/ϕ1ϕ1 is

seen to reproduce the MCTDH result rather well throughout
the entire time range, while mLSC/ϕ1ϕ2 and mLSC/ϕ2ϕ2 are
seen to significantly overestimate the MCTDH electronic

transition rate. In fact, the quality of the mLSC/ϕ1ϕ1 result is
seen to be comparable to that of LSCI, while that of the
mLSC/ϕ1ϕ2 and mLSC/ϕ2ϕ2 is comparable to that of LSCII.
Finally, the SQC result for BMA is seen to be of comparable

quality to that of MF and is therefore relatively inaccurate.
Furthermore, significant deviations are observed between SQC
results obtained with square or triangular sampling windows.

4.3. 2-Methylene-6-isopropylidene Adamantyl (MIA)
Radical Cation. The results for MIA are shown in Figure 3. In
this case, σ̂(0) = |1⟩⟨1| and ρ̂n(0) = e−βĤ2/Tr{e−βĤ2} (the
electronic states are as labeled in ref 5).

NE-FGR is seen to somewhat overestimate the electronic
transition rate in MIA, which suggests a breakdown of the
weak electronic coupling approximation, although to a lesser
extent than in the case of fulvene.
Interestingly, the MF result is in excellent agreement with

the MCTDH result for this molecule, which stands in sharp
contrast to the poor performance of MF in fulvene and BMA.
Also in contrast to fulvene and BMA, LSCI and LSCII yield
rather similar results in this case, which are in reasonable
agreement with MCTDH, but clearly not as accurate as MF.
Among the modified LSC methods, mLSC/ϕ1ϕ1, and

mLSC/ϕ1ϕ2 are seen to reproduce the MCTDH result rather
well throughout the entire time range under consideration,
with mLSC/ϕ1ϕ2 yielding similar accuracy to MF and being
somewhat more accurate than mLSC/ϕ1ϕ1. At the same time,
and similarly to fulvene and BMA, mLSC/ϕ2ϕ2 is seen to
significantly overestimate the electronic transition rate, with
the deviation increasing with increasing time.
Finally, while the SQC results are seen to agree reasonably

well with the MCTDH result, using triangular sampling
windows clearly yields a more accurate transition rate
compared to using square windows. Furthermore, the quality
of the results obtained via SQC with triangular sampling

Figure 2. Comparison of donor population dynamics for the gas-
phase BMA radical cation via different methods at T = 0. The
MCTDH results, represented by a black line, give the exact dynamics
for BMA with the LVC model.

Figure 3. Comparison of donor population dynamics for the gas-
phase MIA radical cation via different methods at T = 0. The
MCTDH results, represented by a black line, give the exact dynamics
for MIA with the LVC model.
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windows is seen to be comparable to that of MF and mLSC/
ϕ1ϕ2.

5. DISCUSSION
For the sake of comparing the performance of the different
methods over the three systems they were applied to, we
classify them as accurate (√) and inaccurate (×) based on their
ability to reproduce the MCTDH results over the time range
under consideration. A summary of the performance of the
different methods based on this classification is give in Table 3.

It should be noted that classifying the methods as accurate and
inaccurate is somewhat subjective and obviously cannot
account for more nuanced behavior (e.g., methods that are
accurate at short time but whose accuracy deteriorates at
longer times). However, given the large number of methods,
we believe that it serves as a useful organizational tool to guide
the following discussion.
Based on the aforementioned classification of methods as

accurate and inaccurate, they can be grouped into three
categories: (1) methods that are consistently accurate for all
three molecules, (2) methods that are consistently inaccurate
for all molecules, and (3) methods with inconsistent accuracy,
which are accurate for some molecules but inaccurate for
others.
mLSC/ϕ1ϕ1 and LSCI fall into the first category (accurate

for all three molecules). The fact that mLSC/ϕ1ϕ1 is seen to
be somewhat more accurate and LSCI has been previously
observed to be significantly less accurate than mLSC/ϕ1ϕ1 for
other benchmark models49,56 points to mLSC/ϕ1ϕ1 as the
method of choice.
mLSC/ϕ2ϕ2 is the only method that falls into the second

category (inaccurate for all three molecules). The poor
performance of mLSC/ϕ2ϕ2 is particularly surprising in light
of its previously reported ability to produce accurate results for
the spin-boson and Tully models.56 This observation under-
scores the limitations of those popular benchmark models and
the need for extending the testing of approximate methods to
other benchmark models, such as the LVC model considered
here. It should also be noted that unlike mLSC/ϕ1ϕ1 and
mLSC/ϕ1ϕ2, the derivation of mLSC/ϕ2ϕ2 is somewhat ad-
hoc.
The remaining methods fall into the third category. Within

this category, one can distinguish between two subcategories:
(3A) methods that are accurate for two out of the three
molecules and (3B) methods that are accurate for one out of
the three molecules.

Two methods fall into category 3A, namely, mLSC/ϕ1ϕ2

and SQC with triangular windows. Both methods are seen to
only be inaccurate in the case of BMA, which is also the only
molecule for which NE-FGR is seen to be accurate. This
correlation between weak electronic coupling and inaccuracy
of mapping methods has been previously pointed out in the
context of SQC.47 The problem has been traced back to
inefficient transfer of classical trajectories from one sampling
window to another when the electronic coupling is weak.
Switching from SQC with square sampling windows to SQC
with triangular sampling windows was proposed in ref 47 as a
remedy for this problem. Interestingly, the poor performance
of SQC with either square or triangular windows seems to
suggest that this remedy is not sufficient in the case of BMA.
The fact that unlike SQC, mLSC/ϕ1ϕ1 and LSCI are seen to
be accurate for BMA can be traced back to the lack of a
window function at time t in both, which guarantees that
contributions from all trajectories are accounted for (as
opposed to only accounting for contributions from trajectories
that manage to transfer from one sampling window to
another).
Finally, category 3B includes the MF and SQC with square

sampling windows methods. The only system for which MF is
accurate is MIA, which can be attributed to the fact that MIA is
the system with the smallest barrier and largest number of
nuclear modes. As a result, the MF approximation is expected
to be more valid. The failure of SQC with square sampling
windows to reproduce the MCTDH result in BMA can be
traced back to the weak electronic coupling in this system (see
discussion above). The behavior of SQC with square sampling
windows in the case of MIA is more subtle. On the one hand,
the actual transition rate constant, as measured by the slope of
the population as a function of time, is comparable to the exact
one. On the other hand, there appears to be a delay in
establishing rate kinetics within SQC with square sampling
windows, which can be traced back to the gap between
sampling windows in action space. More specifically, there is
lag time between the time a trajectory leaves one sampling
window and the time it reaches another.

6. CONCLUDING REMARKS
Our main goal in this article was to extend the testing of QC/
MH methods to systems with CIs. One reason for doing so is
the central role CIs play in many photochemical processes of
practical interest. Another reason is the need to extend the
testing of those methods beyond the popular spin-boson and
Tully benchmark models. Indeed, using the LVC model as a
benchmark demonstrates the importance of going beyond the
spin-boson and Tully models. More specifically, application of
QC/MH methods to the LVC model was found to shed new
light on the ability of those methods to yield accurate results.
On the one hand, methods like SQC and mLSC/ϕ2ϕ2 were
found to be significantly less accurate in LVC than they were in
the spin-boson and Tully models. On the other hand, a
method like mLSC/ϕ1ϕ1 was seen to emerge as the method of
choice due its reasonable accuracy for all benchmark models.
It should be noted that the analysis presented in this article

was performed on systems with relatively high vibrational
frequencies at zero temperature, which corresponds to the
most challenging test for a QC method due to the pronounced
quantum nature of the system under those conditions. On the
one hand, it is encouraging to see that at least some QC/MH
methods are accurate under those extreme conditions. On the

Table 3. Summary of Resultsa

method

LSCI LSCII mLSC/ϕ1ϕ1 mLSC/ϕ1ϕ2 mLSC/ϕ2ϕ2

fulvene √ × √ √ ×
BMA √ × √ × ×
MIA √ √ √ √ ×

method

SQC square SQC triangle MF NE-FGR

fulvene √ √ × ×
BMA × × × √
MIA × √ √ ×

a√ implies that the method is accurate, and × implies that the
method is inaccurate.
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other hand, one expects the accuracy of the other methods to
improve with increasing temperatures. Another way of
enhancing the accuracy of QC/MH methods is by limiting
their use to calculating the memory kernel of the generalized
quantum master equation (GQME).69,75 Work on those
extensions is underway in our group and will be reported in
future publications.

■ A. NUMERICAL INTEGRATION FOR QC/MH
METHODS

In this appendix, we outline the numerical integration scheme
we used for QC/MH methods.
For each propagation time step, we first propagate the

nuclear DOF with the velocity Verlet algorithm. Then we
apply the fourth-order Runge−Kutta method with self-adjusted
step size to propagate the electronic DOF. This is done by
setting a threshold error value ϵ and iteratively decreasing step
size by half until the following inequality holds for all i = 1, 2,
..., Ne:

Δ = + − + + ≤ ϵ

Δ = + − + + ≤ ϵ

q q t dt q t dt dt

p p t dt p t dt dt

( )
2 2

( )
2 2

i i i

i i i

ikjjjj
Ä
ÇÅÅÅÅÅÅÅÅ

É
ÖÑÑÑÑÑÑÑÑ y{zzzzikjjjj

Ä
ÇÅÅÅÅÅÅÅÅ

É
ÖÑÑÑÑÑÑÑÑ y{zzzz (32)

Here, q(t + dt) represents propagating q by one step with step

size equal to dt and + +( )q ti
dt dt
2 2

ÄÇÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑ represents propagating q

by two steps with each step size equal to dt
2
. We used a

threshold error value of ϵ = 0.01. Considering the fact that
nuclear DOF move much slower than electronic DOF, we
obtain the intermediate nuclear DOF information that is
required for propagation of electronic DOF via linear
interpolation.
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(57) Köppel, H.; Domcke, W.; Cederbaum, L. S. Advances in
Chemical Physics; John Wiley & Sons, Ltd, 2007; pp 59−246.
(58) Sun, X.; Geva, E. Non-Condon nonequilibrium Fermi’s golden
rule rates from the linearized semiclassical method. J. Chem. Phys.
2016, 145, 064109−19.
(59) Thoss, M.; Stock, G. Mapping approach to the semiclassical
description of nonadiabatic quantum dynamics. Phys. Rev. A: At., Mol.,
Opt. Phys. 1999, 59, 64−79.
(60) Stock, G.; Müller, U. Flow of zero-point energy and exploration
of phase space in classical simulations of quantum relaxation
dynamics. J. Chem. Phys. 1999, 111, 65−76.
(61) Miller, W. H. The semiclassical initial value representation: A
potentially practical way for adding quantum effects to classical
molecular dynamics simulations. J. Phys. Chem. A 2001, 105, 2942−
2955.
(62) Ananth, N.; Venkataraman, C.; Miller, W. H. Semiclassical
description of electronically nonadiabatic dynamics via the initial
value representation. J. Chem. Phys. 2007, 127, 084114−10.
(63) Kim, H.; Nassimi, A.; Kapral, R. Quantum-classical Liouville
dynamics in the mapping basis. J. Chem. Phys. 2008, 129, 084102.
(64) Miller, W. H.; Cotton, S. J. Communication: Wigner functions
in action-angle variables, Bohr-Sommerfeld quantization, the Heisen-
berg correspondence principle, and a symmetrical quasi-classical
approach to the full electronic density matrix. J. Chem. Phys. 2016,
145, 081102−5.
(65) Miller, W. H.; Cotton, S. J. Classical molecular dynamics
simulation of electronically non-adiabatic processes. Faraday Discuss.
2016, 195, 9−30.
(66) Cotton, S. J.; Liang, R.; Miller, W. H. On the adiabatic
representation of Meyer-Miller electronic-nuclear dynamics. J. Chem.
Phys. 2017, 147, 064112−11.
(67) Wang, H.; Thoss, M.; Miller, W. H. Forward-backward initial
value representation for the calculation of thermal rate constants for
reactions in complex molecular systems. J. Chem. Phys. 2000, 112, 47.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00177
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

I



(68) Runeson, J. E.; Richardson, J. O. Spin-mapping approach for
nonadiabatic molecular dynamics. J. Chem. Phys. 2019, 151, 044119.
(69) Mulvihill, E.; Gao, X.; Liu, Y.; Schubert, A.; Dunietz, B. D.;
Geva, E. Combining the mapping Hamiltonian linearized semiclassical
approach with the generalized quantum master equation to simulate
electronically nonadiabatic molecular dynamics. J. Chem. Phys. 2019,
151, 074103.
(70) Cotton, S. J.; Miller, W. H. Trajectory-adjusted electronic zero
point energy in classical Meyer-Miller vibronic dynamics: Symmetrical
quasiclassical application to photodissociation. J. Chem. Phys. 2019,
150, 194110.
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