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Abstract
We study the atomic embeddability testing problem, which
is a common generalization of clustered planarity (c-
planarity, for short) and thickenability testing, and present a
polynomial time algorithm for this problem, thereby giving
the first polynomial time algorithm for c-planarity.

C-planarity was introduced in 1995 by Feng, Cohen,
and Eades as a variant of graph planarity, in which the
vertex set of the input graph is endowed with a hierarchical
clustering and we seek an embedding (crossing free drawing)
of the graph in the plane that respects the clustering in
a certain natural sense. Until now, it has been an open
problem whether c-planarity can be tested efficiently, despite
relentless efforts. The thickenability problem for simplicial
complexes emerged in the topology of manifolds in the
1960s. A 2-dimensional simplicial complex is thickenable
if it embeds in some orientable 3-dimensional manifold.
Recently, Carmesin announced that thickenability can be
tested in polynomial time.

Our algorithm for atomic embeddability combines ideas
from Carmesin’s work with algorithmic tools previously
developed for weak embeddability testing. We express our
results purely in terms of graphs on surfaces, and rely on the
machinery of topological graph theory.

Finally we give a polynomial-time reduction from c-

planarity to thickenability and show that a slight generaliza-

tion of atomic embeddability to the setting in which clusters

are toroidal graphs is NP-complete.

1 Introduction

Clustered planarity (for short, c-planarity)
was introduced in 1995 by Feng, Cohen, and Eades [22,
23], motivated by applications in set visualization.
Lengauer [32] considered one of its variants already in
the 1980s. The problem can be seen as a hierarchi-
cal variant of planarity testing; a problem for which
a linear-time algorithm has been known for a long
time [31]. In the extensive literature devoted to c-
planarity and its variants, the complexity status of only
restricted special cases has been established, most no-
tably in [2, 5, 17, 28], see also the somewhat outdated
survey [16]. The c-planarity problem is formally stated
as follows.
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Problem 1. (C-planarity) We are given a simple
graph G = (V,E); a collection C of pairwise disjoint
simple closed curves in R2; and a map µ : V → R,
where R is the set of path connected components (called
regions) of R2 \

⋃
C∈C C. Decide whether there exists

an embedding ψ of G in R2 such that ψ(v) ∈ µ(v) and
|ψ(e) ∩ C| ≤ 1 for every C ∈ C and every edge e ∈ E.

Embeddability in R3 and thickenability. Note
that a graph is a 1-dimensional simplicial complex. We
consider the 2-dimensional analog of graph embeddings
in R3. It is a well-known result that for every graph
G there exists an orientable surface (an orientable 2-
dimensional manifold) S such that G embeds in S. An
analogous result fails for 2-dimensional polyhedra (2-
polyhedra for short) and 3-dimensional manifolds (3-
manifolds for short). A 2-polyhedron P is thickenable
if P embeds1 in some orientable 3-manifold. It was
known at least since the 1960s that testing whether
a 2-polyhedron is thickenable is in NP, which is an
immediate consequence of a theorem by Neuwirth [37];
see also [41]. We restate it as Theorem 4.2 in Section 4
(in essence, it characterizes thickenability in terms of so-
called link graphs). We remark that Neuwirth’s theorem
has been recently used in [34] in the first step of an
algorithm that decides (not necessarily in polynomial
time) whether a given 2-polyhedron embeds to R3.

The thickenability problem is formulated as follows.
Let H be a finite multigraph without loops (multiple
edges are allowed). Let P = (H,F ) denote a 2-
dimensional (abstract) polyhedron, where F is a set
of cycles in H. We assume that every edge of H is
contained in at least one element of F . The multigraph
H is the 1-skeleton of P and every element of F is a
facet in P . Note that H might contain a cycle that is
not a facet of P .

Problem 2. (Thickenability) Given a 2-polyhedron
P = (H,F ), where H is a multigraph without loops and
F is the set of facets of P , decide whether P embeds to
some orientable 3-manifold.

Recently, Carmesin [14, Section 6] announced that
one can test whether a simply connected 2-polyhedron

1In this case, topological and piecewise linear embeddability
are equivalent.

2876
Copyright © 2020

Copyright for this paper is retained by authors

D
ow

nl
oa

de
d 

07
/1

0/
20

 to
 2

09
.6

.9
0.

19
6.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



embeds in R3 in quadratic time, while embeddability
testing for general 2-polyhedra in R3 is known to be NP-
hard [20]. In the case of simply connected 2-polyhedra,
thickenability is equivalent to embeddability in R3, see
for example [13]. Though this equivalence appears to be
a well-known consequence of Perelman’s famous result.

In fact, Carmesin’s approach deals exclusively with
testing the thickenability condition in Theorem 4.2 (cf.
Section 4). Therefore his approach to the embeddabil-
ity in R3 applies also to thickenability in general,
but it is restricted simply connected 2-polyhedra. In
contrast, testing whether a given 2-polyhedron, that is
homeomorphic to a nonorientable surface, embeds in a
given 3-manifold (that is, both the 2-polyhedron and
the 3-manifold are given), is already NP-hard [12].

Atomic embeddibility was introduced in [2]
and [25, Section 11], see also [26], as a common gen-
eralization of C-planarity and thickenability. It
is an extension of the concept of weak embeddability [2]
(also known in topology as approximating simplicial
maps by embeddings [36, 38, 40, 42]). We do not de-
fine weak embedding here, but remark that its study
in computational geometry was motivated by the spe-
cial case of a (piecewise linear) weak embeddings of a
cycle in the plane, which corresponds to weakly simple
polygons [1, 15, 18].

Let G and H be finite multigraphs without loops.
To distinguish between G and H in our terminology, the
vertices and edges of H are called atoms and pipes,
respectively. A map ϕ : G→ H is simplicial if it maps
vertices to vertices (i.e., to atoms), edges to vertices or
edges (i.e., to atoms or pipes), and preserves edge-vertex
incidences. An instance of atomic embeddability is
given by a simplicial map ϕ : G→ H.

The thickening H of H is an orientable 2-
dimensional surface constructed as follows. For each
atom ν ∈ V (H), let S(ν) be a 2-sphere with deg(ν)
pairwise disjoint open discs, called holes, removed. We
fix an orientation on S(ν), and define an arbitrary one-
to-one correspondence between the holes of S(ν) and
the pipes incident to ν. The thickening H is obtained
by gluing the surfaces S(ν), ν ∈ V (H), as follows; see
Fig. 1 (left) for an illustration. For every pipe ρ ∈ E(H),
ρ = νµ, identify the pair of boundaries of the holes cor-
responding to ρ by an orientation reversing homeomor-
phism. In particular, if νµ 6∈ E(H), then S(ν) and S(µ)
are disjoint2.

An embedding E : G → H is an atomic embed-
ding of G with respect to ϕ if every vertex v ∈ V (G)
is embedded in S(ϕ(v)); and every edge uv ∈ E(G) is

2The surface H is reminiscent of the ball-and-stick or space-
filling models in molecular chemistry.

embedded as a Jordan arc in S(ϕ(u)) ∪ S(ϕ(v)) as fol-
lows: If ϕ(u) 6= ϕ(v) then the Jordan arc representing
uv intersects the hole corresponding to the pipe ϕ(uv)
in exactly one point, which is a proper crossing, or in
other words, a transversal intersection.

Problem 3. (Atomic embeddability) Given a pair
of multigraphs without loops, G and H, and a simplicial
map ϕ : G → H, decide whether an atomic embedding
of G with respect to ϕ exists.

We remark that an instance (H,F ) of thicken-
ability corresponds to an instance (G,H) of atomic
embeddability, where H is the same graph both in-
stances, and G is a vertex disjoint union of cycles (dis-
joint copies of the cycles in F ).

Results. In this paper, we present a polynomial-
time algorithm for atomic embeddability, thereby giv-
ing the first polynomial-time algorithm for c-planarity.
Our approach combines ideas from Carmesin’s work [14]
with algorithmic tools previously developed for weak
embeddability testing. In particular, the elementary op-
eration “stretch” (defined below) is based on a similar
operation in [14]. However, by formulating the prob-
lem in terms of graphs on surfaces, our results are more
general and perhaps more accessible to the broader com-
munity. A polynomial-time algorithm for c-planarity
implies that some other constrained planarity problems
that have previously been reduced to c-planarity are
tractable, as well; see [3] and [4, Figure 4].

We also consider a further generalization of atomic
embeddability in which the surfaces S(ν), ν ∈ V (H),
may have higher genus (by attaching additional han-
dles), and show that this problem is NP-complete even
if each surface S(ν) is based on a torus rather than a
sphere.

Finally, we give a short polynomial-time reduction
of c-planarity to thickenability. By combinining
the results of Schaefer [39, Theorem 6.17], and Angelini
and Da Lozzo [4] we observe that c-planarity is
polynomial-time equivalent to connected sefe-2, the
problem of deciding simultaneous embeddability of two
graphs in the case when the intersection of the two
graphs is connected (see Section 4 for a formal statement
of the problem). The general version of the problem,
known as sefe-2, where the intersection of the two
graphs may be disconnected, is notoriously difficult.
Introduced by Brass et al. [10], it subsumes most of
the studied planarity variants [39, Figure 2], and has
generated considerable research activity [3, 7, 9, 29]; see
also [8] for a survey. Therefore it is an unfortunate state
of affairs that its complexity status is still unknown.
Although, Carmesin’s and our results give a hope that
a resolution of sefe-2 problem might be within reach.
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v
ρ

π
S(ν)

u v

w
Gϕ(ν)

Figure 1: Part of an atomic embedding of G on S(ν),
where the atom ν is incident to pipes ρ and π (left),
and the corresponding local graph Gϕ(ν) (right). The
virtual vertices u and w in Gϕ(ν) correspond to the
pipes ρ and π, respectively. All other vertices in Gϕ(ν)
are ordinary.

Let us note that there also exists a natural and fairly
straightforward polynomial-time reduction of con-
nected sefe-2 to thickenability, which was found
independently by de Mesmay, Kaluža, and Tancer [11,
35] and these authors. This suggests that thicken-
ability, and hence, atomic embeddability, is not
powerful enough to solve sefe-2 in general without us-
ing significantly novel ideas.

Organization. Section 2 presents a polynomial-
time algorithm for atomic embeddability. Section 3
shows that a further generalization of the problem is
NP-hard. In Section 4, we give a direct polynomial-
time reduction of c-planarity to thickenability,
which also establishes a polynomial reduction of another
problem, connected sefe-2, to thickenability.

2 Atomic Embeddings

In this section we present a polynomial-time algo-
rithm for atomic embeddability. After defining local
graphs, which are crucial for the algorithm, we present
a high-level overview in Section 2.1. Section 2.2 intro-
duces additional terminology. We reduce a given in-
stance ϕ to normal form (defined below) in Section 2.3;
and introduce five elementary operations on atomic in-
stances in Section 2.4 that are used in our main algo-
rithm. We show how to solve two special cases in linear
time in Sections 2.5 and 2.6. Our main algorithm in
Section 2.7 reduces all normal instances to these spe-
cial cases. We finish with a running time analysis in
Section 2.8.

Local graphs. Let ϕ : G → H be an instance of
atomic embeddability. The simplicial map ϕ : G → H
naturally extends to subgraphs of G. For an atom
ν ∈ V (H), ϕ−1[ν] denotes the subgraph of G mapped
to ν by ϕ. For a pipe ρ ∈ E(H), ϕ−1[ρ] denotes the
subset of edges of G mapped to ρ by ϕ.

For every atom ν ∈ V (H), we define a multigraph
Gϕ(ν), which captures the local structure of ϕ at

the atom ν and its incident pipes; see Fig. 1 for
an illustration. (We remark that graphs Gϕ(ν) are
analogous to the graphs C in [2] and the links in [13].)

The vertices of Gϕ(ν) are in a one-to-one correspon-
dence with the union of the set of vertices in V (G)
mapped by ϕ to ν (that is, V (ϕ−1[ν])) and the set
of pipes incident to ν. Hence, we can distinguish be-
tween ordinary vertices that correspond to vertices
in V (ϕ−1[ν]) and virtual vertices that correspond to
pipes incident to ν. For every edge in E(G) between two
vertices in V (ϕ−1[ν]) in G, add an edge in Gϕ(ν) be-
tween the corresponding vertices. Finally, for every edge
in uv ∈ E(G) where u ∈ V (ϕ−1[ν]) and v 6∈ V (ϕ−1[ν]),
add an edge Gϕ(ν) between the ordinary vertex u and
the virtual vertex corresponding to ϕ(uv). Thus, edges
of Gϕ(ν) are in a one-to-one correspondence with the
union of the edges of G between vertices in V (ϕ−1[ν])
and the edges of G mapped to pipes incident to ν by ϕ.
Let e ∈ E(G) denote the edge corresponding to an edge
e ∈ E(Gϕ(ν)).

Note that the virtual vertices form an independent
set in Gϕ(ν). An embedding Eν of Gϕ(ν) is inherited
from an atomic embedding E of G, if Eν is obtained from
the restriction E to S(ν) by filling the holes of S(ν) with
discs, and then contracting them to points.

Let E : G → S be an embedding of a graph on an
orientable surface. The rotation at a vertex v ∈ V (G)
is the counterclockwise cyclic order of the end pieces
of the edges incident to v. The rotation system of
E is the set of rotations of all vertices of G. A vertex
v of a planar graph has a fixed rotation (for short, is
fixed) if its rotation in every embedding of the graph in
the plane is unique up to the choice of orientation. For
a pair of virtual vertices u and v of Gϕ(µ) and Gϕ(ν),
resp., corresponding to a pipe µν = ρ ∈ E(H), the edges
e incident to u (resp., v) correspond to edges e ∈ ϕ−1[ρ].
The rotations of u and v in an embedding of all local
graphs in the plane determine two cyclic orders ϕ−1[ρ].
This allows us, in particular, to define that the rotations
at u and v to be opposite (in other words, reverse) to
each other, if the rotation at u is (uu1, . . . , uudeg(u)), at
v it is (vvdeg(v), . . . , vv1), and uui = vvi = uivi ∈ E(G).
The rotations of u and v are compatible if they are
the same or opposite to each other; and incompatible
otherwise.

An instance ϕ of atomic embeddibility is pos-
itive if there exists an atomic embedding of G with
respect to ϕ. Two instances, ϕ and ϕ′, are equivalent
if ϕ and ϕ′ are both positive, or ϕ and ϕ′ are both neg-
ative. We can now formulate atomic embeddibility
in terms of the rotation systems of plane embeddings of
the graphs Gϕ(ν), ν ∈ V (H).

Observation 1. An instance ϕ : G → H of atomic
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embeddability is positive if and only if the graphs Gϕ(ν),
ν ∈ V (H), are planar, and they each have embeddings in
the plane such that for every pipe µν ∈ E(H), the virtual
vertices corresponding to µν in Gϕ(µ) and Gϕ(ν) have
opposite rotations (in the sense that we consider every
edge e incident to a virtual vertex as e).

For a subset V ′ ⊂ V (G), a V ′-bridge B in G is a
subgraph of G obtained as the union of V ′, a connected
component C of G \ V ′, and all the edges joining a
vertex of C with a vertex of V ′. We allow B to consist
of a single edge between two vertices in V ′, or a loop
incident to a vertex in V ′ (see Fig. 2(left)). Analogously
to Carmesin [13], we also define two special graphs
(as possible local graphs). A p-path is a graph that
consists of two vertices (poles) connected by one or
more subdivided edges (Fig. 2(middle)). A p-star is a
graph with a unique cut vertex (center) whose bridges
are p-paths with one pole at the center (Fig. 2(right)).

2.1 High Level Overview of the Recognition
Algorithm Given an instance ϕ of atomic embeddib-
lity, we apply a sequence of elementary operations that
each produces an equivalent instance ϕ′ (with respect to
atomic embeddability). Intermediate steps of our algo-
rithm may detect that the instance is negative when a
local graph Gϕ(ν) is nonplanar. It may also disconnect
the graph H, effectively splitting an instance into inde-
pendent instances. Ultimately, it reduces ϕ to a family
of instances, each of which is either toroidal (where both
G and H are 2-regular), or subcubic (where the maxi-
mum degree of all local graphs is at most 3). In both
cases, we can easily test atomic embeddibility in lin-
ear time (Sections 2.5 and 2.6). Hence, the witness of
atomic non-embeddibility that is provided by our algo-
rithm is either the non-planarity of a local graph in an
instance produced by a sequence of elementary opera-
tions, or negative subcubic or toroidal instance.

Let G∗ denote the disjoint union of all local graphs
except those belonging to toroidal subinstances. Our
algorithm incrementally reduces the maximum degree
∆ = ∆(ϕ) = maxv∈V (G∗) deg(v). The two key oper-
ations for dealing with a vertex v ∈ V (G∗) of degree
∆ ≥ 4 are Stretch(v, .), which splits v into two vertices
of smaller degree (illustrated in Fig. 7), and Contract(.),
which contracts a pipe (illustrated in Fig. 11). Opera-
tion Stretch(.) can be applied to a virtual or an ordinary
vertex: If it is applied to an ordinary vertex, it modi-
fies only G and not H, but if it is applied to a virtual
vertex, it modifies both G and H, and in particular it
increases the genus of the surface H by 1. We note
that the increase in the genus of H occurs also in the
special case that ϕ represents an instance of c-planarity
(when H is initially homeomorphic to a 2-sphere, i.e.,

when its genus is 0). This explains in part why this ap-
proach for the inherently planar problem of c-planarity
has not been considered before. The generalization of c-
planarity to surfaces of higher genus allows for a broader
range of operations, but it also poses several techni-
cal challenges that had to be resolved—some of them
even indicated that the problem might be NP-complete,
which we discuss next.

Unfortunately, Stretch(v, .) produces an equivalent
instance only if we already have some partial informa-
tion about the rotation of vertex v. In general, it can-
not reduce the degree of a cut vertex. This obstacle is
overcome with the help of a surprisingly simple opera-
tion, Contract(ρ), which contracts a pair of atoms in H
joined by a single pipe ρ into one atom, thereby elimi-
nating a pair of virtual vertices in G∗ corresponding to
ρ. An almost identical operation is also crucial in our
recent joint work with Akitaya [2] about weak embed-
dability. Nevertheless, the possibility of using this oper-
ation in the context of (the general case of) c-planarity
or atomic embeddability was not clear to us for some
time. The reason is that the operation Contract(ρ) for
a pipe ρ = µν can only be applied in a very restricted
setting, essentially if and only if Gϕ(µ) or Gϕ(ν) is a
p-path and ρ corresponds to a pole of that p-path; or
if they are both p-stars and ρ corresponds to their cen-
ters. The crucial observation that saves the day, which
is implicit in Carmesin’s work, is that after some pre-
processing that resolves 2-cuts with a vertex of degree
∆, we can use the operation Enclose(.), illustrated in
Fig. 6, to turn each cut vertex of degree ∆ into a center
of a p-star.

In order to show that our algorithm runs in poly-
nomial time, we define a nonnegative potential Φ(ϕ)
bounded from above throughout the execution of the
algorithm by a polynomial function of |V (G)| that
strictly decreases after every application of Stretch(.)
or Contract(.), but unfortunately, not after every appli-
cation of Enclose(.), which possibly just creates a pair
of new virtual vertices in G∗. Hence, we had to design
a charging scheme that controls the growth of G∗.

Several other similar, but less crucial, operations
are used in the preprocessing and postprocessing steps
of the algorithm, where the preprocessing step nor-
malizes the input instance in order to allow a rela-
tively smooth runtime analysis, and the postprocessing
step handles toroidal instances and subcubic instances
(where ∆(ϕ) ≤ 3).

2.2 Preliminaries Let G and H be multigraphs
without loops (multiple edges are allowed in both H and
G). By a slight abuse of notation, if there is no danger
of confusion, we sometimes denote edges by unordered
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pairs of their endpoints (even though several edges may
connect the same pair of vertices). A path, cycle, and
walk in a graph is always assumed to be a sequence of
edges (rather than vertices). Recall that in order to
distinguish G and H in our terminology, the vertices
and edges of H are called atoms and pipes, respectively.
We use the convention that vertices and edges of G are
denoted by lower case Roman letters (e.g., u, v, z and
e, f, g), respectively, and the atoms and pipes by lower
case Greek letters (e.g., ν, µ and ρ, π).

Cut vertices, 2-cuts, and 2-edge-cuts. Every
vertex of degree 2 or less has a unique rotation, hence
it has a fixed rotation. For this reason, we use a
topological notion of 1- and 2-cuts, which is invariant
to subdivisions of edges and supression of vertices of
degree 2. For a connected graph G, which is not a cycle,
denote by G− the multigraph obtained by supressing all
vertices of degree 2. Hence, G− is free of subdivided
edges, defined as paths whose internal vertices have
degree 2. Note that G− can have loops corresponding
to cycles in G that form leaf blocks.

Let G be a connected graph that is not a cycle. A
vertex v ∈ V (G−) ⊆ V (G) is a proper cut vertex (or
proper 1-cut) of G if there are two or more {v}-bridges
in G−. A pair of vertices {u, v} ⊂ V (G−) ⊆ V (G) is
a proper 2-cut of G if there are at least three {u, v}-
bridges in G−, or there are exactly two {u, v}-bridges
in G−, neither of which is an edge in G−. (Note that
if there are exactly two {u, v}-bridges in G−, and one
of them is an edge between u and v, then {u, v} is not
a 2-cut in G−.) A pair of edges {e, f} ⊂ E(G), such
that at least one vertex incident to e and one vertex
incident to f is of degree at least 3, is a proper 2-edge-
cut of G if there exist edges e− and f−, such that e−

and f− were obtained by suppressing internal vertices
of degree 2 of a path containing e and f , respectively,
and {e−, f−} is a 2-edge-cut in G−. Finally, for a
proper 2-cut {u, v}, a {u, v}-bridge B is separable if
degB(u) ∈ {1,deg(u)−1} and degB(v) ∈ {1,deg(v)−1},
otherwise it is nonseparable.

Observation 2. Let G be a connected graph that is not
a cycle. If {u, v} is a proper 2-cut and B is a separable
{u, v}-bridge but not a subdivided edge, then there exists
a proper 2-edge-cut {e, f} in G such that u ∈ e and
v ∈ f .

We often tacitly use the following well-known result
by Mac Lane [33]. If G is a connected planar graph, and
the rotation of a vertex v is not fixed, then deg(v) ≥ 3
and v participates in a proper 1- or 2-cut. In particular,
if every graph Gϕ(ν), ν ∈ V (H), is a subdivision of a 3-
connected graph, we can use planarity testing to check
the conditions in Observation 1, and easily reduce the

v

v

v
u v u

u

u
u v v

Figure 2: A proper 2-cut {u, v} and its three bridges
(left), a p-path with poles u and v (middle), and a p-
star centered at v (right).

Sµ Sν

ρ

Sµ Sν

Figure 3: An atomic embedding of G on S(µ) ∪ S(ν)
before and after operation Suppress(ρ), where ρ = µν.
The operation eliminates a pipe with at most two edges
of G.

atomic embedibility problem to 2SAT (cf. Section 2.6).
The challenge is, therefore, to handle the possible
rotations of vertices that participate in proper 1- or 2-
cuts in some local graph Gϕ(ν).

2.3 Preprocessing and Data Structures Our al-
gorithm uses a sequence of elementary operations that
dynamically modify a given instance ϕ : G → H of
atomic embeddability. For the running time analysis
(Section 2.8), we need to maintain data structures that
support these operations. We assume that the input
specifies G, H, and ϕ explicitly (i.e., adjacency lists for
the graphs G and H, and pointers from the vertices
and edges of G to their images in H under the map
ϕ : G → H). The size of an instance ϕ : G → H is
the total number of edges and vertices in the graphs G
and H. Before we present our data structures (which
do not maintain H and ϕ explicitly), we preprocess the
instance ϕ.

Definition 1. An instance ϕ : G → H of atomic
embeddability is normal if

• the degree of every virtual vertex in every Gϕ(ν),
ν ∈ V (H), is 3 or higher; and

• Gϕ(ν) is connected for all ν ∈ V (H).

We define an operation that eliminates pipes with
2 or less edges, see Fig. 3.

Suppress(ρ). We are given a pipe ρ ∈ E(H) such
that |ϕ−1[ρ]| ≤ 2. Let µ, ν ∈ V (H) be the two atoms
incident to ρ. Remove the pipe ρ from E(H). If ϕ−1[ρ]
contains one edge, say uv ∈ E(G) with ϕ(u) = µ and
ϕ(v) = ν, then delete uv from E(G), insert two new
vertices u′, v′ and new edges uu′, vv′ into G, and update
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Sν

Sν1 Sν2

Sν4Sν3

Figure 4: An atomic embedding of G on S(ν)
and

⋃
i S(νi) before and after, respectively, operation

Split(ν). The operation splits an atom ν ∈ V (H), for
which Gϕ(ν) is disconnected, into as many atoms as the
number of connected components in Gϕ(ν).

ϕ with ϕ(u′) = µ and ϕ(v′) = ν. If ϕ−1[ρ] contains two
edges, say uivi ∈ E(G) with ϕ(ui) = µ and ϕ(vi) = ν,
for i ∈ {1, 2}, then delete both u1v1 and u2v2 from
E(G), insert two new vertices u′, v′ and new edges u1u

′,
u2u
′, v1v

′, and v2v
′ intoG, and update ϕ with ϕ(u′) = µ

and ϕ(v′) = ν.
Since the virtual vertices that correspond to ρ in

Gϕ(µ) and Gϕ(ν) have fixed rotations, by Observa-
tion 1, the following is straightforward.

Lemma 2.1. For every instance ϕ : G → H of atomic
embeddability, and every pipe ρ ∈ E(H), whose corre-
sponding vertices in local graphs have degree less than 3,
operation Suppress(ρ) produces an equivalent instance.

We define an operation that splits an atom ν if
Gϕ(ν) is disconnected, see Fig. 4.

Split(ν). We are given a local graph Gϕ(ν) whose
connected components are C1, . . . , Ck, for some k ∈ N.
Delete ν from H, introduce new vertices ν1, . . . , νk in
V (H), and introduce a pipe νiµ for every ρ = νµ ∈
E(H) such that ρ corresponds to a virtual vertex of
Ci. Finally, redefine ϕ on V (ϕ−1[ν]) as follows: Put
ϕ(v) = νi if v ∈ V (Ci).

By Observation 1, the following is straightforward.

Lemma 2.2. For every instance ϕ : G → H of atomic
embeddability, an application of Split(ν) produces an
equivalent instance.

Preprocessing(ϕ). Input: an instance ϕ : G→ H
of atomic embeddability.

(1) For every pipe ρ ∈ E(H) with |ϕ−1[ρ]| ≤ 2, apply
Suppress(ρ).

(2) For every atom ν ∈ V (H), where Gϕ(ν) is discon-
nected, apply Split(ν).

Lemma 2.3. For an instance ϕ : G → H of atomic
embeddability of size n, Preprocessing runs in O(n) time
and returns an equivalent normal instance ϕ′.

Proof. By Lemmas 2.1 and 2.2, the instance ϕ′ is
equivalent to ϕ. Step (1) eliminates virtual vertices of
degree less than 3, and Step (2) does not change the
degree of any vertex in local graphs. Step (2) splits
the local graphs Gϕ(ν), ν ∈ V (H), into connected
components. Hence, ϕ′ is normal. Step (1) runs in
O(1) time for each pipe of degree less than 3. Step (2)
runs in O(m) time for every local graph Gϕ(ν) with
m = m(ν) edges; which yields an overall running time
of O(n).

Data Structures. For a normal instance ϕ : G→
H, let G be the disjoint union of all local graphs Gϕ(ν),
ν ∈ V (H). We maintain the graphs G and G by
adjacency lists. We maintain the set V (H) of atoms
implicitly: Each connected component in G corresponds
to an atom ν ∈ V (H). We maintain the set E(H)
of pipes as follows: For every pipe ρ ∈ E(H), we
maintain two pointers to the two virtual vertices in
G that corresponds to ρ; and also maintain the set
ϕ−1[ρ] ⊂ E(G) of edges mapped to ρ in a doubly linked
list. Furthermore, for each edge uv ∈ ϕ−1[ρ], with
ϕ(u) = µ and ϕ(v) = ν, we maintain a pointer to ρ,
and to the edge in Gϕ(µ) (resp., Gϕ(ν)) that joins the
virtual vertex corresponding to ρ and u (resp., v).

For every connected component Gϕ(ν) of G, we
maintain G−ϕ (ν) (i.e., the multigraph obtained by su-
pressing vertices of degree 2), if Gϕ(ν) is not a cycle,
by adjacency lists. Furthermore, we maintain the block
tree of G−ϕ (ν), which is a bipartite graph that repre-
sents incidences between cut vertices and blocks (i.e.,
maximal 2-connected components). For each block of
G−ϕ (ν), we also maintain an SPQR decomposition tree
introduced by Di Battista and Tamassia [21], which is
a hierarchical decomposition used for representing all
2-cuts and their bridges. For each vertex v of G, we
maintain indicator variables that record whether v is
an ordinary or virtual vertex, whether it is a proper
cut vertex or contained in a proper 2-cut. At initial-
ization, all these data structures can be computed in
linear time in the size of G and H. The data structures
can be updated in linear time if necessary. (Currently
available dynamic data structures for planarity testing
and SPQR-trees, with sublinear update times, support
some but not all of our graph operations.)

As we shall see, whenever our algorithm creates a
pipe of degree less than 3, it is immediately suppressed.
If our algorithm modifies a graph Gϕ(ν) in a way
that it disconnects into components, then we assume
that it immediately splits the corresponding atom ν
as described above. In particular, our data structure
supports the operation Split(ν) in 0 time. In the
remainder of the algorithm, we may assume that every
instance of atomic embeddability is normal.
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2.4 Elementary Operations In this section we de-
scribe operations used in our algorithm for a given in-
stance ϕ : G → H of atomic embeddibility. Each oper-
ation modifies the instance ϕ. Each operation is local
in the sense that it affects an atom ν and possibly one
or two of its neighbors. That is, the modifications incur
changes in Gϕ(ν), and possibly in Gϕ(ν′), for some of
the neighbors ν′ of ν.

S(ν)

v

S(ν)

Figure 5: An atomic embedding of G on S(ν) before
and after operation Detach(v). The operation turns
an ordinary vertex v, the center of p-star Gϕ(ν), into
deg(v) leaves.

The following operation turns an ordinary vertex v
into deg(v) leaves, see Fig. 5.

Detach(v). Let v be an ordinary vertex in a graph
Gϕ(ν) such that every {v}-bridge is a p-path (that is,
either Gϕ(ν) is a p-star with center v, or Gϕ(ν) is a p-
path with a pole at v). Let vu1, . . . , vudeg(v) denote the
edges incident to v in G. Remove v and its incident
edges from G. Then introduce deg(v) new vertices
v1, . . . , vdeg(v) and add edges uivi, for all i ∈ [deg(v)]
to G. Finally, define ϕ(viui) = ϕ(vui).

By Observation 1, the following is straightforward.

Lemma 2.4. For an instance ϕ : G→ H of atomic em-
beddability, Detach(v) produces an equivalent instance
ϕ′. The operation can be implemented in O(deg(v))
time.

In the following we define the operation of enclosing
a bridge in Gϕ(ν), see Fig. 6. This operation is
analogous to stretching of a local branch in [14] except
that we apply it in a more general setting.

S(ν ′)S(ν) S(ν)

ρρ

νν ′

Figure 6: An atomic embedding of G on S(ν) before
and after operation Enclose(B), where B (colored blue)
is a {v}-bridge of Gϕ(ν) and v is a virtual vertex
corresponding to the pipe ρ.

Enclose(B). We are given a {v1, . . . , vk}-bridge B
in Gϕ(ν). The operation does not modify G except for
subdividing its edges. We first describe the changes in
H, and then the changes in the local graphs. Create
a new atom ν′ and a new pipe νν′. Replace every
pipe ρ = µν that corresponds to a virtual vertex in
B\{v1, . . . , vk} with a new pipe µν′. For every ordinary
vertex u ∈ V (B)\{v1, . . . , vk}, set ϕ(u) = ν′. For every
edge e ∈ E(G), for which the pipe ϕ(e) = ρ = µν
has been replaced by ρ′ = µν′, set ϕ(e) = ρ′. If
viu ∈ E(B), and vi or u is a virtual vertex of Gϕ(ν),
then subdivide viu ∈ E(G) by a vertex w and define
ϕ(w) as follows: If vi is virtual, then put ϕ(w) = ν;
otherwise put ϕ(w) = ν′. Finally, update the definition
of ϕ on the edges of B according to the value of ϕ on
the vertices of G (this is uniquely determined since νν′

is not a multiple pipe in E(H)).

For the purpose of the running time analysis the
effect of the operation on Gϕ(ν) is that we move the
subgraph induced by B \ {v1, . . . , vk} from Gϕ(ν) into
a new graph Gϕ(ν′), and introduce a virtual vertex
corresponding to the pipe νν′ in bothGϕ(ν) andGϕ(ν′),

whose degree is
∑k
i=1 degB(vi). We will be often tacitly

using the following lemma.

Lemma 2.5. Given an instance of atomic embeddability
ϕ, an application of Enclose(B) results in an equivalent
instance ϕ′ : G′ → H ′. The operation can be imple-
mented in O(

∑k
i=1 degB(vi)) time.

ρ

S(µ)

ua1

a2

a3

a4

a5
a6

u

a1

a2

a3

a5a6

a4

u′

a1
a2 a3

a4
a5 a6

S(µ)

b1
b2

b3
b4

b5 b6

a1 a2 a3
a4
a5 a6

b1
b2
b3

b4

b5 b6

S(ν)

S(µ)

S(ν)

S(µ)

ρρ′

Figure 7: An atomic embedding of G on S(ν) before
and after applying Stretch(u, {uv1, uv2, uv3}). Vertex u
is either ordinary (left) or virtual (right). If u is a virtual
vertex, it corresponds to a pipe ρ = µν.

In the following we define the operation that re-
places a vertex u in Gϕ(µ) by an edge uu′, and dis-
tributes the edges incident to u among u and u′. The
operation produces an equivalent instance if the rota-
tion of u is fixed, see Fig. 7.

Stretch(u,Eu). We are given a vertex u in Gϕ(µ)
and a set Eu = {ua1, . . . , ua`} of edges incident to u
where 0 < |Eu| < deg(u). We distinguish between
two cases, depending on whether u is an ordinary or
a virtual vertex. If u is ordinary, then remove the edges
ua1, . . . , ua`, introduce a new vertex u′ and a new edge
uu′, as well as new edges u′a1, . . . , u

′a` in Gϕ(µ).
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If u is virtual, then let ρ = µν ∈ E(H) be the
pipe corresponding to the virtual vertex u in Gϕ(µ) and
v in Gϕ(ν); and assume that uai = aibi, for i ∈ [`],
where b1, . . . , b` are vertices in Gϕ(ν). Do the following:
Introduce a new pipe ρ′ = µν inH corresponding to new
virtual vertices u′ in Gϕ(µ) and v′ in Gϕ(ν); introduce
a new connected component in G, which is a cycle
with two vertices and two parallel edges f, f ′ forming
a multiple edge such that ϕ(f) = ρ and ϕ(f ′) = ρ′;
and finally, modify ϕ by setting ϕ(aibi) = ρ′, for all
i ∈ [`]. In local graphs this corresponds to replacing uai
and vbi with u′ai and v′ai, respectively, for all i ∈ [`];
and inserting two new edges uv and u′v′ in the two
local graphs, respectively, and subdividing each with an
ordinary vertex.

For the purposes of the running time analysis (be-
low) the effect of the operation can be seen as the re-
placement of u by an edge whose two endpoints have
degrees ` + 1 and deg(u) − ` + 1, respectively (hence
the sum of their degrees equals deg(u) + 2). If u is a
virtual vertex (i.e., corresponds to a pipe between two
atoms), then both virtual vertices corresponding to the
same pipe go through these changes. By Observation 1,
the following is straightforward.

Lemma 2.6. Given an instance of atomic embeddability
ϕ such that the edges in Eu are incident to u, and
are consecutive in the rotation of vertex u in every
embedding of Gϕ(µ) inherited from an atomic embedding
of G, then the operation Stretch(u,Eu) produces an
equivalent instance.

Corollary 2.1. For an instance ϕ : G→ H of atomic
embeddability, if a vertex u ∈ V (Gϕ(ν)) has a fixed
rotation, in which the edges in Eu are consecutive, then
Stretch(u,Eu) produces an equivalent instance.

The operation of contraction that follows is applied
to an edge ρ = νµ of H and it produces an equivalent
instance if each of Gϕ(ν) and Gϕ(µ) is a p-star or p-
path.

Contract(ρ). We are given a pipe ρ = µν such that
ρ is the only pipe between µ and ν. Contract the pipe
µν in H into an atom 〈µν〉 and change ϕ accordingly
(that is, put ϕ(u) = 〈µν〉 for all the vertices mapped by
ϕ to µ or ν). Let ϕ′ denote the resulting instance. Note
that Gϕ′(〈µν〉) might be disconnected, in which case
operation Split(〈µν〉) is automatically applied to obtain
a normal instance, as explained in Section 2.3. Since ρ
is the only pipe between µ and ν the operation does not
introduce a loop in H.

Several incarnations of the following lemma, which
is a consequence of Belyi’s theorem [6], were proved in

related papers; see for example, [2, Lemma 3.2], [26,
Claim 7], or [27, Lemma 6].

Lemma 2.7. Let µν ∈ E(H) be a pipe such that either
(i) both Gϕ(µ) and Gϕ(ν) are p-stars, or (ii) Gϕ(µ)
or Gϕ(ν) is a p-path; and in both cases, ρ corresponds
to vertices u and v of maximum degree in Gϕ(µ) and
Gϕ(ν), respectively. Then Contract(µν) produces an
equivalent instance ϕ′.

Proof. Denote by ϕ′ : G → H ′ the map returned by
Contract(µν). First assume that ϕ : G → H is atomic
embeddable. Then there exists an atomic embedding
E : G → H (where every vertex a ∈ V (G) is embedded
in S(ϕ(a)); and every edge ab ∈ E(G) is embedded
as a Jordan arc in S(ϕ(a)) ∪ S(ϕ(b)) as specified in
the definition of atomic embedding). Let S(〈µν〉) =
S(µ) ∪ S(ν). Then the thickening H′ of H ′ equals H,
and the embedding E : G → H = H′ witnesses that
ϕ′ : G→ H ′ is atomic embeddable.

Conversely, assume that ϕ′ : G → H ′ is atomic
embeddable. Let E ′ : G→ H′ be an atomic embedding.
Consider the restriction of E ′ : G → H′ on the surface
S(〈µν〉). Filling the holes of S(〈µν〉) with discs, and
then contract them to points, to obtain an embedding
of Gϕ′(〈µν〉) on the sphere S2.

First, assume that (i) both Gϕ(µ) and Gϕ(ν) are p-
stars: Gϕ(µ) is the union of internally vertex disjoint
paths between u and a vertex set Va, and similarly
Gϕ(ν) is the union of internally vertex disjoint paths
between v and a vertex set Vb. Consequently, Gϕ′(〈µν〉)
is the union of internally vertex disjoint paths between
vertices in Va and Vb. (Note that Gϕ′(〈µν〉) need not
be connected.) By suppressing the internal vertices of
the paths between Va and Vb, we obtain an embedding
of a bipartite multigraph G−ϕ′(〈µν〉) with partite sets Va
and Vb on S2.

By Belyi’s theorem [6], there exists a Jordan curve
β : S1 → S2 that intersects every edge of G−ϕ′(〈µν〉) in
exactly one point, and the intersection is transversal.
The curve β partitions S2 into two parts, A and B.
We can subdivide the edges of G−ϕ′(〈µν〉) to obtain
an embedding of Gϕ′(〈µν〉) on a sphere such that the
curve β crosses an edge e ∈ E(Gϕ′(〈µν〉)) if and only
if e ∈ ϕ−1[ρ]. Consequently, by contracting A (resp.,
B) into a vertex v (resp., u), we obtain an embedding
of Gϕ(ν) (resp., Gϕ(µ)) on a sphere, where the vertices
u and v have opposite rotations. Observation 1 now
implies that ϕ : G→ H is atomic embeddable.

Next assume that (ii) Gϕ(µ) or Gϕ(ν) is a p-path:
Without loss of generality, assume that Gϕ(µ) is a p-
path, with poles u and w. Consequently, Gϕ′(〈µν〉) is a
subdivision of Gϕ(ν), obtained by subdividing the edges
incident to v. In particular G−ϕ′(〈µν〉) is isomorphic
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Sν Sµ

u wρ

Sν Sµ

u w
v′

v

Sµ

w
v′

u

v

Figure 8: An atomic embedding of G on S(ν) ∪ S(µ)
before and after operation Delete(uv), where uv ∈
Gϕ(ν) and uw = uv. The operation reduces the degree
of a virtual vertex v of Gϕ(ν) such that v is incident to
a cut-edge, and at most 3 edges of G pass through its
corresponding pipe ρ.

to G−ϕ (ν), where vertex w in G−ϕ′(〈µν〉) corresponds to

vertex v in G−ϕ (ν). By imposing the rotation of w on v
(and the opposite rotation on u), Observation 1 implies
that ϕ : G → H is atomic embeddable, completing the
proof.

Our last operation deletes a cut edge of a subcubic
local graph; see Fig. 8 for an illustration.

Delete(e). We are given a cut edge e = uv in
a subcubic local graph Gϕ(ν). If both u and v are
ordinary vertices, then delete uv from E(G) (thereby
disconnecting Gϕ(ν) into two components and invoking
Split(ν)). Else assume w.l.o.g. that u is ordinary and v is
virtual. Let ρ = µν be the pipe that corresponds to v in
Gϕ(ν) and a vertex v′ in Gϕ(µ), and let uw ∈ E(G) be
the edge corresponding to uv, that is, uw = uv = v′w,
where v′w ∈ Gϕ(µ). Delete the edge uw from G
(thereby reducing the degree of ρ to 2), then Suppress(ρ)
(which turns v and v′ into ordinary vertices), and finally
insert an edge v′w into both G and Gϕ(µ).

Lemma 2.8. For every instance ϕ : G → H of atomic
embeddability, an application of Delete(e) produces an
equivalent instance ϕ′.

2.5 Toroidal Instance An instance ϕ : G → H
is toroidal if H is a cycle and for every atom ν ∈
V (H), the graph Gϕ(ν) is a p-path in which both poles
are virtual vertices, and correspond to the two pipes
incident to ν.

Given an instance ϕ : G → H and a subgraph
H ′ ⊆ H, such that the restriction of ϕ to G′ = ϕ−1[H ′],
denoted ϕ′ : G′ → H ′, is toroidal, we say that H ′ is a
toroidal cycle in H.

In this section, we show how to decide toroidal
instances of atomic embeddability in linear time. First,
note that in a toroidal instance every ordinary vertex

has degree 2, hence G is a disjoint union of cycles, say
C1, . . . , Ct, for some t ∈ N. Furthermore, ϕ maps each
cycle Ck, k ∈ [t], to a walk that winds around H once
or more times.

Lemma 2.9. Let ϕ : G → H be a toroidal instance of
atomic embeddability, where H is a cycle, and G is a
vertex disjoint union of cycles C1, . . . , Ct. The instance
ϕ is positive if and only if ϕ(Ck) is a walk of the same
length for all k ∈ [t] (that is, every cycle winds around
the torus H the same number of times).

Roughly speaking, Lemma 2.9 follows by the intersec-
tion form of the closed curves on the torus. Indeed,
whether a pair of curves could be crossing free on the
torus is governed by their homology classes [30, Exam-
ple 2A.2. and Corollary 3A.6.(b)] over Z.

Corollary 2.2. We can decide whether a toroidal
instance ϕ : G→ H is atomic embeddable in time O(n),
where n is the number of edges and vertices in G.

2.6 The Subcubic Case An instance ϕ : G → H
of atomic embeddability is subcubic if Gϕ(ν) is
subcubic (i.e., its maximum degree is at most 3) for
every ν ∈ V (H). In this section, we show how to decide
subcubic instances of atomic embeddibility in linear
time. By Observation 1, it is enough to check whether
all graphs Gϕ(ν), ν ∈ V (H), are planar, and they each
have embeddings in the plane such that for every pipe
µν ∈ E(H), the virtual vertices corresponding to µν in
Gϕ(µ) and Gϕ(ν) have opposite rotations.

Planarity testing for a graph takes linear time [31].
Let n be the number of vertices and edges in G. Then
the disjoint union of all local graphs G has O(n) size
(since each vertex in V (G) corresponds to a unique
ordinary vertex, and every edge in E(G) corresponds
to one or two edges in G). Hence planarity testing for
G takes O(n) time.

In the subcubic case, every vertex in the local
graphs Gϕ(ν), ν ∈ V (H), has at most two possible
rotations (including the vertices of 1- and 2-cuts). We
show how to encode the possible embeddings of each
local graph by a boolean variable, and then reduce the
existence of compatible embeddings to a 2SAT formula,
which can be solved in O(n) time.

We start with a postprocessing algorithm that
eliminates 1- and 2-edge-cuts from local graphs.

Postprocessing. We are given a subcubic in-
stance ϕ : G→ H of atomic embeddability.

(1) While there exists a cut edge e in some Gϕ(ν),
ν ∈ V (H), apply Delete(e).
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(2) While there exists a proper 2-edge-cut {e, f} in a
local graph of ϕ, such that e = u1v1 and f = u2v2,
where both v1 and v2 are in a {u1, u2}-bridge B of
Gϕ(ν), apply Enclose(B) (creating a new pipe ρB
of degree 2), and Suppress(ρB).

Lemma 2.10. We can decide whether a subcubic in-
stance ϕ : G → H is atomic embeddable in O(n) time,
where n is the number of edges and vertices in G and
H.

2.7 Main Algorithm We define two subroutines
and then present our main algorithm. Subroutine 1
ensures that our instance has some desirable properties,
and Subroutine 2 decreases the maximum degree over
all local graphs Gϕ(ν), for all atoms ν ∈ V (H), that are
not contained in a toroidal cycle C of H.

The crucial part of our algorithm reduces the max-
imum degree in local graphs over all atoms that are
not in toroidal cycles. Specifically, for an instance ϕ of
atomic embeddability, let

• V ∗(H) (resp., E∗(H)) be the set of atoms (resp.,
pipes) in H that are not in any toroidal cycle of
H; and

• let ∆(ϕ) be the maximum degree over all vertices of
all local graphs Gϕ(ν), ν ∈ V ∗(H), if V ∗(H) 6= ∅,
and let ∆(ϕ) = 2 if V (H) = ∅.

We first call Subroutine 1 for a normal instance
ϕ, and show that it returns an equivalent instance in
which the proper 1- and 2-cuts in local graphs Gϕ(ν),
ν ∈ V ∗(H), are in a special form, as described in terms
of the following definition.

Definition 2. An instance ϕ of atomic embeddability
is d-nice, for d ≥ 3, if it meets the following two
conditions:

(N1) ∆(ϕ) ≤ d.
(N2) If deg(v) = d for a vertex v of some local graph

Gϕ(ν), ν ∈ V (H), then v has a fixed rotation, or
Gϕ(ν) is a p-path or a p-star.

(N3) If ρ = µν ∈ E(H), such that both Gϕ(µ) and Gϕ(ν)
are p-stars, and ρ corresponds to virtual vertices of
degree at least d, then ρ is the only pipe between µ
and ν.

We present a subroutine that takes a normal in-
stance ϕ as an input, and returns a ∆-nice normal in-
stance for the maximum degree ∆ over all local graphs,
that is, ∆ = ∆(ϕ) (as shown in Lemma 2.11 and Corol-
lary 2.4 below).

Subroutine 1. Input: a normal instance ϕ of
atomic embeddability, where ∆(ϕ) ≥ 4.

S(ν)

ρ

v

S(ν)

v

Figure 9: An atomic embedding of G on S(ν) before
and after Step (i), where u is a virtual vertex of Gϕ(ν)
corresponding to the pipe ρ, and v is an ordinary vertex
of Gϕ(ν).

(i) While there is a proper 2-cut {u, v} and a nonsepa-
rable {u, v}-bridge B in Gϕ(ν), for some ν ∈ V (H),
such that max{deg(u),deg(v)} = ∆, but neither u
nor v is a cut vertex, then do the following: Per-
form Stretch(u,Eu), where Eu is the set of edges
in E(B) incident to u; and perform Stretch(v,Ev),
where Ev is the set of edges in E(B) incident to
v. If u or v is a virtual vertex corresponding to a
pipe µν and Gϕ(µ) is nonplanar, report that the
instance ϕ is not atomic embeddable and exit the
subroutine.

(ii) While there is a proper 2-edge-cut {e, f} in Gϕ(ν),
for some ν ∈ V (H), then let e = u1v1 and f = u2v2

such that both v1 and v2 are in a {u1, u2}-bridge
B of Gϕ(ν), then apply Enclose(B) (creating a new
pipe ρB of degree 2), and Suppress(ρB).

(iii) While there is a proper cut vertex v with deg(v) =
∆ in some local graph of ϕ, then successively
apply Enclose(B) for every bridge B of v (thereby
turning every bridge of v into a p-path). Apply
Suppress(ρB) if applicable.

In Section 2.8 (cf. Corollary 2.4), we show that
Subroutine 1 terminates and analyse its running time.
Here we prove that if it terminates, it returns a ∆(ϕ)-
nice instance.

Lemma 2.11. For an instance ϕ of atomic embeddi-
bility, if Subroutine 1 terminates, it either returns an
equivalent, normal, and ∆(ϕ)-nice instance ϕ′, or re-
ports that ϕ is not atomic embeddable.

Proof. Let ∆ = ∆(ϕ) for short. By Lemmas 2.1, 2.5,
and 2.6, Subroutine 1 returns an equivalent instance
ϕ′ upon termination. Note that instance ϕ′ is normal,
since we apply Suppress(νB) to any pipe of degree less
than 3. The operations in Subroutine 1 do not increase
the maximum degree in any local graph outside of
toroidal cycles; and make no changes at all in local
graphs in toroidal cycles. Consequently, ∆(ϕ′) ≤ ∆.
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v u u1v2
u2

v1

S(ν) S(ν)

ρBS(ν ′)

v u u1

v1v2

u2

S(ν) S(ν)

ρB

S(ν ′)

Figure 10: The operation Enclose(B) in Step (ii) elim-
inates every proper 2-cut {u, v} in Gϕ(ν) that has
exactly two {u, v}-bridges. Either one of the {u, v}-
bridges is separable (left), or there exists a separable
{u1, u2}-bridge such that degB(u1) = degB(u2) = 1
(right).

At the end of Step (i), every {u, v}-bridge
is separable for every proper {u, v}-cut where
max{deg(u),deg(v)} = ∆; see Fig. 9. We consider
Step (ii) now. Suppose that {u, v} is a proper 2-
cut in Gϕ(ν), such that min{deg(u),deg(v)} ≥ 3 and
max{deg(u),deg(v)} = ∆

If there exist exactly two (separable) {u, v}-bridges
in Gϕ(ν) (none of which is a subdivided edge as other-
wise {u, v} would not be a proper 2-cut), then Step (ii)
eliminates the proper 2-cut {u, v} by a single application
of Enclose(.), due to Observation 2, and does not intro-
duce any new proper 2-cut. Indeed, up to symmetry
there are two cases to consider depending on whether
degB(u) = 1 or degB(u) = deg(u)− 1, and degB(v) = 1
or degB(v) = deg(v)− 1; see Fig. 10.

If there exist at least three (separable) {u, v}-
bridges in Gϕ(ν) such that max{deg(u),deg(v)} = ∆,
then Step (ii) turns Gϕ(ν) into a p-path with the poles
u and v.

Hence, at the end of Step (ii), for every proper 2-cut
{u, v} we have (a) max{deg(u),deg(v)} < ∆; or (b) u
or v is a cut vertex of degree ∆; or (c) u and v are the
poles of a p-path. In particular, every vertex w with
deg(w) = ∆ in a local graph Gϕ(µ), is a proper 1-cut,
or a pole of a p-path, or has fixed rotation.

Step (iii) successively turns every cut vertex of
degree ∆ into the center of a p-star. It creates new 2-
cuts within these p-stars and possibly in adjacent atoms,
but it does not create any new vertex of degree ∆.
Hence, at the end of Subroutine 1 ϕ satisfies (N1) and
(N2). For property (N3), note that by enclosing all the
bridges of the center of every p-star in G of degree ∆,
Step (iii) eliminates possible problematic multiple pipes
ρ = µν in H, where ρ corresponds to a pair of centers
of p-stars Gϕ(µ) and Gϕ(ν). Overall, the instance ϕ′

ρ1 = µ0µ1 ρ2 = µ1µ2 ρ3 = µ2µ3
µ0 µ1 µ2 µ3

Gϕ(µ0) Gϕ(µ1) Gϕ(µ2) Gϕ(µ3)

G Sµ0
Sµ1 Sµ2

Sµ3

H

G

G Sµ0 Sµ′
1

Sµ3

G Sµ′
0

Sµ3

Sµ3
G

ρ3

ρ′3

Sµ′
0

Figure 11: A path (ρ1, ρ2, ρ3) in H through the atoms
µ0, . . . , µ3. The graph Gϕ(µ0) is a p-star, Gϕ(µ1) and
Gϕ(µ2) are p-paths, and Gϕ(µ3) is 3-connected. In each
local graph, the virtual vertices corresponding to ρ1, ρ2,
or ρ3 are vertices of maximum degree. The bottom three
subfigures show the effect of Step (iv.a) and Step ((v.c))
of Subroutine 2 on the graph G in this instance.

returned by Subroutine 1 upon termination meets both
conditions (N1)–(N3), consequently ϕ′ is ∆-nice.

Degree reduction. We are now ready to present
the crucial subroutine of our algorithm that reduces
∆(ϕ) by eliminating all vertices of degree ∆(ϕ) that
are not in toroidal cycles. (See Figs. 11 and 12 for
the possible relations between virtual vertices of degree
∆(ϕ).)

Subroutine 2. Input: a normal and ∆-nice
instance ϕ of atomic embeddability, where ∆ =
∆(ϕ) and ∆ ≥ 4.

ρ1µ ν

Gϕ(µ) Gϕ(ν)

Sµ Sν
H

G u1 v1

ρ2

u2

v2

Figure 12: An illustration of the setting in Step (iv.b),
analogous to Fig. 11.
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(iv) While there exists a pipe µν ∈ E∗(H) of degree
∆ such that Gϕ(µ) or Gϕ(ν) is a p-path, do the
following. Suppose w.l.o.g. that Gϕ(µ) is a p-path.

(a) If µν is not a multiple edge apply
Contract(µν).

(b) Else there exists a pair of pipes ρ1 and ρ2 join-
ing µ with ν. Let ui and vi, resp., be virtual
vertices in Gϕ(µ) and Gϕ(ν) corresponding to
ρi for i ∈ {1, 2}. Note that u1 and u2 are
the poles of the p-path Gϕ(µ); and both v1

and v2 are fixed due to (N2), as µ is not in
a toroidal cycle. Apply Stretch(v1, E1) and
Stretch(v2, E2), where Ei is a set of b∆/2c
consecutive edges in the rotation at vi, for
i ∈ {1, 2}. If Gϕ(µ) becomes nonplanar, re-
port that the instance is not atomic embed-
dable and exit the subroutine.

(v) For every pipe µν ∈ E∗(H) of degree ∆ that
corresponds to virtual vertices u and v in Gϕ(µ)
and Gϕ(ν), respectively, do:

(a) If both u and v have fixed rotations (in
Gϕ(µ) and Gϕ(ν), resp.), then check whether
the two rotations are compatible. If they
are incompatible, then report that ϕ is not
atomic embeddable and exit the subroutine.
Otherwise apply Stretch(u,Eu), where Eu is a
set of b∆/2c consecutive edges in the rotation
of u.

(b) If neither u nor v has a fixed rotation, then
apply Contract(µν). This contracts µν into
a new atom, denoted by 〈µν〉, and combines
Gϕ(µ) and Gϕ(ν) into a new graph Gϕ(〈µν〉).
If Gϕ(〈µν〉) is nonplanar, report that ϕ is not
atomic embeddable and exit the subroutine.

(c) Else assume w.l.o.g. that u has fixed ro-
tation in Gϕ(µ), and is incident to edges
(uv1, . . . , uv∆) in this cyclic rotation order.
Successively apply Stretch(u, .), turning ver-
tex u into an induced binary tree with ∆ − 2
vertices. If Gϕ(ν) is nonplanar, report that
the instance is not atomic embeddable and
exit the subroutine.

(vi) For every ordinary vertex v ∈ V (Gϕ(ν)), ν ∈
V (H), with deg(v) = ∆ that has fixed rotation,
apply Stretch(v,Ev), where Ev is a set of b∆/2c
consecutive edges in the rotation of v.

(vii) For every ordinary vertex v ∈ V (Gϕ(ν)), ν ∈
V (H), with deg(v) = ∆ that is part of a 1- or
2-cut, apply Detach(v).

This completes the description of Subroutine 2. In
Section 2.8 we show that Subroutine 2 terminates and
analyse its running time. In Lemma 2.13 below, we
prove that if it terminates, it returns an instance ϕ′

with ∆(ϕ′) < ∆(ϕ). We first clarify when an operation
Stretch(.) can create a proper 1- or 2-cut.

Lemma 2.12. Let u be a vertex in Gϕ(ν) such that
deg(u) ≥ 4, and assume that operation Stretch(u, .)
produces an instance ϕ′ in which u is replaced by an edge
uu′. If u is not a proper 1-cut in Gϕ(ν), then neither
u nor u′ is a proper 1-cut in Gϕ′(ν). If u neither is a
proper 1-cut nor belongs to a proper 2-cut in Gϕ(ν), then
neither u nor u′ belongs to a proper 2-cut in Gϕ′(ν).

Lemma 2.13. For a ∆(ϕ)-nice instance ϕ : G → H
of atomic embeddability, if Subroutine 2 terminates,
then it either returns an equivalent normal instance
ϕ′ : G′ → H ′ such that ∆(ϕ′) < ∆(ϕ), or reports that
ϕ is not atomic embeddable.

Proof. Let ∆ = ∆(ϕ). We show that every step of Sub-
routine 2 maintains a ∆-nice normal instance equivalent
to ϕ until it terminates; and it either returns such an
instance ϕ′ or reports that ϕ′ is not atomic embeddable.
Subroutine 2 maintains a normal instance until termi-
nation, since it does not create virtual vertices of degree
2 and Split(.) is applied automatically whenever a local
graph disconnects into two or more components.

Step (iv.a) produces an equivalent instance by
Lemma 2.7: Each Contract(.) operation merges a local
graph Gϕ(ν) with a p-path Gϕ(µ) and produces a new
local graph Gϕ(〈µν〉), where G−ϕ (〈µν〉) is isomorphic to
G−ϕ (ν), so the instance remains ∆-nice. In Step (iv.b),
the two invocation of Stretch(.) produce an equivalent
instance by Lemma 2.6. At the end of Step (iv), none
of the local graphs outside of toroidal cycles is a p-path
of degree ∆.

In Step (v.a), the rotation of the virtual vertices u
and v must be compatible in any atomic embedding by
Observation 1. If they are compatible, then operation
Stretch(u, .) produces an equivalent instance by Corol-
lary 2.1; and the resulting instance is still ∆-nice since
no new proper 1-cut or 2-cut is introduced in Gϕ(µ) and
Gϕ(ν) by Lemma 2.12.

In Step (v.b), both Gϕ(µ) and Gϕ(ν) are p-star,
centered at u, and v resp., since instance is ∆-nice,
and p-paths of degree ∆ have already been eliminated.
By Lemma 2.7, Contract(µν) produces an equivalent
instance. The resulting instance is still ∆-nice, since
the maximum degree of Gϕ(〈µν〉) is less than ∆; and
Gϕ(〈µν〉) is planar if ϕ is atomic embeddable by Obser-
vation 1.

In Step (v.c), operation Stretch(u, .) for a fixed
vertex u yields an equivalent instance by Corollary 2.1.
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If the rotation of u is incompatible with a p-star
centered at v, Stretch(u, .) may turn Gϕ(ν) into a
nonplanar graph, and then ϕ is not atomic embeddable
by Observation 1. Note that Gϕ(ν) is a p-star, since
p-paths have been eliminated in Step (iv). Successive
Stretch(.) operations eliminate the only vertex of degree
∆ of Gϕ(ν), namely v. The graph Gϕ(µ)− remains 3-
connected by Lemma 2.12, and so the resulting instance
is ∆-nice.

The equivalence of Step (vi) follows by Lemma 2.6,
and the resulting instance is still ∆-nice, since operation
Stretch(v, .) does not introduce a 1-cut in Gϕ(ν) that
would violate the ∆-nice property by Lemma 2.12.

In Step (vii), operation Detach(u) is applied in a ∆-
nice instance, hence it produces an equivalent instance
by Lemma 2.4, which obviously remains ∆-nice.

For the remainder of the proof, assume that Sub-
routine 2 returns an instance ϕ′. The operations in Sub-
routine 2 do not increase the maximum degree outside
of toroidal cycles; and make no changes within toroidal
cycles. Consequently, ∆(ϕ′) ≤ ∆.

It remains to prove that ∆(ϕ′) < ∆, i.e., that
Subroutine 2 eliminates vertices of degree ∆ from all
local graphs outside of toroidal cycles; call these vertices
∆-critical. Since ϕ is ∆-nice, every ∆-critical vertex
in a local graph has a fixed rotation, or it is a center
of a p-star, or a pole of a p-path. Steps (iv)–(vii) each
eliminate one or two ∆-critical vertices (possibly a pair
of corresponding virtual vertices), and do not create
any new ∆-critical vertices. Steps (iv)–(v) eliminate
all possible ∆-critical virtual vertices; and Steps (vi)–
(vii) eliminate all ∆-critical ordinary vertices. Since
Subroutine 2 maintains a ∆-nice instance, it ultimately
eliminates all ∆-critical vertices, and so ∆(ϕ′) < ∆, as
claimed.

Algorithm. We are given a normal instance ϕ of
atomic embeddability.

(I) While ∆(ϕ) ≥ 4, do the following.

(a) Call Subroutine 1 (which turns ϕ into a ∆-nice
instance) followed by Subroutine 2 (which re-
duces ∆(ϕ)). If Subroutine 1 or Subroutine 2
reports that the instance ϕ is not atomic em-
beddable return False and terminate the al-
gorithm.

(II) For each connected component C of H, let G(C) =
ϕ−1[C].

(a) If C is a toroidal cycle of H, decide atomic
embeddability for ϕ|G(C) using Corollary 2.2.

(b) Else decide atomic embeddability for ϕ|G(C)

using Lemma 2.10.

(III) If ϕ|G(C) is atomic embeddable for all components
C of H, then return True; else return False.

In Section 2.8 we show that the Algorithm termi-
nates and analyse its running time. Here we show that
if it terminates it correctly decides the atomic embed-
dability problem.

Lemma 2.14. Suppose that Algorithm terminates for
an instance ϕ : G → H. Then the algorithm returns
True if and only if ϕ is atomic embeddable.

Proof. Since the input ϕ is normal, it is a valid input
for Subroutine 1 in the first iteration of Step (I.a). By
Lemma 2.11, Subroutine 1 returns a ∆(ϕ)-nice instance
and therefore the input for Subroutine 2 is valid. In any
subsequent iteration of Step (I.a), Subroutine 1 receives
a valid input as Subroutine 2 returns a normal instance
ϕ∗ (however, this instance need not be ∆(ϕ∗)-nice). By
Lemma 2.11 and Lemma 2.13, the while loop in Step (I)
terminates after at most ∆(ϕ)−3 iterations, and returns
an equivalent instance (or correctly reports that ϕ is
not atomic embeddable). If the Algorithm proceeds to
Steps (II)–(III), the correctness of the output follows
from Corollary 2.2 and Lemma 2.10.

2.8 Running Time Analysis
Potential Functions. We measure the progress of

the algorithm, for an instance ϕ : G → H, using three
parameters defined as follows. Recall that G denotes the
disjoint union of all local graphs Gϕ(ν), ν ∈ V (H).

• Let N(ϕ) = |V (G)|, that is, the number of vertices
of G.

• let N≥3(ϕ) = |{v ∈ V (G) : deg(v) ≥ 3}|, i.e., the
number of vertices of G of degree 3 or higher.

• Let the potential of ϕ be

Φ(ϕ) =
∑

v∈V (G)

(max{0,deg(v)− ξ(v)})σ(v)
,

where ξ(v) = 2 and σ(v) = 3 if v is a proper cut
vertex, ξ(v) = 2 and σ(v) = 2 if v is part of a
proper 2-cut but not a cut vertex, and ξ(v) = 3
and σ(v) = 1 otherwise.

Note that max{0,deg(v)− 2} = 0 if deg(v) ≤ 2, that is,
the vertices of local graphs of degree less than 3 do not
contribute to the potential. Clearly deg(v) < N(ϕ) for
every v ∈ V (G), and so Φ(ϕ) ≤ N4(ϕ) is a trivial upper
bound. Our analysis hinges on the following charging
scheme:
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Overview. We show below (Lemma 2.18) that
each iteration of Step (I.a) of the Algorithm decreases
the potential. This readily implies that the while loop
in Step (I) terminates (hence the Algorithm terminates,
which completes the proof of correctness). Recall that
Step (I.a) runs Subroutines 1 and 2, that is, it applies
Steps (i)–(vii). We show that both the number of
elementary operations performed and the number of
new vertices created in Steps (i)–(vii) are bounded from
above by a constant times the decrease of the potential.
Step (ii) does not change the potential, so we need
additional machinery to bound its running time: We
use the parameters N(ϕ) and N≥3(ϕ). We continue
with the specifics.

Analysis. Recall that each iteration of the while
loop of Step (I) of the Algorithm, which calls Sub-
routine 1 followed by Subroutine 2. The two subrou-
tine jointly perform Steps (i)–(vii). We use the follow-
ing notation. Assume that ϕ0 is the input of Subrou-
tine 1, and we obtain instances ϕ1, . . . , ϕ7 at the end
of Step (i),. . .,(vii). Denote by Gi the union of all local
graphs in the instance ϕi for i = 1, . . . , 7. The following
lemma is helpful for the analysis of Step (i).

Lemma 2.15. Let {u, v} be a proper 2-cut in a local
graph Gϕ(ν) such that max{deg(u),deg(v)} ≥ 4; and let
B be a nonseparable {u, v}-bridge. Then one iteration
of the while loop in Step (i) produces an instance ϕ′ such
that Φ(ϕ′) < Φ(ϕ) and N(ϕ′) ≤ N(ϕ) + 4.

Corollary 2.3. Let ϕ0 be a normal instance of atomic
embeddability and let ∆ = ∆(ϕ0). Then the while
loop in Step (i) terminates and returns an instance
ϕ1, after at most Φ(ϕ0) − Φ(ϕ1) iterations, such that
N(ϕ1) ≤ N(ϕ0) + 12(Φ(ϕ0)− Φ(ϕ1)).

Proof. By Lemma 2.15, each iteration of the while loop
in Step (i) decreases the potential. Consequently, the
while loop terminates, and performs at most Φ(ϕ) −
Φ(ϕ′) iterations. Each iteration applies up to two
Stretch(.) operations, at u or v for some proper {u, v}-
cut, and increases the number of vertices by at most 4.
By Lemma 2.15, the number of vertices increases by at
most 4 times the decrease of the potential. Summation
over all iterations of the while loop in Step (i) yields
N(ϕ1) ≤ N(ϕ0) + 4(Φ(ϕ0)− Φ(ϕ1)).

We can now focus on Steps (ii)–(vii).

Lemma 2.16. Let ϕ1 be an instance returned by
Step (i). Then the while loop in Step (ii) terminates
after at most N≥3(ϕ) iterations, and it returns an
instance ϕ2 such that N(ϕ2) < N(ϕ1) + 2N≥3(ϕ1),
N≥3(ϕ2) = N≥3(ϕ1), and Φ(ϕ2) = Φ(ϕ1).

Proof. Let ϕ be an instance at the beginning of one
iteration of the while loop in Step (ii). Since ϕ is
normal, every local graph Gϕ(ν) is connected. Let
{e, f} be a proper 2-edge-cut in Gϕ(ν), let e = u1v1

and f = u2v2 such both v1 and v2 are in a {u1, u2}-
bridge B. Note that each component of Gϕ(ν) \ {e, f}
contains a vertex that has degree at least 3 in Gϕ(ν),
otherwise one of the components would be a path, and
the 2-edge-cut would not be proper. In one iteration
of Step (ii), an operation Enclose(.) replaces Gϕ(ν)
with two local graphs obtained by removing edges e
and f , and inserting two new paths (u1, wu, u2) and
(v1, wv, v2), where wu and wv are new ordinary vertices
of degree 2. In particular, Φ and the number of vertices
of degree at least 3 do not change, and the total number
of vertices in G increases by 2.

It follows that Φ(ϕ2) = Φ(ϕ1) and N≥3(ϕ2) =
N≥3(ϕ1). Since each iteration in the while loop of
Step (ii) increases the number of components of G,
but each new component contains at least one vertex
of degree 3 or higher, the number of iterations is at
most N≥3(ϕ)− 1. Summation over all iterations yields
N(ϕ2) ≤ N(ϕ1) + 2N≥3(ϕ1)− 2.

Now we are ready to show that Subroutine 1
terminates.

Corollary 2.4. For an instance ϕ0 of atomic embed-
dibility of size n, Subroutine 1 terminates.

Proof. By Corollary 2.3 the while loop in Step (i)
terminates. By Lemma 2.16, Step (ii) terminates and
eliminates all proper 2-edge-cuts containing an edge
that is incident to a vertex of degree ∆ = ∆(ϕ0).
Finally, in the while loop of Step (iii), each iteration
decreases the number of vertices of degree ∆ in local
graphs that are not p-stars. Therefore this while loop
terminates, as well.

Note that Step (iii) increases the potential. We
analyse the combined effect of Steps (iii)–(vii), and show
that they jointly decrease the potential, and we can
charge the number of operations, as well as the number
of new vertices to the decrease of the potential. The
following observation will be helpful.

Lemma 2.17. Let d and d1, . . . , dk be positive integers
such that d =

∑k
i=1 di, d ≥ 4, and k ≥ 2. Then we have

(d− 2)3 ≥(2d− 5) +
k∑
i=1

(max{0, di − 2})2+(2.1)

+

k∑
i=1

(max{0, di − 2})3,
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with equality if and only if k = d, or k = 2 and
min{d1, d2} = 1.

Lemma 2.18. Consider Steps (iii)–(vii) in an invoca-
tion of Subroutine 1 followed by Subroutine 2. We have
Φ(ϕ2) > Φ(ϕ7), N(ϕ7) ≤ N(ϕ2) + O(Φ(ϕ2) − Φ(ϕ7)),
and the number of operations performed in Steps (iii)–
(vii) is O(Φ(ϕ2)− Φ(ϕ7)).

Proof. None of these steps increases the number of ver-
tices of degree ∆ or higher in local graphs. Ultimately
all vertices of degree ∆ outside of toroidal cycles are
eliminated.

Overview. Each operation in Steps (iii)–(vii) is
associated to either a unique vertex of degree ∆, or two
virtual vertices of degree ∆ that correspond to the same
pipe. In Step (iii) and Steps (vi)–(vii), this is vertex
v; in Steps (iv)–(v), these are virtual vertices u and v
corresponding to the pipe µν. We consider each vertex
v of degree ∆ in the instance ϕ2, and analyse how the
operations associated with v change the potential and
the total number of vertices over Steps (iii)–(vii). Let
D(Φ, v) and D(N, v), resp., denote the changes in Φ(.)
and N(.) incurred by the operations associated with
vertex v. We claim that for every vertex v of degree
∆ in G2, we have

(2.2) D(Φ, v) ≤ 0,

with equality if and only if v is a a local graph Gϕ2
(ν)

where ν is in a toroidal cycle; and

(2.3) D(N, v) + 20 D(Φ, v) ≤ 0.

Note that (2.2) holds with a strict inequality for at least
one vertex v. Indeed, we have ∆ = ∆(ϕ3) = ∆(ϕ2), and
so there is a vertex of degree ∆ in some local graph of ϕ2

outside of toroidal cycles. Summation over all vertices
of degree ∆ then yields

Φ(ϕ7) = Φ(ϕ2) +
∑

u∈V (G2):deg(u)=∆

D(Φ, u) < Φ(ϕ2),

N(ϕ7) = N(ϕ2) +
∑

u∈V (G2):deg(u)=∆

D(N, u) ≤ N(ϕ2)+

+ 20(Φ(ϕ2)− Φ(ϕ7)).

Elimination of p-paths. Recall that each itera-
tion of Step (iv.a) applies Contract(µν) on a pipe µν
corresponding to virtual vertices u in Gϕ(µ) and v in
Gϕ(ν). Without loss of generality, assume that Gϕ(µ)
is a p-path with poles u and w. Operation Contract(µν)
eliminates u and v, and creates a new local graph

Gϕ(〈µν〉) where G−ϕ (〈µν〉) is isomorphic to Gϕ(ν). For
the analysis of D(Φ, .) and D(N, .), we assume that this
operation eliminates u and w; and vertex v of Gϕ(ν)
survives in Gϕ(〈µν〉). Thus, the effect of Contract(µν)
is neutral for v, although v may become an ordinary
vertex if w is ordinary before the operation.

Inequalities (2.2)–(2.3) clearly hold for any vertex
v in toroidal cycles. For all other vertices of degree ∆,
we distinguish between three cases as follows.

Vertices of fixed rotation. Let v be a vertex of
fixed rotation with deg(v) = ∆ = ∆(ϕ2) in ϕ2. If v is
an ordinary vertex, then Steps (i)–(vi) do not change
v, and in Step (vi) a Stretch(v, .) operation replaces v
with two vertices v1 and v2, where deg(v1) + deg(v2) =
∆ + 2, and min{deg(v1),deg(v2)} ≥ 3. In this case,
D(Φ, v) = (deg(v1) − 3) + (deg(v2) − 3) − (∆ − 3) =
−1, and D(N, v) = 1. If v is a virtual vertex, then
deg(v) decreases in either Step (iv.b), (v.a) or (v.c). In
Step (iv.b) or (v.a) one Stretch(.) operation has the
same effect on the potential as for ordinary vertices,
D(Φ, v) = −1, but it creates two new vertices, and
so D(N, v) = 2. In Step (v.c), ∆ − 3 successive
Stretch(.) operations replace v with ∆ − 2 vertices
of fixed orientation with degree 3. Thus, D(Φ, v) =
0 − (∆ − 2), and D(N, v) ≤ ∆ − 3. In all cases, (2.2)–
(2.3) follow.

Poles of p-paths. Let v be a pole of a p-path
Gϕ2

(ν), with deg(u) = ∆ = ∆(ϕ2). Denote the other
pole of the p-path by u, where obviously deg(u) =
deg(v) = ∆. If both u and v are ordinary, then
Steps (i)–(v) do not change Gϕ2

(ν). The Detach(.)
operation in Step (vii) replaces v with ∆ new vertices
of degree 1. Thus, D(Φ, v) = −(∆− 2)2 and D(N, v) =
∆− 1, thus (2.2)–(2.3) follow.

Assume that u or v is a virtual vertex. Then a
Contract(.) operation in Step (iv.a) eliminates both u
and v. We have D(Φ, u) = −(∆ − 2)2 and D(N, u) =
−1.

Step (iv.b) applies Stretch(.) to a pair of virtual
vertices u1 and u2 of Gϕ(µ). Thus, we have D(Φ, u1) =
D(Φ, u2) < 0 and D(N, u1) = D(N, u2) = 1.

Proper cut vertices. Let v be a proper cut vertex
in ϕ2 with deg(v) = ∆ = ∆(ϕ2) in some local graph
Gϕ2(ν). Assume v has k ≥ 2 bridges B1, . . . , Bk, and
degBi

(v) = di for all i ∈ [k]. Step (iii) successively
encloses the k bridges. Note that v remains a proper
cut vertex of degree ∆. Step (iii) creates new virtual
vertices v1, . . . , vk in the p-star centered at v, where
deg(v) =

∑k
i=1 deg(vi). Every new virtual vertex vi,

i ∈ [k], is part of a proper 2-cut {v, vi}.
Moreover, every virtual vertex vi, i ∈ [k], corre-

sponds to another virtual vertex v′i in the local graph
of an atom created by enclosing Bi; this local graph
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is isomorphic to Bi, where v′i plays the role of v. In
particular v′i cannot be a cut vertex, but it may be con-
tained in a proper 2-cut. At the end of Step (iii), we
obtain a ∆-nice instance ϕ3 in which none of the local
graphs containing a virtual vertex v′i, i ∈ [k], is a p-path
or a p-star contain any vertex of degree ∆. Therefore
Steps (iv)–(vii) do not change the degree of v′i, and v′i
cannot become a cut vertex for any i ∈ [k].

Next we consider the possible changes to the p-
star centered at v in Steps (iv)–(vii). Step (iv.a) may
turn v into an ordinary vertex as noted above (but
it changes neither D(Φ, v) nor D(N, v)). Since v is a
proper cut vertex of degree ∆, the next step that can
possibly modify the p-star is Step (v.b), (v.c), or (vii).
In Step (v.b), a Contract(.) operation eliminates vertex
v, and any vertex vi, i ∈ [k] may become a cut vertex.
In Step (v.c), successive Stretch(.) operations replace
v with ∆ − 2 vertices of degree 3. Since each of these
vertices could be a proper cut vertex, they contribute
(∆− 2)(3− 2)3 = ∆− 2 to the potential. Finally, if v is
an ordinary vertex, then Detach(v) in Step (vii) replaces
v with ∆ vertices of degree 1, which do not contribute
to the potential.

At the beginning of Step (iii), vertex v contributes
(∆ − 2)3 to Φ(ϕ2). At the end of Subroutine 2, the
contribution of v, together with the virtual vertices vi
and v′i, over all i ∈ [k], is at most

(∆− 2) +
k∑
i=1

(max{0, di})3 +
k∑
i=1

(max{0, di})2.

By Lemma 2.17, D(Φ, v) ≤ −(∆− 3) ≤ −∆/4.
Let us estimate the number of new vertices created

in these steps. In Step (iii), the Enclose(.) operations
create a pair of virtual vertices for each bridge of v
(i.e., 2k vertices), and up to k ordinary subdivision
vertices. In Step (v.c), Stretch(.) operations create ∆−2
new vertices; and in Step (vii), the Detach(v) operation
increases the number of vertices by ∆ − 1. Therefore,
D(N, v) ≤ 3k+2∆−3 ≤ 5∆−3. Since D(Φ, v) ≤ −∆/4,
inequalities (2.2) and (2.3) follow.

Lemma 2.19. For an instance ϕ0 of atomic embed-
dability of size n, Algorithm terminates, it performs
O(N≥3(ϕ0) + Φ(ϕ0)) operations, and runs in O(n8)
time.3

Proof. Consider one iteration of the while loop of
Step (I), which calls Subroutines 1 and 2. By Corol-
lary 2.3, Step (i) terminates, performs O(Φ(ϕ0)−Φ(ϕ1))

3Optimizing the running time analysis further, which we
believe is possible, is beyond the scope of this work.

operations, and returns and instance ϕ1 with and
N(ϕ1) ≤ N(ϕ0) + 12(Φ(ϕ0)−Φ(ϕ1)). By Lemma 2.16,
Step (ii) terminates, performs O(N≥3(ϕ0)) operations,
and returns an instance ϕ2 with N≥3(ϕ2) = N≥3(ϕ1)
and Φ(ϕ2) = Φ(ϕ1). Similarly, by Lemma 2.18,
the sequence of Steps (iii)–(vii) terminates, performs
O(Φ(ϕ2) − Φ(ϕ7)) operations, and returns an instance
ϕ7 with N(ϕ7) ≤ N(ϕ2) +O(Φ(ϕ2)− Φ(ϕ7)).

Using the definition of the potential, we can bound
its initial value by

Φ(ϕ0) =
∑

v∈V (G0)

(max{0,deg(v)− ξ(v)})σ(v) ≤

≤ n · (∆(ϕ0)− 2)3 ≤ O(n4).

The while loop in Step (I) of the Algorithm terminates
after ∆(ϕ0) − 3 ≤ n iterations, since each iteration de-
creases ∆(.) by Lemmas 2.11 and 2.13. In each itera-
tion, the potential Φ(.) decreases, and N(.) increases by
at most constant times the decrease of the potential by
Lemmas 2.15, 2.16 and 2.18. In particular, for every in-
stance ϕ∗ in intermediate phases of Step (I), both N(ϕ∗)
and N≥3(ϕ∗) are bounded by O(n+ Φ(ϕ0)) ≤ O(n4).

Each operation in Steps (i)–(vii) can be imple-
mented in O(N(ϕ∗)) time, where ϕ∗ is the instance for
which the operation is applied (this allows for planarity
testing, and recomputing block trees and SPQR-trees
after each operation). As noted above, we haveN(ϕ∗) ≤
O(n + Φ(ϕ0)) ≤ O(n4). The overall running time of
all invocations of Step (i)–(vii) is O(n4(n + Φ(ϕ0))) ≤
O(n8).

By Lemmas 2.9 and 2.10, Steps (II)–(III) of the
Algorithm run in O(N(ϕ7)) ≤ O(n + Φ(ϕ0)) ≤ O(n4)
time.

Theorem 2.1. There is an algorithm that determines
whether a simplicial map ϕ : G → H is atomic
embeddable in time polynomial in the number of edges
and vertices in G and H.

Proof. Let ϕ be an instance ϕ of atomic embeddability
of size n, where n is the number of edges and vertices
in G and H. The Preprocessing algorithm runs in O(n)
time and returns an equivalent normal instance ϕ0 of
size O(n) by Lemma 2.3. The main Algorithm for ϕ0

terminates in O(n8) time by Lemma 2.19, and deter-
mines whether ϕ0 is atomic embeddable by Lemma 2.14.
Since ϕ0 and ϕ are equivalent, this also determines
whether ϕ is atomic embeddable.

3 Beyond Atomic Embeddings

Since atomic embeddability is tractable, it makes sense
to consider its generalizations in which every atom can
have genus higher than 0.
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Ca
N

Ca
P

Figure 13: The variable gadget Ga0 = Ca�P1 for
the NP-hardness reduction of Not-All-Equal 3SAT to
compatible toroidal embeddability.

We consider the generalized atomic embedding
problem for a simplical map ϕ : G→ H, where G and H
are multigraphs without loops. The only difference from
atomic embeddibility is that we define the surface
H as follows: For each atom ν ∈ V (H), we construct
S(ν) from an oriented surface of genus g(ν) without
boundary (rather than a 2-sphere), and remove deg(ν)
holes. Hence, an instance for generalized atomic
embeddability is a pair (ϕ, g), where ϕ is a simplicial
map ϕ : G→ H and g : V (H)→ N0.

Problem 4. (Generalized atomic embeddability)
Given a simplicial map ϕ : G → H, where G and
H are multigraphs without loops, and a function
g : V (H) → N0, decide whether a generalized atomic
embedding of G with respect to ϕ exists.

In this section, we show that generalized atomic
embeddability is NP-hard, and therefore also NP-
complete, even when g(ν) ≤ 1 for all atoms ν ∈ V (H),
and the number of vertices in ϕ−1[ν] is at most 7 for
each atom ν with g(ν) = 1.

The NP-hardness proof is based the embeddings of
K3,4 on a torus. For an embedding of K3,4 on a torus,
we say that two vertices u and v of the same vertex class
(i.e., with the same degree) have the same rotation
if the rotation of u is (uv1, . . . , uvk) and the rotation at
v is (vv1, . . . , vvk), where {v1, . . . , vk} is a vertex class
of K3,4. The following lemma extends a lemma from a
paper of Kynčl and the first author [24, Theorem 7(b)].

Lemma 3.1. In every embedding of K3,4 on the torus
the four cubic vertices do not all have the same rotation;
subject to the previous claim, any rotations for the four
cubic vertices can be realized by a toroidal embedding.

Theorem 3.1. Generalized Atomic Embeddability is
NP-hard.

Proof. We reduce Generalized Atomic Embed-
dability from Not-All-Equal 3SAT, which is
known to be NP-complete. An instance of Not-All-
Equal 3SAT is given by a pair (A, C), where A is a

finite set of boolean variables and C is a finite set of
clauses, each of which is a conjunction of three literals.
Each literal is either a variable a ∈ A or the negation
of a, denoted by ¬a. An instance (A, C) is positive if
there exists an assignment τ : A → {true, false} such
that at least 1 and at most 2 literals are true in every
clause.

Given an instance (A, C) of Not-All-Equal
3SAT, we construct an instance (ϕ, g) for General-
ized atomic embeddability, and show that it is
positive if and only if (A, C) is positive. Let C =
{C1, . . . , Cn}.

The construct an instance (ϕ, g), where ϕ : G→ H,
g : V (H) → N0. Let the multigraph H be a p-star
with a center ν0, and n additional atoms ν1, . . . , νn,
such that there are 6 pipes between ν0 and each νi,
for i = 1, . . . , n. In particular, all pipes are incident to
the center ν0.

We put g(ν0) = 0 and g(ν1) = . . . = g(νn) =
1. We describe ϕ via a construction of local graphs
G0 = Gϕ(ν0), G1 = Gϕ(ν1), . . ., Gn = Gϕ(νn). For
ease of presentation, we describe the local graphs as
semi-directed graphs (in which some edges are directed
and others are undirected). However, in the eventual
instance (ϕ, g), all local graphs are undirected (by
replacing every directed edge with an undirected edge.)

The local graphs G1, . . . , Gn are each isomorphic to
K3,4. Let G0 be a disjoint union of the semi-directed
graphs Ga0 = Ca�P1, for all a ∈ A, where P1 is a path
of length 1 and Ca is a directed cycle whose length is
equal to four times the number of occurrences of a in
the clauses in C. Let CaP and CaN denote the two vertex
disjoint directed induced cycles in Ga0 of length equal
to the length of Ca, whose orientation is inherited from
Ca; see Fig. 13 for an illustration.

Next, we define the pipes in E(H) by designating
the pairs of corresponding virtual vertices in the local
graphs; furthermore, for if a pipe ρ ∈ E(H) corresponds
to virtual vertices u and v in two local graphs, we also
specify a bijection between the set of edges incident to
u and the set of edges incident to v. All vertices in
local graphs that are not designated to be virtual will be
ordinary. This uniquely determines the instance (ϕ, g).

For each clause Ci ∈ C, i ∈ [n], we define three
pipes in E(H). Assume that Ci = (`1 ∨ `2 ∨ `3). Recall
that Gi is isomorphic to K3,4. Label the three vertices
of degree 4 in Gi by −1, 0, and 1 resp.; two arbitrary
cubic vertices by the literal `1; and the remaining two
cubic vertices by the literals `2 and `3, respectively. Let
every cubic vertex v ∈ V (Gi) be virtual, and let each
vertex with label ` ∈ {`1, `2, `3} correspond a vertex u
in CaP if ` = a and a vertex u in CaN if ` = ¬a. We
construct the bijection between the edges incident to v
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and the edges incident to u as follows: Let the edge
between v and the vertex of Gi with label −1, 0, and
1, resp., correspond to the incoming, undirected, and
outgoing edge incident to v′ in G0. This completes the
definition of the instance (ϕ, g)

It remains to prove that (ϕ, g) is a positive instance
if and only if (A, C) is a positive instance. We give
the proof only for the forward direction. Assume that
(ϕ, g) is a positive instance of Generalized atomic
embeddibility. Let E : G → H be a generalized
atomic embedding of G with respect to (ϕ, g). Since
g(ν0) = 0, the restriction of E on S(ν0) yields an
embedding of G0 in the plane; and an embedding
of Gi in the torus for all i ∈ [n]. We construct a
satisfying assignment τ : A → {true, false} based on
the embedding of G0 as follows. We put τ(a) = true if
the incoming, undirected, and outgoing edges incident
to a vertex v in CaP appear in this counterclockwise order
in the rotation of v in the embedding of G0; and we put
τ(a) = false otherwise. Note that the truth value of a
is independent of the choice of v. Also note that a literal
` of the clause Ci, i ∈ [n], is satisfied if and only if the
edges between the vertex v labeled by ` and the vertices
labeled by −1, 0 and 1 in Gi appear in this clockwise
order in the rotation at v in the embedding of Gi. Note
that Observation 1 holds also for generalized atomic
embeddability. By Lemma 3.1 and Observation 1, every
clause Ci must be satisfied by at least 1 and at most 2
literals, and hence, (A, C) is positive.

4 C-planarity and Connected SEFE-2

The aim of this section is to given a polynomial-time
reduction of c-planarity, Problem 1, as well as a
special case of a related problem of sefe-2 (defined
below) to thickenability, Problem 2.

An instance of the c-planarity problem is given by
the triple (G, C, µ), where G, C, and µ are as in the input
to the problem. The instance is positive if its output
answer is True. The embedding ψ of G in R2 (or on a
2-sphere) such that ψ(v) ∈ µ(v) and |ψ(e) ∩C| ≤ 1, for
every C ∈ C, is c-planar. Cortese and Partignani [19,
Theorems 1 and 2] showed that in order to solve the
c-planarity problem it is enough to concentrate on the
special of c-planarity of so-called independent flat
clustered planarity in which curves in C bound
pairwise disjoint disks, µ−1[R] induces an independent
set for every R ∈ R, and µ−1[R] is empty for the
unbounded region R. The following theorem allows us
to consider only instances of independent flat clustered
planarity in the reduction.

Theorem 4.1. ([19]) C-planarity is polynomial-
time equivalent to independent flat clustered

planarity.

Given an instance (G, C, µ) of independent flat
clustered planarity, for convenience, we subdivide
every edge of G by a single vertex which is mapped by
µ to the unbounded region. Clearly, this modification
does not change whether the instance is positive or
negative. By a slight abuse of notation, we denote the
resulting subdivided instance by (G, C, µ). We say that
(G, C, µ) is subdivided independent flat.

Also we label the bounded regions of R2 \
⋃
C∈C C

by their bounding curves. Note that every edge of
G has exactly one of its vertices mapped by µ to the
unbounded region.

Thickenability. In the following, we express
thickenability as a combinatorial problem, to which
we actually reduce c-planarity.

Let P = (H,F ) be a 2-polyhera. Let F =
{f1, . . . , f|F |}. A 2-polyhedron P embeds in an ori-
entable 3-manifoldM (such as R3) if the following holds.
We can embed H in M so that we can represent facets
f1, . . . , f|T | by pairwise interior disjoint topological discs
D1, . . . , D|T |, resp., in M such that for every i ∈ [|F |]
the boundary of Di, denoted by ∂Di, consists of the
embedded cycle fi. The representation of P in M given
by the discs D1, . . . , D|F | is an embedding of P . The
restriction of the embedding of P to the boundaries of
these discs gives the embedding of H.

For v ∈ V (H), the link of v in P is a multigraph
LP (v) = (E(v), F (v)), where E(v) is the multiset of
edges in H incident to v, and F (v) is in a bijection with
the set of facets in P that are incident to v and we give
it next. A pair e ∈ E(v) and g ∈ E(v) is joined by as
many edges in F (v) as there are facets in F containing
e and g.

If P = (H,F ) is thickenable then the intersection
of its embedding in a manifold with a sufficiently
small 2-sphere centered at (the embedding of) a vertex
v ∈ V (H) is a spherical embedding of the link LP (v).
Indeed, the 2-sphere intersects edges of H incident to v
in points and facets in F incident to v in curves between
these points.

Given P = (H,F ), the family {Ev| v ∈ V (H)},
where Ev is a planar (spherical) embedding of LP (v), is
compatible, if for every e ∈ E(H) joining vertices u
and v it holds that the rotation at e in Eu is opposite
to the rotation at e in Ev. The observation from the
previous paragraph proves the “only if” part of the
theorem of Neuwirth [37].

Theorem 4.2. ([37]) The 2-dimensional polyhedron
P = (H,F ) is thickenable if and only if there exists
a family of compatible embeddings of the vertex links of
H.
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We show that testing the condition of Theorem 4.2
generalizes c-planarity and connected sefe-2.

Reduction. In what follows we define a 2-
dimensional polyhedron that is thickenable if and only
if (G, C, µ) is positive. Let P = P (G, C, µ) = (H,T )
denote the 2-dimensional polyhedron, where H and T
are defined as follows. (The letter T indicates that all
the facets are triangles.) The vertex set V (H) of H
is C ∪ {R} ∪ {A}, where R is the unbounded region of
R2 \

⋃
C∈C C. The multiset E(H) of edges in H is in a

bijection with V (G)∪C, and we give it next. The vertex
R is joined with every C ∈ C by a single edge, and for
every v ∈ V (G), we add an edge e(v) joining µ(v) and
A. Finally, T = {{µ(u)µ(v), e(u), e(v)}| uv ∈ E(G)},
and hence, the set of triangular facets T is in a bijec-
tion with E(G). The definition of T is consistent with
the definition of H, since every edge of G has exactly
one of its vertices mapped by µ to R.

It remains to prove that the polyhedron P has the
desired property.

Lemma 4.1. The 2-dimensional polyhedron P =
P (G, C, µ) is thickenable if and only if (G, C, µ) is a pos-
itive instance of c-planarity.

An immediate consequence of Lemma 4.1 is the
main result of this section.

Theorem 4.3. C-planarity reduces to thicken-
ability in polynomial time.

Simultaneous embedding with fixed edges
(SEFE-2). In the following we discuss an implication
of Theorem 4.3 to the problem of simultaneous embed-
dability of two graphs sefe-2, which is formally de-
scribed as follows.

Problem 5. sefe-2. Given two (planar) graphs, G1 =
(V,E1) and G2 = (V,E2), decide whether there exists a
planar embedding E of G = G1∪G2 such that both E [G1]
and E [G2] are embeddings.

The Connected sefe-2 is a special case of sefe-2
in whichG1∩G2 is connected. Angelini and Da Lozzo [4]
showed that connected sefe-2 is polynomial-time
equivalent to c-planarity. Together with Theo-
rem 4.3, this immediately implies the following.

Corollary 4.1. Connected sefe-2 reduces in poly-
nomial time to thickenability.
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for approximating maps of graphs. Preprint,
arXiv:1705.05243, 2017.

[26] Radoslav Fulek and Jan Kynčl. Hanani–Tutte for ap-
proximating maps of graphs. In Proc. 34th Sympo-
sium on Computational Geometry (SoCG), volume 99
of LIPIcs, pages 39:1–39:15. Schloss Dagstuhl, 2018.
doi:10.4230/LIPIcs.SoCG.2018.39.

[27] Radoslav Fulek, Jan Kynčl, Igor Malinović, and

Dömötör Pálvölgyi. Clustered planarity testing re-
visited. Electron. J. Combin., 22(4):article P4.24,
2015. URL: https://www.combinatorics.org/ojs/

index.php/eljc/article/view/v22i4p24.
[28] Carsten Gutwenger, Michael Jünger, Sebastian
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