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On the Cover of the Rolling Stone*

Adrian Dumitrescuf

Abstract

We construct a convex polytope of unit diameter that
when placed on a horizontal surface on one of its faces,
it repeatedly rolls over from one face to another until
it comes to rest on some face, far away from its start
position: that is, the horizontal distance between the
footprints of the start and final faces can be larger
than any given threshold. According to the laws of
physics, the vertical distance between the center of mass
of the polytope and the horizontal surface continuously
decreases throughout the entire motion. The speed of
the motion is irrelevant. Specifically, if the polytope
is manually stopped after each tumble, the motion
resumes when released (unless it stands on the final
stable face).

Moreover, such a polytope can be realized so that
(1) it has a unique stable face, and (ii) it is an arbitrary
close approximation of a unit ball. As such, this
construction gives a positive answer to a question raised
by Conway (1969).

The arbitrarily large rolling distance property inves-
tigated here for the first time raises intriguing questions
and opens new avenues for future research.

Keywords:  perpetuum mobile, rolling distance,
unistable polytope, center of mass, laws of physics.

1 Introduction

Oh ye seekers after perpetual motion,

how many vain chimeras have you pursued?

Go and take your place with the alchemists.
— Leonardo da Vinci (1494)

The history of perpetual motion machines dates
back to the Middle Ages. The Encyclopaedia Britannica
entry dedicated to Perpetual Motion reads: “Perpetual
motion, although impossible to produce, has fascinated
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both inventors and the general public for hundreds of
years. The enormous appeal of perpetual motion resides
in the promise of a virtually free and limitless source of
power. The fact that perpetual-motion machines cannot
work because they violate the laws of thermodynamics
has not discouraged inventors and hucksters from at-
tempting to break, circumvent, or ignore those laws.”
Indeed, this fact did not discourage us either, and the
current paper can be viewed as yet another attempt.
It offers a good approximation of such a device in the
sense that the range of the motion can be arbitrarily
large and prescribed beforehand.

Imagine a convex polyhedron standing on a hori-
zontal surface in Euclidean 3-space. The body is stable
on the facet that it stands on if and only if its center
of mass projects vertically in the interior of that facet.
For example, a tall prism that leans like the Tower of
Pisa is unstable (a suggestive example offered by Daw-
son et al. [I0]). Obviously, Platonic solids of uniform
density are, by symmetry, stable on all their facets.
Note however that the uniform density is a key assump-
tion: If we place a regular octahedron on a facet (base)
and concentrate its mass in one of the vertices whose
projections lie outside of the base facet, the octahedron
rolls onto an adjacent facet.

A convex polytope will roll from one facet to
another only if it thereby monotonically lowers its center
of mass; it therefore follows that no polytope can ever
roll back to a facet from which it has rolled away, and
so every polytope has at least one facet upon which it
is stable. A polytope that is stable upon only one of
its facets is called wunistable (or sometimes monostatic,
unistatic, or monostable); see, e.g., [10] [IT].

Clearly, if the body is allowed to have nonuniform
(but positive) density, the center of mass may be
anywhere in the interior of the body. As reported in [9],
Conway constructed a tetrahedron in R3 which, with
a suitably positioned center of mass, is stable only on
one facet. Moreover, this tetrahedron, when placed
on one of its facets, can roll onto each of its 4 facets
until it reaches a stable position. Conway [16] also
constructed a unistable convex polytope (a truncated
cylinder of uniform density) with 19 faces; the cross-
section of the cylinder is a 2D convex polygon that
is unistable with nonuniform density. The cylinder
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is truncated by slanted planes to move the center of
mass to the desired position. Bezdek [3] reduced the
number of faces to 18, while the current record, 14, is
obtained by computer search [24]. See [12] Sec. 4] for
combinatorial properties of small unistable polytopes in
R3. Related work regarding unistability of polytopes
include [8], 17]; see also [T, Sec. B12].

This definition of stability may be extended, some-
what less physically, to polytopes in other dimensions,
including the plane. Conway showed [6] that in the
plane, no convex polygon of uniform density is unistable,
and that in 3-space no tetrahedron of uniform density is
unistable. Heppes [18] constructed a tetrahedron which,
placed upon the appropriate face, rolls twice before
reaching one of its two stable faces. It thus tours all of
its unstable faces before reaching equilibrium. Heppes
asked in how few dimensions, if any, a full-dimensional
simplex could be unistable. Dawson et al. [I0] con-
structed a unistable simplex in R'° and showed that no
such simplex exists in R”; computational evidence sug-
gests that no such simplex exists in R® and R?. Daw-
son et al. [10] also exhibit a unistable simplex in R!!
that sequentially rolls through all 12 facets.

Static equilibria of convex bodies (allowing smooth
surfaces) have also been studied; stable and unstable
equilibria are related to sinks and sources in the gra-
dient vector field characterizing the surface. The total
number of equilibria is governed by the Poincaré-Hopf
Theorem [2]. For example, a polytope standing on a
vertex may be at equilibrium, but this equilibrium is
unstable. Varkonyi and Domokos [26], settling a conjec-
ture due to Arnold (1995), constructed a smooth con-
vex body (called gémbdc) with a unique stable and a
unique unstable equilibrium. Their discovery has lead
to a systematic study of the topological properties of
stable and unstable points [13]. However, it is not ob-
vious how to approximate a smooth convex body by a
polyhedron with the same stability: Domokos et al. [14]
show that uniformly random discretization may intro-
duce additional stable equilibria.

Although our focus in this paper falls along these
lines, it is headed in a different direction.

QUESTION 1. How far can a polytope of unit diameter
roll when placed on a horizontal surface?

QUESTION 2. For every sufficiently large n, does there
exist a polytope with n facets, and an ordering of the
facets, f1, fo,..., fn, so that if P is placed upon f;, it
will roll through facets fii1,..., fn until resting on its
unique stable facet f, ?

The distance traveled by a rolling polytope could
be measured in ways such as: (i) the length of the

trajectory of the projection of some reference point of
the polytope (for instance, the center of mass) onto
the horizontal plane, or simply as (ii) the distance
between the footprints of the start and final faces in
the horizontal plane. For convenience, we stick to the
latter measure that we find more intuitive as well as
serving our intent.

Notation and terminology. For brevity, a con-
vex polyhedron of uniform density is called uniform. For
a convex polytope P in R, let £(P) denote the center of
mass. The perimeter of P, denoted per(P), is the sum
of the edge lengths of P. The boundary of P is denoted
by OP.

For a line segment s, let £(s) denote the line
containing s. For two points p,q € R?, let d(p,q), or
sometimes |pq|, denote the Euclidean distance between
them; while the length of a rectifiable curve C' is denoted
by len(C). For two sets of points A, B C R? their
distance is d(A, B) = inf{d(a,b) | a € A,b € B}. A
hyperplane H is given by the linear equation H = {z €
Re: a -z = b}, where a € R? and b € R. The closed
ball of radius 7 in R? centered at point z = (z1, ..., zq)
is By(z,7) = {x € R? : d(z,2) <r}. A unit ball is a
ball of unit radius in R?.

o

5/

Figure 1: Left: A convex polygon (or polytope) P,
its center of mass £(P), and its projection & to the
horizontal hyperplane my. Right: A polytope in R
stands on a face f = PNy, its center of mass vertically
projects to & in the exterior of f, and P rolls about the
axis A.

Rules of motion. Consider a convex body P in
R?, standing on a horizontal hyperplane 7. By the laws
of physics, the potential energy of P equals to mgh,
where m is the mass of P and h denotes the vertical
distance from &(P) to mp. The body P rolls without
slipping only if the height of £(P) strictly decreases. By
Gauss’ principle of least constraint [I5], the direction of
the motion maximizes the rate of descent, i.e., minimizes
the slope of the direction vector of the trajectory of
&(P). In particular, a polytope P standing on a face
f rolls (to another face) if and only if the vertical
projection onto my of the center of mass of P, &(P),
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lies in the exterior of f; see Fig. (left).

Denote this projection point by &’. Let D be the
largest ball in the horizontal hyperplane 7y centered at
& whose interior is disjoint from f. Then 9D intersects
f in a single point p. The steepest descent of &(P)
occurs when P rotates around the (d — 2)-dimensional
axis A C mg tangent to D at point p; see Fig. (right).
During the rotation, the face A N P remains fixed,
and the rotation stops when P N my becomes a higher-
dimensional face. In particular in R3, if AN P is an
edge e, then P rotates about e to an adjacent face; and if
ANP is a vertex, then P rotates about A until P “lands”
on a facet or an edge. The polytopes we construct in
Sections always roll around edges if initially placed
on an unstable face.

Note that the rolling motion is governed by discrete
geometry alone. In particular, it does not take the
moment of inertia into account, e.g., as if the convex
polytope were moving in a fluid of high viscosity. The
rolling motion of a smooth convex body with moment
of inertia is a problem in classical dynamics that can
be characterized by differential equations. For example,
Chaplygin [5] described the motion of a nonuniform ball
on a horizontal plane in 1903. We do not pursue that
direction here.

Discussion. In the plane, the distance referred to
in Question [I] is clearly bounded: as noted above, a
convex polygon P stands on each of its faces at most
once during a rolling motion, consequently the distance
traveled cannot exceed the perimeter of P, which is
at most m by the isodiametric inequality. Somewhat
surprisingly, the answer to Question [I]in 3-space is “As
far as we like.” Therefore, such a polytope is in some
sense a good approximation of a perpetuum mobile. The
precise statement is in our Theorem [3.1] (in Section [3)).

A variant of our construction (Theorem n
Section is related to the following question raised
by Conway [16, p. 81], [7, Sec. B12], to which it gives
a partial answer: “What is the set of convex bodies
uniformly approximable by unistable polyhedra, and
does this contain the sphere?”

To formulate our results it is first convenient to
strengthen the concept of unistable polytope as follows.
We say that the pair (P,&(P)) of a polytope and its
center of mass is Hamiltonian unistable if P is unistable
and in addition, there exists an ordering of the facets,
fi, fo, ..., fn, so that if P is placed upon f;, it will roll
to face fiy1, fori=1,...,n—1.

Perpetuum mobile approximations. We show
several constructions of polytopes as described below.
The polytopes in constructions (i)—(iii) need not be
uniform, and only the one in (iv) yields a uniform
polytope.

(i) For every € > 0, we construct a Hamiltonian
unistable convex polygon P in R? that can be placed
on a horizontal line upon one of its sides so that it

repeatedly rolls over covering a horizontal distance of
at least (1 — ¢) per(P) (Theorem in Section [2).

(ii) For every L > 1, we construct a Hamiltonian
unistable convex polytope of unit diameter in R? that
can be placed upon one of its facets so that it repeatedly
rolls over until it comes to rest on its unique stable
face at a distance of at least L from its start position

(Theorem in Section [3)).

(iii) The polytope in Theorem can be an ar-
bitrary close approximation of a ball (Theorem in
Section . This gives a partial answer to a 50-year old
question raised by Conway [16]; see also [7), Sec. B12].

(iv) For every L > 1, there exists a uniform
convex polytope of unit diameter (albeit not necessarily
unistable or Hamiltonian) in R* that can be placed
upon one of its facets so that it repeatedly rolls over
covering a horizontal distance of at least L (Theorem
in Section .

1.1 Preliminaries The proofs of the following lem-
mas are folklore; refer to Fig. [I}

LEMMA 1.1. Let P be a convex polytope in R? and p
any point contained in P. Then there exists a face
f of P so that the orthogonal projection of p onto its
supporting hyperplane is contained in f.

Proof. Let p € P, let f; be a facet of the polytope
whose supporting hyperplane H; is closest to p, and let
q1 be the orthogonal projection of p onto H;. Note that
dist(p, H1) = |pq1]- If g1 ¢ f, then the line segment pg;
intersects the boundary of P at some point go contained
in some facet fy, which spans a hyperplane Hy. Then
we have dist(p, H2) < |pg2| < |pqi| = dist(p, H1), a
contradiction. a

An alternative argument for the proof (in Physics
terms) is as follows. Make p the center of mass of P,
that is, £(P) = p. Let f be a face of the polytope whose
supporting hyperplane is closest to £(P). Then f must
be stable, since rolling to any other face cannot lower
the position of £(P).

LEMMA 1.2. Let P be a convex polytope in R? (uniform
or not). Then P cannot roll forever.

Proof. Let £ = &(P) denote the center of mass of P.
Assume that P can roll forever on a horizontal surface
o, while the center of mass monotonically gets closer to
mo. Since P has a finite number of facets, some facet f
will repeat; that is, there are two time instances ¢; < to,
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so that the vertical distance from & to mg (and f) at time
to is smaller than the vertical distance from & to m (and
f) at time ¢;. This completes the proof. 0

2 The Planar Case

Let B be a convex body in the plane. As noted above,
the distance covered (i.e., the distance between the
initial and final footprints) cannot exceed the perimeter
of B. Therefore, it is convenient to measure the
displacement of a convex body relative to its perimeter.

THEOREM 2.1. For every € > 0, we can construct
a convex polygon P with O(¢=2) wvertices that (i) is
Hamiltonian unistable and (ii) can be placed on a
horizontal line upon one of its sides so that it repeatedly
rolls over such that the distance between the initial and
the final contact sides on the horizontal line is at least
(1 —é¢)per(P). (The polytope P need not be uniform.)

Proof. Consider two concentric circles, C; and Cy, of
radii 1 — a and 1 respectively, centered at the origin
o. Let D; and D5y denote the corresponding disks. See
Fig.|2l Let v be an open continuous curve in between the
two circles, in the form of a spiral and whose parametric
equation is:

(2.1) (1 - % t) (sint,—cost), 0<t<2nm.

Let s be the tangent to v from the point (0, —1);
let tg < 27 be the corresponding value of ¢ at the
tangency point. Let B = B(7) be the planar convex
body bounded by an initial segment of the spiral v and
by the tangent s.

We will subsequently construct the polygon P C B.
The center of mass of B is the origin and we do not
assume uniform density. The same assertions will hold
true for P. Observe that D1 C B C D,, and so
27(1 — a) < per(B) < 2m. Consider also the tangent
s1 to Cp from the point (0,—1), subtending a center-
angle 3; its length is

Isi]l=1/1— (1 —a)?=+v2a—a?<V2a.

Since the tangent s is sandwiched between D; and
D, it follows that |s| < 2|s1| and thus |s| < v/8a. Set
a = ¢2. We have

|s] V8a 22 .
per(B) = 21(1 —a) 27(1 —a) =

Consequently, the horizontal distance covered by B
when rolling clockwise after being placed upon its first
side is
|s|
B)—|s|=(1-
per(B) ~ 15| = (1- -

> per(B) > (1 — ¢) per(B).

q
p
o

AN

S1

Figure 2: Construction of a unistable polygon P that
covers a large distance when it rolls.

We next construct a convex polygon P that mimics
the behavior of B(v). We subdivide the boundary of
B(v) by choosing a sequence of points that forms the
vertex set of P. The first vertex of P is (0,—1). If P
rests upon the current side pq, P will roll to the next
side of P adjacent to ¢, provided that the angle Zogp of
the respective triangle is obtuse. Taking this fact into
consideration, if vertex p is fixed on -, the next vertex
g = q(p) € v is chosen as follows. By construction,
the distance |og| is strictly decreasing as ¢ moves away
from p, and there is a unique point gy € ~ such that
Zogop = 7/2. Indeed, the tangent to v at point p is
not orthogonal to the segment op, and so v enters the
interior of the circle with diameter op at p, and it exits
at a unique point ¢gg. As such, the next vertex can be
chosen anywhere on the arc pqg, with ¢¢ specified as
above.

All vertices of P are selected in this way until we
reach the point of tangency between s and ~y. The last
side of P is s; observe that s is the unique stable side
of P. Let x = Zpoqo, and put z = 1 — 5-t; note that
1—a<z<1. We have

(2.2) cosx:li%(wrx) :Zﬁ%le—ﬁ
' 1— %t z 2rz’

We may assume without loss of generality that z <
1/10. The well-known Taylor expansion of cos z around
zero yields

(2.3)
x2 2 2t 4722 1
1-—<cose<l——+—<1——, forz < —.
2 2 24 96 10

Applying this estimate in (2.2)) further yields that ¢ <
x < §. Recall that we have set a = 2¢2, thus the length

of each side of P can be ©(¢?); thus P has O(e™2) sides,
as required. a
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3 The Three-Dimensional Case

In this section we prove the following result.

THEOREM 3.1. For every L > 1, one can construct
a Hamiltonian unistable polytope P = P(L) of unit
diameter and with O(LS) faces in 3-space and specify
an ordering f1, fo,..., fn, of these faces, so that if P is
placed on a horizontal plane g in contact with f1, the
following hold:

(i) P successively rolls around the edge f; N fi11, for
eachi=1,2,...,n—1.

(ii) P comes to rest on the last facet f,, which is the
only stable facet of P.

(iii) The horizontal distance between the initial and final
contact faces is at least L.

(The polytope P need not be uniform.)

Proof. We first describe a general construction of a
Hamiltonian unistable polytope with center of mass at
the origin, and then adjust the parameters to ensure
that it has unit diameter and travels a distance at
least L away from its initial position. We will assume
(for the proof) that L is sufficiently large, i.e., L > Lg
for a suitable Ly € N; then the statements of the
theorem automatically hold for any smaller value of L.

General construction. We start with a unit ball
B centered at the origin o = 0. Let T > 1 and
v : [0,T] — OB be a simple smooth arc (open curve)
drawn on the surface of B, parameterized by its arc
length, that is, its length is 7" and |y/(¢)] = 1 for all
t € [0,T7]. Intuitively, we “scrap off” some neighborhood
of ~, while gradually going deeper to the interior of B.
We define an arc 8 : [0,7] — B that follows v but goes
gradually deeper into the interior of B, and then use
hyperplanes tangent to 3(¢), for all ¢ € [0,T] to scrap
off a neighborhood of ~.

We continue with the technical details. Let 0 <
a < 1/10 be a sufficiently small constant (to be specified
later), and let 5 :[0,7] — B be a curve defined by

at

(3.4)  Blt) = (1 - T> ~(t) for t € [0,T].

Note that 5(0) = v(0) and B(T") = (1 — a)y(T). Also
observe that |y(t)| = |4/(¢)] = 1 for all ¢ € [0,T]; and
0.9 < |B(t)| <1 for all t € [0,T].

For every t € [0, 77, let 8'(t) be the direction vector
of B at t; let £(t) be the line incident to S(¢) and
orthogonal to both the direction vector §’(¢) and the
position vector B(t). We also define the plane H(t)
incident to B(¢) and parallel to both £'(¢t) and £(t);

and let H*(t) be the halfspace bounded by H(t) that
contains the origin o. We define the convex body

B'=Bn| () H'(®)

te[0,T]

We next specify the parameter a > 0. For t = 0,
the line £(0) is tangent to B. For ¢ € (0,T], the line
£(t) intersects the sphere 0B at two points at distance
24/1— (1 —at/T)? apart. The two intersection points
trace out two arcs on OB, that we denote by e
and gnt- The plane H(T') intersects OB in a circle
C = HT)NJB. Let a > 0 be sufficiently small
so that both iy and ight are simple smooth curves
disjoint from each other that intersect the circle C' only
at the endpoints yies (1) and Yrignt (17). By construction,
B C H*(t) for all t € [0,T], thus § is a smooth arc on
the surface of B’'.

As in the proof of Theorem the center of mass
of B’ is the origin o and uniform density is not assumed.
The same assertions will hold for the polytope P that
will be constructed from B’. If B’ is placed on a
horizontal surface making contact at y(0) = £(0), it
will start rolling continuously while its center of mass
continuously gets closer to the plane 7y, with a contact
segment Yie () right (t) at time ¢ € [0,7). The body
B’ stops rolling at time ¢ = T, when the contact face
is bounded by Yiets (1) Vrignt(1') and a circular segment
of C.

Discretization. We construct a polytope P from
B’ as follows. Let 6 > 0 be a sufficiently small
parameter (specified below). Consider a subdivision
0=t <ty <...<t, =T of the interval [0,T] such
that t;41 —t; <dfori=1,...,n—1. Fori=1,... n,
we use the shorthand notation H; = H(t;). We can now
define P as an intersection of halfspaces as follows.

(3.5) P=(H.

At this point P is a (possibly unbounded) convex
polyhedron; we later choose v to ensure that P is a
(bounded) convex polytope. Note that neither B nor P
contains the other body. Since the plane H; contains
the point §(t;) if and only if ¢ = j, the polytope P has
precisely n faces, one in each plane H; (i = 1,...,n);
denote by f; the face of polytope P contained in H;.

LEMMA 3.1. If § > 0 is sufficiently small, as specified

in (3.12), then for alli=1,...,n—1,

(i) face f; is unstable, and

Copyright © 2020

2579 Copyright for this paper is retained by authors



Downloaded 07/10/20 to 209.6.90.196. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Vright

Figure 3: Left: The vectors (), v/ (¢), 8(¢), and 8’(t) in the special case where 7 is a circular arc along the equator.
Right: The arcs Yot and Yrigne traced out by the intersection points ¢(t) N dB; and the circle C = H(T') N 0B.
The shaded surface has been scrapped off from the ball B.

(ii) if P stands on face f;, then it rolls to face fiy1.

We first summarize our strategy for the proof of
Lemma Let h; € H; be the orthogonal projection
of the origin o to the plane H; (that is, oh; L H;).
We show that h; ¢ f; for i = 1,...,n — 1, which
establishes part (i). Specifically, we give a lower bound
for the distance |5(t;)h;|, and then show that the line
H;N H,; 11 separates points 5(t;) and h; in the plane H;.
Since f; C H,;, this implies part (i). For the proof of
part (ii), we further show that f; and f;; are adjacent
(their common edge is contained in H; N H;11). We
also show—Dby eliminating all other options—that if P
stands on face f;, it rolls around this common edge.

Importantly, we give a quantitative upper bound
for § in terms of the second derivative of 3; see (3.12)).
We use this bound later for estimating the number of
vertices of P in terms of L. We continue with the details.

Recall that v is a simple smooth arc on the surface
of B. Consequently, its direction vector +/(t) at t €
[0, T is tangent to OB, hence orthogonal to the position
vector y(t); see Fig. [3 for an illustration. The direction
vector of §(t) can be computed as follows:

Bt = [Q—at/Th®)
(3.6) = (1—at/T)Y(t) = (a/T)¥(D),

where v(t) and ~/(t) are orthogonal unit vectors. In
particular,

t a a
Nilea<1-Z<cgm<(1-%)4+2 <142
(37) 1—a <1 |6(t)|_<1 T>+T_1+T

Recall that T > 1, and consequently we have

(@/T)®  _  o/T

tan 280 O) = Ty @] ~ 1= atjT

> @
- T
for all ¢ € [0,T7.

Recall that £(t) is orthogonal to both 3(t) and 5'(t).
Since £(t) is parallel to H(t), the orthogonal projection
of o to H(t) lies in the plane (5(t), 8'(t)). In particular,
for i = 1,...,n — 1, point h; € H; lies in the plane
(B(t;), B'(t;)). Consider the right triangle A(8(t;)oh;).
Since S(t;) and 7/(t;) are orthogonal, we have

ZB(t;)oh; = Z(B'(t:),~'(t;)) > arctan(a/T).
Consequently,

[hi — B(ta)| = |B(t:)] - sin Z(B'(t:), 7' (t:)))
> |B(t;)] - sin (arctan(a/T))
9 a/T a

3.8 — > —
(3:8) ~ 10 2 ” 3T

For every s,t € [0,T], the position §(t) can be
approximated using Taylor’s estimate with Lagrange
remainder

(39 80) = A + (- 98 + T,
where ¢ € [min{s, ¢}, max{s, {}]. Let
M = max 18" (&)
Then yields
(310)  18(6) — (B(s) + (1 — )8/ (s))| < -t )
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Yieft (tig1) oo ==~ 7 7 5—(ti+1)

o Mrigne (i)

Hi N Hi+1

Vet (t:) B(t:)

Fseagitol5)

£(t:)

Figure 4: Points ((t;) and h;, and segment ¥ief; (¢;)Vright (t:) in the plane H;. The points marked with empty dots
are orthogonal projections to H;. An overview (left), and a detailed view around D;y; (right).

We can use Taylor’s estimate for the direction vectors
B'(t), as well. Tt yields

(3.11) 1B'(t) = B'(s)| < M|t — 5.
We are now ready to specify § > 0. Let
a . 1

In particular, note that

1
< < < .
015" 9% 107 10T and 0 < Jorar

The Taylor estimate (3.10) with s = ¢; and ¢t = t; 44
gives

1B(tiv1) — (B(ti) + (tiyr — )8 (t:))] <

M M
2 T (tig1 —t;)? < 75(tz’+1 —ti)

<—L(t-
=2 1oMT !

and (3.11) similarly gives
1B (tis1) —

(3.13) —t;) < L(tiﬂ —t;),

B(t:)] < M(tigr —t;) < M§
a Qa
<M =—.
- 10TM 10T

Proof Lemma [3.1] (i) We show that 3(¢;) and h;
lie on opposite sides of the line H; N H;;;. Instead
of computing H; N H,;y1 explicitly, we approximate
its location using ~ieft (t;)Yright (t;) and the orthogonal
projection of Viefs (ti+1)Vright (ti+1) to the plane H;.

Assume that P stands on facet f; for some i €
{1,...,n — 1}. The plane H; contains facet f;, line
£(t;), segment Yieft (ti) Vright (t:), and its midpoint S(¢;);
refer to Figs. [d and [5] The vertical projection of o to
H; is h;. Recall that h; lies in the plane (8(t;), 5'(t:)),

(3.14)

which is orthogonal to £(¢;) (by definition). Therefore
the segment S(t;)h; is orthogonal to £(¢;), and parallel
to the vector 8'(t;).

Next we approximate the orthogonal projection of

Vet (tit1)Vright (fi+1) and its midpoint S(t;41) to H;.
From (3.13), 5(t;+1) lies in a ball of radius

a(tip1 —t;)
3.15 g = AL b
(3.15) Tit1 20T
centered at

(3.16) ciy1 = Bti) + (tiyr — )3 (ts).

Denote this ball by Dl+1 Its center ¢;41 is on the ray

6( )h;, and by (3.13)) and (3.7) we have

1B(ti)citi] = |(tiv1 — t:) B ()]
> (tiv1 —ti)(1 —a)
(3.17) > 0.9(tis1 — t).
B(ti)citi] = |(tiv1 — t:)B' ()]
< (tz+1 ) (1 + a/T)
< 6(1+a/T)

<(1+4a/T)- 10T

(3.18) <(1401) — < —

10T 9T
By (3.8) and (3.18), we have

1B(t)hil > 5 > [B(ti)cital-

3T > (1+ ;) 10T ~

It follows that c¢;y1 (the center of D; ;1) is on the line
segment B(t;)h;.

The orthogonal projection of B(¢;41) to H; lies
in the disk H; N D;y;. The direction vector of #(¢;)
is given by the cross product S(¢;) x 8'(t;); and the
direction vector of £(¢;11) is given by B(t;41) X B (¢i+1).
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B(tit1) Yright (ti+1)

et (Lit1)

B(tz) Hz ﬂHH—l

H;q

e A
1+1

Figure 5: Points 3(¢;) and h; in a plane perpendicular to H; N H;y1. The points marked with empty dots are

orthogonal projections to this plane.

From (3.10) and (3.14), we have |5'(¢;) — B/ (tix1)| <
a/10T and [B(t;) — B(ti+1)| < (M/2)0? < (a/T)?/200.
This implies that the line £(¢;11) is nearly parallel to
0(t;), and so its orthogonal projection to H; is also
nearly parallel to it.

We may assume that the angle between #(¢;) and
the projection of ¢(t;+1) is less than w/4. We would
like to locate the intersection point of 8(¢;)h; and the
orthogonal projection of £(¢;11) to H;; denote this point
by ¢;+1 Since B(t;4+1) € D;t1, the point ;41 lies in the
projection of the the disk H; N D;y; to line B(t;4+1)hi,
where the direction of the projection makes an angle
at most w/4 with ¢;11 (i.e., an angle more than 7/4
with B(t;+1)hi); see Fig [[right). In particular, either
Gi+1 € H; N D;11 or the tangents from ¢;11 to the disk
H; N D;1;1 subtend an angle of at least 2(n/4) = /2.
In both cases, ¢;+1 lies in a circumscribed square of
H;i N Diyy. Let D, be the ball concentric with D;y,
with radius 27; 1. Then the projection of £(¢;1) crosses
B(tz)hz in Hi N D,;Jrl.

From and we obtain

a(tip1 —t;)
i = —————2 < 0.01(tj01 — t;
Ti+1 10T S 0.0 (t1+1 tl)
(319) < O.Q(ti+1 — ti) < |5(ti)ci+1|.
Further, from Equations (3.15), (3.12), and (3.8),
we obtain
67"7;+1 _ 3a(t,-+1 — ti) < 3(15

10T - 10T
3a a
< Toor < 37 = AR

Combined with (3.18]) and (3.19) this yields

|civrhi| > |B(t:)hi| — |B(ti)cit]
a a 2a 2a

> = >
— 3T 9T 9T 10T

2a
(3.21) > 10T

(3.20)

(ti+1 — tz) = 4Ti+1-

Consequently, D;j,; contains neither 3(Z;) nor h;, that
is, Dj, lies between 3(t;) and h;.

Since line ¢; := H; N H;y; separates f; and the
(orthogonal) projection of f;+1 to H;, ¢; crosses the
segment B(t;)h; between 3(t;) and the projection of
Viett (tit1)Vright (tig1), which liesin Dj__;. Thus ¢; crosses
the segment 3(t;)h; between [(t;) and h;. As S(t;) €
Vet (ti ) Yright (t:) C fi, we conclude that f; and h; lie on
opposite sides of £;.

(ii) Assume that if P stands on face f; for some
ie{l,...,n—1}, it rolls to face f;. Initially, the center
of mass, {(P), is at distance |oh;| < |B(t;)| < 1 from the
ground, and it can only move closer to the ground, hence
|hj| < |hi]. The line H;NH; must intersect B, otherwise
the center of mass would be at distance more than 1
from the ground during the motion. Since B’ C P, this
further implies that H; N H; intersects B\ B'.

Recall that 9BNAOB’ is a Jordan curve Sy composed
of Yiett, Yright, and a halfcircle centered at 5(7°); and the
boundary 9(B\ B’) is composed of two surface patches:
a surface patch S; of OB’ that consists of the surface
swept by the segment Yies (t)Vrigns(t) for all ¢ € [0,T]
and a halfdisk centered at 5(7T); and a surface patch So
of the sphere 9B bounded by Sy. Refer to Fig.

Consider now P N (B \ B’). Since B’ C P, the
boundary of PN (B \ B’) contains Sy and Sy, but the
surface patch Sy is replaced by a surface patch S3 of
P N B bounded by the Jordan curve Sy. The line
segments Yiest (tx)Vright (tx), for & = 2,...,n, each lie
in both S; and S3. Since these n — 1 line segments
are pairwise disjoint chords of the Jordan curve Sy, the
deletion of these segments partitions PN (B\ B’) into n
components, each of which is incident to at most two
segments, Vet (tx)Yright (tk) and Vege (tr+1)Vright (te+1)
for some k = 1,...,n. In particular, f; has only two
edges that intersect B, namely f; N f;—1 and f; N fit1.
Since |h;—1| > |hi] > |hi+1], the polytope cannot roll
from f; to f;_1, consequently it rolls from f; to f;11. O
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Distance between initial and final footprints.
We choose the arc v to ensure that P covers a distance
at least L when it successively rolls from face f; to f,
(i.e., the distance between the initial and final footprints
is at least L).

Let Cy be a great circle of B in the plane z = 0;
and let C7 and C3 be two circles in 9B that lie in two
parallel planes x = g—L and z = 51L, respectively. The
tangent lines to Cj form a cylinder of radius 1; and the
tangent lines to C; (resp., C3) form a cone of aperture
2 arcsin( 5L) If B rolls once along CY, its contact point
with my traces out a straight line segment of length
len(Cy) = 2m; and similarly, if B rolls once along Cj,
it traces out a circular arc of length len(C;) of the circle
C; (i = 1,2) of radius v25L% — 1 centered at the apex
of the cone of tangent lines.

We choose v as a dense and long spiral that lies
strictly between C7; and Cy. Let T = 4L, and 7 :
[0,4L] — OB be defined as follows:

(3.22)
t—2L
)= ——
o(t) = T2

() = (J;(t),cos(t) 1= 22(1), sin(t) /1 — :c2(t)) .

A loop of v is the image of an interval of length 27
n [0,4L]. Note that (i) —1/(5L) < =z(t) < 1/(5L);
and (ii) the z-coordinate of ~(t), z(t), increases by
2m/10L% > 1/(2L?) after each loop. The arclength of
every loop is at least len(C7) = 2w+/1 — 1/(5L)2, and so
the arclength of v is at least 4L,/1 —1/(5L)? > 3.9 L.
We re-parameterize v by arclength, as the machin-
ery introduced above for the general construction re-
quires such a parameterization. Each loop of the spiral
is close to the great circle Cy = {(0,cost,sint) : t €
[0,27)}, which is parameterized by arclength and its
first and second derivatives are unit vectors. After re-
parameterization, T equals the arclength of T, that is
T > 3.9 L, and M is close to 1, consequently we may
assume that M < 2.
Set @ = 1/(6400 L*); in particular a < 1/10.
We have |[Yiess (£)Yrignt (£)| < 4a'/? = 1/(20L?), for all
€ [0,T]. Since the z-coordinates of v(t) increase by
more than 1/(2L?) after each loop (regardless of the
re-parameterization), Vg and Yright are disjoint simple
arcs, and they both lie between C; and C5. Recall
that 6 = & min{1,1/M}, thus § = O(1/L*-1/L) =
O(1/L%). Since T = O(L), a subdivision of [0, 7] into
intervals of length at most ¢ requires ©(L°) subdivision
points; this yields n = ©(LS).
As P rolls through the faces fi, fa,..., fn, the
points S(t;) (i = 1,...,n) are successively in contact
with the horizontal plane 7y, and trace out a polygonal

path T' = (p1,p2,...,pn) C mo. Alternatively, I' is the
development of the geodesic path (5(¢1),...,08(t,)) on
OP. Tt remains to estimate the total length of I" and the
distance between its two endpoints.

We prove that [p1p,| > 3.2L, by establishing a lower
bound len(T") > 3.8 L, and then bounding the deviation
of I from a straight-line path.

The portion of the geodesic path (8(t1),...,5(tn))
on JP between S(t;) and B(t;4+1), fori =1,...,n—1,
is a polygonal path contained in f; U f;11, with a bend
point at f; N f;+1. Recall that

1
len(y Zw Y(tig1)| > 4L, [1 - GD? >3.9L.

It follows that

len(T") > len(8 Z 18(t:)B(tix1)]

1_QZ|7 (tit1)

=(1—a) len(fy) (1-a)3.9L >38L.

Let 7 : [0,7] — mp be the development of v as B
continuously rolls on the plane my with a contact point
at y(t); similarly, let B: [0,T] — 7o be the development
of B as the convex body B’ rolls on the plane mg with a
contact point at 3(t) for t € [0, T].

In general, for a continuous curve « : [0,7] — R2,
the turning angle p(t) at ¢ € [0,T] equals the angle
between the direction vectors /(0) and o/(t) modulo
2. If « is parameterized by arclength, and its signed
curvature is & : [0,7] — R, then the turning angle at ¢
can be computed as follows; see [23, Sec. 2.2].

(3.23) o(t) = /_0 k(s) ds.

For example, the turning angle of a simple closed curve
(parameterized counterclockwise) is 27, and a turning
angle of a circular arc of central angle 0 is exactly . We
use this machinery to approximate the turning angle of
the polygonal path T.
Since v lies between the circles 01 and Cg, the
curvature of % is less than that of 01 and CQ, ie.,

less than 1/4/(5L)?2 —1 =~ 1/(5L). The curvature of
B is close to that of 7 at every t € [0,7]: Since

B(t) = (1 —at/T)y(t) and |y (t)| < 2, Equation
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yields

1B(t) —v@)| = (at/T)|y(t)| = at/T < a,
18'(t) =~ ()] < (at/T)W( )|+ (a/T) ()]
<a+a/T < 2a,

18”(t) =" ()] < (at/T)W'( ) +2(a/T) [ (1))
< 2a+ 2a/T < 4a.

While it would be tedious to compute the curvatures
of ¥ and 8 exactly, the curvature of a curve can be
expressed as a rational function of the coordinates of the
curve itself and its first and second derivatives (in terms
of cross products and determinants); see [25 Sec. 1.4].
It follows that the curvatures of ¥ and B differ by at
most O(a) = O(L™*). For sufficiently large L > 0, the
curvature of J is less than 1/(5L) + O(L~) < 1/(4L).
Since len(3) = len(8) < len(y) < 4L, Eq. implies
that the turning angle of B does not exceed

Moreover, the turning angle of any subarc of E is also
bounded by 7/3, and so all direction vectors ('(t),
t € [0,T7], are in a cone of aperture at most /3.
In the polygonal path T = (p1,p2,...,Pn),
the turning angles Z(m, Dibid ) are close to
Z(B'(t:), B(tiy1)) for @ = 2,...,n — 1. Therefore, we
may assume that the vectors m, i=1,...,n—1,
are in a cone of aperture at most /3. If £ is the angle
bisector of this cone, £ makes an angle of at most 7/6
with every edge of I'. If x; > 0 is the length of the pro-
jection of p;p;11 onto £, we have |p;p;i+1| < x;/ cos(mw/6),

fori=1,...,n—1. Since Z;:ll Z; = |p1pnl, this yields

len(I' Z pipi] < Z cos(7r/6)

) 2
<N = ipipal < 1.16 [pipal.
< ; 7 \/§|P1P | |p1pn]

Consequently, |p1p,| > 1en(F)/1.16 > 3.2 L, as claimed.

Unit diameter. If v is chosen as in , then
the normal vectors of the planes H;, i = 1,...,n, are
nearly orthogonal to the x-axis, and the diameter of
P might be quite large. To ensure that diam(P) = 1,
we modify v, by attaching two additional z-monotone
spirals to each of its endpoints that lead to the points
(—1,0,0) and (1,0,0) of OB, respectively. The length
of these spirals is ©(1), and the spirals could decrease
the distance between the initial and final footprints by

at most O(1). See Fig. []

Figure 6: A bird’s eye view of the polygonal path
T' € mp, the trail of a unistable polytope P whose flips
cover a large distance.

Based on the choice of v from and moreover,
due to the two spirals attached to its endpoints, P is
bounded and its diameter is close to 1. Indeed, the
normal vectors of the planes H; and H,, at the two
endpoints 3(t1) and B(t,) are nearly parallel to the z-
axis, consequently diam(P) < 2v/2 < 3. A suitable
scaling by a ratio

i © (3]

produces a polytope of unit diameter. The scaling pre-
serves unistability and Hamiltonicity, while the distance
between the initial and final footprints only decreases by
a factor of p; this distance is at least ¢ 3.2 L > % 32L >
L, as required. a

4 Other Variants of Rolling Polytopes

In this section, we prove that a Hamiltonian unistable
polytope can be an arbitrarily close approximation of a
ball. For € > 0, a polytope P is an e-approzimation of
the unit ball B if (1 —¢)B C P C (1+¢)B.

THEOREM 4.1. For everye > 0, there is a Hamiltonian
unistable (nonuniform) polytope P that e-approximates
the unit ball B while retaining the arbitrarily large
rolling distance property. (The polytope P need not be
uniform.)

Proof. Let € € (0,7/2) be given. We use the construc-
tion from the proof of Theorem with a suitable arc
~:[0,T] — 9B, and parameter a > 0. First note that
if @ C OB is a finite set such that the spherical caps
of radius ¢ centered at points in @ cover B, then the
planes tangent to B at the points in @) define a polytope
P that satisfies the inclusions B C P C (1 +¢)B.

Lay down a raster of circles in 9B that lie in planes
orthogonal to the z-axis such that the spherical distance
between two consecutive circles is less than €/2. Since
the spherical distance between two antipodal points,
(—1,0,0) and (1,0,0), is 7, we use 2[w/e| — 1 circles.

Let v : [0,T7] — OB be a spiral from (—1,0,0) to
(1,0,0) that makes one full rotation about the z-axis
between consecutive raster circles. Then every point in
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OB lies between two raster circles, and is within distance
£/2 from some point on . We choose a subdivision
0=s51 <89 <...< 8y, =T such that the point set
Q ={v(s;) : i =1,...,n} defines a covering of B by
spherical caps of radius e.

Next, choose a sufficiently small a € (0,e/2) such
that the polytope Py = (-, H(s;)" lies in (1 + ¢)B,
where the halfspaces H;, ¢ = 1,...,n are defined for
the curve 3(t) = (1 — at/T)y(t) as in the proof of
Theorem [3.1] Finally, refine the subdivision 0 = s <
S9 < ... < &, = T into a subdivision 0 = t; < ty <
... <t, =T, if necessary, to meet all constraints of that
construction. None of the additional tangent planes
H(t;), 1 =1,...,n, intersects (1 — ¢)B. Consequently,
the polytope Py = (;_, H(t;)" contains (1 — ¢)B, and
is contained in (1 + €) B, as required. a

Uniform density. A variant of the polytope in
Theorem [3.7] can be constructed from material of uni-
form density.

THEOREM 4.2. For every L > 1, there exits a uniform
polytope P of unit diameter and a facet f1 such that if
P stands on face fy it rolls to distance at least L. (The
polytope P need not be unistable or Hamiltonian.)

Proof. We start with a uniform unit ball B centered
at the origin 0 and let ¢ € (0,0.01) be sufficiently
small as specified below. By Theorem there is
a nonuniform unistable Hamiltonian polytope P =
P(L,¢) that e-approximates B, and P has a sequence
of facets f1,..., f, that all lie in the slab between the
parallel planes x = —1/(5L) and « = 1/(5L) such that
if P stands on facet f; (i =1,...,n— 1), it rolls to face
fi+1, and the distance between the footprints at f; and
fn is at least L.

However, unlike in construction in the proofs of
Theorem and Theorem the faces of P outside of
the parallel slab between x = —1/(5L) and = 1/(5L)
lie in the exterior of B; i.e., we do not use the any spirals
from (—1,0,0) to (1,0,0). In particular, P never rolls
to any of these faces from the faces f1,..., f,, and so P
is neither unistable nor Hamiltonian.

Note that neither B nor P contains the other body.
The volume of the symmetric difference of B and P
is bounded above by 4F[(1 + ¢)® — (1 — €)%] = O(e).
Consequently, the center of mass £(P) shifts by O(e) as
well, i.e., £(P) lies in a ball of radius O(e) centered at 0.

To move the center of mass of P back to the origin
we first determine four points ¢i1,¢2,q93,q2 € OP so
that the tetrahedron A = conv(qi,qe,q3,qs) closely
approximates a regular tetrahedron inscribed in B, and
they are each at distance at least 1/3 from the plank
between © = £1/(5L). We now stack four “mountains”

above the points ¢, g2, g3, g4 by raising the four points
and updating the convex hull. Specifically, we construct
P’ = conv(P, q}, 45, q5,q4), where ¢, is a mountain top,
and og; C oq,, for i = 1,...,4. The heights of the
mountains (i.e., h; = |og}| for i = 1,...,4) are variables
that we can set so as to annihilate the shift of the center
of mass in the opposite direction. The volume of each
mountain monotonically increases with its height, and
is concentrated to a neighborhood of radius at most

h?—(1—¢)? If h; < 1.105 < 1/10/9, then this
radius is less than 1/3, and the mountain at g; is disjoint
from all faces fi,..., fn. Each coordinate of the center
of mass {(P’) is a piecewise rational function of the
heights h; (i = 1,...,4). If we set h;y = 1.05 and
gl = g; for i = 2, 3,4, then &(P’) shifts roughly towards
g; by a small constant (independent of €). Provided that
e > 0 is sufficiently small, by the (multidimensional)
intermediate value theorem, there exit suitable heights
h; € [1 —¢,1.1], i = 1,...,4, for which £(P’) is the
origin. 0

5 Concluding Remarks

We suspect that the properties in Theorems [4.1 and
can be combined; we leave this as an open problem: Is
there a Hamiltonian unistable uniform polytope of unit
diameter that can roll to an arbitrary given distance
away?

The perpetuum mobile desideratum. We
know (by Lemma that no polytope exists that can
roll on forever; indeed, this is so because every poly-
tope has a finite number of faces. This leaves open the
existence of a (smooth) convex body that can roll on
forever. While we cannot rule out this possibility, we
can immediately observe that our construction method
(i.e., scraping off a neighborhood of a spherical arc from
a ball) is due to fail: Indeed, the width of the neighbor-
hood of the arc  is positive and strictly increasing, and
by construction, this thickened arc cannot cross itself.
As such, if v were an infinite arc, then this neighborhood
would also have infinite area, contradicting the fact that
the surface area of the ball is bounded.

Diameter versus girth. Conway [16] (see also |7}
Sec. B12]) constructed a convex unistable polytope
whose diameter to girth ratio is at most 3/7 + ¢, for
any € > 0. He also asked: What is the smallest
possible diameter to girth ratio for a convex unistable
polyhedron? (The girth is the minimum length of
the perimeter of a projection onto a plane.) Our
construction (Theorem [4.1)) shows that a ratio of 1/7+e,
for any ¢ > 0, can be attained with nonuniform
polytopes.
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Trajectories for programmable robots. What
can be said about the class of planar trajectories that
can be generated by this mechanism? More precisely,
what properties can be established for the contact
curves when gravity rolls a smooth convex body in R? on
a horizontal plane? The arc v drawn on a ball B (as well
as 8 on the smooth body B’) is noncrossing, however, it
is unclear whether the corresponding planar trajectory
C(7) crosses itself. Is the set of possible trajectories ()
obtained in this way dense in the set of all continuous
arcs in the plane? It is known for instance that
closed conver curves and slice curves drawn on convex
polytopes develop without self-intersection [19, 20]; see
also [21].

Our method for designing unistable polytopes could
perhaps be used to obtain programmable robotic mod-
ules, whose trajectories are written in advance by draw-
ing suitable curves on the raw balls. Obviously the pro-
grams can be different and so group formations with
different motion plans can be handled for independent
and/or simultaneous movement, provided that collisions
can be avoided. See for instance advances in chemistry
and physics in the last two decades in the area of hy-
draulic design at a molecular scale [11, [4], 22| 27].
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